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ABSTRACT

The distribution of cloud-base mass flux is studied using large-eddy simulations (LESs) of two reference

cases: one representing conditions over the tropical ocean and another one representing midlatitude condi-

tions over land. To examine what sets the difference between the two distributions, nine additional LES cases

are set up as variations of the two reference cases. It is found that the total surface heat flux and its changes

over the diurnal cycle do not influence the distribution shape. The latter is also not determined by the level of

organization in the cloud field. It is instead determined by the ratio of the surface sensible heat flux to the

latent heat flux, that is, the Bowen ratio B. This ratio sets the thermodynamic efficiency of the moist con-

vective heat cycle, which determines the portion of the total surface heat flux that can be transformed into

mechanical work of convection against mechanical dissipation. The thermodynamic moist heat cycle sets the

average mass flux per cloud hmi, and through hmi it also controls the shape of the distribution. An expression

for hmi is derived based on the moist convective heat cycle and is evaluated against LES. This expression can

be used in shallow cumulus parameterizations as a physical constraint on the mass flux distribution. The

similarity between the mass flux and the cloud area distributions indicates thatB also has a role in shaping the

cloud area distribution, which could explain its different shapes and slopes observed in previous studies.

1. Introduction

Since the seminal work on parameterization of cu-

mulus clouds by Arakawa and Schubert (1974, hereafter

AS-74), the understanding of the spectral distribution of

cloud properties and how it is controlled by the large-

scale environment remains an obstacle for the formu-

lation of convection parameterizations. In their paper,

AS-74 (p. 687) wrote, ‘‘Our final problem is to find the

mass flux distribution function. The real conceptual

difficulty in parameterizing cumulus convection starts

from this point. We must determine how the large-scale

processes control the spectral distribution of clouds, in

terms of the mass flux distribution function, if they in-

deed do so. This is the essence of the parameterization

problem.’’With this inmind, it is the goal of our paper to

determine how the mass flux distribution of shallow

cumulus clouds p(m) is controlled by the underlying

physical processes and large-scale conditions.

In the formulation of the AS-74 parameterization, the

mass flux distribution function refers to the spectral

distribution of cloud subensembles. The subensembles

encompass clouds of different types based on their sizes

and cloud-top heights. This distribution is estimated in

AS-74 by numerical solution of the Fredholm integral

equation assuming convective quasi equilibrium (QE).

Here, we instead regard the mass flux distribution as an

asymptotic distribution of the spectral subensembles

that are reduced to single clouds, which then can be

classified as a cloud population distribution. In this way,

we approach the problem from another point of view:

instead of assuming convective QE and solving for the

spectral distribution of mass fluxes numerically, we fo-

cus on the underlying physical principles that determine

the shape of p(m) and its parameters.

The decision to examine the population distribution

p(m) instead of the spectral distribution based on cloud

types comes from the need to formulate a scale-aware

parameterization. As the model resolution increases to

the kilometer scale, the separation of the cloud ensem-

ble into spectral bins that represent clouds of different

types loses statistical significance. Instead, a cloud

sample within a grid box can be viewed as a random

sample of clouds drawn from the cloud population. The

clouds are grouped by the gridbox boundaries regardless
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of the cloud types. The total mass flux in a grid boxM is

then a sum over the sampled clouds,M5�n

i51mi, and its

distribution p(M) is characterized by a spectrum of

shapes starting from a normal-like distribution on the

coarse grids, toward a long-tailed distribution on the

kilometer-scale grids (Craig and Cohen 2006; Sakradzija

et al. 2015). The distribution of the total mass flux within

model boxes p(M) has been parameterized based on the

principles of statistical mechanics and has been applied

to deep convection by Plant and Craig (2008) and fur-

ther developed to a parameterization of shallow con-

vection by Sakradzija et al. (2015, 2016). In the context

of such a parameterization, it is important to understand

the physical constraints on p(m) because fluctuations of

the subgrid-scale convective tendencies influence con-

vective regimes and their organization, as well as the

energetics of the explicitly modeled atmospheric flows

(Sakradzija et al. 2016).

The evidence about p(m) based on observations is not

extensive. A few observational studies that examined

p(m) among other cloud statistics were focused on cu-

mulonimbus clouds, for which p(m) was fitted to a log-

normal distribution function (LeMone and Zipser 1980;

Jorgensen and LeMone 1989). More evidence about

p(m) has been provided by modeling studies using

cloud-resolving models (CRM) or large-eddy simula-

tions (LESs). In a CRM study of an equilibrium deep-

convective ensemble under homogeneous large-scale

forcing p(m) was fitted to an exponential function

(Cohen and Craig 2006). This fit was supported by the-

oretical derivation using the formalism of the Gibbs

canonical ensemble from statistical mechanics (Craig

and Cohen 2006). As more computing power allowed

performing simulations with resolutions on the order of

100m, it was revealed that the shape of this distribu-

tion is dependent on the horizontal resolution. With

kilometer-scale resolution, where the deep cumulus

clouds are not fully resolved, p(m) takes an exponential-

like shape, while the shape changes toward a power-law

distribution when using higher resolution (Scheufele

2014). Scheufele (2014) further demonstrated that the

power-law-like shape emerges as a result of self-

organization of the individual cloud updrafts.

For shallow cumulus clouds over the ocean,

Sakradzija et al. (2015) found that the overall shape of

the mass flux distribution results from the superposition

of two distribution modes: one corresponding to the

active buoyant clouds and the other one to nonbuoyant

clouds. The twomodes of the cumulus cloud distribution

deviate from an exponential shape as a result of corre-

lation between cloud mass fluxes and cloud lifetimes.

Each mode can be described using aWeibull distribution

with two parameters, shape k and scale l [see Eq. (13)

and also Sakradzija et al. (2015)]. In the case of

shallow cumulus clouds, the shape parameter of the

Weibull distribution is less than one, k , 1, which sig-

nifies that it is a heavy-tailed distribution. The combi-

nation of at least twoWeibull distribution modes results

in a distribution of the shallow cumulus mass flux that

takes an overall power-law-like shape (see section 6).

Hence, it appears that different mechanisms can lead to

power-law distributions (see, e.g., Mitzenmacher 2003;

Newman 2005). Moreover, either a power-law or a

lognormal distribution can be generated by the same

underlying mechanism under slightly different condi-

tions (e.g., Mitzenmacher 2003), and it is often difficult

to rule out one or the other functional form.

It might be possible to gain more insight into the mass

flux distribution p(m) by making a parallel to the dis-

tribution of cloud sizes. Based on the findings of mod-

eling and observational studies, there is no consensus on

the functional form that best describes the cloud size

distribution. The suggested functions span from expo-

nential (Plank 1969; Hozumi et al. 1982; Astin and

Latter 1998), to log-normal (López 1977; LeMone and

Zipser 1980; Jorgensen and LeMone 1989), to power-

law functions with single (Lovejoy 1982; Zhao and Di

Girolamo 2007; Wood and Field 2011; Dawe and Austin

2012) or double slopes (Cahalan and Joseph 1989;

Sengupta et al. 1990; Nair et al. 1998; Benner and Curry

1998; Neggers et al. 2003; Trivej and Stevens 2010; Heus

and Seifert 2013). Most studies, in particular more re-

cent ones, suggest power laws, with or without a break in

the power-law scaling at the intermediate cloud sizes.

