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Abstract

The high spatial and temporal variability of precipitation poses a substantial chal-
lenge to its global monitoring, particularly over the global oceans. The insufficient
coverage of surface-based measurements adds to this problem. These data-sparse areas
profit from passive microwave (PMW) satellite sensors, which essentially contribute to
the estimation of global long-term precipitation estimates. However, the uncertainty
of PMW satellite products demands a validation that requires high-quality surface-
based precipitation reference data over the ocean. The Ocean Rainfall And Ice-phase
precipitation measurement Network (OceanRAIN) collects high-resolution point-like
precipitation data from long-term equipped RVs for the validation of low-resolution
PMW satellite precipitation products. Deployed on research vessels (RVs), these opti-
cal disdrometers designed for ocean usage are suitable instruments to accurately record
oceanic precipitation. This thesis addresses the emerging point-to-area problem and
data-imposed validation constraints on the example of collocated PMW-based Ham-
burg Ocean Atmosphere Parameters and Fluxes from Satellite data (HOAPS) and
OceanRAIN data.

The thesis presents three essential aspects for representative satellite validation: the
precipitation phase (PP) distinction (rain, snow and mixed-phase), the point-to-area
precipitation representation and the instrument/algorithm sensitivity. For the PP dis-
tinction, a newly developed algorithm is presented that predicts the PP using the air
temperature, relative humidity and the 99th percentile of the particle diameter pro-
vided by the particle size distribution (PSD) of the disdrometer. Incorporating the
PSD mainly adds to the high accuracy of 91 % for a rain—snow distinction. However,
including the important mixed-phase precipitation yields 81 % in accuracy for the PP
separation.

The point-to-area problem is addressed by applying two statistical adjustments derived
from subtropical radar data to ensure that the along-track data represents the areal
precipitation distribution in a PMW satellite pixel. The first statistical adjustment
uses the average precipitation event duration to correct underrepresented precipitation
rates by sampled short events (1-3 min) and overrepresented precipitation rates of long
events (5—20 min). The second adjustment takes the median-normalized precipitation
rate to mainly correct cases of strong precipitation overrepresentation on the ship track
with respect to the area. Both adjustments reduce the sum of squared errors for the
track—area precipitation difference by 86 %.
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The HOAPS-OceanRAIN collocation reveals about 14 % misses from which more than
90 % relate to the low HOAPS algorithm sensitivity with a cut-off at 0.3 mm h~!.
HOAPS produces 3% of false detections, which are merely caused by scenes when the
RV of OceanRAIN spatially misses the precipitation falling within the HOAPS pixel.
An exemplary case documents precipitation missed by an RV in OceanRAIN but de-
tected by other PMW- and infrared-based satellite products. In the inner tropics, these
HOAPS false detections reach 7% where vigorous convection accounts for most of the
precipitation accumulation. Treating false detections as hit cases reveals a good overall
agreement in the average precipitation rate that HOAPS underestimates by less than
15% except for the subtropics (30 %); however, the exact percentage of misclassified
false detections remains unknown. Comparing average precipitation rates excluding
zero precipitation, HOAPS underestimates the average precipitation by 13 % while the
uncertainty obtained from resampling lies in the same range. The relatively high un-
certainty points at the, so far, insufficient sample size of the OceanRAIN database
to derive individual HOAPS uncertainty estimates. However, this thesis highlights the
importance of the point-to-area problem for satellite validation and demonstrates a sta-
tistical adjustment for the shipboard precipitation reference data to spatially represent
the satellite data.



il

Zusammenfassung

Die hohe zeitliche und rdaumliche Variabilitdt von Niederschlag stellt eine Herausfor-
derung in der globalen Niederschlagserfassung dar. Besonders iiber den Ozeanen wird
dieses Problem zusétzlich durch die geringe Dichte bodengebundener Niederschlagsmes-
sungen vergrofert. Passive Satellitensensoren im Mikrowellenspektrum (PMW) tragen
erheblich dazu bei, den globalen Niederschlag flichendeckend abzuleiten. Allerdings
benotigt deren Validierung dennoch verlassliche, bodengebundene Referenzmessungen
des Niederschlags. Das langfristig orientierte, schiffsbasierte Messnetz zur Erfassung
von Regen und Eisphasenniederschlag (OceanRAIN) sammelt punktuelle ozeanische
Niederschlagsdaten in hoher Qualitdt. OceanRAIN nutzt speziell fiir den Ozeanein-
satz konzipierte optische Disdrometer und liefert damit eine einzigartige Quelle zur
Validierung von Niederschlag aus grob aufgelosten PMW-Sensor Satellitendaten. Bei
der Validierung von PMW-Sensordaten werden in dieser Arbeit daher insbesondere das
Punkt-zu-Flache Problem sowie Datensatz-spezifische Limitierungen thematisiert. Dies
geschieht am Beispiel des PMW-basierten "Hamburg Ozean- und Atmosphérenfliisse
aus Satellitendaten“-Datensatzes (HOAPS) mithilfe von OceanRAIN.

Diese Arbeit beleuchtet drei wesentliche Aspekte, die fiir eine gelungene
Satellitensensor-Validierung von Bedeutung sind: die Unterscheidung der Nieder-
schlagsphase (PP), die unterschiedliche Représentation von Niederschlag in Punkt-
und Flachenmessungen, und die Sensitivitdt des PMW-Sensors bzw. des Algorithmus
schwache Niederschlage zu detektieren. Fiir die Erkennung der PP wurde ein neu-
er automatischer Algorithmus entwickelt, der die Parameter Lufttemperatur, relative
Luftfeuchte sowie das 99. Perzentil des Niederschlagspartikeldurchmessers aus dem Par-
tikelspektrum (PSD) des Disdrometers nutzt. Die Nutzung des PSDs trégt in hohem
Mafke zu einer Genauigkeit von 91 % in der Regen/Schnee Unterscheidung bei. Wird
die Mischphase als wichtige, zusatzliche PP ermittelt, erreicht die Genauigkeit 81 %.

Der Verringerung des Punkt-zu-Flache Problems zwischen HOAPS und OceanRAIN
dienen zwei statistische Anpassungen des Referenzdatensatzes OceanRAIN, damit die-
ser besser die Fliache eines Satellitenpixels représentiert. Beide Anpassungen entstam-
men einer Untersuchung mit subtropischen Radardaten, die das Punkt-zu-Flache Pro-
blem zwischen Schiffsspur und Satellitenpixel simulieren. Die erste daraus abgeleitete
Anpassung nutzt die mittlere Niederschlagsdauer entlang der Schiffsspur, wobei die
Niederschlagsrate fiir eine mittlere Dauer von 1-3 min unterschétzt wird, die Nieder-
schlagsrate fiir eine Dauer von 5-20 min jedoch iiberschétzt wird. Die zweite statistische
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Anpassung nutzt die mittlere Niederschlagsrate entlang der Schiffsspur normiert mit
deren Medianwert und korrigiert insbesondere stark iiberreprésentierten Niederschlag
auf der Schiffsspur. Beide Anpassungen reduzieren die Summe des quadratischen Feh-
lers zwischen Spur- und Fliachenniederschlagsrate um 86 %.

Nach der Kollokation von HOAPS mit OceanRAIN ergeben sich 14 % Falle, in denen
HOAPS den von OceanRAIN detektierten Niederschlag nicht erkennt. Die Ursache
liegt in der niedrigen Sensitivitdt des HOAPS Algorithmus begriindet, der keine Nie-
derschlagsraten unter 0.3 mm h~! auflést und damit 90 % der nicht detektierten Fille
erklaren kann. In 3% der Falle registriert HOAPS von OceanRAIN nicht registrier-
ten Niederschlag, was iiberwiegend dadurch erklart werden kann, dass das Schiff am
Niederschlag innerhalb des Satellitenpixels vorbeifahrt. Ein Fall der RV Meteor do-
kumentiert beispielhaft wie OceanRAIN Niederschlag nicht registriert, der von zwei
anderen PMW-basierten sowie einem infrarot-basierten Satellitenprodukt jeweils de-
tektiert wird. Besonders in den inneren Tropen treten von HOAPS angeblich falsch de-
tektierte Falle mit 7 % besonders haufig auf, da hier intensive, kleinrdumig-konvektive
Schauer besonders stark zum mittleren Niederschlag beitragen. Behandelt man all die-
se Fille so als ob auch OceanRAIN Niederschlag detektiert hétte, ergibt sich eine gute
Ubereinstimmung in der mittleren Niederschlagsrate beider Datensitze, wobei HOAPS
die Niederschlagsrate um weniger als 15 % unterschétzt, in den Subtropen jedoch um
bis zu 30 %. Allerdings bleibt der wirkliche Anteil von Falschdetektionen unbekannt.
Unter Ausschluss von Null-Niederschlagsraten unterschétzt HOAPS die mittlere Nie-
derschlagsrate um 13 %, wobei die statistische Unsicherheit beider Datensétze ermittelt
durch Bootstrapping im selben Bereich liegt. Diese relativ hohe Unsicherheit zeigt, dass
eine individuelle Fehlerabschatzung fiir HOAPS mangels ausreichender OceanRAIN-
Messungen noch nicht abschlieffend moglich ist. Dennoch unterstreicht diese Arbeit
die Bedeutung des Punkt-zu-Flache Problems und demonstriert eine Methode, wie der
Referenzdatensatz an die raumliche Repréasentativitdt des zu validierenden Satelliten-
datensatzes angepasst werden kann.
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Chapter 1

Introduction

Precipitation sets the basis for life on Earth by providing freshwater and shaping the
ecosystem. Despite all technological developments, our modern society entirely de-
pends on available freshwater as the most essential resource. While a lack of fresh-
water threatens life in the form of droughts, excessive precipitation endangers life by
causing severe flooding. In everyday life, the heterogeneous distribution of precipita-
tion demands global precipitation forecasts and monitoring that is crucial for many
economic sectors such as agriculture, energy production, risk management or tourism,
among others. Moreover, precipitation plays a key role in a changing climate as to
what extent precipitation patterns shift (Trenberth et al., 2003; IPCC, 2014a).

1.1 Basic characteristics of precipitation

From a more scientific perspective, precipitation represents an essential climate variable
(ECV) at the Earth’s surface (Bojinski et al., 2014). Precipitation (P) and evaporation
(E) form the freshwater flux that links the global water cycle to the Earth’s energy
budget through latent heat exchange (Trenberth et al., 2009). Over the ocean, the
freshwater flux sources denote areas where the atmosphere gains energy from the ocean,
whereas in sink regions the ocean gains energy from the atmosphere.

Compared to other ECVs, precipitation holds some special characteristics. First, the
particles that constitute precipitation can occur in various forms of either liquid or solid
water phase, or as a mixture of both. Second, precipitation varies dramatically in space
and time. Third, the frequency distribution of precipitation particles as well as the
precipitation rate follow a log-normal distribution instead of a Gaussian distribution.
All these special characteristics enormously complicate the prediction and monitoring
of precipitation.

The precipitation phase (PP) denotes the aggregation state of the falling precipitation
particles. The PP is usually separated into liquid and solid particles, whereas the solid
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particles can be further distinguished into precipitation types such as snow, hail or
graupel. During PP transitions, liquid and solid particles can co-exist and the PP
is referred to as mixed-phase. Mixed-phase precipitation usually occurs when solid
particles fall through a relatively warm atmospheric layer that partially melts them.
Likewise, a lower atmospheric inversion layer of colder temperatures than aloft can
cause partial freezing of liquid particles. These conditions demonstrate that phase
changes in the atmosphere are highly variable processes so that the PP possibly changes
within minutes.

The high spatial and temporal variability of precipitation reflects the complex processes
that interact in the Earth’s atmosphere. These processes can be classified into differ-
ent temporal and spatial scales that might or might not trigger precipitation. The
concerned timescales range from few minutes (precipitating shallow Cumulus cloud;
Stevens and Seifert, 2008; vanZanten et al., 2011) over several hours (heavily precipi-
tating organized convective systems; Laing and Michael Fritsch, 1997) to multi-annual
phenomena such as the El Nifio Southern Oscillation (ENSO; Torrence and Webster,
1999). The spatial scales vary dramatically between the two classes of convective and
stratiform precipitation (Stevens, 2005). The formation of convective precipitation re-
quires strong vertical displacement of buoyantly unstable or forcedly lifted air parcels,
whereas stratiform precipitation tends to form under generally weaker vertical air mo-
tion or as a remainder of older convective cells (Houze, 1997). Thus, the occurrence and
intensity of convective precipitation can vary much stronger on spatial and temporal
scales compared to stratiform precipitation.

The frequency distribution of precipitation particle sizes follows a non-Gaussian distri-
bution. The tremendously higher number of small precipitation particles also puts its
mark on the precipitation-rate distribution. Accordingly, light precipitation arise much
more frequently compared to heavy precipitation. Despite the fact that low precipi-
tation rates contribute most to the precipitation occurrence, high precipitation rates
contribute strongest to the total precipitation amount. This non-Gaussian particle dis-
tribution highlights the need to resolve both extremes — the smallest and the largest
particles. Whereas the resolution of small particles demands a high measurement sen-
sitivity, the resolution of larger particles calls for a sufficiently long sampling period.
Only considering both aspects can reflect the natural precipitation occurrence as well
as precipitation amount.

1.2 The measurement of precipitation

As a consequence of the precipitation characteristics, the ideal instrument measures
precipitation directly, at high sampling frequency, at high spatial resolution and covers
a large area over a long period of time under uniform conditions. However, not a single
instrument can sufficiently meet all these requirements at once. As a consequence,
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very different instruments have been developed in order to measure precipitation while
considering most of its special characteristics (Michaelides et al., 2009). Combining
these different instruments offers extensive opportunities for global precipitation moni-
toring but poses new challenges at the same time. With the advent of the satellite-era,
instruments to measure precipitation separate into surface-based and space-based in-
struments (Tapiador et al., 2012).

1.2.1 Surface-based instruments

Surface-based instruments that record the accumulated amount of precipitation are
commonly called gauges. Various types of gauges exist as the simplest instrument to
measure precipitation (Strangeways, 2004). All these gauges have in common that
they are considered direct precipitation measurements because a bucket actually col-
lects falling precipitation particles. Therefore, gauges often serve as precipitation ref-
erence at a certain location. When maintained regularly and properly arranged, gauge
networks can help to validate precipitation satellite measurements (Sorooshian and
Kuo-Lin, 2000; Yatagai et al., 2009; Sunilkumar et al., 2016). However, substantial
sources of error limit the application area of gauges. In particular, wind-induced un-
dercatch and solid precipitation let gauges strongly underestimate precipitation (Good-
ison, 1978; Yuter and Parker, 2001; Michelson, 2004). To a lesser extent, evaporative
loss of collected precipitation, splashing drops or a partially blocked orifice of the gauge
can diminish the precipitation collected. Though gauges may be the simplest direct
instrument to measure precipitation, they are prone to large errors associated with
wind and frozen precipitation.

Disdrometers represent the second type of surface-based instruments to measure pre-
cipitation pointwise. Instead of collecting precipitation amount, disdrometers count
or image the particles so that the precipitation rate can be derived from the result-
ing particle size distribution (PSD). Three main types of disdrometers emerged: the
impact disdrometer, the optical disdrometer and the imaging disdrometer. The most
widely used impact disdrometer is the Joss-Waldvogel disdrometer (Joss and Waldvo-
gel, 1967). Impact disdrometers sense the PSD by converting the mechanical energy
of falling precipitation particles into equivalent electrical pulses. Video disdrometers
sense precipitation particles with cameras but their operation is costly. Whereas video
disdrometers record the PSD visually, optical disdrometers record the extinction of
near-infrared (NIR) light induced by falling precipitation particles that is jointly con-
verted into a PSD (Loffler-Mang and Joss, 2000). With the PSD, disdrometers provide
essentially more information compared to ordinary gauges; however, the calibration
and maintenance of disdrometers remains crucial for an accurate precipitation mea-
surement.

Surface-based scanning weather radars are indirect precipitation measurements of an
atmospheric column. They actively sense the surrounding atmosphere and record the
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backscattered radiation in the form of the radar reflectivity Z. This reflectivity needs
to be converted into a precipitation rate R by applying a Z-R relationship. The Z-R
relationship depends on the PSD so that disdrometers can serve to accurately convert
the radar reflectivity into a precipitation rate (e.g. Miriovsky et al., 2004; Lee and
Zawadzki, 2005). However, no uniform Z-R relation exists because PSDs can change
within minutes, which strongly affects the calculated precipitation rate. Depending on
their operating frequency, the radar coverage ranges between a few tens of kilometers
and several hundred kilometers in diameter. Radars are indispensable instruments to
measure precipitation in a large area but require accurate calibration and validation.

1.2.2 Satellite-based instruments

Satellite sensors constitute the only instrument to measure precipitation on a global
scale with short revisit time. A distinction is made between sensors deployed on polar-
orbiting and geostationary satellites. Polar-orbiting satellites can sense the whole globe
but have a relatively low revisit time, which limits its temporal resolution. In contrast,
geostationary satellites hold a high temporal resolution but cover a limited but constant
area. In addition, they operate about two orders of magnitude higher in space compared
to the polar-orbiting satellites. Passive microwave (PMW) instruments have large
antenna sizes and, consequently, cannot operate on geostationary satellites. However,
plans exist to deploy microwave sounders on geostationary satellites (Lambrigtsen et al.,
2006). The so-far deployed visible (VIS) and infrared (IR) sensors retrieve information
mainly from the cloud top. Cloud top information is used to indirectly derive the
precipitation rate, which can lead to erroneous detection of precipitation from non-
convective high clouds with cold cloud tops (Kidd and Levizzani, 2011).

PMW sensors represent the second commonly used type of satellite instruments to
estimate precipitation from space. They provide a more physically complete image of
the atmospheric water content compared to VIS/IR satellite sensors (Levizzani et al.,
2007). Whereas low-frequency channels serve to directly detect medium-to-large water
droplets below the freezing level, high-frequency channels can infer smaller particles
and specifically ice particles indirectly from scattering above the freezing level. As
a downside, particularly the low-frequency channels have a coarse spatial resolution
of several tens of kilometers in diameter. In contrast, active microwave sensors reach
much higher spatial resolutions but with a very narrow swath width. Due to the low
swath width, these spaceborne radars commonly serve as calibrator for PMW sensors
or for case studies.

1.2.3 Combined precipitation products

All state-of-the-art precipitation satellite climatologies are based on PMW sensors that
serve better to accurately quantify precipitation from space. However, IR sensors
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present a suitable way to compensate for the low spatial and temporal resolution of
PMW sensors. Some algorithms use IR sensors indirectly to propagate PMW images
forward in time, e.g. the Climate Prediction Center MORPHing technique (CMORPH,;
Joyce et al., 2004). Some algorithms interpolate between consecutive PMW images us-
ing precipitation data derived from IR sensors, e.g. the Tropical Rainfall Measuring
Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA; Huffman et al., 2007),
the Global Satellite Mapping of Precipitation (GSMaP; Okamoto et al., 2005) or the
Integrated Multi-satellitE Retrievals for GPM (IMERG; Huffman, 2015). Other prod-
ucts feed IR sensor data into a neural net algorithm that uses PMW estimates for
comparison, e.g. the Precipitation Estimation from Remotely Sensed Information us-
ing Artificial Neural Networks (PERSIANN; Hsu et al., 1997). Some of the products
such as TMPA or IMERG also include gauge data over land. However, ingesting data
from different sources complicates the tracking of errors and uncertainties while making
the product less independent for validation purposes. In contrast, single-sensor clima-
tologies such as the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite
data (HOAPS; Andersson et al., 2010b) provide independent precipitation estimates
and allow calibration not only at the product level.

1.3 Precipitation validation over the ocean

In contrast to the global oceans, a great variety of ground-based instruments can be
used to validate precipitation satellite products over land. These products ingest data
from networks of gauges, disdrometers and radars, among others. The global oceans
cover 71 % of the Earth’s surface but are at the same time almost void of systematic
long-term precipitation measurements (IPCC, 2014b; Maggioni et al., 2016). The lack
of oceanic precipitation data poses a challenge to the validation of satellite retrievals
over oceanic areas. As a consequence, coastal or island-based radars usually serve
as reference for satellite retrievals over the ocean (e.g. Schumacher and Jr., 2000;
Burdanowitz et al., 2015). However, these radar data sets are not entirely free from
land influences such as emission of aerosol particles altering the precipitation efficiency
of clouds (Twomey, 1977), or surface effects affecting the atmospheric dynamics (Dai,
2001). However, Bumke and Seltmann (2012) find no land—ocean difference in PSD
over the relatively small Baltic Sea. These potential influences demand remote-ocean
precipitation data to validate satellite retrievals over the global ocean.

Qualitative precipitation data over the ocean exists from weather reports of voluntary
observing ships (VOS; Kent et al., 2010). Together with quantitative estimates of
underway gauges on research vessels (RVs), merchant and cruise ships (Bumke et al.,
2012), and tropical buoy gauge arrays (Hayes et al., 1991; Bourles et al., 2008), these
measurements complement recent ship-based precipitation databases such as the In-
ternational Comprehensive Ocean-Atmosphere Data Set (ICOADS; Woodruff et al.,
2011), the National Oceanography Centre Southampton Flux data set (NOCS; Berry
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and Kent, 2011), the Shipboard Automated Meteorological and Oceanographic System
(SAMOS; Smith et al., 2009) or OceanSITES (2016). However, these types of gauge
data and weather reports contain large biases due to insufficient maintenance or in-
struments or unsuited instruments for open-ocean usage. These deficiencies disqualify
them for most satellite validation applications.

As an alternative, special ship rain gauges (Hasse et al., 1998) as well as optical disdrom-
eters find increasing usage onboard of RVs (Weller et al., 2008). In particular, optical
disdrometers are considered a reference in precipitation measurements, provided that
they are calibrated properly (Taylor, 2000). However, these instruments suffer from the
same rough open-ocean conditions as conventional gauges. These conditions include
frequently changing high wind speeds, sea salt, flow distortion by the ship’s superstruc-
ture as well as freezing in polar regions. The optical disdrometer ODM470 has been
specifically designed to measure under these open-ocean conditions (Grokklaus, 1996;
Clemens, 2002). A wind vane attached to a rotatable axis aligns the measurement
volume of the disdrometer perpendicular to the wind direction while its cylindrical
measuring volume is independent from the incidence angle of falling particles. These
features qualify the ODM470 as the core instrument of the Ocean Rain And Ice-phase
precipitation measurement Network (OceanRAIN; Klepp, 2015), the first systematic
long-term shipboard precipitation measurement effort over the ocean.

Optical disdrometers of the same type as ODM470 have been effectively used before
for validating reanalysis (Bumke, 2016) and satellite products (Bumke et al., 2012).
Despite their great value, these studies neglect the different spatial representativeness of
point-like ship measurements compared to areal satellite precipitation estimates. This
difference, commonly referred to as "point-to-area problem", affects PMW satellite
estimates with their large pixel size of about 50 km by 50 km. However, the effect of
not adjusting point measurements to areal estimates has not been quantified so far for
the PMW satellite validation using ODM470 data where this thesis draws on. These
investigations pave the way for a systematic error analysis of HOAPS precipitation
satellite data, similar to that of the near-surface specific humidity (Kinzel et al., 2016).

1.4 Research objectives

This thesis is targeted to unveil the essential factors that mostly influence the validation
of precipitation satellite data using surface-based shipboard data. Identifying these
factors allows to develop a methodology to reduce their influence on the validation
of oceanic precipitation from the PMW satellite climatology HOAPS using the newly
available OceanRAIN shipboard data set. The example of HOAPS and OceanRAIN
should serve as guidance for other satellite validation applications in a larger scope.

Besides an accurate space-time matching, a meaningful validation requires to adapt
the reference data set to the satellite data. This adaptation presumes to understand



1.5 Outline 7

the precipitation characteristics with respect to the data set specifications. Three main
precipitation characteristics tremendously influence the validation procedure that are
addressed successively in the thesis. First, the PP is an essential piece of information to
correctly estimate the precipitation rate and diagnose errors thereof (Chapter 3). Sec-
ond, the temporal and spatial variability of precipitation events sets high requirements
to the data set’s temporal and spatial resolution (Chapter 4). Third, the sensitivity of
a data set’s instrument and algorithm determines whether low precipitation rates can
be resolved (Chapter 5). These low precipitation rates represent an important factor
to get the precipitation occurrence correct caused by the non-Gaussian precipitation
distribution with most frequently occurring low intensities. Finally, a sufficiently large
data set guarantees an accurate representation of the precipitation rate to which rarely
occurring high precipitation rates contribute most.