This scale break manifests itself as a change in the slope

of a power-law distribution or as an exponential cutoff

near the distribution tail. However, no explanation

supported by evidence has been provided for the ob-

served differences in the distribution shapes and slopes,

and some of these differences may just reflect different

meteorological conditions.

Given that the characteristics of cloud updrafts are

substantially different between tropical oceanic and

midlatitude continental cumulus convection (Xu and

Randall 2001), the dependency of p(m) on meteoro-

logical conditions is not surprising. We nevertheless

suspect that there are some dominant macroscopic pa-

rameters or processes that determine the characteristic

cloud size and the mass flux that cause the variations in

p(m) between different cases and locations. Instead of

assuming a distribution functional form and estimating

the distribution parameters by statistical fitting of

modeled or observed clouds, we set out to identify the

physical mechanisms that might lead to a specific dis-

tribution functional form and a characteristic scale. We

use LES of shallow cumulus convection based on two
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measurement campaigns, Rain in Cumulus over the

Ocean (RICO) to represent conditions over the ocean

and measurements in an Atmospheric Radiative Mea-

surement (ARM) site to represent conditions over land

(section 2). We aim to reveal what makes the difference

in p(m) between these two reference cases and to

derive a parameterization for the distribution parame-

ters that applies to oceanic and land conditions.

In nine additional simulations, the two reference cases

are modified (see section 2) to test the impacts of the

large-scale forcing and surface conditions on p(m).

Cloud life cycles are studied using the method of cloud

tracking, also described in section 2. This method pro-

vides the lifetime averaged cloud mass flux distribution

defined in section 3. Several reasons for the difference in

p(m) between the two reference cases are hypothesized

and tested in section 4. In section 5 we describe the

physical principle that explains the difference between

the two characteristic distribution shapes. The distribu-

tion is then fitted to the mixed Weibull function to es-

timate the remaining unknown parameters (section 6).

Conclusions are given in section 7.

2. LES case studies

Simulations were performed using the University of

California, Los Angeles, large-eddy simulation (UCLA-

LES) model (Stevens et al. 1999; Stevens 2010). A

detailed description of the UCLA-LES model and the

specification of the parameters and constants used in our

study are provided in Stevens (2010). The UCLA-LES

model solves the Ogura–Phillips anelastic equations,

discretized over the doubly periodic uniformArakawaC

grid. The prognostic variables include the wind compo-

nents u, y, and w; liquid water potential temperature ul;

total water mixing ratio qt; and, in the precipitating cases

(see the next paragraph), rain mass mixing ratio qr and

rain number mixing ratio Nr. In the precipitating cases,

the double-moment warm-rain scheme of Seifert and

Beheng (2001) is used to compute the cloud micro-

physics. The subgrid turbulent fluxes are computed

using the Smagorinsky–Lilly scheme [as described in

Stevens et al. (1999) and Stevens (2010)]. A third-order

Runge–Kutta method is used for numerical time

integration, a directionally splitmonotone upwind scheme

is used for the advection of scalars, and a directionally split

fourth-order centered scheme is used for the momentum

advection (see Stevens 2010). The effects of radiation are

prescribed as net forcing tendencies.

As a first reference case (R-base), an LES case study

of shallow convection based on the RICO measure-

ment campaign (Rauber et al. 2007) is used to repre-

sent conditions over the tropical ocean. The field

measurements were taken during the winter season

2004/05 in the trade wind region of the western Atlantic

upwind of the islands of Antigua and Barbuda (Rauber

et al. 2007). The initial profiles of potential temperature

u, specific humidity qn, and the horizontal winds u and

y are constructed as piecewise linear fits of the averaged

profiles from the radiosonde measurements taken over

Barbuda during a period with no disturbance due to

mesoscale convective systems [Fig. 2 and Table 2 in van

Zanten et al. (2011)]. Vertical time-invariant profiles of

the subsidence rate and of horizontal advection of

moisture and temperature are prescribed and act on the

thermodynamic quantities at each time step [Table 2 in

van Zanten et al. (2011)]. The radiative and advective

cooling rates are prescribed jointly as a large-scale ver-

tically homogeneous cooling rate profile of 2.5Kday21.

The sea surface temperature is set to 299.8K, while the

surface fluxes are computed interactively using a

surface-layer bulk aerodynamic parameterization (see

van Zanten et al. 2011). The geostrophic wind profiles

are prescribed as time invariant and equal to the initial

wind profiles, and the background wind is set to

u525ms21 and y 524ms21. Duration of the R-base

simulation is 60 h.

To represent conditions over land, a second reference

case (A-base) is set up based on the ARM campaign, as

in Brown et al. (2002). This case is forced by the aver-

aged observed conditions at the Southern Great Plains

(SGP) site on 21 June 1997. The start of the simulation is

set to 1130 UTC (0630 local time), a time before con-

vection initiates, and is integrated over a single diurnal

cycle until 0200 UTC the next day (2100 local time). The

initial vertical profiles of the thermodynamics quantities

are computed based on the averaged soundings from

that day (Fig. 1 in Brown et al. 2002). The wind direction

did not change significantly during that day, so the initial

wind profile is set to a constant wind of u 5 10m s21

and y 5 0ms21 at all levels. The geostrophic wind is

also set to these values, while the background wind is

set to u 5 0ms21 and y 5 7ms21. At the surface, the

turbulent heat fluxes are prescribed following Brown

et al. (2002; see their Fig. 3) and exhibit a strong diurnal

cycle. Weak large-scale forcing tendencies due to hori-

zontal advection of moisture and temperature as well

as radiative cooling rates are prescribed following the

diurnal cycle; however, they have only a minor impact

on the simulation.

The two reference LES cases, R-base and A-base, are

further modified to test the effects of surface conditions,

diurnal cycle, and large-scale forcing on the cloud sta-

tistics (Table 1). For all LES cases, the simulations are

performed over a domain of 51.2 km 3 51.2 km, with a

horizontal grid spacing of 25m and a vertical resolution
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of 25m up to a height of 5 km (domain top). Five vertical

grid levels are used as damping layers at the top of

the domain.

In the first group of simulations (R-base, R-0.24,

R-0.33, A-base, A-0.5, A-0.1, A-0.06, andA-0.03; Fig. 1),

we have prescribed a range of values of the ratio of the

sensible to latent heat fluxes at the surface, the Bowen

ratio, to both cases starting from B 5 0.03 to B 5 0.5.