1.5 OQOutline

Chapter 2 contains a general description of the data sets used while most of the method-
ology is developed in the results of the thesis. Chapter 3 presents the automatic PP
distinction algorithm to determine the PP for the HOAPS-OceanRAIN validation.
Chapter 4 discusses the influence of the spatial representativeness of precipitation point
measurements with respect to the typical spatial scales of PMW satellite data. From
a study with island-based radar data, a statistical adjustment of the OceanRAIN data
is developed. In Chapter 5, the statistical adjustment is applied to OceanRAIN. Fur-
thermore, a focues lies on the space—time matching of HOAPS and OceanRAIN as well
as the sensitivity to light precipitation. Chapter 6 summarizes the main results of the
thesis, followed by concluding remarks and an outlook.



Introduction




Chapter 2

Instruments and data

2.1 OceanRAIN

Since 2010, the Ocean Rain And Ice-phase precipitation measurement network (Ocean-
RAIN) collects atmospheric data including precipitation rates on several RVs. Current
permanent deployments include the German ships RV Polarstern (since June 2010),
RV Meteor (since March 2014), RV Sonne (since November 2014). RV Maria S. Merian
recorded data from October 2010 until June 2014. Focusing on consistent and high-
quality precipitation data, this study employs data from all 4 mentioned German RVs.
The backbone of OceanRAIN is the optical disdrometer ODM470, which is explained in
detail in Sect. 2.1.1. Klepp (2015) describes the OceanRAIN data post-processing and
quality-checking in detail. More information on OceanRAIN can be accessed online
(OceanRAIN;, 2015).

2.1.1 The ODMA470

The ODM470 is an optical disdrometer to measure precipitation, manufactured by the
German company Eigenbrodt GmbH & Co KG near Hamburg (Germany). The in-
strument consists of a NIR light-emitting diode (LED) at 880nm and a photo diode
receiver (Lempio et al., 2007). The IR-LED of the ODM470 is only activated once at
least 8 particles per minute pass the active sensing area of the precipitation detector
IRSS88 (Fig. 2.1, right) in order to increase IR-LED lifetime and exclude measurement
artifacts caused by birds or other non-precipitation objects. The IRSS88 switches off
the ODM470 after 1 min without any particle passing the IRSS88 active sensing area.
The entire ODM470 system was developed in a way to minimize undesired influences by
changing wind directions and high wind speed. The ODM470 sensitive optical volume
has a cylindrical shape of 120 mm length and 22 mm in diameter. The cylindrical shape
guarantees an independence from the incidence angle of the falling hydrometeors, which
becomes crucial under high wind speeds and superstructure-induced local turbulence.
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Anemometer ODM 470

IRSS 88

Figure 2.1: Automatic ODM470 measurement system including a cup anemometer (left),
the optical disdrometer ODM470 (center), and the precipitation detector IRSS88 (right), all
deployed in the highest main mast at about 43 m height onboard RV Polarstern.

Mounted on a pivotable axis, a wind vane ensures the optical volume to adjust per-
pendicular to the instantaneous local wind direction. The ODM470 mounting height
typically ranges between 30 and 45m height, depending on the RV’s specifications
(Fig. 2.1). This elevated deployment reduces influences on the measured precipitation
by splashing wave water.

OceanRAIN ingests time and navigation data in the form of GPS coordinates from
the RVs while the optical disdrometer system measures wind speed and the particle
size distribution (PSD) of precipitation. In addition, the RVs collect numerous other
meteorological information of the atmospheric state. These ancillary data samples aid
to predict the precipitation phase (PP) using the automatic PP distinction algorithm
introduced in Chapter 3.

During precipitation events, the falling hydrometeors attenuate the emitted NIR radi-
ation, which decreases the voltage signal measured. The duration of the voltage drop
determines the particle transit time, that is, the total time it takes a particle to pass
through the optical volume of the disdrometer. From the amplitude of the detector
voltage drop the cross-sectional area can be deduced, which determines the particle di-
ameter. The measured particle diameters are split into 128 logarithmically distributed
size bins, of which the smallest is less than 0.02 mm and the largest corresponds to the
optical volume diameter of 22 mm. However, wind- or wave-induced ship vibrations
passed on to the instrument might cause artificial signals that are not distinguishable
from real precipitation, which is why particles below bin 14 (0.43 mm diameter) are
not considered in OceanRAIN. This exclusion of small particles also removes sea spray
particles from the PSD spectra. The remaining particles are accumulated and binned
over 1 min. From the resulting PSD, the precipitation rate R (mm h™') or liquid water
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equivalent (kg m™2 h™!) after Grofklaus (1996) can be calculated using

R = 3600 - isj n(bin) - v(bin) - m(bin), (2.1)

bin=1

where v(bin) in m s™! denotes the particle terminal fall speed and m(bin) in kg the
particle mass; both are parameterized. n(bin) in m~3 denotes the PSD density per
bin class that is calculated following Clemens (2002) by considering the geometrical
features, diameter d in m and length [ in m, the sampling time ¢ in s of the ODM470

! relative to the ship movement

1

as well as the sum of local wind speed U,q in m s~
measured by a cup anemometer, and the empirical terminal fall speed v(bin) in m s~
as

N (bin)

ldt\/rel bm}'

N (bin) is the number of measured particles per bin class, denoted as PSD. As explained,

n(bin) = (2.2)

in Eq. (2.1) empirical relationships utilize the particle diameter D that strongly depends
on the type of precipitation. Henceforth, we refer to precipitation phase (PP), which
means either liquid precipitation (rain), solid precipitation (e.g., snow or graupel), or
mixed-phase precipitation. For rain the drop mass m; in kg, or liquid water content,

and the particle terminal fall speed v, in m s™! are well known and calculated using

Egs. (2.3) and (2.4) from Atlas and Ulbrich (1974), respectively.

4
my = 1000 - o - (0.5D)? (2.3)
v = 9.65 — 10.3 - 70000 (2.4)

For snow, the measured cross-sectional area differs from the required maximum di-
mension of the particle due to the non-spherical shape of snowflakes. This difference
requires applying a transfer function. However, Lempio et al. (2007) found that the
product of particle terminal fall speed and particle mass (liquid water equivalent) as
a function of cross-sectional area is in the same order of magnitude for various frozen
precipitation particle types. Hence, no transfer function between cross-sectional area
and maximum diameter is required when using a spherical lump graupel assumption.
The lump graupel assumption works well for frozen precipitation particles between
0.4 and 9 mm in diameter, whereas particles exceeding 9 mm in diameter rarely oc-
cur. Nevertheless, events with large particles introduce larger errors to the estimate in
the same way as the retrieval quality may largely differ for individual snowfall events.
Overall, no unique snowfall retrieval can be derived using optical disdrometers with-
out recording the individual particle shape. Compared to a Geonor gauge, the optical
disdrometer agreed well in most cases and overestimated a few light snowfall cases
during the 1999/2000 winter period at Uppsala (Lempio et al., 2007). Following the
lump graupel approximation by Hogan (1994), particle mass mg (Eq. 2.5) and particle
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terminal fall speed vg (Eq. 2.6) are calculated empirically as

ms = 1.07-107° - (100D)*>", (2.5)
v, = 7.33 - (100D)% ™.

Klepp et al. (2010) observed lump graupel being the most frequently occurring precipi-
tation type over the cold-season Norwegian Sea during the LOFZY campaign. Battaglia
et al. (2010) discuss several sources of error for a snow-measuring laser-optical PARticle
Slze VELocity disdrometer (PARSIVEL) whereof those for particle shape and orien-
tation, margin effects, and coinciding particles also apply to the ODM470. However,
the PARSIVEL is more sensitive to influences by wind speed and wind direction on
the falling precipitation particles because the PARSIVEL has a fixed non-pivotable
horizontal optical sensing area.

For mixed-phase precipitation, OceanRAIN generally uses the snow retrieval (Eqgs. 2.5
and 2.6) to calculate the precipitation rate because the absolute error of treating rain
drops like snow particles, and thus underestimating the precipitation rate, results in a
smaller error than vice versa. In more than 90 % of the precipitating cases from RV
Polarstern in OceanRAIN the precipitation rate calculated with Eqs. (2.3) and (2.4)
(theoretical rain rate) exceeds precipitation rate calculated with Eqgs. (2.5) and (2.6)
(theoretical snow rate) by a factor of 50 to 200. Accordingly, this large difference
might cause large biases in the precipitation rate for misclassified PP. The influence of
misclassified PP cases is discussed in Section 5.3.2 of Chapter 5. Correctly classified
mixed-phase precipitation events might still strongly underestimate the precipitation
rate if the instantaneous rain fraction sharply exceeds 0.5. The minute-aggregated
fraction of liquid and solid particles cannot be identified by the ODM470 and would
require ancillary data such as a video disdrometer. More details on the instrumentation
can be found in Lempio et al. (2007) while algorithm features are explained in Klepp
(2015).

2.2 The HOAPS satellite climatology

The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data (HOAPS;
Andersson et al., 2010b; Fennig et al., 2012) set contains the parameters precipitation,
evaporation as well as turbulent heat fluxes and other variables of the atmospheric state
over the global ice-free oceans. HOAPS relies exclusively on PMW data from the Spe-
cial Sensor Microwave Imager (SSM/I) and its successor with additional sounder (SS-
MIS), deployed onboard the Defense Meteorological Satellite Program (DMSP) satellite
series. The last official release, HOAPS-3.2, is limited to the entire SSM/I record that
ends in 2008. In this thesis, we employ the prolonged version HOAPS-3.3 of the precip-
itation parameter using the combined SSM/I and SSMIS Fundamental Climate Data
Record (Fennig et al., 2015). Only the precipitation parameter in HOAPS-3.3 has been
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processed until December 2015, kindly provided by the Satellite Application Facility
on Climate Monitoring (CM SAF) of EUMETSAT and German Meteorological Service
(DWD) for the German research initiative FOR1740 on the Atlantic freshwater cycle.
The prolonged period of 1987-2015 obtains a larger overlap with the OceanRAIN data
set that starts in 2010. This means, the HOAPS subset used in this thesis is exclu-
sively based on SSMIS. Not incorporating further ancillary data, HOAPS remains an
independent precipitation reference for re-analysis and model evaluation (Andersson
et al., 2011).

To derive HOAPS precipitation estimates, a neural net algorithm has been developed.
The neural net is trained with global-ocean data from DMSP F11, F13 and F14 and
of ECMWF variational precipitation calculations of the year 1998. In that year, an El
Nino event led to a wide range of measured brightness temperatures (Bauer et al., 2006).
HOAPS excludes any data that has been sampled less than 50 km away from sea-ice
or land areas to avoid contamination due to sudden changes in surface emissivity. The
sea-ice mask excludes only grid boxes with an average sea ice fraction that exceeds 15 %
for at least 5 consecutive days (Andersson et al., 2010b). The HOAPS precipitation
estimates have been carefully quality-checked. Furthermore, an inter-calibration among
the SSM /I and SSMIS instruments ensures a physically consistent retrieval (Andersson
et al., 2010a).

HOAPS provides 3 different products with different resolutions: HOAPS-S, HOAPS-C
and HOAPS-G. The scan-based HOAPS-S contains pixel-wise precipitation estimates
of individual SSM/I and SSMIS swaths, respectively. This ungridded data provides
precise information of time and location of the sensed precipitation scenes, usually
unavailable in gridded products. The spatial resolution strongly depends on the fre-
quency channels used in the HOAPS retrieval. The lowest SSM/I frequency channel
of 19.35 GHz senses at the coarsest spatial resolution of about 43 km x 69 km. More
information on the SSM /I and SSMIS scan geometry are given in Wentz (2013). Pre-
cipitation rates below 0.3 mm h™=! are excluded from the HOAPS-S data because the
precipitation signal is no longer distinguishable from noise. HOAPS also provides grid-
ded data in HOAPS-C (6-hourly) and HOAPS-G (monthly) with a spatial resolution
of 0.5° by 0.5°. HOAPS 3.2 is freely accessible via http://www.hoaps.org from the CM
SAF of EUMETSAT and DWD, HOAPS-3.3 is available upon request. The successor
HOAPS4 is planned to be released in early 2017.

2.3 S-Pol radar data from RICO

During the wet season in winter 2004/05, a scanning S-band radar was deployed on
the subtropical island of Barbuda (17.61 °N, 61.82°W) for the Rain In Cumulus clouds
over the Ocean (RICO) campaign. The S-Pol radar is introduced in Section 2.3.1)
where features of data processing and quality checking are listed. Further, the S-Pol
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radar data has been adjusted to the requirements of simulating ship tracks and satellite
pixels, as explained later in Section 4.2.1 of Chapter 4.

2.3.1 The S-Pol radar

The S-Pol radar was developed by NCAR to provide a cost-effective portable weather
radar that has been used in a number of field campaigns (Keeler et al., 2000). One
of these campaigns was RICO during which the scanning S-Pol radar operated from
24 November 2004 to 25 January 2005 (Rauber et al., 2007). During RICO, the S-
Pol performed surveillance scans with 10.68 cm wavelength at a 0.5° elevation angle,
covering a 150 km domain in radius. Each scan was gridded onto a polar grid with a
range resolution of 150 m, and has undergone extensive filtering to exclude anomalous
returns from ground clutter. The minimum reflectivity threshold of 7 dBZ serves to
exclude Bragg scattering (Knight and Miller, 1998). The measured radar reflectivity Z
(dBZ) is converted into a rain-rate R (mm d~!) by applying a Z-R relationship. Here,
we apply a Z-R relation derived from PSDs that were measured during RICO aircraft
flights (Snodgrass et al., 2009).

Z =88 - R'? (2.7)

According to Eq. 2.7, the minimum reflectivity threshold of 7 dBZ corresponds to about
0.19 mm h~!. However, for the application of simulating spatial effects from satellite
sensors versus ship tracks, the absolute precipitation rates according to the chosen Z-R
relationship play a minor role. The data is freely accessible online (UCAR/NCAR-EOL,
2011).

2.4 CMORPH

The Climate Prediction Center (CPC) MORPHing technique (CMORPH; Joyce et al.,
2004) provides global precipitation estimates between 60°N and 60°S at fairly high tem-
poral and spatial resolution. Additionally to coarser resolution products, CMORPH
offers a resolution of 8 km in space and 30 min in time. CMORPH ingests precipitation
estimates that have been derived from low earth orbiting (leo) microwave satellite sen-
sors exclusively. These PMW sensors include SSM /I, AMSU-B, AMSR-E and TRMM
Microwave Imager (TMI). From these PMW sensors, precipitation estimates are gen-
erated using algorithms of Ferraro (1997) for SSM/I, Ferraro et al. (2000) for AMSU-B
and Kummerow et al. (2001) for TMI. However, as the spatial resolution of most of
these PMW sensors remains fairly below 8 km, the gridded CMORPH precipitation
estimates are spatially interpolated to obtain the high spatial resolution of 8 km.

To obtain a high temporal resolution of 30 min, the PMW-derived precipitation fea-
tures are propagated forward in time using cloud system advection vectors (CSAV)
from correlating consecutive images obtained entirely from geostationary IR satellite
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sensors. Applying a time-weighted linear interpolation to these half-hourly CSAVs
yields morphed half-hourly precipitation estimates (Joyce et al., 2004). Combining
PMW and IR sensors takes advantage of the high spatio-temporal resolution of IR sen-
sors and the relatively high-quality precipitation estimates from PMW sensors. The
CMORPH data is available from December 2002 onward, also offering a near-realtime
product called QMORPH. Further information and a link to directly access CMORPH
precipitation data can be found on the NOAA CPC CMORPH website (Joyce and
Janowiak, 2016).

2.5 GPM IMERG

The Global Precipitation Measurement (GPM; Hou et al., 2013) mission was launched
in February 2014, whereas final precipitation data starts in April 2014. GPM builds
on the concept of the widely used TRMM to center a core satellite that carries an
advanced radar/radiometer system to measure precipitation from space while serving
as a reference standard to unify precipitation measurements from a constellation of
other satellites measuring precipitation. The GPM core observatory carries a multi-
channel GPM Microwave Imager (GMI) as well as the first space-borne Ku/Ka-band
dual-frequency precipitation radar (DPR). This setup makes the DPR more sensitive
to light rain below 0.5 mm h~! and snowfall compared to the TRMM-PR that was
designed specifically to observe heavy tropical precipitation. Besides the DPR, the GMI
is designed to accurately sense precipitation at various intensities using 13 channels that
range from 10 to 183 GHz.

The Integrated Multi-satellitE Retrievals for GPM (IMERG; Huffman, 2015) is run
twice in near-realtime, 4 (early) and 12 hours past observation (late or middle), and af-
ter the monthly gauge analysis (final). Independent of the 3 runs, IMERG is computed
in half-hourly (3IMERGHH) and monthly (3IMERGM) resolution, whereas the latter
is only available for final runs. The half-hourly satellite-gauge product is available in
0.1° x 0.1° resolution between 60°N and 60°S, beginning in mid-March 2014. We solely
use the multi-satellite precipitation estimate with gauge calibration, final run (GPM
3IMERGHH v03). A technical manual describes the IMERG data and recent changes
in detail (Huffman et al., 2015).

2.6 MSG-CPP

The METEOSAT Second Generation (MSG) Cloud Physical Properties (CPP) algo-
rithm derives cloud, precipitation and radiation parameter from satellite sensors such
as the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard MSG (Roe-
beling et al., 2006). Besides CM SAF as one of the developers, KNMI offers real-time
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and archived precipitation data, among other cloud and radiation parameters. Precip-
itation is calculated from cloud water path, cloud phase, cloud particle effective radius
and cloud column height, all of which are taken from MSG-CPP. The combination
of these cloud-microphysical properties strongly improves the generally low skill to
separate non-precipitating clouds with small particles from precipitating clouds with
larger particles or ice crystals (Roebeling and Holleman, 2009). All parameters exist
for daytime only because the CPP algorithm relies on solar backscattered radiation.
The MSG-CPP covers an area from -80 to 80°N and -50 to 50°E (MSG full disk), start-
ing on 1 January 2004. More details can be accessed on the data set website (KNMI,
2011).
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Chapter 3

An automatic precipitation phase
distinction algorithm for optical
disdrometer data!

3.1 Introduction

Rare and often low-quality gauge-based surface reference data sets challenge the in situ
validation of oceanic precipitation as observed by PMW and active microwave satellite
sensors (Taylor, 2000; Adler et al., 2012). Over land, radar and gauge-based precip-
itation monitoring networks cover a large fraction of the land surface for more than
2 decades, which qualifies them to validate precipitation satellite estimates (Schnei-
der et al., 2014). However, the ocean surface lacks dense long-term in situ precipita-
tion monitoring networks. Furthermore, existing coastal and island-based precipitation
measurements may not fully represent oceanic precipitation because the measured par-
ticle size distributions (PSDs), precipitation rates, and accumulations may differ from
those measured over the open ocean (Kidd and Levizzani, 2011). However, Bumke and
Seltmann (2012) found no difference between PSDs over coastal areas and ocean. Most
existing in situ oceanic precipitation data sets sample measurements from low-quality
rain gauges on voluntary observing ships (VOSs; Kent et al., 2010) or buoy arrays
(Weller et al., 2008). Many of these in situ ocean data sets include present weather
observations but lack quantitative estimates of precipitation. The high-latitude ocean
completely lacks precipitation measurements that sample solid and mixed-phase pre-
cipitation. However, recent and future precipitation satellite estimates demand high-
quality in situ quantitative precipitation estimates including snowfall over the global

ocean.

IThis chapter has been published with minor modifications as:
Burdanowitz, J., C. Klepp and S. Bakan (2016): An automatic precipitation phase distinction algo-
rithm for optical disdrometer data over the global ocean. Atmos. Meas. Tech., 9, 1637-1652.
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The large uncertainty in precipitation gauge measurements arises from the rough open-
ocean conditions that complicate precipitation monitoring. Under high wind speed,
standard rain gauges with horizontal catchment surfaces face a large undercatch (Yuter
and Parker, 2001; Michelson, 2004). In the extratropics, mixed-phase and solid precip-
itation cause further difficulties strongly adding to the undercatch (Goodison, 1978)
of horizontally oriented measuring surfaces. In contrast, optical instruments with a
vertically oriented measuring surface such as disdrometers perform better at capturing
precipitation under high wind speeds, though varying wind directions are challenging.
Optical disdrometers are thus denoted as the reference in situ instrument to measure
precipitation (Taylor, 2000).

To provide systematic high-quality in situ precipitation data over the ocean, the long-
term Ocean Rainfall And Ice-phase precipitation measurement Network (OceanRAIN;
Klepp, 2015) applies automatic optical disdrometers of type ODM470 that are de-
ployed onboard sea-going RVs for operation in all climatic regions. The ODM470 was
developed to measure under high wind speed and frequently varying wind directions.
Its cylindrical measuring volume ensures being independent from the wind-driven inci-
dence angle of the falling hydrometeors while a wind vane keeps the measuring volume
perpendicular to the instantaneous wind direction. The ODM470 accuracy lies within
a range of 3% rain accumulation limited to rainfall at various wind conditions with
respect to an improved ship rain gauge including side collectors on RV Alkor on the
Baltic Sea (Bumke and Seltmann, 2012). Compared to an ANS410 WMO-reference
rain gauge over land (Lanza and Vuerich, 2009), the ODM470 deviates by 2 % under low
wind speed (Klepp, 2015). For snow, a predecessor of the current ODM470 agreed with
the observer’s log during the Lofoten Cyclones campaign (LOFZY; Klepp et al., 2010)
in detecting snowfall events. More recent results for measuring snow and mixed-phase
precipitation are expected soon from the WMO Solid Precipitation InterComparison
Experiment (SPICE) at Marshall field site in Boulder (CO, USA), where the ODM470
was compared against a multitude of in situ solid precipitation instruments for more
than 2 years. The ODMA470 suits well to measure various types of precipitation under
open-ocean conditions onboard sea-going RVs.

The deployment of the ODM470 on several RVs allows to sample OceanRAIN precipita-
tion data from all climate zones including the cold-season high latitudes. This requires
a precipitation-phase (PP) distinction between rain, snow, and mixed phase in order
to provide correct precipitation rates for disdrometer-measured PSDs. The PP infor-
mation usually originates from human observers’ reports saved in the WMO present
weather code ww (WMO, 2015). Efforts to automatize present weather observations
impose high requirements on instruments such as present weather sensors. Automated
present weather sensors encounter problems at temperatures around 0°C as well as
for light precipitation and small particle sizes (Merenti-Véliméki et al., 2001). High
wind speed also complicates the PP determination because the wind speed strongly
interferes with the particle fall speed that solely carries the PP information. Thus,
most studies to distinguish PPs limit the wind conditions to low wind speed or calm
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conditions (LofHler-Mang and Joss, 2000; Yuter et al., 2006; Ishizaka et al., 2013). Only
few studies apply more sophisticated instruments that use articulating particle size ve-
locity (PARSIVEL) disdrometers to account for wind effects and thus directly derive
the PP from the particle fall speed (Friedrich et al., 2013). More simply constructed
instruments such as the ODM470 require ancillary data to determine the PP.

In OceanRAIN, we aim to replace the so far manual PP distinction method by an au-
tomatic algorithm for three main reasons. First, the manual method consumes a con-
siderable amount of time and workforce because the 1min precipitation data requires
visual inspection of air temperature, present weather observations, and theoretical rain
and snow rate. Second, the human-based PP decision based on visual data inspection
lacks objectivity while the decision itself remains non-transparent to the user. Third,
temporal gaps exist between the 3-hourly present weather observational timesteps, es-
pecially during nighttime adding to the uncertainty. Currently, no measures of this
PP uncertainty are provided in the manual method. For these reasons, we present a
new automatic PP distinction algorithm including a PP probability for OceanRAIN
precipitation data that is also applicable to all other instruments sampling PSDs of
precipitation.

The new PP distinction algorithm follows a statistical approach guided by many other
studies that relate atmospheric predictors to the PP (Koistinen and Saltikoff, 1998;
Fuchs et al., 2001; Dai, 2008; Froidurot et al., 2014). Most previous work focuses on PP
distinction over land only, while we introduce a new PP distinction algorithm over the
ocean. Dai (2008) compares ocean and land areas using a relatively coarse time step of
few to several hours depending on availability of observations. In contrast, OceanRAIN
offers atmospheric measurements at 1 min resolution while present weather observations
are limited to 3-hourly timesteps during daytime only. These high-resolution ancillary
data from the RV combined with PSD data from the optical disdrometer enable a more
accurate and reliable PP distinction.

Section 3.2 introduces the manual PP distinction method, and the OceanRAIN data
set in detail. Section 3.3 presents different atmospheric variable combinations and
methods to predict the PP. In Sect. 3.3.1, one PP distribution distinguishes between
two PPs, while in Sect. 3.3.2 one PP distribution distinguishes between three PPs.
Section 3.3.3 introduces a newly developed method to predict three PPs using two
PP distributions. Section 3.4 discusses the results by comparing with similar studies.
Section 3.5 completes our investigations with a summary and concluding remarks.

3.2 Data and methods

The OceanRAIN database collects atmospheric data including precipitation rates on
several RVs since 2010. From the current permanent deployments given in Section 2.1
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of Chapter 2, RV Polarstern is chosen due to the high fraction of high-latitude pre-
cipitation. The core instrument of OceanRAIN, the optical disdrometer ODMA470, is
introduced in detail in Sect. 2.1.1. The following Section 3.2.1 explains how the man-
ual method works to retrieve the PP that has been used so far in OceanRAIN. These
manually determined PPs function as a benchmarking reference for the new automatic
PP distinction algorithm.

3.2.1 The manual PP distinction

Though time-consuming, the manual PP distinction was so far employed to determine
the PP that is required to calculate the precipitation rate. Because we apply this
manual PP distinction data as reference to the new automatic PP distinction algorithm,
a detailed explanation follows. If available, shipboard present weather observations
stored in the WMO standard meteorological present and past weather code ww (WMO,
2015) are translated into the three PPs: rain, snow, and mixed phase according to Petty

(1995), displayed in Table 3.1. However, the translation of ww codes into a PP partly

Table 3.1: Translation of WMO present weather codes ww (WMO, 2015) into the three PPs
from Petty (1995), Froidurot et al. (2014), and OceanRAIN. ww codes printed in bold can
be translated into multiple PPs in OceanRAIN depending on ancillary data. “Indet./hail”
denotes indeterminate precipitation or hail used for classification in Petty (1995).

Source Rain Snow Mixed Indet. /hail
phase
Petty (1995) 91, 25, 50— 22, 26, 70— 2324, 56— 20, 2729,
55, 5865, 78,85-86 57, 6669, 8790, 93
80-82, 91— 79,83-84 99
92
OceanRAIN 20, 21, 25, 20, 22, 2324, -
29, 50 67, 26-27, 26-27,
80-82, 91~ 29, 70-79, 29, 6869,
92, 95, 97 8586, 83-84,
87-90, 87-90,
93-95, 96, 93-95, 97
97, 99
Froidurot et al. (2014) 58-65, 80— 70-79, 85— 68-69, 83— -
82,91-92 86 84

differs between OceanRAIN and Petty (1995). While Petty (1995) assigns one single
PP to each of the ww codes, OceanRAIN allows multiple PPs for a single ambiguous
ww code (bold weather codes in Table 3.1). Instead, Petty (1995) lists ambiguous ww
codes in a category called “indeterminable” (abbreviated “Indet.” in Table 3.1) that,
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however, includes no PP information anymore. For that reason we deviate from this
procedure to retain as much PP information as possible. Another difference concerns
ww codes for all kinds of freezing rain (i.e., rain at freezing temperatures) without snow
that Petty (1995) classifies as mixed phase. Classifying freezing rain as mixed phase by
applying the lump graupel assumption (Egs. 2.5 and 2.6) leads to an underestimated
precipitation rate. This underestimation arises because falling raindrops freeze only
after passing the disdrometer’s optical volume when hitting any obstacle, which is why
we consider freezing rain cases in OceanRAIN as rain (ww = 56,57,66,67). Likewise,
we assign a snow flag to ice pellets (ww = 79) as well as mostly to hail (ww = 89,90),
graupel (ww = 87,88), and combinations of both (ww = 93,94,96,99). The aim is
mainly to separate frozen (solid) from non-frozen (liquid) precipitation particles to
account for differences in density and cross-sectional area that affect Eqgs. (2.3) to (2.6)
and hence the precipitation rate. In contrast, the study by Froidurot et al. (2014)
concentrates exclusively on clear rain, snow, and mixed-phase observations (Table 3.1)
by neglecting drizzle, freezing rain, and ice pellets, among others. In general, assigning
the correct PP for a given ambiguous ww code requires visual inspection of PSDs and
ancillary data collected onboard the RV.

The ww code from shipboard observations on RV Polarstern is available 3 hourly
during daytime only. Nighttime conditions and PP changes between two consecutive
3-hourly observational time steps require ancillary data from the RV to derive the
PP. By ancillary data we refer to atmospheric variables measured onboard the ship
including the ODM470, such as air temperature, humidity, and precipitation rate.
These ancillary data are available at a much higher resolution of 1min compared to
the 3-hourly observations. Initially, we assign the PP derived from the ww code directly
to every single minute of precipitation that follows a 3-hourly observation as a first-
guess information. If available, air temperature as one of the ancillary data serves
to possibly correct this first-guess PP. For near-freezing air temperatures, the manual
procedure calculates the precipitation rate after Eq. (2.1) for rain (Egs. 2.3 and 2.4) and
snow (Eqgs. 2.5 and 2.6) assumption separately. Large differences between theoretical
rain and snow rate can help to identify a plausible PP. However, if both theoretical rain
and snow rate differ by much less than 2 orders of magnitude, their influence on the
PP decision becomes negligible, which makes the PP more arbitrary. Accordingly, the
manual method might be biased by the worker who decides for a PP and the observer on
the RV. For these reasons, we aim at developing an automatic PP distinction algorithm
at 1min resolution that statistically derives a PP from atmospheric measurements.

3.2.2 OceanRAIN data from RV Polarstern

The manual PP estimation has been applied to more than 4 years of OceanRAIN data
from RV Polarstern (11 June 2010-8 October 2014). This period consists of several
expeditions to Arctic and Antarctic regions. In addition to the high latitudes, RV



22 An automatic precipitation phase distinction algorithm for optical disdrometer data

90°N —
60°N — — 60°N
30°N ) — 30°N
(0]
e]
=
3 e -~ 0°
— 30°S
30°S
i — 60°S
60°S — >
T T T T
0 05 1 60°W 0° 60°E
Fraction [-] Longitude

Figure 3.1: Map illustrates ship tracks from RV Polarstern ALL data (11 June 2010-8 October
2014), whereby dots denote minutes of occurring precipitation classified by the manual PP
distinction (cyan: rain; orange: mixed phase; purple: snow). Harbor times and minutes
without precipitation are not shown. Left side denotes the fraction of each PP averaged per
latitude.

Polarstern collected precipitation data from the tropics and subtropics when crossing
the equator in the Atlantic Ocean six times (Fig. 3.1). The whole measuring period
amounts to more than 268 000 min of precipitation excluding periods of maintenance
in harbors and instrument outages. Snow or mixed-phase precipitation occurred al-
most exclusively poleward of 45°S and 70° N, which largely depends on seasonality.
During boreal warm season, RV Polarstern sailed over the northern hemispheric At-
lantic Ocean and in the entire Arctic area, whereas during austral warm-season RV
Polarstern cruised on the southern hemispheric Atlantic Ocean and at the Antarc-
tic. As an exception, RV Polarstern spent the whole year 2013 including austral cold
season in the Southern Hemisphere, which explains the multitude of mixed-phase and
snow precipitation cases between 45 and 75°S that are not sampled at corresponding
northern hemispheric latitudes. For the sake of polar research, RV Polarstern spends
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Table 3.2: OceanRAIN data sets from RV Polarstern divided into sub-data sets that are used
in the analysis. While RSM (rain, snow, mixed phase) and ALL (all data) include the mixed
phase, RS (rain, snow) sub-data exclude mixed-phase precipitation. RSM and RS include
only those minutes with at least 20 particles of precipitation falling at mid- or high latitudes
at air temperatures around the freezing point (see Sect. 3.2.2). The no-rain fraction (rain

fraction subtracted from 1) yields the fraction frozen precipitation meaning snow cases for RS
and snow and mixed phase for RSM and ALL.

Name Description Size (min) No rain (frac)

ALL  Complete data sample 268 340 0.57

RSM  Data sub-sample 165632 0.61
(incl. mixed phase)

RS Data sub-sample 149635 0.57

(excl. mixed phase)

most research time in the polar regions, which results in a high time fraction of snow
or mixed-phase precipitation of 0.57 (Table 3.2). Accordingly, precipitation occurred
most frequently at temperatures around 0°C and at high relative humidity (Fig. 3.2).
The high time fraction of snow or mixed-phase precipitation around 0°C makes RV
Polarstern an extremely valuable data set for oceanic PP distinction analysis.

The whole RV Polarstern data set, denoted ALL (for all data), consists of about
268 000 min of precipitation. The ship’s positions cover large areas of distinctly high or
low temperatures where the PP assignment is trivial and does not help in developing
the PP algorithm. Therefore, we reduce the complete RV Polarstern data set ALL
to minutes of highest PP uncertainty (Table 3.2). Air temperatures below —6°C and
above 8°C are excluded as well as ship locations between 45°S and 70° N latitude
wherein virtually no solid or mixed-phase precipitation was observed within the 4-
year period (Fig. 3.1). We exclude minutes with a total particle number of less than 20
particles because they cannot guarantee a meaningful PP distinction. These limitations
leave a subset of data denoted RSM (for rain, snow, mixed phase) with 165 632 min of
rain, snow, or mixed-phase precipitation. By that, the no-rain time fraction including
snow or mixed-phase precipitation increases from 0.57 (ALL) to 0.61 (RSM). If we
further exclude mixed-phase precipitation the gained sub-sample, denoted RS (for rain,
snow ), reduces to 149635 min while the no-rain fraction decreases to 0.57 (Table 3.2).

Atmospheric variables measured onboard RV Polarstern include temperature-related
(T, Ty, Ton) and humidity-related variables (rH, Ty), air pressure (P), and, from the
ODM470, wind speed (not used for analysis) and particle diameter (D). Instead of
D, we use the 99th percentile of D, Dgg, which is a measure for the maximum parti-
cle diameter measured within 1 min but excluding erroneously large particles possibly
caused by particle coincidences, drip-off drops, or other artifacts. Table 3.3 lists all
relevant variables from RV Polarstern and the ODM470. Note that all variables are
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Figure 3.2: Two-dimensional histogram shows relative occurrence (%) for each PP (top: snow;
middle: mixed phase; bottom: rain) after manual PP distinction from OceanRAIN RSM data
set of RV Polarstern. n denotes the number of minutes used per PP (165632 in total).

measured distinctly higher than 2m above the surface at about 43 m in order to reduce
interfering sea spray and splashing wave water.

3.3 The automatic PP distinction

3.3.1 One PP distribution to predict two PPs (2P1D)

This study aims at predicting the PP automatically by using available in situ atmo-
spheric predictor variables (Table 3.3). While we first focus on predicting two PPs
using one PP distribution (Sect. 3.3.1; 2P1D), we later apply one PP distribution to
predict three PPs (incl. mixed phase; Sect. 3.3.2; 3P1D). Section 3.3.3 presents a novel
approach that predicts three PPs applying two PP distributions (3P2D).

For the PP prediction we adopt a statistical model using logistic regression to relate the
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Table 3.3: List of available meteorological predictor variables in OceanRAIN used in the
logistic regression model to predict the PP.

Variable Description Unit Source

T Air temperature °C RV Polarstern
Ty Dew point temperature °C RV Polarstern
Ton Air temperature 2 h prior to observation °C RV Polarstern
rH Relative humidity % RV Polarstern
P Sea-level air pressure hPa RV Polarstern
RR Precipitation rate assuming rain mmh~! ODM470

Dqq 99th percentile of particle diameter mm ODMA470

available observed atmospheric variables (predictor variables) to the PP as suggested
by Koistinen and Saltikoff (1998), henceforth KS98. The predictor variables are fitted
against binary dependent variables to calculate the PP probability p(PP). Taken from
the manual PP distinction data (Sect. 3.2.1), the binary dependent variables attain
a rain probability p(rain) [frac| of either 0 (snow) or 1 (rain). Once fitted, p(rain)
can attain any value between 0 and 1 depending on the predictor variables. p(rain) is
calculated by

in) = ! 3.1
p(ram) 1 + eatBVi+yVat. 4w Vi’ ( ’ )
whereby V; represents the atmospheric predictor variables. «, 3, 7, ..., w denote the

regression coefficients that are determined by minimizing the sum of squared errors
(nearest-neighbor method) with respect to the PPs from the manual PP distinction.
Generally, we use the term PP probability, p(PP), representing both rain (p(rain)) and
snow probability (p(snow)) if not stated differently. The snow probability is calculated
as 1—p(rain), excluding mixed phase for now in this simple model.

We calibrate various combinations of atmospheric predictor variables V; (Table 3.3) for
RS sub-data (Table 3.2) to find the combination that predicts best the PP. KS98 state
that the combination of air temperature 7" and relative humidity rH, called T"_rH, is
suited best to predict the PP. For T_rH, Eq. (3.1) changes to

Ny 1
p(ra1n> - 1+ elat+B-T+vyrH)’

(3.2)

where the number of regression coefficients reduces to three. In lack of alternative
reference data, we evaluate the calculated regression coefficients of RS sub-data using
the same manually determined PPs as used for the model calibration. Nevertheless, we
investigated the robustness of the regression coefficients using 100 realizations of only
50 % randomly chosen minutes of precipitation from the RS data set. The standard
deviation of the 100 realizations rarely exceeds 10 % of the individual regression coef-
ficients from the whole RS data set, which confirms the robustness of the calculated
regression coefficients. If in the manual PP reference data set a minute of precipitation
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is assigned rain, the statistical model by definition “agrees” for p(rain) > 0.5 while it
“disagrees” for p(rain) < 0.5. For the rain/snow distinction four possible combinations
exist — rain agreement, snow agreement, rain disagreement, and snow disagreement.
For instance, rain disagreement means that the statistical model predicts rain that dis-
agrees with the manual PP reference data indicating snow. Combined in a contingency
table we choose four scores to evaluate how well the atmospheric predictor variable
combinations serve to predict the PP in this statistical model.

First, the accuracy serves to evaluate the overall correctness of the predictor variable
combinations with respect to the manual PP reference data set. The accuracy repre-
sents the sum of cases in which model and manually determined PP reference data of
RS sub-data agree divided by the total number of minutes in RS sub-data. Ideally, the
accuracy is close to 1.

Second, we consider the bias score defined as the ratio between the sum of disagreeing
rain predictions and agreeing rain predictions to the sum of disagreeing snow predictions
and agreeing rain predictions, all with respect to the manually determined PP reference
data. Accordingly, a bias score of b < 1 represents an overprediction of snow by the
model, whereas b > 1 represents an overprediction of rain by the model. However, the
bias should be interpreted with caution because the manual reference data set might
be biased itself. Thus, the bias rather carries the information in which direction the
predicted PP deviates from the manual reference data.

Third, we determine the percentage of cases misclassified (PM). Misclassified means
that predicted high-probability cases (p > 0.95) disagree with the manual PP reference
data. For PM, the number of these misclassified cases is divided by the number of all
RS cases. Ideally, PM is close to 0.

Fourth, the percentage of uncertain cases (PU) estimates how well the PPs are sep-
arated by the predictor variables used. PU represents the number of cases with
0.05 < p < 0.95 divided by all RS cases. Accordingly, PU measures the fraction
of cases that the model is unable to predict at a high level of certainty. The definitions
of PM and PU follow the evaluation method in Froidurot et al. (2014).

The four performance scores are calculated for both 100 realizations of 50 % randomly
chosen minutes of precipitation (black boxes and whiskers in Fig. 3.3) and for all
minutes of RS sub-data (red stars). The percentiles (5th, 25th, 50th, 75th, and 95th)
illustrate how strongly the RS data set scatters and whether differences among predictor
variable combinations are significant (p = 0.95, n = 100).

The PPs calculated with the logistic regression model reach an accuracy of more than
88 % for combinations of atmospheric predictor variables that all include the air tem-
perature 7' (Fig. 3.3). T carries the most straightforward PP information in most cases.
Combining 7" with up to two other relevant predictor variables (connected by under-
scores) aids to assess their value in determining the PP. Table 3.4 displays the most
important fitted regression coefficients for different combinations of predictor variables
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Table 3.4: List of regression coefficients calculated with Eq. (3.1) by minimizing the sum
of squared errors with respect to the manual PP reference data for two PPs using one PP
distribution (2P1D; Sect. 3.3.1), three PPs using one PP distribution (3P1D; Sect. 3.3.2), and
three PPs using two PP distributions (3P2D; Sect. 3.3.3). For 3P2D, the asterisk denotes
the rain distribution that was derived setting the mixed phase to snow. KS98 denotes the
coefficients recommended by Koistinen and Saltikoff (1998) derived over Finland.

Method Variables used Regression coefficients
(Vi_Va_Va) o B v 0
KS98 T rH —-22 2.7 0.2 -
2P1D T rH —13.39 1.818 0.127 -
T rH_ Dy —10.83 1.780 0.118 —1.062
T rH RR —13.55 1.738 0.135 —0.325
3P1D T rH —9.766 1.382 0.092 -
T rtH Dy —8.364 1.364 0.090 —0.732
T rH RR —10.01 1.331 0.099 —-0.204
3P2D T rH —5.687 1.429 0.055 -
T rH* —15.40 1.482 0.144 -
T rH_Dgg —4.794 1.467 0.056 —0.556
T tH Dgy* —13.94 1.431 0.145 —-0.959
T rH RR —5.888 1.412 0.060 —0.059
T rH RR* —13.95 1.382 0.136 —0.316

using the OceanRAIN sub-sample RS (2P1D) and the sub-sample RSM (3P1D and
3P2D).

Combining 7" with the air temperature 2h prior to observation (T5y,) does not increase
the accuracy of T' (both 88.5 %). Other time intervals led to similarly small performance
changes being in agreement with Froidurot et al. (2014). Accordingly, weather fronts
associated with 7" drops do not seem to have an imprint on T Ty, or they are currently
underrepresented in the OceanRAIN data set. The air pressure P may have an impact
on the PP at higher elevations due to lower air density (Dai, 2008). This, however,
cannot explain the better accuracy of 89.2% for T P compared to T. Over the ocean,
the additional skill in the predictor P might be caused by certain weather situations
that favor either rain or snow, and are sufficiently sampled in the OceanRAIN data
set. The relative humidity rH and the dew point Ty (not shown) reach about the same
accuracy of 89.4%. The addition of P and rH to T leads to a statistically significant
(p = 0.95, n = 100) but only slight increase in accuracy compared to T alone.

With the 99th percentile of the particle diameter Dgg and the calculated theoretical rain
rate RR (Eqs. 2.3 and 2.4), physical properties of precipitation particles directly enter
the PP distinction. This direct physical relation explains the notably higher accuracy
of at least 90% by T RR, T'_ Dy, and other combinations containing RR and Dyg.
The similarly high performance of these three predictor combinations is driven by the
particle diameter that mainly influences RR. Combinations of 7', a humidity-related
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Figure 3.3: Box-and-whisker plot displays interquartile spread (black box: 25th, 50th, and
75th percentile) and lower (whisker: 5th percentile) as well as upper (95th percentile) ex-
tremes, calculated from 100 realizations of each 50 % randomly chosen minutes of precipitation
from RS sub-data. Red stars denote the values for 100 % of RS sub-data. Accuracy (%), bias
score (frac), percentage misclassified (PM: fraction of disagreeing cases with high certainty of
p > 0.95 in %), and percentage unclassified (PU: fraction of uncertain cases of 0.05 < p < 0.95
in %) serve as performance scores using the calculated coefficients in Table 3.4 against the
manually determined PP reference data. Labels indicate variable combinations, whereby all
combinations include 7T'.

variable such as rH, and a diameter-related variable such as Dgg reach the highest
accuracy of more than 91 %. Combinations of four or five of the available atmospheric
predictor variables such as ' tH RR_Dgg brought no noticeable further increase in
accuracy (not shown). From the considered predictors, a combination of three out of
the available predictor variables suits best to accurately distinguish between rain and
Snow.

The bias provides the ratio of rain cases predicted by the statistical model and observed
rain cases from the manual PP reference data. All predictor variable combinations
range between 0.89 and 0.94, which implies an underprediction of rain and hence an
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Figure 3.4: Rain probability using regression coefficients from Table 3.4 for OceanRAIN RS
sub-data (2P1D) with the predictor variables T rH (black), T _rH Dgg (blue) both fitted
against OceanRAIN, compared to KS98-recommended coefficients for T rH (red). Dashed
lines (black, red) indicate a PP distribution where rH is set to 80 % while for solid lines it is
set t0 99%. For T _rH Dgg (blue lines), Dyg is set to either 1 or 5mm in addition to rH.

overprediction of snow. Combinations that contain RR and Dgg reach the smallest
overprediction of snow, whereas T" holds the strongest snow bias. The lower snow bias
combined with the higher accuracy of predictor variables carrying particle diameter
information highlights the need to include physically related variables in a statistical
model to predict the PP.

Besides being accurate and unbiased, a small PP transition region of low PP certainty
(low PU) combined with a low fraction of highly certain but misclassified PP cases
(low PM) characterize a useful predictor variable combination. The PU decreases with
increasing accuracy. Consequently, predictor variable combinations including rH and
either Dgg or RR reach the lowest PU of about 36 %. This low PU and thus fairly narrow
PP distribution causes a slight increase in PM for T rH RR and T"_rH Dgg (1.5 %)
compared to T Dgg, T RR, and T'"_RR_ Dgg (1.3%). However, the positive effect of
using RR or Dyg outweighs the slightly negative influence of rH on PM. Consequently,
the physical related predictor variables confirm their good performance in predicting

the PP.

The T rH coefficients that were calculated for Finland in KS98 and confirmed
in Froidurot et al. (2014) over Switzerland reach an accuracy of 88.6 %, which is
slightly lower than those coefficients optimized for OceanRAIN (89.4%). A two-
tailed ¢ test confirms the difference to be statistically significant (p=0.99, n=100).
The OceanRAIN-adapted coefficients exhibit a shallower rain/snow transition that re-
sults in a 0.8°C lower temperature at p(rain) = 0.1 while both distributions equal at
p(rain) = 0.9 (Fig. 3.4). Compared to OceanRAIN, the steeper rain/snow transition
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against T fitted in KS98 holds a much lower PU of 24 % but to the expense of a much
higher PM of 4% and a snow bias of 0.8. Consequently, the coefficients from KS98
better predict most uncertain cases with 7" rH but miss more extreme cases such as
freezing rain. For the OceanRAIN data set, the PP prediction using the RS-fitted co-
efficients reflects better the OceanRAIN PP distribution compared to the KS98-fitted
coefficients as indicated by the accuracy.

For T rH Dgg, the rain/snow transition shifts with 7" depending on Dgg. While
Dgg = 1 mm shifts the rain/snow transition to even lower temperatures by about 0.5 °C,
Dgg = 5mm shifts it towards higher temperatures by about 2°C, both compared to
T rH derived from OceanRAIN RS sub-data. The shallower rain/snow transition of
the PP distribution fitted for OceanRAIN compared to that over Finland is likely
caused by more freezing rain cases sampled in OceanRAIN, which the KS98-fitted
coefficients for 7' rH cannot predict.

3.3.2 One PP distribution to predict three PPs (3P1D)

In a second step, we include mixed-phase precipitation into the algorithm because
mixed-phase precipitation marks the transition from frozen to liquid particles and thus
carries the highest uncertainty. We calculate the regression coefficients using the RSM
sub-data including 165 632 min of precipitation measured onboard RV Polarstern. The
three-phase distinction 3P1D fits p(rain) against three PPs from the same manually
determined PP reference data set as before. However, the calculated transition phase
between snow with p(rain) = 0 and rain with p(rain) = 1 is interpreted as mixed phase,
defined in the range of 0.3 < p(rain) < 0.7 after KS98. The approximated coefficients
for predictor variable combinations V; differ considerably from those calculated for the
two-phase method 2P1D (see Table 3.4 in Sect. 3.3.1).