This range of values is selected because it encompasses

the typical values of B characteristic for the regions of

the tropical oceans to midlatitude continental condi-

tions. The purpose of these simulations is to investigate

the hypothesis that the differences between the two

reference cases come from different Bowen ratios. The

average Bowen ratio in R-base is around 0.03 and is

approximately constant, while in A-base the starting

value ofB is around 0.3, and it decreases slightly over the

diurnal cycle (Fig. 1a). The two simulations based on

RICO,R-0.24 andR-0.33, are set up by fixing the surface

heat fluxes instead of the fixed SST. The total heat flux

magnitude is kept equal to the reference RICO case, but

the ratio of sensible to latent heat flux is changed to

result in the wanted B value, 0.24 in the first and 0.33 in

the second case. In the ARM-based cases (A-0.5, A-0.1,

A-0.06, and A-0.03), the total surface heat fluxes are

kept the same, but the ratio of sensible to latent heat flux

is changed to result in the targeted B values of 0.5, 0.1,

0.06, and 0.03. These new B values are set at the be-

ginning of the diurnal cycle and are decreasing over the

cycle at the same rate as in A-base (see Fig. 1a). Note

that the total surface heat flux in the RICO-based cases is,

FIG. 1. Time series of the surface forcing in the first group of eight LES cases from Table 1: (a) Bowen ratio B, (b) surface sensible heat

flux Fsh, (c) surface latent heat flux Flh, (d) surface buoyancy flux Fbuoy, and the resulting (e) cloud-base zb and (f) cloud-top heights zt. The

difference between these simulations is set through the Bowen ratio, which is indicated in the case abbreviations and line colors: R-base

(black solid), R-0.24 (black dots), R-0.33 (black dot–dash), A-base (red solid), A-05 (red dot–dash), A-0.1 (red short dash), A-0.06 (red

dot), and A-0.03 (red long dash). Time from the start of the simulation is shown on the x axis.

TABLE 1. List of the LES cases with the abbreviations used in the

text, the case on which the simulations are based, the maximum

Bowen ratio Bmax, the total surface turbulent heat flux averaged

over the simulation period F in 5Fsh 1Flh, and the type and

duration of the large-scale forcing LSforc.

Abbreviation Reference case Bmax Fin (Wm22) LSforc

R-base RICO 0.06 171 Const

R-0.24 RICO 0.24 152 Const

R-0.33 RICO 0.33 152 Const

A-base ARM 0.36 343 14 h 30min

A-0.5 ARM 0.50 340 14 h 30min

A-0.1 ARM 0.11 347 14 h 30min

A-0.06 ARM 0.06 348 14 h 30min

A-0.03 ARM 0.03 349 14 h 30min

A-lowflx ARM 0.36 274 14 h 30min

A-short ARM 0.36 341 10 h

A-long ARM 0.36 344 19 h
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in average, more than twice lower than the total surface

heat flux in theARM-based cases (Table 1). By comparing

the maximum values of the total surface heat flux or of

the buoyancy flux near the peak of the diurnal cycle

(Figs. 1b–d), the difference between the two reference

cases is even up to 4 times.

As expected, the mean thermodynamic state of the

subcloud layer is affected by the changes in the Bowen

ratio. Increase of the Bowen ratio from 0.03 to 0.33 in

the RICO-based cases causes an increase of the liquid

water potential temperature by 1K and a decrease in

the total water mixing ratio by 1 g kg21, as averaged

over a 500-m-thick layer starting from the surface. In

the ARM case, a decrease of the Bowen ratio from

0.33 in A-base to 0.03 in A-0.03 causes a decrease of

the liquid water potential temperature by 2K, and an

increase of the total water mixing ratio by 2 g kg21,

averaged over a 500-m-thick layer at the surface.

Clearly, all these test cases have a different thermo-

dynamic state in the boundary layer, even though the

Bowen ratios might have the same values.

The depth of the subcloud layer is controlled by the

surface buoyancy flux Fbuoy (Stevens 2007) with the

higher cloud-base heights in the simulations with

higher surface buoyancy fluxes (Figs. 1d,e). The rate of

growth of the subcloud layer is also influenced by B,

and it is higher in the cases with higher B [Fig. 1e; see

also Schrieber et al. (1996)]. Convective clouds are

initiated sooner for the higher values of B (Fig. 1f).

Except for the R-base case where the surface fluxes are

not fixed, the top of the cloud layer does not seem to

be significantly influenced by the changes in B or Fbuoy

(Fig. 1f). This indicates that the processes in the cloud

layer are to some extent detached from the surface

forcing.

In the second group of simulations (A-lowflx,

A-short, and A-long; Fig. 2), we have kept the Bowen

ratio to its assigned values, but changed other key

aspects of the forcing that are distinct between the two

reference cases. The effect of the diurnal cycle in

ARM is tested by shortening it by 1/3 (A-short), or by

prolonging it by 1/3 (A-long), by applying these

changes to the cycle period of the surface fluxes (see

Figs. 2b,c) and the large-scale forcing tendencies. The

effect of the value of the total surface heat flux is

tested by reducing it by 20% in ARM (A-lowflx). As

can be seen in Fig. 2e, the rate of the growth of the

cloud-base height is not affected by these changes.

However, if there is more time for the cloudy

boundary layer to develop, as in A-long, a higher

cloud-base height is reached. The cloud layer deepens

further either with an increase in the forcing period or

with stronger total surface heat fluxes, although the

differences are only around 100m (Fig. 2f).

FIG. 2. As in Fig. 1, but for forcing in the second group of the LES cases based on ARM:A-base (red solid), A-lowflx (dark red dashes),

A-short (orange dots), andA-long (orange dot–dash). The difference between these simulations is set through the period of the large-scale

forcing (A-short and A-long) and through the total surface heat flux magnitude (A-lowflx).
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Cloud tracking

The cloud tracking algorithm developed by Heus

and Seifert (2013) is applied to the simulated cloud

fields in postprocessing of the LES. In the tracking

algorithm, clouds are identified as the adjacent grid

points that hold the liquid water path exceeding a

threshold value of 5 g m22. In that way, the identified

cloud area is a projection of a cloud from all vertical

levels that can be tracked through space and time.

Using the temporal resolution of 1min, cloud areas,

vertical velocities, and cloud lifetimes are recorded

for each cloud in the simulation. A cloud splitting al-

gorithm is then used to separate and track the indi-

vidual cloud elements that form the multicore clouds

or the merged cloud clusters. These cloud elements

are defined as holding a buoyant core with the maxi-

mum in-cloud virtual potential temperature uy excess

larger than a chosen threshold of 0.5K. More details

and validation of the tracking method are provided in

Heus and Seifert (2013).

To develop a cloud parameterization based on the

mass flux approach, the cloud mass flux has to be es-

timated near the cloud-base level. For this reason, we

have developed a secondary tracking routine, as in

Sakradzija et al. (2015), in which we record the area

that every cloud occupies at the level that lies 100m

above the lifting condensation level (LCL). We define

this area as the area that contains all the points with

liquid water content greater than zero.

3. Cumulus cloud population statistics

The upward flux of mass through cloud base of the ith

cloud is defined as

m
i
5 ra

i
w

i
, (1)

where ai is the area (m2) occupied by points holding

liquid water at a level 100m above LCL and wi (m s21)

is the vertical velocity averaged over the area ai. To

compute the distribution of the cloud mass flux p(m)

we average mi over the lifetime of each cloud. Similar

results can nevertheless be obtained by looking at the

instantaneous values. The choice of computing the

lifetime averaged mass fluxes comes from the possi-

bility to reconstruct cloud life cycles for the purpose

of a parameterization, as in Sakradzija et al. (2015).

The distribution of cloud-base mass fluxes is cal-

culated for the two reference cases, RICO and ARM

(Fig. 3). The probability density distribution is com-

puted using the generic R function hist (R Core Team

2015). The width of the bins used to compute the

probability density of mass fluxes is logarithmically

increasing with higher mass flux values. The sampling

period in RICO is from hour 6 to hour 22 of the

simulation, while in the ARM case clouds are sam-

pled from hour 6 (1730 UTC) to hour 12 (2330 UTC)

of the simulation. Only those clouds that were ini-

tialized during the sampling period are included in

the calculation. Clouds that lasted longer than this

sampling time period are followed beyond the time

limit to finalize their life cycles. The sample size of the

lifetime average cloud-base mass flux distribution is

317 014 clouds in the RICO case and 120 292 clouds in

the ARM case.

The two reference LES cases exhibit distinct hori-

zontal and vertical extents of the clouds, number of

clouds, and their spacing because of different initial

conditions, surface, and large-scale forcing. The mass

flux distributions corresponding to these two refer-

ence cases have different shapes, and they cover

different ranges of the mass flux values (Fig. 3). The

distribution of the cloud-base mass flux in the ARM

case shows a straight-line shape on a log–log plot,

similar to a power-law distribution over a range of

three orders of magnitude. In contrast, the distribu-

tion in the RICO case shows a more concave shape. In

previous literature on the cloud size distribution,

such a type of a concave shape has often been iden-

tified as a double power-law distribution with two

distinct slopes and a scale-break point at the in-

termediate cloud size (Cahalan and Joseph 1989;

Sengupta et al. 1990; Nair et al. 1998; Benner and

Curry 1998; Neggers et al. 2003; Trivej and Stevens

FIG. 3. The probability density distribution of the lifetime

average cloud-base mass fluxes. Clouds are sampled from hour 6

to hour 22 from the simulation start in the R-base case; and from

hour 9 to hour 12 after the simulation start in the A-base case.

Clouds with mass flux values , 600 kg s21 are discarded from the

plot to remove possible numerical noise, since those are mostly the

clouds that cover only a single grid cell. The 95% confidence bands

are plotted as shaded areas.
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2010; Heus and Seifert 2013). To make a parallel to

these studies, we identify the scale break in the mass

flux distribution of the R-base case at a value of the

cloud-base mass flux close to 1 3 105 kg s21 (Fig. 3).

Based on the qualitative comparison of the mass flux

distributions of the R-base and A-base case, we con-

clude that there is no universality in the distribution slopes

on a log–log plot (Fig. 3). As we will show in section 4c,

the slope of the mass flux distribution changes with the

change of a control parameter of the simulations.

The sampling variability of the mass flux distributions is

very low in both reference cases except near the end of the

right tails of the distributions (Fig. 3), which is a sign of a

limited sample size of the largest possible cloud mass flux

values. This portion of the distribution tail has higher

sampling variability based on the 95%confidence intervals

computed for each distribution bin (shaded areas in Fig. 3).

The confidence intervals were calculated using a bootstrap

method with replacement using 1000 random samples.

As a key contributor to the cloud-base mass flux, the

cloud area ac is distributed qualitatively similarly to

the distribution of the mass flux (Fig. 4a). The differ-

ence between the two reference LES cases shows

similar characteristics as for the two mass flux distri-

butions. So, the knowledge about the physical mech-

anism that shapes p(m) might also be sufficient to

describe p(ac). The cloud area distribution of the

A-base case shows a power-law-like shape with a scale

break around the value of 106m2. The scale break in

the ARM-base case is located at a scale an order of

magnitude larger than the one of the R-base case.

These two cloud area distributions are actually very

similar to the two typical cloud size distributions ob-

served over land and over ocean as derived from the

Landsat images in Sengupta et al. (1990), their Fig. 4.

A similar change in the distribution behavior for the

largest cloud areas is observed in the radar echo areas

distribution in Trivej and Stevens (2010). Different

statistics of the large echoes compared to a power-law

behavior of the small echoes may be controlled by the

meteorological environment. In particular, the exis-

tence of an inversion layer topping the cloud layer

limits the growth of clouds beyond a certain size,

which can be connected to the observed break in the

scaling (Trivej and Stevens 2010). Strong subsidence

inversions over the tropical oceans might explain the

position of the scale break at the lower values than

what is observed at midlatitudes (see also Wood and

Field 2011).

The distribution of vertical velocity of individual clouds

is approximately symmetric and can be well fitted using a

normal distribution, as illustrated in Fig. 4b. The average

vertical velocity per cloud is hwi5 0.64ms21 in the RICO

case and hwi5 0.76ms21 in the ARM case. Compared to

the RICO case, in the ARM case the variance of w is

significantly higher, and some clouds can gain velocities

larger than 2ms21. This result is in line with the findings of

Xu and Randall (2001), albeit for deep convection, where

the most significant differences in the updraft intensities

between tropical oceanic and midlatitude continental

convection were found in the strongest 10% of the up-

drafts, not in the median values. The correlation between

vertical velocity wi of individual clouds and their mass

fluxes mi is very low (not shown here). This is the reason

for the similarity between p(m) and p(ac), while p(w)

belongs to a different family of distributions.

Why are the two reference population distributions dif-

ferent? Is the distribution shape changing under the

FIG. 4. The probability density distribution of (a) lifetime aver-

aged cloud-base areas and (b) vertical velocity (w) through cloud

base for RICO (black) and ARM (red). As in the previous figure,

clouds with mass flux values , 600 kg s21 are discarded from the

plot to remove possible numerical noise.
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influence of the large-scale forcing or of the surface condi-

tions? We address these questions in the following section.

4. The three hypotheses

The main differences between the two reference

LES cases are in the existence of a strong diurnal cycle

over land, strong self-organization of clouds over

ocean, and in the magnitude and partitioning of the

surface turbulent heat fluxes (Table 1). Other aspects

of the large-scale forcing are also different between

the two reference cases. However, we rule out those

differences as a cause of the different distribution

shapes because it was hypothesized and shown in

previous studies that the intensity of the convective

updrafts was insensitive to changes in the large-scale

forcing (e.g., Robe and Emanuel 1996; Cohen and

Craig 2006; Plant and Craig 2008). Based on these

facts, we propose the three hypotheses that might

explain the divergence of the mass flux distribution

between the two reference LES cases:

(i) diurnal cycle of convection determines the distri-

bution p(m),

(ii) convective self-organization determines the distri-

bution p(m), and

(iii) surface fluxes determine the distribution p(m).