We evaluate the calculated PP probability against PPs from the manual PP reference
data using RSM sub-data. Again, accuracy, bias, and PM serve as a measure of quality,
while PU is no longer suitable for evaluation because the transition region of highest
uncertainty between snow and rain represents mixed-phase precipitation. Overall, this
three-phase method 3P1D yields an accuracy between 74 and 78 %, which corresponds
to an absolute decrease of about 14 % compared to 2P1D (Fig. 3.5). To that large
decrease in accuracy two reasons mainly contribute: (1) the manual PP reference data,
acting as reference data, holds large uncertainties in the mixed phase, as well. The ww
code represents snapshots of 3-hourly observations. Therefore, they hardly satisfy the
need for minute-based observations because the mixed-phase rain/snow fraction can
vary dramatically, both temporally and spatially. (2) KS98 assume the mixed-phase
precipitation to occur in the transition region between rain and snow, which is true
in most cases. However, several cases exist in which mixed-phase precipitation occurs
at distinctly high or low air temperature (Fig. 3.2) and thus 3P1D misclassifies these
cases.
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Figure 3.5: Performance of fit is shown for different combinations of atmospheric variables as
in Fig. 3.3 for RSM sub-data. All variable combinations again include 7'

Relative to each other, the individual variable combinations perform similar compared
to 2P1D. T, T Ty, and T P have the lowest accuracy of below 75 % (Fig. 3.5) and a
bias below 0.92. The addition of rH significantly increases the accuracy by about 1%,
whereas T tH Ty, T rH, and T Ty Tsy, (not shown) do not differ much from each
other. The predictor variable combinations that include the diameter-related predictors
RR and Dgyg lead to the highest accuracy of 76 up to 78 %. The highest accuracy of 78 %
reached by T' rH Dgg represents a statistically significant performance increase to the
remaining variable combinations in 3P1D, which contrasts to 2P1D where 7' rH RR
does not perform significantly better than 7' rH Dyq.

For the bias, predictor combinations including RR and/or Dgg reach the least pro-
nounced snow bias of about 0.93, whereas the remaining predictor combinations fea-
ture significantly lower biases, mostly below 0.92. In that respect, the bias of 3P1D
resembles that of 2P1D (see Fig. 3.3 in Sect. 3.3.1) both in terms of magnitude and in
the individual performance of the predictor variable combinations.

While the ranking of predictor variable combinations with respect to accuracy and bias
looks very similar compared to 2P1D, PM tends to form three clusters. The first cluster
comprises predictor variables without particle diameter information, holding the lowest
PM of 2.2 to 2.4%. The second cluster includes RR but not Dgg, holding the highest
PM (3.4%). In the third cluster each predictor variable combination includes Dgg but
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performs better than the second cluster with PM of about 2.8%. T rH_Dgg in the
third cluster offers the best compromise in maximizing the accuracy while minimizing
the fraction of misclassified cases.

In contrast to 2P1D, for 3P1D PM tends to scale with accuracy for many predictor
variable combinations. While T rH Dgg exhibits an about 0.5 % larger PM than T,
the PM of T_rH_RR and T"_RR are even 1.1 % larger. A high PM indicates a clear
disagreement between calculated PP and manually estimated PP. Note, however, that
not in all of these clearly disagreeing cases the manual PP reference data necessarily
contains the correct PP. Physically related predictor variables such as Dgg can assist
to unveil cases falsely classified by the manual PP estimation. For example, Dgg is
able to identify snow or mixed-phase cases, falsely classified as rain in the manual
reference data. Except for the tropics, rain drops rarely exceed drop diameters of
5mm (Bentley, 1904; Villermaux and Bossa, 2009). Larger drops mainly break up or
collide with neighboring drops. Dgg excludes coincidences of drops as well as artificial
drops dripping off the instrument housing by discarding the uppermost percentile of
measured drop diameters per minute. Therefore, particles classified as rain drops with
Dgg>bmm very likely represent frozen particles, which means that they were falsely
classified as rain (Fig. 3.6). Below 4°C, 163 rain cases in RSM sub-data (about 0.25 %)
are likely falsely classified. This could explain about half of the 0.5 % PM difference of
T rH Dgg to T in Fig. 3.5).

The T'_rH coefficients calculated in KS98 reach an accuracy of 78.6 %, but PM amounts
to 7.2 % misclassified cases (not shown), which is more than a factor of 2.5 higher than
the PM of T" rH Dgg. The shift towards higher air temperatures and the steeper
rain/snow transition in the PP distribution using the coefficients recommended in KS98
(see Fig. 3.4) explain the large amount of misclassified cases. However, as stated

before, the coefficients in KS98 derived over Finland cannot represent the temperature
distribution of PPs in the OceanRAIN data set.

3.3.3 Two PP distributions to predict three PPs (3P2D)

The relatively low accuracy reached with the three-phase method after KS98 using one
PP distribution (3P1D) motivates a novel investigation of how to further improve the
PP prediction for three PPs. Instead of applying one PP distribution to determine
rain, mixed-phase, and snow precipitation, we suggest to approximate two separate
PP distributions for rain and snow (3P2D). These two individual PP distributions are
derived analogous to the method for one PP distribution by assigning the mixed-phase
PP differently — first set it to rain to calculate the snow PP distribution, then set it to
snow to calculate the rain PP distribution. Subtracting the sum of both individually
calculated PP distributions from 1 yields the PP distribution for mixed phase. In
contrast to 3P1D, the separately calculated coefficients for rain and snow (Table 3.4)
lead to individual distributions only connected via the mixed phase.
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Figure 3.6: Two-dimensional histogram of temperature and the 99th percentile of the particle
diameter for cases classified as rain by the manual PP estimation in RSM.

Analogous to 2P1D (Sect. 3.3.1), the accuracy represents the percentage of cases with
p(PP) > 0.5 that agree in their respective PP with the manual PP reference data. The
bias represents the ratio between the sum of predicted rain cases and the sum of rain
cases in the manual PP reference data. Please note that the bias definition remains
unchanged for 3P2D that includes mixed phase compared to 2P1D. However, the ad-
ditional PP distribution slightly modifies the calculation of PM and PU, illustrated
in Fig. 3.7. PM represents the percentage of all certain cases (p(PP) > 0.95; hatched
area in Fig. 3.7) in which either one of the PPs disagrees with the manual PP reference
data. PU as the percentage of uncertain cases (0.05 < p(PP) < 0.95; shaded area)
represents only those cases where all PPs are uncertain after definition. We introduce
this limitation because if p(PP) < 0.05 holds for at least one PP then we would not
consider this PP uncertain anymore. Note that for mathematical reasons we cannot
display PM,ix > 0 and PU > 0 in the same figure, which is why we set PM,;, > 0.

This 3P2D method using two individual PP distributions reaches on average a higher
accuracy compared to 3P1D (Fig. 3.8). Whereas T', ' Ts,, and T'_ P hold less than
78 % accuracy, T tH Dgyg reaches the highest accuracy of 81.2%. As for 3P1D, the
improvement is mainly caused by adding the predictor Dgg that performs significantly
better than when adding the predictor RR. Also the overprediction of snow by all
predictor variable combinations with respect to the manually determined PP reference
data stays the same in 3P2D. The physically related variables are least biased (about
0.93), which consistently highlights the improvement of including them in the predic-
tor variable combination. However, for PM stronger differences among these physically
related predictor variables arise. While 7~ RR holds the highest PM (about 2.3 %),
T rH_Dgg reaches 1.9% PM, which is on the order of the predictor variable combi-
nations without RR and Dgg (1.8 %). However, the physically related predictors reach
again lowest PUs of about 38 % while T" holds a PU of 51 %. In combination with the
other scores we recommend 7' _rH Dgyg followed by T" RR__ Dgg and T'_Dgg to most
accurately predict the PP using two independent PP distributions.
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Figure 3.7: Graph illustrates the calculation of PU (framed) and PM (hatched) including snow
(dashed /purple), mixed phase (dotted/orange), and rain (solid/cyan), analogous to Fig. 3 in
Froidurot et al. (2014). PU divides the sum of cases with 0.05 < p(PP) < 0.95 for all PPs
by the sum of all RSM cases. PM divides the sum of cases with p(PP) > 0.95 for one of
the PPs that disagrees with the manual PP estimation by the sum of all RSM cases. We set
PMpix > 0 because otherwise we could not display it in the same PP distribution (rH kept
constant) with PU > 0.

Compared to 3P1D after KS98, the PM decreases for 3P2D. This decrease in PM
ranges between 0.5 and 1% and thus highlights the improved performance of using
two PP distributions instead of one to predict the PP. The lower PM and higher
accuracy approve that the novel method applying two independent PP distributions
better represents the PP distribution in OceanRAIN RSM.

To understand the better performance of 3P2D compared to 3P1D after KS98, we
consider how the PP fraction is distributed with respect to T" around the freezing point
(rain/snow transition) in the manual PP reference data (Fig. 3.9). While the rain oc-
currence shows a relatively low skewness, the mixed-phase/snow distribution is slightly
left-skewed. This higher skewness with a secondary maximum in the mixed-phase dis-
tribution at —3°C (minimum in snow distribution) cannot be well represented by one
PP distribution. One PP distribution is limited to match all three PP distributions at
the same time that can only represent an average skewness. In that respect, deriving
two independent PP distributions driven by mixed-phase precipitation better reflects
the PP distribution of each PP individually with respect to the manual PP reference
data in OceanRAIN RSM.

The question arises whether the left-skewed distribution of snow and mixed-phase pre-
cipitation in OceanRAIN sub-data RSM represents a feature of the oceanic PP distribu-
tion or if it simply reflects a currently insufficient length of the OceanRAIN time series.
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Figure 3.8: As Fig. 3.3 but for RSM including mixed phase, using two independent PP
distributions (3P2D). The calculation of PM and PU differs from Fig. 3.3 as displayed and
explained in Fig. 3.7.

Though the latter seems more likely, addressing this question comprehensively, how-
ever, remains beyond the scope of this study due to the limited available OceanRAIN
data sample. Future studies could clarify this aspect by reanalyzing the constantly
growing OceanRAIN database.

Nevertheless, differences remain due to the chosen PP distinction method. By dis-
criminating three PPs, 3P1D and 3P2D enable a smoother rain/snow transition com-
pared to 2P1D due to included mixed-phase precipitation (Fig. 3.10). At lower tem-
peratures, 2P1D approaches the snow distribution of 3P2D, while at higher tem-
peratures it approaches the rain distribution of 3P2D. In other words, the steeper
rain probability distribution for 2P1D clarifies the slightly smaller unclassified range
(0.3 < p(PP) < 0.7) compared to 3P2D as seen in the percentage unclassified (compare
Fig. 3.3 and Fig. 3.8).

Dy as additional variable in " tH Dgg tends to shift the snow and rain distributions
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Figure 3.9: Lines show PP fraction for rain (solid, cyan), mixed phase (dotted, orange), and
snow (purple, dashed) from OceanRAIN RSM (165632 min) determined with the manual PP
estimation against temperature. Gray bars represent the temperature frequency of occurrence
(in 103).

to higher temperatures and apart of each other, which also resolves more extreme
cases. This distribution shift with temperature follows a physical reason: large snow
particles better withstand melting at high air temperatures than small snow particles.
This physical information lacks in 7" rH, which notably decreases its accuracy (cf.
Fig. 3.8).

3.4 Discussion

After finding suitable methods for both the rain/snow distinction (Sect. 3.3.1) as well as
for the rain/snow/mixed-phase distinction (Sect. 3.3.3) we compare the results to those
of similar studies. For the rain/snow distinction over Switzerland using 7" rH derived
over Finland by KS98, Schmid and Mathis (2004) find a higher accuracy of 92.4 %
compared to our calculated accuracy of 88.6 % when using the same KS98 regression
coefficients o = 22, § = 2.7, v = 0.2. Schmid and Mathis (2004) find an overprediction
of snow cases (bias 0.82), very similar to the OceanRAIN RS snow overprediction (bias
0.8) using the same coefficients derived by KS98. However, for fitting the regression
coefficients to our data set (Table 3.4) we still obtain a slightly lower accuracy of
89.4% calculated for T _rH and 91 % for T _rH_Dgg while the low-bias decreases to
0.92 and 0.93, respectively. These performance improvements indicate, first, different
conditions for PP transition over the ocean compared to Finland of KS98 while, second,
the OceanRAIN data set is in relatively close agreement with the Swiss data.

With respect to two PPs, including the mixed phase decreases the accuracy to below
78 % while PM almost doubles. To elaborate on reasons for that accuracy decrease we



3.4 Discussion 37

10 =T rH D, P
Dgg=5mm, rH=85% ¢

2P1D
0.8 —
3P1D
3P2D
left: 1-p(snow)
= right: p(rain)
.é\ —
E
]
o
°
a
£ 04 -
lid
0.2 —

0.0 -—v”‘“r"‘%" T "-I" | | |
4 2 0 2 4 6 8 -4 2 0 2 4 6 8
Air temperature [°C] Air temperature [°C]

Figure 3.10: Air temperature versus predicted PP by the different methods: two PPs (2P1D;
solid blue), three one-PP distributions (3P1D; dashed red), and three two-PP distributions
(3P2D; dotted black). 3P2D consists of two curves (left: snow distribution as 1 — p(snow);
right: rain distribution as p(rain)) for the calculated coefficients of T rH Dgg (left panel;
rH = 85%, Dgg = 5mm) and 7' _rH (right panel; rH = 85%).

consider a study of Gjertsen and degaard (2005), who applied the same translation
of ww codes into PPs for ww codes between 50 and 86. Using 3P1D, they find an
accuracy of 86 % compared to Norwegian synoptic stations (6 months winter period)
and 85 % compared to independent climatological stations over Norway (1 month).
They obtain an overprediction of snow (bias of 0.92) and problems in predicting the
PP of supercooled rain during prevailing temperature inversions. In OceanRAIN we
find a similar overprediction of snow (bias 7' _rH: 0.91; 7" rH Dgg: 0.93) with respect
to the manual PP reference data in OceanRAIN. This overprediction of snow occurs
predominantly around 0°C that is the temperature range sampled most frequently (cf.
Fig. 3.9). Hence, OceanRAIN is likely to face the same problems underpredicting rain
when supercooled raindrops fall under prevailing temperature inversions. Further work
is required in order to clarify whether we need additional ancillary data to reduce the
bias or whether the logistic regression model is unable to provide a less biased PP
prediction.

Assuming that mixed-phase precipitation causes most of the accuracy decrease be-
tween 2P1D and 3P1D as well as 3P2D, we consider the individual probability of
detection (POD) for rain, snow, and mixed phase. For rain, the POD is calculated by
dividing the number of agreeing rain cases by the number of all observed rain cases.
For the POD of 3P1D using the KS98-fitted coefficients for 7 rH for rain, snow, and
mixed phase we find 0.92, 0.78, and 0.21 (T"_rH Dgy: 0.92, 0.86, and 0.25). The re-
spective PODs from Gjertsen and )degaard (2005) for the same settings reveal slightly
different PODs of 0.81, 0.97, and 0.25. Whereas they obtain a notably higher POD
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Figure 3.11: PP probability shown using the new 3P2D method with two individual PP distri-
butions (" _rH Dgg) as frequency of occurrence (%) in gray shades against air temperature
according to PP reference data that separates rain, snow, and mixed phase in OceanRAIN
ALL for more than 4 years of RV Polarstern data. Solid red lines represent the mean PP
fraction from observations in the Swiss Alps (1991-2010) from Froidurot et al. (2014); dashed
blue lines show mean PP fraction for oceanic ship data (DS464.0; 1977-2007) from Dai (2008).

for snow, the rain POD is lower compared to OceanRAIN. Nevertheless, mixed-phase
precipitation confirms to carry the largest prediction uncertainty of all three PPs.

The variable combination 7" rH Dgg distinguishes best rain, snow, and mixed-phase
precipitation in OceanRAIN data. In comparison with PP fractions allocated into
temperature bins from 30 years of Swiss Alps data from Froidurot et al. (2014), in
most cases the PP transition in OceanRAIN occurs at lower temperatures (Fig. 3.11).
However, the analysis by Froidurot et al. (2014), among other conditions, neglects all
kinds of freezing rain (ww = 56, 57,66, 67) that we assign to rain. Without these “cold
rain” cases, the rain/snow transition shifts towards higher temperature that may in
parts explain the temperature difference in Fig. 3.11. Additionally, the PP probabil-
ity distribution in the OceanRAIN RV Polarstern data sample is biased by the high
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number of temperatures around 0°C that occur by a factor of 3 to 4 more often than
temperatures between —4 and 4°C (cf. Fig. 3.9), and relative humidity close to 100 %.
These frequently sampled conditions put their mark on the average rain/snow tran-
sition by reducing the rain/snow transition temperature compared to the Swiss Alps
where T and rH were sampled more homogeneously (Fig. 9 in Froidurot et al., 2014).

Despite the high number of available minutes with precipitation in OceanRAIN, the
rather short time series on climatological timescales and the spatial distribution of
along-track data limit the representativeness. However, a different rain/snow tran-
sition between land and ocean might be observable. Dai (2008) found a systematic
land—ocean difference in the rain/snow transition between land and ocean in 30 years of
NCEP ADP Operational Global Surface Observations (DS464.0; 1977-2007). Whereas
over land, rain transitions into snow relatively quickly with increasing temperature
(—2<T <4°C), over ocean the transition zone is wider (—3 <7 < 6°C). Although the
rain/snow transition zone within OceanRAIN appears to be wider compared to regres-
sion coefficients recommended by Koistinen and Saltikoff (1998) as seen in Fig. 3.4, the
rain/snow transition in OceanRAIN compares better to the Swiss Alps data (Froidurot
et al., 2014) than to the NCEP DS464.0 ocean data (Dai, 2008) that reveal a wider tran-
sition zone. In specific, OceanRAIN relatively closely agrees with the NCEP DS464.0
ocean data for T'<(0°C, whereas larger differences of >1°C occur in the range of
2 <T <5°C. Two main reasons can explain the different rain/snow transition between
OceanRAIN and NCEP DS464.0 ocean data by Dai (2008). First, ww codes used in
the NCEP ocean data are subject to larger uncertainty compared to OceanRAIN. In
contrast to the RV Polarstern onboard weather observatory by the German Meteo-
rological Service, many VOSs such as cargo ships in NCEP DS464.0 ocean data have
inadequately trained observers that might use certain ww codes preferentially, ships
possibly avoid bad weather, or measurement quality may suffer from instrument biases
(Petty, 1995). For these reasons, the wider rain/snow transition zone likely reflects
a higher uncertainty of the NCEP DS464.0 ocean data compared to the OceanRAIN
data from RV Polarstern or the Swiss Alps data. Second, RV Polarstern mainly sam-
pled warm-season precipitation in the Atlantic Arctic and Antarctic regions with the
exception of the austral cold season in 2013. In addition to that, the heterogeneous
regional and seasonal sampling by RV Polarstern might have favored conditions under
which inversions prevail that allow rain at fairly low temperatures but inhibit snow
under relatively high temperatures.

While the sampling imbalance of RV Polarstern may indicate a restricted representa-
tiveness of PPs in OceanRAIN, the 7' rH Dgg predictor variable combination recom-
mended as the new PP distinction method for OceanRAIN well represents the observed
PPs within OceanRAIN. The continuously growing time series of RV Polarstern among
other RVs in OceanRAIN allows to recalibrate or refine the algorithm geographically
for a longer time series with comprehensive statistical sampling in the future.
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3.5 Summary and concluding remarks

We developed a novel automatic algorithm to distinguish the PP within OceanRAIN
in situ precipitation data to introduce a statistical PP probability and to increase the
data post-processing efficiency. The analysis focused on identifying the most suitable
combination of available atmospheric predictor variables to determine the PP. For
that purpose, we applied a simple logistic regression model suggested by Koistinen and
Saltikoff (1998) that was shown to perform well over land. Previous studies mainly rely
on air temperature 7T', relative humidity rH, air pressure P, and others to predict the PP.
We investigated several of these atmospheric predictor variable combinations to obtain
a PP probability. In particular, we tested the performance of the logistic regression
model after Koistinen and Saltikoff (1998) for OceanRAIN using two (excl. mixed
phase) and three PPs (incl. mixed phase) against the manually estimated observation-
based PP in OceanRAIN. Besides increasing the efficiency in predicting the PP with an
automatic method, we developed a novel three-phase method that uses two individual
and independent PP distributions to predict the PP more accurately.

The study led to the following main results.

a. In OceanRAIN, the combination of air temperature T, relative humidity rH, and
the 99th percentile of the particle diameter Dgg (called ' rH Dgg) predicts best
the PP for all investigated methods.

b. Applying more than three of the chosen atmospheric predictor variables negligibly
increases the accuracy in predicting the PP.

c. The two-phase method (2P1D) wusing the predictor variable combination
T tH Dy and regression coefficients fitted to OceanRAIN reaches an accu-
racy above 91 % with a slight overestimation of snow cases for the mid- and high
latitudes between —6 and 8°C in the OceanRAIN data set with respect to the
manual PP reference data including shipboard present weather observations.

d. A novel three-phase method using two individual PP distributions (3P2D) for
rain and snow performs better than a three-phase method that relies exclusively
on one PP distribution (3P1D after Koistinen and Saltikoff, 1998). As a reason,
two individual PP distributions are capable of better representing unequally dis-
tributed or skewed PP distributions of atmospheric predictor variables as well as
certain weather situations that might currently be over- or undersampled. Ac-
cordingly, this performance difference might decrease once the investigated 4-year
OceanRAIN time series grows further while sampling biases vanish.

e. The OceanRAIN data using 3P2D reveal a wider rain/snow transition zone com-
pared to data derived over Finland (Koistinen and Saltikoff, 1998). The rain/snow
transition in OceanRAIN occurs at slightly lower temperatures compared to the
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data from Finland as well as NCEP DS464.0 global ocean ship data (Dai, 2008).
The difference in the rain/snow transition zone likely originates from heteroge-
neous spatial and seasonal sampling in OceanRAIN that is likely to decrease with
an increasing OceanRAIN time series. In contrast, a higher quality of the de-
rived ww codes in OceanRAIN compared to the average VOS suggests a higher
certainty of the derived PPs. The Swiss Alps data (Froidurot et al., 2014) shows
a similar rain/snow transition at slightly higher temperatures, likely caused by
neglected cases of freezing rain, among others. Due to these differences we obtain
the highest accuracy and lowest bias when applying regression coefficients fitted
to the OceanRAIN data set instead of using recommended coefficients from the
literature such as those from Koistinen and Saltikoff (1998).

f. The new PP distinction algorithm 3P2D including Dgg as essential physical in-
formation identified several cases that were erroneously classified as rain within
the manual PP estimation. Large particle diameters indicate that the PP should
be classified as snow or at least mixed-phase precipitation instead of rain.

g. Mixed-phase precipitation carries the largest uncertainty of the three PPs and is
most challenging to detect for the new algorithm with a probability of detection
of up to 0.25 using the predictor variable combination 7' rH Dgg and 3P2D.

Even though the newly developed automatic PP distinction algorithm strongly de-
pends on the currently still limited OceanRAIN data set, remarkable improvements
are made. First, a PP probability is provided on a minute basis that limits the num-
ber of highly uncertain cases requiring visual inspection of atmospheric variables. The
PP probability further allows error characterizing other precipitation data sets such
as satellite data using OceanRAIN precipitation rates to unveil systematic errors with
respect to PP. Second, the PPs of a few critical cases could be corrected that were
falsely classified by the manual method. Third, we give evidence that the particle di-
ameter of the falling precipitation particles contributes valuable information to the PP
separation and by that in a physical way significantly improves the algorithm accuracy.
Fourth, the new PP distinction algorithm considerably speeds up the data processing
within OceanRAIN, which is an important step towards a fast-growing global surface
precipitation data set for validating and evaluating other oceanic precipitation data
sets.
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Chapter 4

Simulating the influence of
spatial-scale differences in
precipitation between HOAPS and
OceanRAIN using S-Pol radar data

4.1 Introduction

The spatial-scale difference between satellite-measured precipitation and surface-
reference precipitation data challenges the validation of precipitation retrievals using
satellite sensors (Michaelides et al., 2009). Whereas satellite sensors in the visible (VIS)
to IR spectrum retrieve precipitation rather indirectly from cloud properties such as
cloud top temperature, PMW satellite sensors represent a rather direct measurement
of precipitation over the atmospheric column (Kidd and Levizzani, 2011). However,
PMW sensors sense a particularly large volume compared to IR/VIS sensors that is
projected onto the earth’s surface known as their footprint size. The footprint sizes
of PMW sensors typically reach at least a few tens of kilometers in diameter, which
strongly challenges the PMW sensor validation using high-resolution surface-based pre-
cipitation reference data (Tapiador et al., 2012).