In the following, we test the three hypotheses by ana-

lyzing all 11 LES cases (Table 1).

a. The first hypothesis: Diurnal cycle of convection

Here we test if changes in the forcing associated

with the convective diurnal cycle might be responsible

for the different shapes of p(m) in the two reference

cases. We sample the clouds that emerge in the ARM

case during four time frames of 1-h duration, taken at

different stages of the diurnal cycle, starting at 1730UTC.

The distribution of cloud-base mass flux in all four

time frames is shown in Fig. 5. It is clear that there is

no significant change in p(m) over the diurnal

cycle of the ARM case [i.e., the distribution p(m) is

stationary].

Another property of the diurnal cycle that might

influence p(m) is the period of the diurnal cycle.

Shorter or longer diurnal cycles imply faster or slower

temporal changes in the forcing. With faster changes,

clouds might have less time to develop undisturbed, so

their sizes and mass fluxes might be lower. Or, with

slower changes in the forcing, larger clouds might

result. To test this, we investigate the results of the

simulations A-short and A-long. A time frame of 1-h

duration is taken around the peak of the diurnal cycle,

after 9, 7, and 11 h from simulation start in A-base,

A-short, and A-long, respectively, and p(m) is exam-

ined (Fig. 6). There is again no significant difference

among the simulations, except near the right tail of the

distribution, where the A-short case shows a faster

drop-off than the other two cases. This means that the

largest possible clouds cannot develop in the ARM

case if the period of the forcing is too short. Overall,

there is nevertheless no change in the distribution

shape, and the slope of the line stays similar across

the three cases. The results of these experiments

demonstrate that changes of the forcing over a diurnal

cycle do not shape the distribution of the cloud-base

mass flux.

FIG. 5. The probability density distribution of the lifetime av-

erage cloud-base mass flux (kg s21) sampled over time frames of

1-h duration over the diurnal cycle of theA-base case, starting after

6 (gray), 8 (red), 10 (blue), and 11 h (green) of simulation (at 1730,

1930, 2130, and 2230 UTC, respectively).

FIG. 6. The probability density distribution of the lifetime av-

erage cloud-base mass flux over the cases with different diurnal

cycle periods, based on the ARM case: A-base (red), A-short

(blue), and A-long (green).
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b. The second hypothesis: Convective
self-organization

In this section, we test how the spatial correlations

during the organized phase of the RICO case influence

the cloud-base mass flux distribution. Organization of

convective clouds into clusters, lines, or arcs could in-

fluence p(m) by affecting the size and intensity of indi-

vidual cloud elements. Here, it is important to note that

the cloud tracking routine identifies the cloud entities

that form the cloud clusters and performs splitting so

that every element can be followed separately even

when two cloud elements have merged. In contrast, past

studies have investigated the distributions of merged

cloud clusters and suggested self-organization as a

mechanism for creating power laws (Scheufele 2014).

We choose the R-base case to test the effects of cloud

organization on p(m) because this convective case is

strongly organized after one day of simulation (Fig. 7).

Starting from a randomly distributed field of clouds and

looking into the time frames with different stages and

forms of organization, we plot p(m) in Fig. 7. We find no

evidence that self-organization of clouds has an effect on

p(m) because the overall distribution shape stays the

same in spite of organization. Hence, the different de-

grees of organization between RICO and ARM cannot

explain the differences in p(m).

Even though self-organization is not responsible for

the final shape of the distribution, it is a process that can

produce longer tails in the cloud distributions, if the

cloud splitting is not performed and cloud clusters are

sampled to compute p(m) (Scheufele 2014). Figure 7

indicates that this dependency vanishes if individual

cloud elements are considered.

c. The third hypothesis: Surface heat fluxes

The two reference cases have very different surface

conditions: one is set over the ocean, while the other one

is set over land, so the magnitudes of the surface heat

fluxes differ by up to a factor of 4 between the cases (see

Fig. 1). We investigate here the dependency of the dis-

tribution shape on the surface turbulent heat fluxes,

which drive the boundary layer convective updrafts that

ultimately form cumulus clouds at the top of the sub-

cloud layer. We test the magnitude of the fluxes and

their partitioning at the surface.

1) THE MAGNITUDE OF THE SURFACE HEAT

FLUXES

We have already concluded in the previous section

for the ARM case that p(m) does not change over a

single diurnal cycle (Fig. 5). From this conclusion, it

also follows that p(m) is not sensitive to the surface flux

FIG. 7. (a) The probability density distribution of the lifetime average cloud-base mass flux in the R-base case, over different stages of cloud

organization: 6 (gray), 18 (red), 30 (blue), and 42 h (green). (b)–(e) Visualization of the corresponding horizontal spatial distribution of the cloud

field in the liquid water path (gm22): after (left to right) 6, 18, 30, and 42h, respectively. The gray scale is from 0.0 to 2.5 in increments of 0.5.
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magnitude. To further prove this, we perform one

additional test (A-lowflx), in which the total surface

turbulent heat flux is lowered by 20% (Fig. 8). There is

no significant difference between the two distributions.

The A-lowflx case can simply be considered as another

realization of the same shallow cloud ensemble of the

A-base case.

2) THE RATIO OF THE SURFACE HEAT FLUXES

The ratio of the sensible and latent heat fluxes at the

surface, the Bowen ratio B, is the main parameter that

characterizes the two surface types, ocean and land.

Though the total surface flux magnitude has no effect on

p(m), the partitioning of this flux into sensible and latent

heating might have an effect. Note that the Bowen ratio

does not change much over the diurnal cycle in ARM.

We thus turn our attention to the sensitivity experiments

using different Bowen ratios (Fig. 9).

By changing only the ratio of the surface fluxes and

leaving their total summed magnitudes unchanged, the

shape of the mass flux distribution can be altered. More

importantly, by setting the RICO Bowen ratio in the

ARM setup (A-0.03), the mass flux distribution of the

RICO case is recovered (Fig. 9a). Likewise, by setting

the ARM Bowen ratio in the RICO setup (R-0.33), the

mass flux distribution of the ARM case is recovered

(Fig. 9b). Thus, it is evident that the ratio of the surface

fluxes and not their magnitudes shapes the mass flux

distribution.

3) THE TWO MODES OF THE CLOUD DISTRIBUTION

The final shape of p(m) is a result of the superposi-

tion of the distribution modes associated with cloud

groups of different subtypes: active, forced, and passive

clouds (see the classification of Stull 1985). We exam-

ine the dependency of these modes on the Bowen ratio

separately. Here we simplify the classification of clouds

into buoyant (active) and nonbuoyant (passive) clouds,

as in Sakradzija et al. (2015). Forced clouds fall into

the ‘‘passive’’ nonbuoyant cloud group owing to this

simplification. Clouds are classified as active buoyant

clouds if the excess of the vertically integrated virtual

potential temperature within clouds, uy,up 2 uy, is

larger than a threshold. The threshold is set to 0.5K,

except in a case where this leads to a too-small statis-

tical sample, as in R-0.33. In the latter case, the

threshold is set to 0.4K.