Reliable global precipitation estimates from PMW sensors require validation and error
characterization against surface-based precipitation reference data. Over land, radars
are frequently applied for validation and error characterization purposes of satellite
data because they cover a rather large area at high spatial resolutions of about 1 km
(Habib and Krajewski, 2002; Chandrasekar et al., 2008; Amitai et al., 2012). The high
spatial resolution of a radar can be easily brought to a coarse-grained grid in order
to adjust to a PMW satellite sensor’s footprint. Radar-derived precipitation rates are
calculated from measured reflectivity Z using a Z-R relationship that can be calibrated
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using disdrometer-derived PSDs (Tokay and Short, 1996; Bringi et al., 2009) and/or
gauge-derived precipitation rates (Ciach and Krajewski, 1999).

HOAPS represents an ocean-only PMW data set that fully relies on SSM/I and its
successor SSMIS (Andersson et al., 2010b). However, over the ocean usually neither
radar data nor gauge data are available as constant reference data at fixed locations,
except for a few buoys or island-based stations (Maggioni et al., 2016). In that respect,
OceanRAIN offers new high-quality ship-based precipitation estimates measured on-
board ships using optical disdrometers (Klepp, 2015). However, OceanRAIN data lacks
a high radar-like spatial coverage. Therefore, a key issue arises from the different spatial
resolutions of the instruments used in HOAPS and OceanRAIN. While the SSM/I and
SSMIS satellite sensors used in HOAPS provide areal precipitation estimates inferred
from measured brightness temperatures, OceanRAIN provides point-wise precipitation
estimates aligned along ship tracks. This limitation in spatial coverage is stressed by the
fact that precipitation naturally occurs spatially intermittent, and strongly varies on
small spatio-temporal scales. In this chapter, we aim to understand how the spatial-
scale difference between HOAPS and OceanRAIN affects a validation of HOAPS. If
possible, we aim to adjust OceanRAIN statistically to HOAPS in order to account for
the different spatial representativeness.

The quantification of the spatial-scale difference between precipitation from HOAPS
and OceanRAIN calls for an independent high-resolution oceanic data set because
effects of spatial representativeness are indistinguishable from other instrument- or
model-related differences. These differences can include but are not limited to effects
from different sensor sensitivity, retrieval limitations or measurement principle. As an
independent surface-based precipitation measurement, island-based radars combine the
advantage of large coverage with a high spatial resolution. The Polarimetric S-band
radar (S-Pol) used during the Rain In Cumulus clouds over the Ocean (RICO; Rauber
et al., 2007) campaign at the subtropical Island of Barbuda in the subtropical North
Atlantic sets an excellent framework to study spatial-scale effects of precipitation for
three reasons. First, Barbuda Island is located in the subtropical North Atlantic Ocean
offering open-ocean conditions in upstream (eastward) direction of the prevailing trade
wind flow, and merely marginal influence on precipitation formation by other small
Caribbean islands. Second, the S-Pol radar offers a particularly high spatial resolution
of a few hundred meters in range. Third, the S-Pol could sample frequent light rain
events during the wet subtropical winter season (Nuijens et al., 2009; Burdanowitz
et al., 2015). The high spatial resolution of the S-Pol combined with its sampled areal
precipitation rates serve well to simulate the comparison in precipitation between the
satellite view of HOAPS and the ship-board in-situ view of OceanRAIN, conducted in
Chapter 5.

Many studies exist that focus on the validation of satellite data with either point-
like precipitation reference data such as gauges (e.g. Li and Shao, 2010) or area-like
data such as radar (e.g. Kubota et al., 2009). However, the individual measurements in
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OceanRAIN arrange along variable tracks that entirely depend on the ship’s movement.
Generally, ship tracks appear to better represent an area compared to a single point
measurement due to the enhanced spatial coverage. Only few studies focused on a
point-to-area comparison by means of collocating ship-board disdrometer data and
satellite or re-analysis data (Klepp et al., 2010; Bumke et al., 2012). Bumke (2016)
simulated gridded areal data and ship data of precipitation using a coastal radar in
Northern Germany. This chapter aims to advance the knowledge of simple point-to-
area validation to the spatial representation of precipitation whereby each section of
results addresses one of the following questions:

1. Are ship tracks suited to detect rainfall within the typical area of a PMW satellite
pixel? (both simulated with S-Pol radar data; Sect. 4.3.1)

2. Can ship tracks correctly predict the average rain rate of an area, and can poten-
tial biases associated with different spatial representativeness be corrected using
the S-Pol radar data? (Sect. 4.3.2)

3. How does the random uncertainty contribute to the overall error associated with
the spatial representativeness? (Sect. 4.3.3)

We discuss the influencing factor of ship speed and direction relative to that of clouds
(Sect. 4.3.4). Finally, direct conclusions are drawn for a PMW satellite data validation
with ship-board disdrometer data using the example of HOAPS and OceanRAIN in
Section 4.4.

4.2 Data and Methods

The entire chapter is based on S-Pol radar data that was deployed on the subtropical
island of Barbuda for the RICO campaign for 2 months during winter 2004 /2005.
Section 2.3 describes the RICO campaign and the S-Pol radar in detail and lists features
of data processing and quality checking. The following Section 4.2.1 introduces the
methods used in order to adjust the S-Pol radar to the requirements of simulating ship
tracks and satellite pixels.

4.2.1 The simulation framework

The polar grid of the S-Pol consists of 984 range gates and 540 azimuthal increments
that represent 0.66 ° sectors of a circle. The arc length of these azimuthal increments
increases with distance from the radar location. This inconstant spatial resolution
could distort a spatial-scale comparison. To homogenize the spatial resolution, we
brought the S-Pol radar data onto a Cartesian grid with a spatial resolution of about
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0.4 km. Compared to the size of a HOAPS satellite pixel of about 50 km x 50 km,
132 x 138 S-Pol radar pixels fill each simulated HOAPS pixel. In other words, one
single radar pixel covers about 0.006 % of a simulated satellite pixel and, thus, can be
considered as a point measurement in a satellite pixel. In the scanned area around
the radar, we choose 4 boxes of the typical size of a HOAPS pixel despite its rather
circular shape (Fig. 4.1). These 4 boxes fulfill the following three conditions. First,
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Figure 4.1: Overview of S-Pol radar data on original polar grid (left) and modified Cartesian
grid (center). Red rectangles frame the 4 boxes chosen to simulate the satellite pixels. The
enlarged red box (right) illustrates the 16 randomly chosen synthetic ship tracks each of
60 radar pixels in length (blue solid lines: 5 horizontal and 5 vertical; blue dashed lines: 6
diagonals) corresponding to a typical ship movement of 24 km h=!.

they do not contain any islands to avoid land influences. Second, all boxes have about
the same medium distance from the radar location. A not too large distance from
the radar matters to reduce losses by radar beam overshooting above precipitating low
clouds. Third, the 4 boxes are evenly distributed around the radar location to reduce
influences by precipitating clouds that align with the prevailing easterly winds. For
these reasons the location of the 4 boxes with respect to the radar suits well to study
the effects of spatial-scale differences of precipitation observations over the subtropical
ocean.

The whole RICO period spans 62 days (December 2004—January 2005) from which
3662 radar images are available from surveillance scans. For the 4 chosen boxes, this
RICO sample results in overall 14 648 simulated satellite pixels. Into these simulated
satellite pixels we place 16 arbitrary lines in order to simulate the ship tracks (Fig. 4.1
right). The 16 lines consist of 5 longitudinal, 5 latitudinal and 6 diagonal tracks with
respect to the box. These simulated ship tracks within each of the 4 boxes cover the
area of the box in a fairly homogeneous way. By this homogeneous orientation we rule
out biases caused by prevailing cloud organization or cloud alignment within the box.
Assuming that the ship moves at constantly high speed, we choose 24 km h™! (approx.
13 kn) as a typical ship speed that corresponds to about 60 pixel in length or a distance
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of 0.4 km per minute. This framework sets the ground for an independent statistical
analysis that can serve as input for the HOAPS-OceanRAIN comparison.

Most of the RICO period was characterized by frequently occurring light rain events
(Nuijens et al., 2009 and Burdanowitz et al., 2015). These conditions favor a com-
parison of precipitation along simulated ship tracks with areal satellite pixels because,
first, the RICO period offers many suitable cases with observed precipitation. Second,
the climate in the trades with its usually small-scale rain showers from shallow con-
vective cumulus clouds challenges the realistic representation of precipitation by ship
tracks within a satellite pixel. Thus, despite the limitation to 2 months, the collected
S-Pol radar data sets a perfect framework to study the influence of the spatial-scale
difference between line-oriented and areal estimates of oceanic precipitation under chal-
lenging meteorological conditions in the subtropics.

4.3 Results

The high spatio-temporal variability of precipitation complicates the detection and
realistic representation for a series of precipitation measurements along a ship track.
First, we investigate how well a ship track can detect precipitation in an area under the
given conditions of RICO using the available S-Pol radar data (Sect. 4.3.1). Second,
we analyze possible biases in observed rain rates from simulated ship tracks compared
to simulated satellite-pixel rain rates that addresses the systematic error (Sect. 4.3.2).
Third, the random error component is estimated (Sect. 4.3.3). Fourth, we discuss
other factors influencing the spatial scale difference such as ship speed and orientation
relative to clouds (Sect. 4.3.4). Finally, we aim at deriving a statistical adjustment for
the OceanRAIN data with respect to the HOAPS satellite data in order to reduce the
spatial-scale difference and quantify its uncertainty.

4.3.1 The detection of rainfall

A rainfall observation fulfills its purpose if the method above all proofs to reliably
detect rain. The rain detection along a ship track mainly depends on two influencing
factors.

First, raining cloud patterns associated with the underlying weather conditions set
the distribution in which rainfall is spatially spread over a satellite pixel. The more
homogeneously distributed over the area, the better an along-track observation can
capture these rainfall patterns. The areal rainfall distribution measured by the S-
Pol radar is given by the weather conditions during the RICO period that contained
frequently occurring light rain showers from shallow cumulus clouds embedded in the
trade-wind flow (Nuijens et al., 2014). On about 5 out of 60 days this typical trade-
wind flow was disturbed by deeper convective systems that led to higher areal rain
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rates sampled by the S-Pol radar (Burdanowitz et al., 2015). Overall, small showers
of predominantly light rain from shallow trade cumulus clouds dominated the RICO
period.

Second, the sampling of the measurements along the track determines how fine rain-
fall patterns can be resolved. Thus, the temporal sampling influences the along-track
spatial resolution of measurements onboard a moving ship. A too coarse spatial res-
olution may result in rain events not being captured or dry patterns interpreted as
rain, which distorts parameters such as the rain occurrence. In this simulation study,
the sampling is defined by the S-Pol radar resolution and the simulation framework
explained in Section 4.2.1. With a more than 100 times higher spatial resolution than
the simulated "satellite pixel", the synthetic measurement sampling provided by the
S-Pol radar meets the requirements set by the OceanRAIN-HOAPS comparison.

For the rain detection to check how often a simulated "ship track" misses rain with
respect to a simulated "satellite pixel", the number of rainy "ship tracks" is compared
to the number of rainy "satellite pixels". For both "ship tracks" and "satellite pixels",
'rainy’ means that from the underlying radar pixels at least one holds a rain rate
greater than 0 so that the average rain rate is also greater than 0. From now on,
we refer to the simulated "satellite pixel" as "area" (A) and to the simulated "ship
track" as "track" (7"). Considering the 234 368 available cases (i.e., 3662 radar images
times 4 simulated "satellite pixels" times 16 simulated "ship tracks"), in less than 1
out of 5 cases the track and the area both detect rain while in more than 3 out of
5 cases the track misses the rainfall observed in the area (Tab. 4.1). The more than

Table 4.1: Contingency table lists relative occurrence (%) of rain-rate combinations for Rp
and R, from 234 368 available cases. In contrast to the left part of the table, the right part
sets R4 = 0 if Cy < 2%. Note that tracks are always located completely within the area so
that Ry = 0 can only occur if R4 = 0 (no false alarms).

All cases Ca>2%

Rr >0 Rr=0 Rr >0 Rr=0
Ry >0 17.3 61.2 14.2 17.6
R4s=0 0 21.5 0 68.2

three times higher number of rainfall misses compared to rainfall hits points at a bad
representation of areal rainfall by the tracks. However, the partial area covered with
rain (area rain coverage: C) strongly influences the hit-miss ratio between track and
area. Whereas a minimum area rain coverage of 0.01 % reveals a hit-miss ratio of 0.28,
a minimum area rain coverage of 1% leads to a hit-miss ratio of 0.6 (for C'y > 10 %:
2.4, Fig. 4.2). This relation indicates that the minimum area rain coverage scales with
the hit-miss ratio of observable rain from tracks with respect to area. The hit fraction
increases with increasing minimum area rain coverage because very small rain events
tend to get excluded whereby these are most challenging to be captured on a track.
An earlier study by Burdanowitz et al. (2015) revealed for the Northeast radar domain
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Figure 4.2: The frequency of occurrence (%) of hits (Rp>0 and R4>0; blue solid line), misses
(Rr=0 and R4>0; red dotted line) and zero rain cases (Ry=0 and R4=0; gray dashed line)
for the S-Pol data as a function of the minimum area rain coverage C'4 (%). The sum of hits,
misses and zero rain always adds up to 100 % as in Table 4.1.

of the same S-Pol radar over Barbuda that the HOAPS scan-based data (HOAPS-S)
can detect some of the rainfall in S-Pol match-ups with an area rain coverage between
1 and 2 %, whereas HOAPS certainly detects rainfall above 2 % area rain coverage by
the S-Pol. Applying this threshold of C'y > 2 % leaves 74 544 out of 184 016 rainy cases
while the hit-miss ratio increases from 0.28 to 0.8 (Tab. 4.1 and Fig. 4.2). In 3716
cases the along-track rain coverage Cr exceeds 2 % while the area rain coverage Cy
does not exceed the minimum threshold of Cy =2 %, in 5930 cases vice versa (Fig 4.3).
The regridded S-Pol radar resolution constrains Cr to a minimum of % or about 1.6 %,
determined by the number of 60 S-Pol radar pixels per track. As the actual area rain
coverage C'4 remains unknown in the HOAPS-OceanRAIN comparison (Chapter 5),
other parameters need to be encountered, derived from the along-track OceanRAIN
data.

Though C7r scales with C'y, more than half of all cases lie outside a range of 0.5 < g—z <2
(range enclosed by gray-dotted lines in Fig. 4.3). The variability of C'y with respect to
C7 decreases with increasing rain coverage. For a low along-track rain coverage between
2 and 3%, the possible area rain coverage values span almost the whole spectrum
between 0.1 to 80 % area rain coverage if both catch rain. Thus, the along-track rain
coverage holds the largest uncertainty to predict the area mean rain rate at low area
rain coverage. The overall large variability in the ratio of C'4 and Cp reflects the
spatio-temporal variability of rainfall and disqualifies C'r as a suitable measure for
C4. Nevertheless, the area rain coverage strongly affects the ability of an along-track
measurement to detect rain within an area.
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Figure 4.3: 2d-histogram with relative occurrence (%) of the along-track rain coverage Cr as
a function of the area rain coverage Cy, both in %. Solid gray line denotes the 1-by-1 line,

gray dotted lines the ratios of % =0.5 and % = 2, respectively.

4.3.2 Representing rainfall: the systematic error

Once rainfall is detected within the area as well as along the track, the average rain
rate might differ between both estimates. A difference in the average rain rates of track
and area can be split into a systematic and a random error component. To quantify the
systematic error component or bias, we concentrate on only those 40538 (17 %) cases
of all 234 368 cases where area and track contain at least one rainy S-Pol radar pixel
(33265 or 82 % of these rainy cases have an area rain coverage of at least 2%). Due to
mainly low absolute differences between the average along-track rain rate Rr and the
average area rain rate R4, the ratio % serves to estimate how well Ry can represent
R,s. R is composed of the product between the rain coverage C' and the conditional
rain rate D where D means the average rain rate of all rainy pixels (R >0). Overall,
% strongly varies between more than 4 orders of magnitude (Fig. 4.4). The stronger
the average along-track rain rate overestimates the average area rain rate (g—:>1),
the stronger a deviation in rain coverage contributes to that overestimation (g—z>1),
whereas g—z rarely exceeds 5. However, most of these strongly differing cases (%>20)
vanish when applying the threshold for the minimum area rain coverage of C4=2%
(not shown). Setting a threshold for the area rain coverage does not only exclude cases
in which tracks miss areal rainfall completely but also reduces the number of those

cases in which tracks overestimate the rain area coverage with respect to C4.

When average along-track rain rate and average area rain rate agree well (%:1)’ the
rain coverage is on average slightly overestimated along the track (g—§>1), whereas the
conditional rain rate is slightly underestimated along the track (B_Z<1)’ both compared
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Figure 4.4: 2d-histogram with relative occurrence (%) of the average rain-rate ratio % as a
function of the rain coverage ratio % (left), and the conditional rain-rate ratio g—z (right).
The solid gray line denotes the 1-by-1 line, gray dotted lines highlight the perfect ratio of 1
for %’ g—i and %, respectively.

to the area (Fig. 4.5). This tendency of the track to overestimate the area rain coverage
while underestimating area rain intensity arises from, first, those not considered cases in
which the track completely misses the rain observed in the area (Tab. 4.1 left: Misses).
For low Cy, considering only hit cases artificially increases the probability that the
track oversamples a rain event spatially. Second, the log-normal distribution of rain
rates leads to low rain rates being sampled much more frequently than high rain rates.
This non-Gaussian rain-rate distribution lets the track more likely undersample high
rain rates observed in the area, resulting in a lower along-track conditional rain rate
compared to the area.

For cases where the along-track rain rate slightly underestimates the area rain rate
(O.1<g—§<1), the conditional rain-rate difference contributes stronger than the rain-
coverage difference to the relative rain-rate difference g—z (distance from 1-by-1 line in
Fig. 4.4). For cases in which the along-track rain rate strongest underestimates the
area rain rate <%<0‘03)’ both the differences in area rain coverage and the conditional
rain rate contribute about equally to the average rain rate difference. These cases of
strongest R underestimation likely represent heterogeneously distributed rain showers
in the area that are undersampled by the tracks. To better understand and account
for such spatial-scale effects of rainfall heterogeneity we need to incorporate the spatial

rainfall distribution more directly.

For advancing our knowledge of the rainfall variability within the area, we derive the
individual rain event duration tg that, in this study, actually represents a spatial length
in radar pixel units. This length can be interpreted as an event duration when imagining
a ship moving across the area underneath a raining cloud. This individual rain event
duration as well as the number of identified rain events along a track Ng can be retrieved
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Figure 4.5: 2d-histogram with relative occurrence (%) of the conditional rain-rate ratio %ﬁ

as a function of the area rain coverage ratio g—ﬁ. The solid gray line denotes the 1-by-1 line,

gray dotted lines highlight the perfect ratio of 1 for % and g—i, respectively.

from OceanRAIN for the HOAPS—OceanRAIN comparison. tg contains additional
information to a statistical variability parameter such as the standard deviation of
the along-track rain rate. In specific, the standard deviation of the along-track rain
rate does not account for the order in which the measurements/pixels are sampled but
neglects that information. This means, the standard deviation could be equal for a case
with one large rain shower and another case with several smaller rain showers for the
same along-track rain coverage. In contrast, Ng and tg carry part of the information
of the rain distribution that is essential to predict the rainfall variability within the
area.

Small rain showers dominate the rainfall distribution along the track of which one-pixel
rain showers make up more than one fifths and small rain showers of 1 to 5 consecutive
rainy pixels in length make up 60 % of all rain events (Fig. 4.6). Nevertheless, more
than every hundredth rain shower reaches a size or duration of ¢z >40 pixels along the
track and, thus, covers at least two thirds of the track. In more than every second rain
detection along the track, the track consists of only one single rain shower, whereas in
1% more than 6 showers were detected along the track. These numbers indicate that
small single rain showers dominate the rainfall occurrence along the track, which does
not necessarily reproduce the area rainfall distribution as a whole.

For the goal to estimate whether or not the along-track rainfall well represents the
areal rainfall, the individual rain event duration ¢z alone does not suffice. However,
dividing the sum of ¢z by the total event number (Ng = > ng) along the track reveals
the more meaningful parameter named average rain event duration (7g) that combines
both the spatial rainfall structure along the track and the duration of each individual



4.3 Results 53

100 5 Occurrence [%]
10
5
2
1
0.5
§' — 0.2
3 10 - — 0.1
T — 0.05
. e
—!{ 0.01
T— —0.005
| — 0.002
— 0.001
1 I I I T
1 3 5 7 9

ne[]

Figure 4.6: 2d-histogram with relative occurrence (%) of the individual rain event duration
along the track (tg) as a function of the number of identified rain events per duration class
of tg along the track (ng) for Cy >2%.

rain event in a statistical way. The skill of T along the track to predict the average
area rain rate R4 reaches its maximum around 3 <Tg < 6 pixels where Ry equals on
average R4 (Fig. 4.7, top). For the most frequently occurring cases of T < 2 pixels, the
along-track rain rate Ry underestimates the area rain rate R, on average by a factor
of 3 to 6. In this range of low rain event duration or small-sized rain showers, the track
on average likely underrepresents a rain shower in the area with respect to size. For
Tg larger than 5 pixels, the track on average overestimates the rain rate in the area by
up to a factor of 2. In these cases, the track overrepresents a rain shower compared to
the area. Despite the variability in g—?, its dependence on T manifests in a rain rate
that increases stronger along the track compared to the area with increasing 1.

The difference in g—? can be considered as a Tg-dependent bias that highlights the

spatial-scale effects due to insufficient spatial sampling of the area by the track. The
rain event duration can serve to remove this bias when fitting a bin-wise correction

factor to yield g—‘; =1 (Fig. 4.7, top left). The exponential least square fit of the form
R

e 9.32 - exp[—2.14 - In(Tg)] + 0.48, (4.1)
T

reaches R? = 0.98 for the logarithmically binned mean bias of all 33 265 hit cases with
Cy>2%. Bi-square weights help to minimize the influence of outliers. For Tg, we
apply the natural logarithm in order to better fit the lower rain event duration that
occurs most frequently (Fig. 4.6). Note that the fraction g—;{ has been switched to fit
an exponential curve. Multiplying Ry with the Tg-dependent correction factor from
Eq. 4.1 reveals a bias-corrected along-track rain rate R} (Fig. 4.7, bottom).
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Figure 4.7: 2d-histogram with relative occurrence (%) of the rain-rate ratio g—z (left) and
the rain rate difference Rp— R4 (right), both as a function of the along-track average rain
event duration T for uncorrected Rr (top) and corrected R} (bottom) for Cy >2% using
Eq. 4.1. Red lines mark the mean per bin, gray lines highlight where R4 equals Ry or RY,
respectively.

Compared to the average rain rate ratio %, the absolute rain rate difference between
track and area Ry — R4 provides a slightly different perspective on the scale-dependent
rain rate. Whereas the underestimation of rain rates at low average along-track rain
event duration lies below 0.3 mm h™!, the overestimation at high average along-track
event duration varies between 0.5 and 1.5 mm h™' (Fig. 4.7, top right). Removing
the bias with the same bin-wise correction factor from Eq. 4.1 as used for % leaves
a deviation not larger than 0.5 mm h~! except for an outlier at T ~1.2 pixel, likely
due to insufficient sampling. Accordingly, the oversampling of rain events along the
track compared to the area for Tg > 10 pixels has been corrected. The correction with
respect to the average rain event duration along a track (Eq. 4.1) proofs to correct a
substantial part of the spatial-scale bias due to limited spatial sampling along a track
though the spread in absolute and relative rain-rate deviation from track to area stays
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at a relatively high level.

The remaining high spread in rain-rate deviation between track and area might indicate
that the Tg-correction (Eq. 4.1) could not remove the entire bias caused by the spatial-
scale difference between track and area. This assumption is confirmed by the existing
bias in % with respect to R} (Fig. 4.8, center left). However, the original bias in 1%;
has been decreased applying Equation 4.1 while the overall spread of occurring along-
track rain rates decreased compared to Ry before applying the Tg-correction (Fig. 4.8,
top left). In particular, high Ry tend to overestimate R4. In such cases, rain showers
are overrepresented along the track while less rainfall occurs off the track elsewhere in
the area. Similar to the Tg-correction, we aim to correct for that overrepresentation

using an exponential fit with respect to In(R;) of the form

R R;
2 = 0.731 - exp[—0.789 - In(—-L

*
Ry T,50

)] +0.306 (4.2)

with a median value R% 5, of 0.18 mm h=!. Normalizing Ry with R 50 strongly re-
duces the dependence on absolute rain rates from the S-Pol. Otherwise, instrument-
specific constraints such as the lower threshold for excluding Bragg scattering and
clutter (Sect. 2.3.1) would put its mark on the corrected distribution of R}*. Obtain-
ing a largely independent correction sets the ground to adjust the OceanRAIN data
spatially to HOAPS satellite data.

The Rj-correction closely approximates the mean R bias of the 33265 hit values
(R? = 0.99) with a logarithmically spaced bin width b of In(b) = 0.29. Applying this
R’-correction leaves almost exclusively along-track rain rates below 3 mm h™!, which
lies in the range of the maximum R4 of about 4 mm h™! (Fig. 4.8, bottom). The
R’-correction removes most of the bias that remained after the Tg-correction.

Before the correction with Eq. 4.2, the track merely consisted of overestimated rain
rates due to overrepresented rainfall along the track — a clearly statistical effect caused
by the spatial-scale difference between area and track. However, the opposite effect of
underrepresented rainfall along the track compared to the area remains uncorrected in
R%* (cases of Ri*—R4<0 in Fig. 4.8, bottom right). This remaining part of the along-
track rain-rate bias cannot be corrected in the same statistical way due to unavailable
information of the area, such as C'y, D4 and R4 in the HOAPS-OceanRAIN compari-
son. For all hit cases, 8 % could be classified as underrepresenting rainfall on the track
with Ry*~Ra< -1 while 0.2 % overrepresent the rainfall with Rj*~R4>1 compared to
the area. These cases lead to an average underestimation of up to 0.5 mm h~! by the
track in parts of the spectrum (Fig. 4.8, bottom right), not reflected in the corrected
relative rain-rate difference (bottom left).

The overall error can be quantified using the sum of squared errors (SSE). For the
track, the area represents the reference, reflected in the equation

33265

SSE= Y (Rr;— Ras)”. (4.3)

=1
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Figure 4.8: Same as Fig. 4.7 but as a function of Ry (top), R} (center) and R} (bottom).

Note the linearly scaled axes on right.
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SSE yields 37675 mm? h=2 for the uncorrected Ry. The Tg-correction leads to a
reduction of about 80 % to 7678 mm? h~2 while both, Tg- and Rj-correction, reduce
SSE by 86.7 % with respect to the uncorrected Rr.

4.3.3 Representing rainfall: the random error

The overall spread in the along-track rain rate Ry with respect to the area rain rate R4
represents the random error caused by the spatial-scale difference between track and
area. However, this spread contains not only the random error but also the remaining
systematic error that could not be corrected in a statistical way in Section 4.3.2. Thus,
estimating the spread gives a good measure for the remaining overall uncertainty due
to the spatial-scale difference between track and area.

The spread of the remaining overall uncertainty can be quantified using the standard
deviation of the average rain-rate difference between track and area, Ry — R4 (Fig. 4.9).
The standard deviation normalized by Ry (i.e. the relative standard deviation, S,.¢)
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Figure 4.9: Standard deviation of the difference Ry — R4 normalized by Ry (top) and the
skewness of the difference Ry — R4 (bottom) where negative values correspond to a left-
skewed distribution (Rp < Ry4), both as a function of the average along-track rain rate Rp
for uncorrected Ry (blue), Tg-corrected R% (red) and Rj-corrected R (yellow). The gray
line indicates where the standard deviation of Ry — R4 equals Ry (top) or where Rp— Ry is
normal-distributed (bottom), respectively.

decreases with increasing Rp. This means, the standard deviation of the difference
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between R and R4 increases at a lower rate compared to the along-track rain rate Rp.
For Ry < 0.5 mm h™! the standard deviation exceeds Ry while it reaches up to 10 times
lower values for Ry > 10 mm h~!. However, at very low Ry of about 0.02 mm h™!, the
standard deviation exceeds the along-track rain rate by a factor of 10. In relative terms,
low along-track rain rates hold a larger random uncertainty compared to high along-
track rain rates. Overall, the standard deviation varies within one order of magnitude
and does hardly exceed 1 mm h~!. However, the random uncertainty holds relatively
high values of 50 to 130 % of Ry for average rain rates between 0.3 and 1.3 mm h™!,
which emphasizes the large spread in rain rates measured along a track with respect
to an area.

In this idealized study, the standard deviation of the difference between along-track
and area rain rate characterizes the random uncertainty due to spatial-scale differ-
ences. This random uncertainty increases after applying the Tx- and Rj-adjustments
exclusively for medium-intense rain rates between 0.3 and 1.3 mm h~!. This means,
the shrinking width in the rain-rate distribution coincides with an increase in standard
deviation of up to 70 % for medium-intense rain rates. At the same time, the Ry — R4
distribution becomes less left-skewed and, thus, more Gaussian (Fig. 4.9). In other
words, the two corrections transform some of the systematic uncertainty to random
uncertainty while the Gaussianity of the distribution increases particularly for higher
rain rates (cf. Figs. 4.8 right).

4.3.4 Other interference factors

Most of the above mentioned results hold for conditions assumed to be constant in
this idealized study. These assumed ideal conditions include that the ship moves on
a straight track at constant speed of about 24 km h™!. Any interference with wave
water or other non-precipitation signals is ruled out here, but might clearly disturb the
precipitation signal when measuring onboard of an actual ship. The influence of these
erroneous precipitation particles cannot be considered in this idealized S-Pol studys;
however, we can consider a ship that moves at a lower or higher speed to study the
influence on the representation of areal rainfall.

To realize a different ship speed in this idealized study we adapt the simulation frame-
work as follows. Instead of lines with a constant length of 60 pixels, we change the
length of the track running across the area. A length reduction corresponds to a de-
creased ship speed. For a halved ship speed the number of S-Pol radar pixels along
that track needs to be incorporated two times in order to retain the same number of
measurements. This procedure ensures a realistic representation of a ship that moves
very slowly within a satellite pixel.

Under conditions of a slowly moving ship, we calculated the ability to detect rainfall for
a ship speed reduced to about 12 km h=! (Tab. 4.2) compared to 24 km h™! as before
(Tab. 4.1). In comparison, the slower moving ship holds a reduced percentage of hit
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Table 4.2: Contingency table lists occurrence of rain detection (%) for track-averaged rain
rates Ry and area-averaged rain rates R4 from 146 480 available cases from S-Pol radar with
simulated shorter tracks of 30 pixels length representing a ship speed of about 12 km h™!.

All cases Ca>2%
Rr >0 Rr=0 Rr >0 Rr=0
Rs>0 10.69 67.82 9.11 22.69
Rys=0 0 21.48 0 68.19

cases where both track and area detect rain from 17.3 to 10.7 % while the number of
misses increases from 61 to about 68 %. Accordingly, the hit-miss ratio decreased from
0.28 to less than 0.16. This means, a slow-moving ship has a reduced probability of
detecting rainfall in the area. More generally, the fraction of hits seems to scale almost
linearly with the track length (Fig. 4.10). As a reason, a reduced track length loses the
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Figure 4.10: Hit (solid, blue line) and miss (dotted, red line) fraction as a function of track
length (radar pixel) for all cases with a rain-covered area of C'4 >2%. Solid gray line marks
reference track length of 60 pixels (Tab. 4.1), whereas dotted-gray lines mark the track lengths
displayed in Fig.4.11.

information content of the underlying spatial rainfall structure in the area that needs
to be represented. The shorter a ship track becomes, the more the measurements
transition from a line-like toward a point-like spatial coverage. A more point-like
coverage increases the spread in the along-track rain rate Rp to predict the average
area rain rate R, for decreasing track lengths (Fig. 4.11). This increasing spread in
Rr translates into a higher random uncertainty for the prediction of R4. However, a
reduced track length does not introduce a bias to Rr. Nevertheless, the skill to predict
areal rainfall by means of along-track rainfall measurements onboard a ship decreases
drastically with decreasing track length due to a decreasingly well represented spatial
rainfall structure.

For simplicity, we neglected the cloud movement here, which also influences the areal
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Figure 4.11: 2d-histogram with relative occurrence (%) of the area average rain rate R4 as a
function of the along-track average rain rate Ry for the normal track length of 60 pixels (left)
and for shorter tracks of 20 pixels (right). The 1-by-1 line is shown in gray.

rainfall representation (Fig. 4.12). The vectorial difference between the velocities of the
moving ship and racking clouds determines how accurately a track can represent the
spatial structure of rainfall. In other words, the longer the resulting velocity-difference
vector from cloud and ship movement becomes the stronger do the atmospheric condi-
tions observed by a satellite sensor put their mark on the resulting ship track.

The directions of ship and cloud movement play a key role for the velocity vector
and thus the spatial rainfall representation. Ideally, ship and clouds move into op-
posite directions, which causes the maximum possible along-track coverage (case 1 in
Fig. 4.12). In contrast, the superposition of clouds and ship that both move into similar
directions at similar speeds would cause a point-like measurement coverage (case 3 in
Fig. 4.12). This scenario would cause a bad areal rainfall representation by point-like
measurements onboard a ship. For the estimation of areal rainfall, a point measurement
represents the worst-case scenario to correctly capture the areal rainfall distribution.

Three special cases of the ship’s movement (s) relative to cloud movement (¢):

1) In opposite direction 2) Not moving 3) In same direction
— — —
TR oy i
III.. .I.II I....I.I.
)
— o —
c+5=0 c+s=¢ ¢=5s

Figure 4.12: Schematic graph for the superposition of cloud velocity (blue arrow) and ship
velocity (orange) for three special cases of orientation.
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However, this case remains rather unlikely as not only speeds but also directions of
clouds and ship need to agree with each other. For a resting ship (case 2), fast-moving
clouds would cause a track-like coverage instead of a point-like coverage, which could
still lead to a reasonable spatial representation of rainfall along the emerging track.
Thus, the cloud movement holds an essential piece of additional information in order
to assess the quality of how well a track can represent the spatial rainfall structure of
an area.

4.4 Summary and concluding remarks

This chapter focused on quantifying and understanding the statistical error associated
with spatial-scale differences between rainfall measured from space (satellites) and
measured at the Earth’s surface (ships). For this comparison we used S-Pol radar data
from the RICO campaign in the subtropical Atlantic (winter 2004/05) in order to
simulate rainfall measurements from satellite sensors versus track-like measurements
onboard ships. In that respect, the simulated ship tracks have been tested for their
ability to detect rainfall, correctly predict the rain rate and represent the spatial
rainfall structure, all within a simulated satellite pixel. The following questions
address these three topics, consecutively.

1. Are ship tracks suited to detect rainfall within the area of a typical passive
microwave satellite pixel? (simulated with S-Pol radar data)

Our analysis suggests that a ship track can detect a part of the rainfall in an area.
However, the detectability mainly depends on 3 factors. First, the area rain coverage
of the rain events within the simulated satellite-pixel area sets the ground. Below an
area rain coverage of 2%, the ship track is more likely to miss rainfall in an area of
the size of a PMW satellite pixel. Above 10 % area rain coverage, the ship track is
2.5 times more likely to detect rainfall within the area than to miss it. We recommend
a minimum area rain coverage of 2% for a HOAPS-OceanRAIN comparison, not
only because a minimum hit—miss ratio of about 1 seems reasonable but also because
HOAPS is unlikely to detect precipitation below a threshold of 2% in area rain
coverage.

Second, the ability of a ship track to capture rainfall depends on the spatial rainfall
distribution in the area. A stretched cluster of rainfall poses a higher challenge to
be detected compared to homogeneously distributed small showers or a widespread
rainfall area.

Third, the ship speed relative to the cloud movement influences the ability to capture
rainfall in the area. The slower the ship moves relative to the clouds, the shorter the
relative track becomes and, thus, more unlikely it captures rainfall occurring in the area.
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2. Can ship tracks correctly predict the average rain rate of an area, and
can potential biases associated with different spatial representativeness
be corrected using the S-Pol radar data?

As for the detectability of rainfall in an area, correctly predicting the area average rain
rate depends on the same three factors: area rain coverage, homogeneity of spatial
rainfall distribution and length of ship tracks relative to the cloud movement.

The along-track average rain rate consists of the product of area rain coverage and con-
ditional rain rate. A strong overestimation of the area average rain rate by the track is
driven by the strongly overestimated along-track rain coverage. In contrast, a strong
underestimation of the area average rain rate along the track originates to equal por-
tions from an underestimation in both along-track area rain coverage and conditional
rain rate. However, for average along-track rain rates that well predict the average
area rain rate, we find that the along-track rain coverage slightly overestimates the
area rain coverage while the along-track conditional rain rate slightly underestimates
the area conditional rain rate. This tendency of predicting slightly larger rain events of
weaker intensity indicates a bias introduced by the different spatial-scale representation
of rainfall between track and area.

Correcting for that bias requires a parameter that well scales with the bias. Whereas
area rain coverage, conditional rain rate and rain event number are not suited, the aver-
age rain event duration well separates the bias. Using the average rain event duration,
the representativeness error can be quantified and statistically corrected. Short along-
track rain events more frequently underestimate the average area rain rate, whereas
longer along-track rain events tend to slightly overestimate the average area rain rate.
This purely statistical effect that can be removed by multiplying with a correction
factor dependent on the average rain event duration. The correction decreases the sys-
tematic error introduced by the spatial-scale difference between ship track and satellite
pixel, mainly due to partly detected rain events.

A remaining bias becomes visible when considering the rain-rate fraction between track
and area with respect to the average along-track rain rate. As for the correction using
the average along-track event duration, low along-track rain rates are increased while
high along-track rain rates are decreased in order to statistically reduce the spatial-scale
difference. This second bias correction mainly corrects for a strong rain-rate overesti-
mation due to overrepresented rain events along the track. However, the second bias
correction leaves a bias for underrepresented rain events along the track compared to
the area. This remaining bias cannot be corrected in the same statistical way with the
available parameters from the track.
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3. How does the random uncertainty contribute to the overall error associ-
ated with the spatial representativeness?

The standard deviation of the average rain rate difference between simulated ship track
and satellite pixel area represents a good measure to quantify the random uncertainty
of precipitation caused by different spatial-scale data sets such as OceanRAIN and
HOAPS. The change in standard deviation from uncorrected to the bias-corrected
along-track rain rates experiences the strongest increase by about 70 % for rain rates
of about 0.8 mm h~! while below 0.2 and above 1.5 mm h~! no noticeable changes
appear. The increase in standard deviation for medium-intense rain rates implies
that the corrections partly shift the systematic error into the random error. Overall,
the standard deviation decreases in relative terms with increasing along-track rain
rate. Above rain rates of about 1 mm h~!, the standard deviation remains below
the average along-track rain rate while the distribution of the track-area difference
becomes almost entirely Gaussian. The more the rain-rate difference distribution
approximates a Gaussian distribution the lower the remaining bias, revealing a
noticeable improvement only for rain rates above 0.2 mm h™!.

The results of this idealized study are derived from 2 months of radar data of a single
radar located in the subtropical trade wind regime and, therefore, might change for
other regions such as mid- and high latitudes. Similar studies should be undertaken in
order to confirm the bias correction and analyze the random uncertainty with respect
to climate regime and other influencing factors. Nevertheless, the results obtained
from S-Pol radar are valuable for the HOAPS-OceanRAIN comparison. In addition,
the quantified bias might already represent a large range of climate conditions due
to varying rainfall patterns sampled throughout the RICO period. In particular, the
prevailing climate in the subtropical North Atlantic fosters rainfall to occur from small
shallow cumulus clouds, which are challenging to sample spatially along ship tracks.

The quantified statistical errors caused by spatial-scale differences can serve as valu-
able input for a satellite validation using surface-based observation of precipitation as
ground truth. In specific, the estimated systematic and random uncertainty help to
quantify errors in the precipitation parameter of the HOAPS satellite climatology us-
ing OceanRAIN ship data over the global oceans. Assuming the statistical bias due
to spatial-scale differences between HOAPS and OceanRAIN remains constant with
latitude, the correction derived from the S-Pol radar can be applied to remove the sys-
tematic error that complicates the direct comparison between track-like and area-like
data sets. Additionally, the random error component derived from the S-Pol radar
provides a first estimate of the remaining uncertainty due to spatial-scale differences
between HOAPS and OceanRAIN. Further, the S-Pol radar study sets the ground to
advance our knowledge of uncertainties associated with track-like precipitation obser-
vations that go beyond the traditional point-to-area problem in global precipitation
observations.



64

Simulating the influence of spatial-scale differences using S-Pol radar data




65

Chapter 5

Validation of HOAPS precipitation
estimates using OceanRAIN data

5.1 Introduction

Precipitation estimates from satellite data are crucial to monitor global precipitation
and validate climate models. However, satellite data usage requires validation with
surface-based reference data to quantify the uncertainty related to instrument char-
acteristics, representativeness associated with different underlying areas and the in-
strument sensitivity, among others. These diverse sources of uncertainty need to be
quantified and considered when it comes to model validation or long-term trend anal-
ysis. If possible, this overall uncertainty should be attributed to the specific sources of
error in order to help understand the reliability and suitability of a precipitation data
set as reference data for a certain purpose.

HOAPS represents such a long-term precipitation satellite data set over the global
ice-free ocean for a time period of almost 30 years (Andersson et al., 2010b; Fennig
et al., 2012). HOAPS performs well when compared to other satellite data sets in
the subtropics (Burdanowitz et al., 2015) or against reanalysis data sets (Andersson
et al., 2011). However, a rigorous error characterization exists only for the near-surface
specific humidity parameter in HOAPS using a multiple triple collocation approach
(Kinzel et al., 2016). The precipitation parameter so far lacks uncertainty estimates
because systematic surface-based precipitation reference data has not been available
over the global oceans. Since 2010, this gap is being filled by OceanRAIN that uses
high-quality optical disdrometers onboard RVs (Klepp, 2015). OceanRAIN recently
reached a reasonable size of quality-checked oceanic precipitation data that allows to
start a systematic comparison with satellite data, such as HOAPS.

This chapter aims at investigating the uncertainty of HOAPS precipitation rates us-
ing OceanRAIN as precipitation reference database. The comparison involves three
main aspects that need to be considered. First, even if adequately matched in time
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and space, HOAPS and OceanRAIN do not necessarily estimate the precipitation rate
for the exact same areal scene at the exact same time, condensed in the term "rep-
resentativeness error". Previous studies discuss the representativeness effect between
point-like ship measurements and areal HOAPS satellite measurements without an
attempt of reducing it (Bumke et al., 2012 and 2016). In this thesis, the statistical
adjustments are employed that were derived from the S-Pol radar study in Chapter 4.
Second, OceanRAIN precipitation estimates hold an uncertainty due to potentially
misclassified or abruptly changing PP, wind distortion at the RV’s superstructure or
measurement artifacts. Third, uncertainties might strongly be related to climate zones
with distinct meteorological features such as the fraction of convective precipitation,
PP, precipitation occurrence and the precipitation-rate spectrum. All these aspects
need to be addressed as far as possible in order to validate the HOAPS precipitation
parameter while discussing reasons for uncertainties.

5.2 Methods and data

For a most meaningful comparison between HOAPS satellite precipitation data and
OceanRAIN surface-based precipitation data we use the longest available overlap of
both data sets with a focus on high data quality and continuity. Section 2.1 describes
the OceanRAIN database in detail as well as the optical disdrometer as its core instru-
ment. Section 2.2 introduces the HOAPS satellite climatology and provides information
on products and algorithm features. For a case-study, the Sections 2.4, 2.5 and 2.6 fur-
ther introduce the satellite-based data sets CMORPH, IMERG and MSG-CPP. The
applied methods to adjust OceanRAIN for a fair validation of HOAPS are given piece
by piece in the following section of results.

5.3 Results

For a direct and fair comparison of HOAPS satellite data with OceanRAIN as precip-
itation reference data, both data sets ideally should match in most of their features.
These features include but are not limited to temporal and spatial sampling as well as
resolution, instrument sensitivity, measurement principle and retrieval. Due to the fact
that HOAPS strongly differs from OceanRAIN in many of these aspects, a truly direct
comparison of the exact same scene from both products seems virtually impossible to
achieve. However, a series of methods can be applied to adjust OceanRAIN to HOAPS
independently of HOAPS. These methods include a space-time matching (Sect. 5.3.1),
a statistical adjustment of the spatial representation (Sect. 5.3.2) and an adaptation
of the instrument sensitivity (Sect. 5.3.5).
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5.3.1 Space—time matching of OceanRAIN and HOAPS

HOAPS and OceanRAIN strongly differ in their spatial sampling and their coverage.
HOAPS provides quasi-global precipitation estimates over the ice-free ocean with a
revisit time per DMSP satellite ranging between a few hours at the poles and a cou-
ple of days at the equator. In contrast, the OceanRAIN spatial sampling depends
entirely on the RV’s position whereby the routes strongly differ among the different
RVs. The different spatial sampling can be addressed by a matching in space and time.
The space-time matching represents the most essential requirement for a meaningful
comparison of both data sets. Matching OceanRAIN and HOAPS both spatially and
temporally is called collocation and ensures a minimum spatial distance as well as a
minimum time lag between both precipitation measurements.

The number of valid collocations strongly depends on the chosen collocation bound-
aries (Fig. 5.1: green and purple). These boundaries mean the tolerance in time and
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Figure 5.1: Schematic drawing illustrates the collocation procedure and the collocation bound-
aries set to =20 km in space (green) and £ 30 min in time (purple) as well as the track-
averaging (blue markers) and HOAPS-S pixels (red-dashed circles).

space at which an observation of OceanRAIN is considered to be a valid collocation
to an observation of HOAPS. The tolerance of the highly variable and intermittent
precipitation parameter lies relatively low because precipitation events might change
dramatically even within a few minutes in time or kilometers in space. Nevertheless, we
need to choose relatively generous collocation boundaries in order to obtain a sufficient
number of collocations for reasonable statistics. As a compromise of tight collocation
boundaries and to obtain a decent number of collocations, for now, we allow a maxi-
mum distance of £ 20 km and a maximum time lag of + 30 min, both measured from
the center of a chosen HOAPS-S pixel.
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The chosen collocation boundaries result in a maximum of 60 OceanRAIN measure-
ments that can be collocated to one and the same HOAPS-S pixel according to the
allowed 60 min time window. This maximum number illustrates that the boundary
in time stronger limits the number of collocations compared to the boundary in space
because of a typical ship speed far below 60 km h™!, usually about 20 km h~!. How-
ever, each of the 60 or less collocated OceanRAIN measurements along a ship’s track
represents a small sub-area of the 50 km by 50 km HOAPS-S pixel. To obtain a more
similar spatial representation of the HOAPS-S pixel area we average over all collocated
OceanRAIN measurements along the track that were collocated to the same single
HOAPS-S pixel (cyan markers in Fig. 5.1). The track-averaging leads to a possible
minimum precipitation rate of %- 0.01 mm h~! for OceanRAIN, which lies more than
3 orders of magnitude below the minimum precipitation rate of HOAPS, a discrepancy
discussed later in Section 5.3.5.

The chosen collocation boundaries leave 24 990 collocations after OceanRAIN along-
track averaging, displayed in Figure 5.2. From these number of all collocations, 3.5 %
(885) represent scenes in which both OceanRAIN and HOAPS detect precipitation
(hits), whereas in 14.2% (3552) HOAPS does not detect the precipitation detected by
at least one of the along-track OceanRAIN measurements (misses). The opposite case
that OceanRAIN did not detect precipitation that was detected by HOAPS appears
in 2.8% (692; false detection) while 79.5% (19861) remain as correct zeros. The
percentage of hits, misses and false detections varies with latitude and season (Tab. 5.1).
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Figure 5.2: Map of all 24990 HOAPS—OceanRAIN collocations from available long-term RVs

in OceanRAIN from 06/2010-12/2015 (cyan dots), misses (Ryg =0 and Ro > 0; purple) and
hits (Rgy >0 and Rp > 0; orange) using +20 km and 430 min as collocation boundaries.
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Table 5.1: Contingency tables for all 24990 collocations in % for the collocation boundaries
of £20 km and 430 min per 20° latitude band. PP occurrence of rain, snow and mixed-
phase precipitation (mix) given in % after the automatic algorithm presented in Chapter 3.
n denotes total number of collocations per 20 ° latitude band.