In the RICO-base case (Fig. 10a), the cloud distribu-

tion shows shorter tails in both modes and lower mass

FIG. 8. The probability density distribution of the lifetime av-

erage cloud-base mass flux in the A-lowflx case (blue) compared to

the distribution in the A-base case (red).

FIG. 9. Reproduction of the distribution shape of the lifetime

average cloud-basemass flux of (a) the R-base case (solid black) by

altering the Bowen ratio of the ARM case toB5 0.03 (dashed red)

and (b) the A-base case (solid red) by altering the RICO case

Bowen ratio to B 5 0.33.
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fluxes in average compared to the A-base case (full lines

in Fig. 10b). With increasing Bowen ratio, the active

cloud modes shift toward higher mass flux values, while

the slopes of the two modes become less steep (Fig. 10).

Through the control on the range of mass flux values

that individual modes of p(m) can take, and by setting

the slope of the modes, the Bowen ratio ends up

determining the average mass flux per cloud hmi in

both distribution modes.

This fact might explain why different power-law

slopes are documented in different observational stud-

ies of cloud population (see Table 1 in Zhao and Di

Girolamo 2007). The slopes of the observed cloud size

distributions in the midlatitude regions have lower

values than the slopes in the tropics (seeWood and Field

2011). These characteristics of the observed cloud size

distribution correspond to the control that B imposes on

the slopes that we observe in the RICO and the ARM

cloud-base mass flux distributions (Fig. 10). Higher

values of B in midlatitudes produce lower slopes com-

pared to the higher slopes that are produced as a result

of low B in the tropics.

5. The Bowen ratio indirectly sets the average mass
flux per cloud

To understand the link between p(m) andB, we aim at

deriving in this section the constraints on the mass flux

hmi that an average cloud can transport based on the

boundary layer energetics. As will be shown in section 6,

hmi is the key parameter through which the difference

between the mass flux distributions of the two reference

cases is set.

We start from the concept of atmospheric convection

as a natural heat engine (Rennó and Ingersoll 1996).

During a heat cycle of an average convective cloud, the

heat Qin (J) is input near the surface in the form of the

turbulent surface heat flux Fin (Wm22) (sum of latent

and sensible heat fluxes). This heat is partly converted

into mechanical work Wmech of the convective over-

turning in the subcloud layer, and the rest is added

into the cloud layer and redistributed further. Here, we

define the heat cycle for the subcloud layer that lies

between the surface layer over the warm ocean or land

surface and the colder cloud layer above.

The efficiency of the heat cycle is defined as the ratio

of mechanical work and the heat input at the surface:

h5
W

mech

Q
in

. (2)

The theoretical maximum efficiency of the heat cycle in

the subcloud layer is the Carnot efficiency, which can be

defined as

h
max

5
T

sfc
2T

lcl

T
sfc

, (3)

where Tsfc is the surface temperature and Tlcl is the

temperature at the lifting condensation level. If the heat

input at the surface would happen solely in the form of

the sensible heat flux and if no heat was spent to trans-

port water vapor out of the subcloud layer, the efficiency

of the convective heat cycle would approach the Carnot

efficiency. However, the thermodynamic cycle of con-

vection in the boundary layer is a mixed moist heat cycle

with an efficiency that is lower than the maximum the-

oretical Carnot efficiency, h, hmax. As shown in Shutts

and Gray (1999), the efficiency of the moist heat cycle

can be expressed as [see their Eq. (19)]

FIG. 10. The lifetime average cloud-basemass flux distribution of

active (red) and passive (blue) cloud modes for different Bowen

ratios: (a) RICO-based cases and (b) ARM-based cases. Full lines

correspond to the reference cases, while dashed lines correspond to

the cases with changed B.
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where cp is the specific heat capacity of the dry air at

constant pressure,Ly is the latent heat of vaporization, g

is the gravitational acceleration, «5 12 Ry/Rd, Ry is the

gas constant for water vapor, Rd is the gas constant for

dry air, and H is the subcloud layer depth. Equation (4)

is derived under the assumption that the effective heat

input at the surface, hFin, is used to maintain convection

against mechanical dissipation in a convective system in

statistical equilibrium. The efficiency of a moist heat

cycle h could be further explained using the entropy

budget analysis, as in Pauluis and Held (2002). They

found that convection acts both as a heat cycle and as an

atmospheric dehumidifier, and the irreversible entropy

production by the two processes is in competition. The

more the atmosphere acts as a dehumidifier, the less

effective it is to generate kinetic energy of convective

circulations (Pauluis and Held 2002).

From Eq. (4), it follows that the Bowen ratio highly

influences the fraction of the heat input that can be

transformed into mechanical work to maintain convec-

tive circulations. TheBowen ratioB appears explicitly in

Eq. (4) but also implicitly through its control on the

depth of the subcloud layerH (see Schrieber et al. 1996;

Stevens 2007).

Equation (2) does not explicitly relate hmi to the

moist heat cycle. To do so, we proceed as follows. The

average cloud-base mass flux per cloud hmi is related to

the turbulent flux of the moist static energy at the cloud-

base level rw0h0 through the mass flux approximation as

defined in AS-74:

rw0h0 ’ �
i

m
i
(h

i
2 h) , (5)

where i5 1, . . . ,N is the index of individual clouds, hi 2 h

is the excess of the moist static energy within the updrafts

that form clouds with respect to the environment, and an

overline denotes averaging over the domain.

As a first simple hypothesis, we assume that the tur-

bulent flux of themoist static energy at cloud base, rw0h0,
is proportional to the effective surface forcing of the

cloud ensemble, NhFin, and by using Eq. (5), we write

�
i

m
i
(h

i
2 h)’C

1
NhF

in
, (6)

where C1 is a proportionality constant, which can be

seen as a factor of correction for further heat losses not

taken into account, andN is the number of clouds in the

cloud ensemble. Because the surface forcing is homo-

geneous, Fin is equal for all individual cloud heat cycles.

The efficiency is controlled by the homogeneous surface

properties and the subcloud layer depth and is approx-

imately equal among the clouds [see Eq. (4)], so h is

treated as a constant in a single convective case. Now we

apply the mass-flux-weighted averaging as defined in

Yanai et al. (1973) to Eq. (6):

�
i

m
i
h
i

�
i

m
i

’ ~h , (7)

where ~h is the mass-flux-weighted average of h, which is

approximately equal to the average of the moist static

energy per cloud, hhi, where the brackets h�i denote

averaging over the cloud ensemble. The relative differ-

ence between the values of ~h and hhi is lower than 0.5%

as estimated from LES. So, we can rewrite the left-hand

side of Eq. (6) as
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�
i

m
i
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1
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in
. (9)

An average moist heat cycle per cloud can then be

expressed as

hmi(hhi2 h)’C
1
hF

in
(10)

and the average mass flux per cloud is then approxi-

mately equal to

hmi’C
1

hF
in

hhi2 h
, (11)

with h given by Eq. (4).