Latitude Occurrence [%] PP occurrence [%] n
Ry >0 Ry=0 Rain Snow Mix
70-90° N gz ~ 8 ;; 812%7 50.8  27.5 217 7229
Ro>0 74 149
070N O ~ 0 1o mes 90T 0 9.3 2287
30-50° N gz ~ 8 fi igi 928 13 59 3552
10-30° N ZZ - 8 2:8 82%6 100 0 0 3235
10° N-10°S gg - 8 g:i 844‘16 100 0 0 2247
10-30°S gg - 8 1? 93493 100 0 0 1519
30-50°S ZZ - 8 i)i ;i’f 9.7 0 9.3 1640
50-70°S ZZ - 8 2:; ggi 457 249 294 3281

Considering 20° latitude bands, the mid-latitudes (50° —70°) followed by the equatorial
band between 10° N and 10°S reach the highest percentage of hits ranging between
about 5 and 7%. Bumke et al. (2016) find somewhat higher hit percentages in the
mid-latitudes and inner tropics, explained by higher collocation boundaries of 55 km
and 45 min for ship tracks in the Atlantic for 2005-2008. In the subtropics, hit cases
reach substantially lower percentages of 1.4 % in the southern and 3 % in the northern
hemisphere, respectively. The difference between both hemispheres results not only
from the prevailing climatic conditions but in particular from the locations of the
sampled ship tracks. Whereas between 10° and 30° N, RV Sonne cruised through
parts of the warm Pacific Ocean with occasional precipitation events, between 10°
and 30°S, RV Polarstern went through the relatively cold and very dry southeast
Atlantic Ocean. These spatial sampling differences within OceanRAIN influence the
collocation statistics and need to be considered when drawing conclusions to the long-
term precipitation mean.

The different sampling frequency between certain regions is accompanied by the dif-
ferent seasonal sampling. A different seasonal sampling mainly influences the PP. The
twice-as-high fraction of snow and mixed-phase precipitation between 50° and 70°S
compared to 50° and 70° N mainly reflects the exceptional overwintering period of RV
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Polarstern in the southern hemisphere in August 2013. It should be noted that po-
tentially more collocations from that southern-hemisphere austral winter stay would
have been available but were flagged "missing" because HOAPS provides no data over
the ice-covered ocean. Overall, snow or mixed-phase precipitation make about 50 % of
the precipitation detected northward of 70° N and southward of 50° N while in-between
their percentage does not exceed 10%. The PP distribution strongly influences the
precipitation rate because snowfall rates tend to lie below rainfall rates because larger
particles more strongly contribute to the precipitation rate.

The contingency table from OceanRAIN and HOAPS per latitude band (Tab. 5.1)
serves to derive how well HOAPS performs in detecting precipitation compared to
OceanRAIN. The detectability of precipitation can be assessed calculating skill scores
from hits, misses, false detections and correct zeros, as recommended by the Interna-
tional Precipitation Working Group (IPWG) and the WWRP/WGNE Joint Working
Group on Forecast Verification Research (Tab. 5.2). These skill scores include accuracy,
false alarm ratio, probability of detection, bias score, odds ratio and Heidke skill score,
among others. The accuracy as a measure of overall agreement reaches highest values
of more than 0.9 in the inner tropics, mainly caused by the high fraction of correct
zeros exceeding 84 % (Fig. 5.3). The probability of detection better reflects the actual
detected precipitation relative to missed precipitation. Exclusively in the equatorial
band, HOAPS correctly detects precipitation more often than to miss it (Tab. 5.1).

Table 5.2: List of skill scores calculated from hits (), misses (m), false detections (f), correct
zeros (z) and the total number of collocations (n). More details and additional skill scores

are listed on http://www.cawcr.gov.au/projects/verification.

Name Calculation Perfect score
Accuracy hts 1
( ACC) h+m+f+z
Probability of h%n 1
detection (POD)
f
False alarm i 0

ratio (FAR)

Bias score [L%]; 1
(BS)

Odds ratio ;L:; 00
(OR)

Heidke skill % 1

score (HSS) with h, = (htm)(ht f)+(z+m)(z+f)

n
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Figure 5.3: Skill scores for precipitation detection (explained in Tab. 5.2) in reddish colors
(left axis) and bias score in blue color (right) of all HOAPS—-OceanRAIN collocations as a
function of 10° latitude bands.

In the northern-hemisphere mid-latitudes, HOAPS missed twice-as-much precipitation
events while towards the poles four times more precipitation events are missed com-
pared to the correctly detected precipitation events. In general, the lowest values coin-
cide with regions in which more light precipitation or solid precipitation contribute to
total precipitation that both are more challenging to detect for PMW sensors (Fig. 5.4).
In reverse, the HOAPS false alarm ratio reaches highest values towards the poles as
well as at the equator where more precipitation events are falsely predicted compared
to those that were correctly predicted with respect to OceanRAIN. Lowest false alarm
ratios occur in the mid-latitudes where neither solid precipitation nor light precipita-
tion dominate (Tab. 5.1 and Fig. 5.4). Bumke et al. (2016) find more than a factor of
2 larger false detection percentages compared to this study. Whether false detections
represent actual "falsely detected" precipitation is discussed in Section 5.3.5.

The bias score directly relates the missed precipitation to the falsely detected precipita-
tion. Only at the equator, the falsely detected precipitation slightly exceeds the missed
precipitation while in the extra-tropics the missed precipitation strongly exceeds the
falsely detected precipitation. In addition to falsely detected or missed precipitation,
the Heidke skill score relates the quality of precipitation predictions to that of ran-
dom chance (Fig. 5.3: solid red line). The shape of the Heidke skill score resembles
that of the probability of detection but its maximum at the equator does not strongly
but slightly exceed the second maximum in the northern-hemisphere mid-latitudes of
about 0.4. Towards the poles, the values decline to a minimum below 0.2. Globally,
Heidke skill score values are positive and, thus, indicate a better skill of HOAPS to de-
tect precipitation compared to random chance. Especially in the inner tropics and the
northern-hemisphere mid-latitudes, HOAPS performs well in detecting precipitation.
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Figure 5.4: Relative occurrence in % for Ro >0 mm h~! (hits and misses: n=4437) as a
function of 20° latitude bands. Relative occurrences per latitude band were normalized so
that the sum per latitude yields 100 %. Markers indicate median (red) as well as 10th and
90th percentile (blue) per latitude band.

The initially set collocation boundaries of +£20 km and +30 min were chosen in accor-
dance with other studies that collocate satellite with ship-based data. Over the Baltic
Sea, Bumke et al. (2012) estimated 17 km and 27 min as decorrelation lengths, which
means the distance to which the correlation decreased to % From these decorrelation
lengths, Bumke et al. (2012) choose £25 km and 430 min for collocating precipitation
derived from the same optical disdrometer onboard RV Alkor for the period 1995-
1997. More specifically, Bumke and Seltmann (2012) estimate decorrelation lengths of
46-68 km for frontal and stratiform precipitation and about 18-46 km for convective
precipitation. For snowfall in the Norwegian Sea, Klepp et al. (2010) applied more gen-
erous collocations boundaries of +55 km and +45 min with an accuracy of 0.99. The
collocation boundaries of £20 km and +30 min seem to establish a global compromise
between convective precipitation and more stratiform precipitation.

Despite the reasonable collocation boundaries, the question remains whether stricter
boundaries in time and space would lead to a significantly higher relative amount of
correctly detected precipitation by HOAPS. For space, we select £15 and +18 km as
additional maximum distances of an OceanRAIN measurement from the center of a
collocated HOAPS pixel. For time, we choose the more restrictive time lags of +20
and £25 min. Together with the initially set collocation boundaries of £20 km and
430 min, we obtain 9 possible combinations of spatial and temporal boundaries for
collocation. For these 9 collocation boundaries, we consider the probability of detection,
accuracy, odds ratio and the Heidke skill score to investigate whether stricter collocation
boundaries cause significantly improved conditions to compare HOAPS to OceanRAIN
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(for details see Tab. 5.2). All these skill scores were normalized by the maximum of
all collocation boundaries per latitude band to neglect the effect of different climate
regimes so that the maximum and perfect score per latitude band always equals 1
(Fig. 5.5). As a measure of robustness, the skill scores have also been calculated for
1000 realizations of randomly chosen 50 % of all collocations. The distribution of these
values for the sub data sets serves to estimate the uncertainty of a calculated skill score
(illustrated as box-whisker in Fig. 5.5e for the accuracy). A skill score of a collocation
boundary needs to lie outside the range of 2.5th and 97.5th percentile (whiskers) of
the determined internal uncertainty (for a = 0.05 shown as red boxes in Fig. 5.5a-d) to
be statistically significant. As a secondary indicator for a weaker robustness, o =0.5
indicates when the skill score lies outside the box of the inter-quartile range (difference
between 25 % and 75 % quantiles) and, thus, differs from at least half of the realizations
(gray boxes in Fig. 5.5a~-d). This means that improvements of non-framed fields are to
be neglected. Thus, considering the internal uncertainty in the collocations constitutes
an important tool to better rule out improved skill scores simply due to random chance.

The probability of detection indicates that the fraction of hits from all precipitation
events detected by OceanRAIN varies by 15 to 20 % in the southern-hemisphere mid-
latitudes and the inner tropics while staying about constant elsewhere. Especially in
the inner tropics the lowest collocation boundaries of 15 km/20 min lead to the highest
probability of detection while in the mid and high latitudes except for the northern
polar regions more generous collocation boundaries are sufficient. However, the non-
significant (o= 0.05) improvements by stricter collocation boundaries do not yet justify
an application of stricter collocation boundaries.

The accuracy experiences a markedly lower relative variability per latitude band com-
pared to the the other skill scores, not exceeding 10 %. The main reason for the lower
variability lies in the contribution of non-precipitating cases that make about 80 % of all
cases and are not used in the calculation of the other skill scores. The non-precipitating
cases induce a markedly lower variability per latitude, which causes an improvement for
choosing stricter collocation boundaries to be significantly better everywhere but in the
mid-latitudes. Particularly the polar regions and the northern-hemisphere subtropics
indicate a statistically significant improvement for using 15 km /20 min as collocation
boundaries, whereas the inner tropics and the southern-hemisphere mid-latitudes sug-
gest to use 18 km/20 min and 18 km/25 min. The northern-hemisphere mid-latitudes
and southern-hemisphere subtropics, however, do not justify using stricter boundary
conditions, which rules out using different collocation boundaries on the global scale.

The odds ratio indicates the ratio of the probability that HOAPS correctly predicts
precipitation compared to the probability that HOAPS incorrectly predicts precipi-
tation. The best HOAPS performance in the polar regions as well as in the inner
tropics occurs again for strictest collocation boundaries, though not significant. In
contrast, in the northern-hemisphere mid-latitudes 20 km/30 min leads to the best
performance. The Heidke skill score leads to a very similar distribution, but as the
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Figure 5.5: (a-d) Relative change with respect to maximum of skill scores for combinations
of space/time collocation boundaries (format: km/min) as a function of 20° latitude bands.
Size of gray dots in box denotes number of collocations relative to 7229. Red (gray) boxes
indicate a significant difference of @ =0.05 (0.5) of a skill score to the reference 20km/30min
with respect to internal uncertainty estimated from 1000 realizations of a randomly chosen
halved sub data set. (e) Graph exemplifies significance levels for accuracy at —10 to 10°N
where boxes denote 25th and 75th percentile and whiskers 2.5th and 97.5th percentile.
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odds ratio does not reveal significantly better collocation boundaries. However, to most
extent the considered skill scores tend to recommend stricter collocation boundaries
predominantly for the two climate extremes: inner tropics and polar regions. To ro-
bustly confirm these results, more HOAPS—OceanRAIN collocations are required to
obtain statistically significant results. The tendency that particularly lower maximum
distances of 15 and 18 km as collocation boundaries lead to an improved performance
of HOAPS might be explained by the higher convective precipitation fraction in the
tropics (Houze, 1997) and the tendency towards cellular cloud structures resulting
from cold air advection over a warmer ocean in the polar regions (Klepp et al., 2010).
The extent of convective precipitation events usually remains below that of stratiform
precipitation. The inner tropics exhibit a particularly high degree of convective orga-
nization; though mid-latitudes reflect a similarly high occurrence of high R compared
to the inner tropics (Fig. 5.4). These results tend to confirm earlier studies that find
markedly lower correlation lengths for convective precipitation compared to stratiform
precipitation (Bumke and Seltmann, 2012). A common definition of the term convec-
tive precipitation means precipitation formed in areas of vigorous upward air motion
(w>1m s7!) opposing to stratiform precipitation in areas of weaker upward or even
downward motion (w <1 m s7!) after Atlas et al. (2000).

The collocation of HOAPS with OceanRAIN represents a major first step for a mean-
ingful comparison of both data sets. In this first step both data sets were matched
in time and space. However, despite the collocation they still represent different ar-
eas and the instruments of the underlying measurements are distinctly sensitive in
resolving precipitation. These crucial differences between HOAPS and OceanRAIN
are approached in the following sections.

5.3.2 Adjusting the spatial representativeness of OceanRAIN

The optical disdrometer used in OceanRAIN senses a substantially smaller area com-
pared to the SSMIS used in HOAPS, which leads to a different spatial representa-
tiveness in both data sets. Whereas the OceanRAIN retrieval actively derives the
precipitation rate from the measured precipitation PSD in a fairly small volume of less
than 1 m?, the SSMIS passively senses a fairly huge atmospheric column of about 50 km
in diameter. Even after the along-track averaging of collocated OceanRAIN measure-
ments in a HOAPS pixel, a largely different spatial representation remains that needs
to be encountered when comparing HOAPS to OceanRAIN.

When precipitation along the OceanRAIN ship tracks is compared to the areal pre-
cipitation estimates from HOAPS, a considerable amount of cases from OceanRAIN
inevitably over- or underrepresents precipitation events occurring in the HOAPS pixel
(Fig. 5.6, top).  From the S-Pol study we infer that precipitation events of short
average along-track event duration Tx on average underestimate the precipitation rate
in the area, whereas precipitation events of relatively high T on average overestimate
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Figure 5.6: HOAPS—OceanRAIN precipitation-rate ratio g—g as a function of the mean along-
track precipitation event duration T (left) and the along-track average precipitation rate
(right) as unadjusted Ro (top), Tg-adjusted R}, (center) and Rf)-adjusted Rf (bottom),

respectively. Solid red line indicates bin-wise mean.
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the precipitation rate in the area, Ry here (compare with Figs. 4.7 and 4.8). HOAPS
and OceanRAIN confirm this spatial effect where for short precipitation events of 1 to
3 min duration Ry exceeds Ro by a factor of 20 to 45 while for events of more than
20 min duration on average Ry remains under Rp. Note that the absolute difference
of Ry and Ry for relatively long events with almost —1 mm h~! stronger exceeds
the absolute difference of relatively short events with about 0.5 mm h=* (Fig. 5.7, top
panel). The different spatial-scale representation of precipitation by OceanRAIN found
in both relative and absolute differences of Ry and Rp cannot be corrected explicitly
because the actual precipitation distribution in the area remains unknown. However,
the spatial representativeness studied for the S-Pol radar in Chapter 4 allows to adjust
OceanRAIN at least statistically to HOAPS.

The statistical adjustments derived from the S-Pol use the average duration per pre-
cipitation event T (Eq. 4.1; Tr-adjustment) and the adjusted precipitation rate of the
track, Ry here (Eq. 4.2; R} -adjustment). Note that T does not refer to the life cycle
of an individual precipitation event but to the time it takes a ship to move through
a shower, which is highly dependent on the actual track. Adjusting OceanRAIN ac-
cording to T decreases the overestimation factor of g—g from up to 45 toward factors
ranging between 4 and 30 for 1 < Tg < 3 min, whereas the occurrence of the maximum
overestimation shifts from 1 to 3 min. For T > 20 min, the relative difference in Ry
and R}, remains below 2.5 while the absolute difference strongly decreases leaving a
difference of about 0.2 mm h~! for highest 7. The decreased HOAPS-OceanRAIN
difference marks a first important step in adjusting the spatial representation of pre-
cipitation in OceanRAIN to that of HOAPS.

Tg certainly depends on direction and speed of the RV relative to the cloud movement
as discussed in Section 4.3.4. Statistically, these influences introduce an additional
uncertainty to the spatial-scale difference of HOAPS and OceanRAIN that is worth
to be quantified in future studies. Here, we exclusively concentrate on the spatial
representation of precipitation as measured along a ship track compared to a satellite
pixel by neglecting the cloud movement. This limitation should not introduce a bias
as OceanRAIN sampled a sufficiently long period of more than 5.5 years; nevertheless,
it adds to the random uncertainty.

As for the S-Pol, the Tr-adjustment leaves large relative differences for I;{Z ranging from
(0]

0.02 to about 1000 (Fig. 5.6, center right). These more than 4 orders of magnitude
of relative precipitation-rate difference indicate that OceanRAIN cannot yet statisti-

cally represent the same area as HOAPS. To achieve a better spatial representation
of OceanRAIN we apply the second spatial adjustment derived from S-Pol using R}
(Eq. 4.2). The exponential fit from the S-Pol is transferable to OceanRAIN because
the S-Pol along-track rain rate R*(T') has been normalized by its median value R7 5.
Without this normalization, the adjustment derived from the S-Pol would lead to a
biased adjustment of OceanRAIN precipitation rates that were no longer independent
from the S-Pol instrument features. The R}-adjustment strongly reduces the relative
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difference to values hardly exceeding 0.1 < g—g <20 (Fig. 5.6, bottom). As a second ef-
fect, the R)-adjustment almost entirely removes the trend in the OceanRAIN-HOAPS
difference with respect to Tr. However, on average there remains a difference between
HOAPS and OceanRAIN after which Ry exceeds R by a factor of 2 to 3 or 0.3 mm h™*
(Fig. 5.7, bottom left). The on average larger precipitation rate of HOAPS compared
to OceanRAIN reflects the adjustment of most of the spatial-scale difference between
both data sets.

As expected, a statistical adjustment cannot fully account for the effect of spatial-scale
differences between HOAPS and OceanRAIN for every single HOAPS-OceanRAIN
collocation. Figure 5.8 provides a better overview of each individual collocation from
the 885 hit cases before and after applying the statistical adjustments to OceanRAIN.
Before the statistical adjustments, Ro spans a 3 orders of magnitude larger range com-
pared to Ry, mainly related to the higher resolution and sensitivity of the disdrometer
and the along-track averaging of OceanRAIN after collocation. Applying the statis-
tical adjustments to OceanRAIN mainly increases Ro for cases with Rp < 0.1 while
very high R are slightly decreased. Nevertheless, cases of strong disagreement such as
Ry ~0.1 mm h™! and Rp~10 mm h™! as well as vice versa experience marginal effects
from the statistical adjustments and, thus, cause low Pearson correlation coefficients
of 0.35 (logarithmic) and 0.11 (linear) after adjustments, respectively. The expectedly
higher value for the linear regression in logarithmic space arises because precipitation
follows a log-normal distribution that a simple linear regression cannot well approxi-
mate in linear space (Tian et al., 2013). Nevertheless, the overall correlation remains
low because many hit cases disagree in the direct comparison of Ry and Rpy. This
means that on average, Ry does not well fit Ry. As a reason, the statistical adjust-
ments leave some "extreme cases" in which the ship might have strongly undersampled
precipitation in the HOAPS pixel domain (Ry » Rp) or in which the ship might have
strongly oversampled precipitation in the HOAPS pixel domain (Ry « Rp). However,
sampling solely cannot explain the relatively high number of strongly disagreeing cases.

Understanding the reasons for strongly disagreeing precipitation rates as depicted in
Figure 5.8 is key to conduct a meaningful analysis and derive suggestions to improve
the HOAPS data set. Thus, we investigate a number of factors that possibly could
enhance or even induce differences between Ry and Ry .

First, a slow-moving ship decreases the track length over which precipitation rates
are averaged in OceanRAIN. The decrease in track length causes a decrease in spatial
representativeness (cf. Fig. 4.11). Short tracks due to a slow-moving ship (defined
as u <5 km h™!) occur in 23% of all collocations and in 31 % of all hit cases and,
thus, cannot be neglected (Fig. 5.9d). With increasing tendency of HOAPS to exceed
OceanRAIN precipitation rates ( gﬁ > 1), the fraction of slow-moving ship cases starts
to increase at a relative difference of 4 and almost doubles at 9 (0.57). Although this

increase in low-speed fraction does not directly imply that a slow-moving ship leads
to a lower R( relative to Ry, the probability for that increases. For the opposite
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Figure 5.8: HOAPS precipitation rate Ry in mm h™! as a function of OceanRAIN along-track
averaged precipitation rate Ro (top), Rg (center) and RF (bottom) in mm h™'. Red line
indicates a linear regression in lin-lin space with Pearson correlation coeflicient r;,, blue line
a linear regression in log-log space with r;,4; 1-by-1 line in gray. n gives number of underlying

measurements (hits).

cases in which the precipitation rate of OceanRAIN exceeds that of HOAPS ( gg* <1),
1

a doubled fraction of slow-moving ship cases occurs for relative differences below 3
that decreases again for relative differences below %, which has two kinds of implica-
tions. First, the higher fraction of slow-moving ship cases for Ry < R highlights that
low ship speeds stronger influence cases in which HOAPS underestimates precipita-
tion compared to those where HOAPS overestimates precipitation. As a consequence,

a slow-moving ship might introduce a bias to the HOAPS—OceanRAIN comparison.

Second, the maximum at gﬁ :é indicates that other factors might have a stronger
(@]

influence on cases where the precipitation rate of OceanRAIN more strongly exceeds
that of HOAPS. Nevertheless, a decrease in representativeness of areal precipitation
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Figure 5.9: (a-c) Fraction of ship speeds below 5 km h™! (a), OceanRAIN measurements per
along-track average t,, <5 min (b) and uncertain PP probabilities after using PP distinction
algorithm 0.4< P4, < 0.6 (¢), each as a function of the relative difference range % >1i (cyan)
and % < % (purple) for extreme cases displayed in Figure 5.8 (bottom). Gray line indicates
mean fraction for all hit cases. Numbers indicate total number of cases that fraction refers
to. (d-f) Histogram of ship speed u (km h™!) with a bin width of 0.5 km h=! (d), ¢, (min)
with a bin width of 2 min (e) and P4, with a bin width of 2 min (f), for hits (blue) and all
cases (red), except for (f): hits and misses.

along a shortened ship track seems plausible, but also depends on the relative cloud
movement as concluded in Chapter 4 (Sect. 4.3.4), which we neglected in this analysis.

Second, a low number of along-track OceanRAIN measurements t,, collocated and
then averaged to one HOAPS pixel, could have a similar influence as a slow-moving
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ship for the same reason of reduced spatial representativeness of precipitation in a
HOAPS pixel. In particular, very small numbers of OceanRAIN measurements per
along-track average of less than 5 min can hardly represent the precipitation seen by
a satellite sensor. Despite the fact that these cases rarely occur and in two thirds of
all hit cases the collocated OceanRAIN measurements consist of at least 40 min, more
than 2 % consist of less than 5 min (Fig. 5.9¢). These cases of low OceanRAIN samples
(t,, < 5 min) occur substantially more frequently if the precipitation rate of OceanRAIN
exceeds that of HOAPS by at least a factor of 3, increasing the low-sample fraction
to more than 25% (Fig. 5.9b). Low OceanRAIN samples contribute by about 50 %
to cases where R exceeds Ry by a factor of at least 4. For cases where Ry exceeds

&, no noticeable change is observed in the low-sample fraction of OceanRAIN. The
conclusion that low sample sizes strongly influence exclusively those cases where the
OceanRAIN precipitation rate exceeds that of HOAPS seems plausible because with
a decreasing number of measurements the sampled precipitation tends to overestimate
the precipitation in the area.