We look into theLES tofindevidence to supportEq. (11).

We base our analysis on the active cloud group, and we

plot the average mass flux per active cloud hmi versus
the right-hand side of the Eq. (11) (Fig. 11a). It turns out

that Eq. (11) holds remarkably well for the eight tested

LES cases of Table 1, which suggests that the average

mass flux per cloud is determined by themoist heat cycle

of the subcloud layer. The coefficient of determination

of a linear regression model is r2 5 0.95. The slope is

estimated to be equal to C1 5 0.13. The intercept pa-

rameter is nevertheless not equal to zero and results in

an additional mass flux, which we will denote by m0:

hmi5m
0
1C

1

hF
in

hhi2 h
. (12)
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FIG. 11. Scaling of the average cloud-base mass flux hmi based on the moist heat cycle [Eq. (11)] for eight LES cases showing (a) the

average mass flux of active cumulus clouds, (b) the average mass flux of the total cloud ensembles, and the right-hand side of the Eq. (11)

decomposed into (c) Fin/(hhi 2 h) and (d) h. Two time frames are used for these figures: the frames starting after 6 and 10 h of the

simulation in the RICO-based cases and after 8 and 10 h in the ARM-based cases.
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Theestimatedvalue in this study ism05 33 1025kgs21m22.

Depending on the test case and the Bowen ratio value,

hmi can be 1.5–6.9 times larger than m0 (Fig. 11a).

The scaling Eq. (11) is evaluated in Fig. 11a only for

the active clouds, while we do not show the scaling for

the passive cloud group. This is because the buoyancy

threshold used to separate the clouds into the two

groups misinterprets some active clouds as passive. We

can, however, show the scaling for the total cloud en-

semble in Fig. 11b, which still holds.

Equation (11) is decomposed into two parts to test the

dependency of hmi of the active clouds on Fin/(hhi 2h)

andh separately (Figs. 11c,d). It is clear fromFig. 11c that

hmi does not scale with Fin/(hhi 2h). The points are

aligned vertically in three different groups associated

with the three main values of the ratio Fin/(hhi 2h): that

is, 0.05, 0.08, and 0.13. The increase in hmi in each of these
three groups of points is due to changing values of B.

Thus, hmi is controlled by B, while the different mean

states of the subcloud layer can still result in the same

value of hmi. It is not shown here explicitly, but hmi also
does not scale uniquelywith the total surface heat fluxFin.

The average mass flux per cloud hmi is also not

uniquely determined by h. The quantity h sets the slope

of the three lines corresponding to the three different

magnitudes of the ratio Fin/(hhi2h). Furthermore, if the

ratio Fin/(hhi 2h) in a given group of points is higher,

the efficiency h in the same group is lower compared to

the other groups. As a result, hmi is uniquely determined

by the product of the two factors [Eq. (11)], with

h playing the key role in setting the dependence on B.

The fact that B sets the efficiency of the moist con-

vective heat cycle, and thus also controls the expected

value of p(m), directly explains why the magnitude of the

surface forcing does not influence the distribution shape.

From this it also follows that changes of the surface

forcing over the diurnal cycle cannot alter the distribution

shape, as long as B does not change significantly over the

diurnal cycle. The moist heat cycle formalism might also

explain why self-organization is not a powerful driver for

the distribution p(m). The convecting system is forced by

the same amount of heat input, and the efficiency of the

moist heat cycle is the same at all stages of cloud orga-

nization. So, for the shape of p(m), the spatial distribution

of clouds does not play any significant role.

An important point to notice here is that the heat

cycle formalism applies to the average convective cycle

per cloud, and thus it determines hmi, not the bulk

contribution M of all clouds in the shallow cloud en-

semble. The quantity M is not fully constrained by the

heat cycle of the subcloud layer. This has an implication

for the bulk closure assumptions in parameterization of

convection. To retrieve the closure of a bulk parame-

terization, an average mass flux per cloud hmi has to be

multiplied by the total number of clouds N to result in

the bulk mass fluxM. Therefore, the controls onMmay

be decomposed into two contributions: the surface

conditions control hmi, while, in addition to the surface

conditions, the large-scale forcing acts to set the number

of clouds in the ensemble N.

6. Parameters of the mass flux distribution

For the application to parameterizations based on the

spectral cloud ensembles (AS-74) or stochastic cloud

ensembles (as in Plant and Craig 2008; Sakradzija et al.

2015), a functional form for p(m), has to be defined, and

the corresponding distribution parameters have to be

estimated. In the following, we adopt the mixedWeibull

distribution as a functional form for p(m), as in

Sakradzija et al. (2015):

p(m)5 (12 f )
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where f is the fraction of active cumulus clouds, k is the

shape, l is the scale parameter of the Weibull distribu-

tion, and subscripts p and a denote passive and active

distribution modes.

From the results of the previous section, we know that

hmi varies with the surface conditions. The question

nevertheless remains whether any of the remaining

distribution parameters, namely kp,a and lp,a, are uni-

versal constants. In the study of Sakradzija et al. (2015),

these parameters were estimated only for theRICO case

for the time period of 6 h, starting after 6 h of simulation.

The estimated shape parameter was kp5 ka5 0.7 for the

given cloud sample. In the following, we extend the

analysis over the longer time period of the RICO case

and over land conditions in the ARM case. We focus on

the estimation of the shape parameters, kp,a, while

the scale parameters of the Weibull distribution modes,

lp,a, can be calculated from the expected value of the

distribution, hmip,a 5 lp,aG[1 1(1/ kp,a)].

In shallow cumulus cloud ensembles, the shape pa-

rameter that is less than one, k , 1, indicates that the

memory of cloud life cycles has an effect on the distri-

bution shape (Sakradzija et al. 2015). This effect takes

place through correlation between the cloud lifetimes ti
and the cloud-base mass fluxes mi, which is already

demonstrated for the RICO case in Sakradzija et al.
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(2015). We confirm this finding for the RICO case, and

we also show that it holds in the ARM case (Fig. 12).

This correlation is high, with the correlation coefficient

equal to rp 5 0.8 in RICO and rp 5 0.9 in ARM, esti-

mated for the active cumulus clouds. We assume that

this correlation can be described by a power-law relation

t/hti 5 (m/hmi)b, where b is the power exponent and

hti is the average cloud lifetime, as in Sakradzija

et al. (2015).

In the theory of extreme events, it is known that long-

term correlations with a power-law decay of the auto-

correlation function lead to Weibull distributions of

return intervals between rare events (e.g., Bunde et al.

2003; Blender et al. 2015). In that case, the power-law

exponent of the autocorrelation function t2b can be as-

sumed equal to the shape parameter of the Weibull

distribution k (e.g., Blender et al. 2015). Following this

reasoning, the normalized lifetime expression t/hti 5
(m/hmi)b also leads to a Weibull distribution for the

cloud-base mass flux distribution [Eq. (13)]. The power-

law exponent can then be related to the shape parameter

of the active mode of theWeibull distribution as ka ’ b.

The nonlinear least squares fit in Fig. 12 gives the values

for the exponent b5 0.8 in RICO and b5 0.77 in ARM.

Hence, it appears that b is independent of the case setup.

The passive cloud group is more dispersive (not shown

here), and the statistical fit is thus more uncertain;

however, we will assume that kp ’ ka 5 0.8.

Combination of the two Weibull modes of the same

shape parameter kp 5 ka 5 k, but different hmpi and

hmai, and hence different la,p, can explain the difference

between the two cases (Fig. 13). To construct Fig. 13 and

with the purpose of highlighting the uncertainties in

p(m) as a result of the chosen value of k only, we here

calculate the values of hmpi and hmai directly from the

LES output rather than using the formalism of a ther-

modynamic cycle. The chosen value of kp 5 ka 5 0.8

provides a good fit to both distributions (Fig. 13). On the

same plot, we also test a broad range of values for k,

which demonstrates that k is of secondary importance in

determining the final shape of p(m). It is evident that k

can still take a wide range of values, [0.8, 1] for RICO

and [0.5, 0.8] for ARM, for the correct reproduction of

the distribution p(m). Therefore, we conclude that the

main parameter that sets the difference in p(m) among

the shallow cumulus cases is hmi.
The parameter f, which is the proportion of active

clouds in the cloud ensemble, is about 4%–5% of the

total cloud population both in ARM and RICO. This is

valid for the distribution of lifetime average mass fluxes

during time frames of 1-h duration and including only

those clouds that are initiated during the time frames.

We choose here to set the value of f to 0.05.

7. Conclusions

The probability distribution of cloud-base mass flux

p(m) differs among shallow cumulus cases. These

FIG. 12. Scatterplot of individual active cloud lifetimes and

cloud-base mass fluxes normalized by the ensemble average values:

(a) the R-base simulation and (b) the A-base simulation. Cloud

samples are collected during 1 h starting from simulation hour 10.

The red line is a fit of the function t/ht i 5 (m/hmi)b using the

nonlinear least squares.
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differences manifest themselves through various shapes,

slopes, and scales of the distribution. Based on the ex-

amination of one typical LES case over the ocean

(RICO) and one typical LES case over land (ARM), and

nine variations of these two cases, we propose an ex-

planation for the differences in p(m) among shallow

cumulus cases.

The setup of the two reference LES cases differs in the

strength and partitioning of the surface turbulent heat

fluxes, as well as in the prescribed large-scale forcing

tendencies. The ARM case has a strong diurnal cycle

that is typical for land conditions, while there is no di-

urnal cycle in the simulation over the ocean (RICO). In

addition, the cloud field in the RICO case is strongly

organized, with manifestation of cold pools and arc

structures. We have investigated which of these differ-

ences in the LES setup is responsible for the distinct

shapes of the distribution p(m).

Analysis demonstrates that the partitioning of the

surface turbulent fluxes into sensible and latent heating,

that is the Bowen ratio B, is the only parameter that

controls the shape of the distribution p(m). This control

appears to be governed by the second law of thermo-

dynamics and can be explained by interpreting moist

convection in the boundary layer as a combination of

moisture and heat cycles (as in Shutts and Gray 1999;

Pauluis and Held 2002). The efficiency of the moist heat

cycle h is less than the Carnot cycle efficiency, because it

is directly set by the surface Bowen ratio and the depth

of the convecting layer (Shutts andGray 1999). Through

h, the Bowen ratio controls the average mass flux per

cloud hmi.
Using the formalism of a moist heat cycle, a scaling

law for hmi is derived [see Eq. (11)]. By this scaling, the

average vertical mass flux through cloud base hmi is

proportional to the ratio of the effective surface heat

flux hFsfc and the excess in the moist static energy at the

cloud base with respect to the environment hhi2 h. This

scaling holds remarkably well for the active buoyant

clouds in the eight considered convective cases and thus

FIG. 13. The mass flux distribution approximately fitted using a bimodal Weibull function: (a) the distribution fit

of RICO and (b) the distribution fit of ARM. The range of the shape parameter k is quite wide to show low

sensitivity of the distribution overall shape to this parameter, while the fraction of active clouds in the ensemble is

f 5 5%.
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suggests a universal law across a wide range of the

control parameter B. Passive and forced clouds are not

investigated here because of their uncertain separation

from the active clouds, but we show that the scaling still

holds considering all cloud types.

As such, B controls the shape of the distribution p(m)

through its control on hmi. We have demonstrated that

different shapes of the distribution p(m) can be well

captured by a two-mode Weibull distribution function.

The shape parameter of each distribution mode is k , 1,

and it is of secondary importance for determining the final

shape of p(m). The reason for this robustness comes from

similarity of the power-law exponent b in the relation

between cloud lifetime and cloud-base mass flux across

the LES cases. This power-law exponent sets the unique

value of the shape parameter across the LES cases.

The Bowen ratios tested in this study covered the

range of values between 0.03 and 0.5. This range corre-

sponds to the span of conditions covering ocean surfaces

to temperate forests and grasslands. To make the con-

clusions of this study more general, it would be advan-

tageous to expand the study to dry land surfaces and to

extend the analysis to cloud observations. In addition,

the mechanical forcing in the two reference cases was

of similar magnitude. A question left for further in-

vestigation is how stronger winds and higher wind shears

might influence the convective mass flux and population

statistics.

One of the key outcomes of this study is that the

concept of a moist heat cycle applies to an average

convective cloud cycle. To retrieve the total mass flux

in a cloud ensemble M, it is necessary to set the con-

straints on the number of clouds N in every given case,

since M 5 Nhmi. The number N does not appear to

be constrained by the moist heat cycle. One may

hypothesize that M is governed by the large-scale

forcing through control on the number of clouds N,

in addition to the surface conditions that impose a

constraint on hmi.
The results of this study also have implications for the

cloud size distribution, which has a very similar shape to

the distribution p(m). Various shapes and slopes of the

cloud size distribution that are observed and have been

documented in literature may just reflect changes in

Bowen ratios encountered across various studies. The

various proposed distribution shapes could be encom-

passed by a single functional form given by the mixed

Weibull distribution function. Such a multimodal dis-

tribution function already encompasses all the observed

shapes, starting from an exponential shape to power

laws, depending on the value of the distribution pa-

rameters. Based on this study, the expected value of the

cloud size distribution might impose the only relevant

control on the distribution shape, which then could be

constrained by the underlying physical processes in the

boundary layer.
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