Third, the PP distinction algorithm introduced in Chapter 3 holds an uncertainty.
When the PP is misclassified, OceanRAIN precipitation rates might strongly deviate
from the actual precipitation rate. These misclassified cases likely occur in a range of
the most uncertain PP probability such as 0.4 < P,;, < 0.6. This uncertain PP proba-
bility occurs in less than 2% of all hit cases (Fig. 5.9f). The more R} exceeds Ry, the
higher the percentage of uncertain PPs gets with up to 50 % for gg :% (Fig. 5.9e).
Overestimated Ry are usually caused by snow- or mixed-phase precipitation missclas-
sified as rain. The monotonically increasing percentage of uncertain PP cases indicates

that PP misclassifications can cause largest relative differences for the OceanRAIN

precipitation rate exceeding that of HOAPS. In the opposite case of % > 1, rain cases
(0]
misclassified as snow or mixed-phase precipitation cause hardly any increase in the

fraction of uncertain PP.

An eyeball verification of the 14 cases that fulfill g—g < }l reveals that for 3 of them the
automatic PP distinction algorithm diagnosed a change in PP from snow or mixed-
phase to rain, which drastically increases the precipitation rate as a consequence of
sampled relatively large particles. However, a disturbance by wave water cannot com-
pletely be ruled out. 6 other cases out of the chosen 14 cases consist of only 1 or 2
OceanRAIN measurements per HOAPS collocation that cause the strong overestima-
tion of areal precipitation. From the remaining 5 cases, 2 cases have an average ship
speed below 1 km h™! from which 1 is additionally influenced by birds causing false
signals. The remaining 3 cases seem plausible after thorough cross-checking with peak
precipitation rates exceeding 50 mm h™! (max. 367 mm h™!). All these cases represent
precipitation from clusters of vigorous convection, one in the inner tropics, another in
the mid-latitude North Atlantic in the postfrontal sector of a cyclone and the third in
the Mediterranean Sea. In all these 3 cases the ship likely overrepresents the precipi-
tation in the HOAPS pixel. However, existing other HOAPS—-OceanRAIN collocations
need to proof that these 3 cases do not follow the rule but represent unusual cases.
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5.3.3 How does precipitation vary spatially within a HOAPS
satellite pixel as derived from other satellite products? —
A case study

To gain insight into the spatial sub-pixel variability of precipitation, preferably in-
dependent high-quality precipitation data sets are required. For the reason that no
completely independent high-quality precipitation product exists over the ocean, we
choose other satellite data sets in order to derive the sub-pixel precipitation structure
to conduct a case study. The data sets basically need to be available in high spatial
resolution, provide precipitation estimates over the ocean and have a sufficient cover-
age to be matched in space and time to the HOAPS-OceanRAIN collocations. First,
the MSG Cloud Physical Properties (CPP) algorithm serves as reference data to un-
veil the sub-pixel structure with a high spatial resolution of about 4 km (more details
in Sect. 2.6). Precipitation from MSG-CPP has led to satisfying results compared to
CMORPH and TRMM-PR data over Africa (Wolters et al., 2011) as well as GPCC and
weather radar data over Europe (Roebeling et al., 2012). The POD reaches about 60 %,
the FAR 40 % while the spatial correlation statistics yield 0.89 for 2 months of radar
data over the Netherlands (Roebeling and Holleman, 2009). Second, CMORPH serves
for comparison as a precipitation satellite data set that blends IR and PMW informa-
tion (Sect. 2.4). Third, the IMERG product from the new generation GPM mission
serves as additional source of information that uses PMW-IR data but gives preference
to PMW data if available (Sect. 2.5). All 3 data sets fulfill the requirements of a higher
spatial resolution than HOAPS, data availability for the HOAPS—OceanRAIN colloca-
tion domain and period as well as providing an independent data source (MSG-CPP),
or at least additional data sources to SSMIS data and a different retrieval (IMERG
and CMORPH).

Due to data availability, the above mentioned data sets largely constrain the selection
of available cases. In specific, IMERG and CMORPH provide no data outside of
60°S to 60°N while the MSG-CPP full disk mainly covers the Atlantic Ocean and the
algorithm depends on daylight conditions. These spatial and temporal limitations favor
cases predominantly located in the tropics. The tropics offer a challenging environment
for the along-track to satellite comparison because convective precipitation tends to
strongly vary in time and space.

In a first case from 23 May 2015 in the morning hours, RV Meteor moved northeastward
in the tropical North Atlantic, south of the Cap Verde Islands. At 9:31 UTC when
DMSP-F18 overpassed the area, no precipitation has been measured by the Ocean-
RAIN disdrometer onboard RV Meteor (Fig. 5.10). Few minutes before the overpass,
the OceanRAIN disdrometer detected a rain shower that led to rain rates between
0.5 and 2 mm h™! and up to 4 mm h™! before the collocation period (gray line in
timeseries of Fig. 5.10). The rain rates of OceanRAIN agree well with those from the
MSG-CPP images at 9:00 UTC while the raining area well matches with that from RV
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Figure 5.10: Maps of 23 May 2015 for MSG-CPP, CMORPH and IMERG precipitation rates
compared to HOAPS (red numbers) and the OceanRAIN individual precipitation rates along

the RV Meteor track (black dots and surrounding circles) in mm h=!. Timeseries at bottom

displays evolution of OceanRAIN precipitation rates (blue: within collocation period, gray:
else) as a function of time (UTC), red-dotted line marks time of DMSP overpass (HOAPS),
gray-dotted lines mark start and end of collocation period.
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Meteor. According to the next MSG-CPP image from 9:30 UTC, the organization of
the convective precipitation quickly changed. While the MSG-CPP image estimates
an intense rain shower located next to the center of the HOAPS pixel at 9:00 UTC, at
9:30 UTC — the time of the nearest DMSP overpass — the area is almost devoid of rain
with some signals hardly exceeding 0.2 mm h~! west of the northern HOAPS pixel. If
MSG-CPP is correct, HOAPS might have missed the relatively light rain because of its
lower threshold of 0.3 mm h~!. Nevertheless, the CPP algorithm almost entirely uses
cloud top information that can be contaminated by Cirrus clouds in the outflow region
of large convective systems. For the same reason, CPP might overestimate surface
precipitation because evaporative loss of precipitation inside and below the cloud is so
far neglected in CPP (Wolters et al., 2011). High resolution MODIS data from few
hours past the observation (not shown) reveals large clusters of convection, surrounded
by Cirrus that partially obscures the underlying atmospheric column. CMORPH and
IMERG tend to agree with HOAPS in placing the precipitation and indicate a similar
precipitation rate of about 0.5 mm h~! in the area of the southern HOAPS pixel. As
HOAPS, CMORPH and IMERG do not detect precipitation in the Northwest of the
chosen domain, which could either indicate that all three data sets miss the precipi-
tation or that it is overrepresented by CPP at 9:30 UTC. Overall the tropical scene
reveals fairly good agreement between the 4 data sets for the area that RV Meteor
passed through while there is no clear indication that the PMW-driven satellite data
sets miss noticeable amounts of precipitation.

The second case from the evening hours of 26 May 2015 contains smaller convective
clusters of rainfall in about the same tropical area as the first case (Fig. 5.11). Ac-
cording to the smaller extent of the showers, they are expectably more challenging to
detect by PMW sensors. RV Meteor headed towards the south when the disdrom-
eter sampled a rain shower during the last quarter of the collocation period (17:48-
18:04 UTC), whereas the DMSP-F16 passed over the area at 17:34 UTC. West of RV
Meteor’s track, the two collocated HOAPS pixels detected light precipitation of about
0.3 mm h~! while east of the track another HOAPS pixel detects no rain. Accord-
ing to the OceanRAIN along-track precipitation, the HOAPS precipitation rates do
not seem implausible, particularly in light of the beam-filling effect and the decreasing
OceanRAIN along-track precipitation rates after the collocation period (not shown).
However, MSG-CPP estimated peak precipitation rates exceeding 10 mm h~? right be-
fore the DMSP overpass. Despite the small extent of the detected rain showers, HOAPS
should have detected these high precipitation rates assuming that the MSG-CPP al-
gorithm is correct. CMORPH and IMERG detect no precipitation at all in the area
of the HOAPS pixels. As a consequence of ingesting the same SSMIS data from the
same DMSP overpass as HOAPS, the differences between CMORPH and IMERG are
exclusively driven by retrieval or algorithm differences. This implies that the HOAPS
neural net algorithm outperforms both data sets with respect to rain detection proven
by the surface-based OceanRAIN data for this scene. Whether HOAPS still underesti-
mates precipitation rates against MSG-CPP remains hard to judge, although the more
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Figure 5.11: As Fig. 5.10 but for 26 May 2015 of RV Meteor moving southward.
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than 5-times higher peak precipitation rates of MSG-CPP seem fairly high compared
to the peak precipitation rates from OceanRAIN.

The third case from 19 September 2015 represents a rare case of convective precipitation
in its early stage. Thus, the spatially limited rain showers conform to a typical scene
in the subtropical trade region where clouds are usually kept shallow by a prevailing
inversion. In this early stage of the precipitation formation process, the disdrometer
onboard RV Meteor sampled 3 small showers in a row in almost the same tropical
area as before (Fig. 5.12). The 3 sampled rain showers within the collocation period
decrease in intensity from which the first shower reaches a peak rain rate close to
10 mm h~! while the last shower peaks at 2 mm h~!. MSG-CPP captured the second
rain shower with a rain rate below 1 mm h™! while OceanRAIN estimates somewhat
higher rain rates of about 4 mm h=!. This difference could be explained by beam-filling
due to the very small-scale rain showers that might not completely fill a MSG-CPP
pixel of 4 km in diameter. Two overpasses of DMSP satellites at 8:03 and 8:34 UTC
lie within the collocation period, which results in 6 collocated HOAPS pixels. 5 out of
these 6 collocated HOAPS pixels detect precipitation with rates ranging between 0.3
and 0.6 mm h~!. These relatively low HOAPS precipitation rates seem very plausible
when considering the scattered areal precipitation distribution, also reflected by the
OceanRAIN along-track averaged rain rates between 0.8 and 1.5 mm h~!, whereby the
highest rates belong to the lowest numbers of collocated OceanRAIN measurements
(txy =30). CMORPH estimates 0.2 to 0.5 mm h™! for the southern three HOAPS
pixels and up to 1 mm h™! for the two northernmost HOAPS pixels in the scene, which
agrees fairly well with HOAPS except for the southwestern edge at which CMORPH
detects about 1 mm h~! compared to no precipitation in HOAPS. IMERG agrees
well in rain detection and rates with all other data sets in the northern part of the
domain. However, IMERG completely misses the light precipitation from the scattered
small-scale showers in the southern part of the domain. The missed light precipitation
seems to confirm the tendency from case 2 that IMERG tends to miss light scattered
precipitation that HOAPS can detect with evidence from OceanRAIN.

The fourth case from 24 August 2015 originates from RV Meteor heading in south-
westward direction west of the coast of Portugal (Fig. 5.13). In the early evening
hours, a cyclone approaches the domain from the Atlantic Ocean with its widespread
warm sector and extensive precipitation. Compared to the previous 3 cases, this case
is not expected to cause noticeable difficulties in precipitation detection for satellite
data sets due to the large raining areas and the moderate rain rates. Within the
collocation period (17:50-18:49 UTC), OceanRAIN constantly sampled precipitation
rates between 1 and 5 mm h~! until the rain stops at 18:42 UTC. At 18:19 UTC,
DMSP-F17 passes over the area from which HOAPS estimates rain rates of 1.1 and
1.5 mm h™!. These HOAPS precipitation rates agree well with the precipitation rates
of OceanRAIN when considering the beam-filling that smears out the signal over the
domain, which also contains areas without precipitation as indicated by OceanRAIN
and MSG-CPP. MSG-CPP agrees fairly well with OceanRAIN in reflecting the peak
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Figure 5.12: As Fig. 5.10 but for 19 September 2015 with RV Meteor moving northeastward
and two collocated DMSP satellite overpasses of F17 (brown) and F18 (red).
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Figure 5.13: As Fig. 5.10 but for 24 August 2015 with RV Meteor moving southwestward.
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around 18:00 UTC with up to 5 mm h™! as well as the lighter precipitation between
17:45 and 17:55 of 1 to 2 mm h~!. In absence of daylight, no later MSG-CPP im-
ages exist for this case. CMORPH estimates about the same precipitation rates as
HOAPS between 1 and 2 mm h™! reflecting almost no variability in its precipitation
rate throughout the whole domain. IMERG estimates about a factor of 2 lower precip-
itation rates ranging between 0.2 and 1 mm h~! compared to all other considered data
sets. The ingested merged microwave-only product of IMERG estimates much higher
rain rates (not shown). Apart from the deviations of IMERG, all considered data sets
agree well in this fourth case of rather stratiform precipitation in the warm-sector of a
cyclone.

In a fifth case from 30 November 2015, RV Meteor heads in northwestward direction
close to the western coast of Central Africa (Fig. 5.14). In the afternoon hours, some
small-scale convective precipitation lies over the Atlantic Ocean while somewhat larger
convective clusters form towards the African coast that progress in southeastward di-
rection. In contrast to the previously presented cases, OceanRAIN detects no precip-
itation event throughout the whole 60-minute collocation period (14:43-15:32 UTC).
However, half an hour before the collocation period around 14:07 UTC, the Ocean-
RAIN disdrometer onboard RV Meteor records a short but intense rain shower with
peak precipitation rates of up to 18 mm h™!. This rain event and the fact that the
disdrometer was properly working during the whole collocation period rules out that
OceanRAIN could have missed precipitation due to an instrument failure. The DMSP-
F16 satellite passed over the area at 15:12 UTC and detected precipitation rates of
about 0.6 mm h~! within 2 neighboring HOAPS pixels collocated to OceanRAIN. The
HOAPS precipitation estimate of 0.6 mm h~! does not seem unrealistic from the per-
spective of MSG-CPP that estimates a cluster of rain showers in the east of the domain
with peak precipitation rates between 2 and 5 mm h™'. CMORPH and IMERG con-
firm that picture of precipitation in the eastern part of the domain with precipitation
rates up to 1 mm h~!, whereas IMERG places the edge of the cluster about 0.2° more
eastward. Nevertheless, the scene exemplifies how an OceanRAIN ship track did not

sample precipitation located in the HOAPS pixel, which represents a misclassified "false
detection" by HOAPS.

The discussed cases have been chosen independent of the satellite data performance,
whereas the data selection was strongly limited by the requirement to match all 4 data
sets in both time and space. Despite the rather low number of cases presented in the
case study, a relatively wide range of meteorological situations is covered. Neverthe-
less, the case study lacks high-latitude precipitation events with particularly frozen
precipitation. For the chosen data sets, no data is provided for the high latitudes.
However, these cases still pose a major challenge to current global precipitation satel-
lite data sets, which opens a wide field for satellite validation, particularly over the
global oceans.
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Figure 5.14: As Fig. 5.10 but for 30 November 2015 with RV Meteor moving northwestward.
Note that Ry >0 while Rp =0 (false detection).
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5.3.4 How do HOAPS and OceanRAIN compare on latitudinal
average?

The detailed view on individual HOAPS-OceanRAIN collocations revealed two main
outcomes. First, the case study exemplarily demonstrated that HOAPS suits to de-
tect and accurately estimate precipitation in a number of cases. Second, even after
statistically adjusting OceanRAIN to HOAPS, a number of cases does not fulfill the
requirements of a fair comparison between both data sets. Most importantly, Ocean-
RAIN needs to represent the largest possible area of the HOAPS pixel which needs
both — a sufficiently long ship track and a sufficiently high number of measurements
that form the along-track averaged precipitation rate of OceanRAIN. In particular,
a very low number of collocated along-track measurements and a low ship speed do
not fulfill these essential requirements in order to minimize artifacts distorting the
OceanRAIN-HOAPS comparison. However, excluding all collocations with average
ship speeds below 1 km h™! would lead to a loss of about 25% of all collocations.
In neglecting the cloud movement, many of these 25 % of cases could still fairly well
represent precipitation in the HOAPS pixel because fast-moving clouds can outweigh
the effect of low ship speeds. Combining the ship speed with the number of collocated
along-track OceanRAIN measurements implicitly considers this relation because the
more measurements belong to the track, the higher the probability for a sufficient areal
sampling of OceanRAIN. This means, we exclude collocations with a ship speed below
5 km h~! that contain less than 30 OceanRAIN measurements. Additionally, cases of
less than 5 OceanRAIN measurements per collocation are excluded because they are
most unlikely to correctly represent the areal precipitation (cf. Fig 5.9b).

We exclude few critical cases with a highly uncertain PP probability of 0.4 < P4, < 0.6
that has been estimated by the automatic PP distinction algorithm. A misclassified
PP might lead to strongly over- or underestimated precipitation rates. Excluding cases
of uncertain PPs reduces the uncertainty in OceanRAIN precipitation rates because
mixed-phase precipitation holds the highest uncertainty of all PPs. Besides the chal-
lenge in classifying mixed-phase precipitation, the OceanRAIN snow retrieval (Egs. 2.5
and 2.6 in Sect. 2.1.1) that is used for mixed-phase precipitation ignores the actual
fraction of snow particles and rain particles. Neglecting the rain—snow particle ratio
adds to the uncertainty. Consequently, excluding cases of uncertain PP probability
also reduces the uncertainty of precipitation rates at air temperatures close to the
freezing point. Together with the thresholds for low ship speed and limited numbers of
measurements, 1453 out of 24990 collocations (43 of 885 hits) are excluded from the
following analysis.

From the case-by-case comparison of HOAPS and OceanRAIN, the influence of few
cases stood out in which Ry and R} clearly disagree. As depicted in Figure 5.9, many
of these disagreeing cases could be removed applying the 3 thresholds to isolate samples
of unfair conditions for comparison. These cases mainly involve collocations in which
OceanRAIN oversampled precipitation with respect to the HOAPS pixel, whereas the
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opposite situation of undersampled OceanRAIN precipitation is more challenging to
unveil. As a main reason, the underlying precipitation distribution in the area re-
mains unknown, which rules out to directly assess the spatial representativeness of
OceanRAIN. Instead, we rely on the statistical adjustment of OceanRAIN, based on
subtropical data from the S-Pol radar that, however, is incapable of correctly adjusting
individual cases.

The statistical adjustments applied to OceanRAIN base on S-Pol radar data from the
subtropical North Atlantic that can be interpreted as a "training data set" (Chap-
ter 4). Thus, the applicability of the derived statistical adjustments to global ocean
data does not seem obvious. However, the Caribbean area where the S-Pol was de-
ployed during RICO experiences a prevailing trade inversion that keeps clouds shallow,
frequently leading to light showers of warm rain (Nuijens et al., 2014). Embedded
in the trade-wind flow these warm rain showers usually remain scattered and small
(Nuijens et al., 2009). Thus, most of these showers are challenging to detect for PMW
satellite sensors. In addition to the small isolated showers, some more extensive trop-
ical depressions were sampled that led to more widespread showers and higher rain
rates, as well. Accordingly, the S-Pol training data set comprises not only a variety of
different precipitation regimes but, in particular, challenging cases for a track-to-area
adjustment. Nevertheless, the training data lacks mid-latitude frontal passages as well
as solid precipitation at all, that would need to be taken into account for a more robust
adjustment. Generally, a rain-area coverage below 20 and above 80 % is sampled most
frequently, whereas medium-covered areas are sampled least frequently (cf. Fig. 4.3).
Overall, the S-Pol represents a suitable training data set for a statistical track—area
adjustment of precipitation including most of the globally most frequently occurring
precipitation regimes that range from scattered to clustered convective precipitation
and more widespread stratiform precipitation.

The remaining cases should on average reflect differences between the climate regimes.
Averaging all HOAPS precipitation rates Ry per 10° latitude band reveals average
precipitation rates slightly below 1 mm h~! for all hit cases, except for the southern-
hemisphere mid-latitudes with a precipitation rate of 3 mm h~! (black-dashed line
in Fig. 5.15). Except for the poles and the southern-hemisphere mid-latitudes, Ro
(solid gray line) exceeds Ry by about a factor of 2. Applying the Tr-adjustment to
OceanRAIN decreases this difference because the lowering of high Ro outweighs the
increase in low Rp, which mainly affects the average precipitation rate (cf. Fig. 5.7).
Applying the second statistical adjustment in R}, and R (without the Txr-adjustment)
amplifies this effect by further lowering the OceanRAIN average precipitation rate by
a factor of 2 to 3. As a result, Ry exceeds R by about 1.5 up to 5 depending on
the latitude. The large difference between Ry and R is likely to be explained by the
different instrument sensitivities of optical disdrometer and SSMIS onboard the DMSP
satellite (addressed in Sect. 5.3.5).

The uncertainty of the OceanRAIN precipitation rates is derived using a resampling
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Figure 5.15: Average precipitation rate (mm h~!) per 10° latitude band for all 885 hits
for OceanRAIN Ro (gray), Ry, (purple), Ry (cyan), Ry (orange), R (RS >0.3) (red) and
HOAPS Ry (gray dashed) as well as Ry (R > 0.3) (black dashed). Thin colored lines indicate

uncertainty from 100 realizations of the randomly chosen halved sub data set.

of 100 randomly chosen sub data sets of half the size of all remaining 23 537 HOAPS-
OceanRAIN collocations. The resulting spread indicates the precision of the calculated
precipitation averages defined as the difference between the 25% and 75 % quantiles.
The inter-quartile range of these 100 realizations rarely exceeds 20 % of the actual
value and reaches the highest spread for R after applying the Rj-adjustment. The
relatively low uncertainty in OceanRAIN precipitation rates results from the exten-
sive statistical adjustments and quality checking applied to the collocated OceanRAIN
precipitation data. However, this internal uncertainty contains no information on the
overall representativeness of the sampling per latitude, discussed in Section 5.3.7.

The hit cases partly represent the typical precipitation distribution per latitude with a
relatively small peak at the equator and secondary peaks at or close to the mid-latitudes
of both hemispheres. Towards the North Pole, precipitation rates decrease by about an
order of magnitude compared to the northern-hemisphere high-latitudes. However, the
distribution of precipitation entirely depends on the location of the ship tracks as well
as their sampling frequency that strongly varies with latitude (Sect. 5.3.6). Including
collocations of non-precipitating scenes includes the precipitation occurrence (Fig. 5.16
bottom). The higher number of non-precipitating cases over the subtropical ocean areas
decreases precipitation rates mainly in the southern hemisphere, whereas the minimum
in the northern hemisphere is much less pronounced. This uneven distribution depends
on the location of most ship tracks, discussed in Section 5.3.6. OceanRAIN precipi-
tation rates peak on both hemispheres at the mid-latitudes because the precipitation
occurrence of OceanRAIN reaches 22 to 32 % compared to 4 to 10 % in the subtropics
(Tab. 5.1). The influence of non-precipitating cases indicates that besides an accu-
rate precipitation rate, the precipitation detection plays a key role for estimating the
average precipitation rate per latitude.
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Figure 5.16: Average precipitation rate (mm h~!) per 10° latitude band for all remaining
23537 collocations for OceanRAIN Ro (gray), Rf, (purple), R (cyan), R (orange) in
top panel. Bottom panel shows again OceanRAIN R} (red) as well as HOAPS Ry (black
dashed) and Rp,, (blue dotted) from 25 years of HOAPS-G data. Red-shaded area frames the
uncertainty range of misclassified false detections by HOAPS with the upper edge counting
all false detections as hits.

After applying the statistical adjustments to OceanRAIN (Fig. 5.16 top), Ry exceeds
R§ by a factor of 2 to 4, except for the mid-latitudes with a markedly lower difference
(bottom). These regions coincide with a low false alarm ratio (cf. Fig. 5.3). As
discussed in Section 5.3.3 for the "30 November 2015" case, a relatively high fraction
of false detections likely indicates scenes in which the RV of OceanRAIN "missed" the
precipitation falling in the HOAPS pixel. Accordingly, many cases classified as false
detections might represent scenes of actual precipitation detected by HOAPS. This
situation becomes more likely for convective precipitation as illustrated by the case
of "19 September 2015" (Fig. 5.12) that gives an impression how quickly convective
precipitation can develop, change its intensity and be limited in its spatial extent.
In addition to convective clustering, a ship track is less likely to detect precipitation
when showers tend to be small or heterogeneously distributed over the HOAPS satellite
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pixel. As these convective conditions frequently occur in most global oceanic regions
(Short and Nakamura, 2000), a high fraction of cases classified as false detections
would have been classified as hits if the ship took a "more appropriate" track through
the HOAPS pixel to detect precipitation. This effect is even more pronounced for
more generous collocation boundaries as used in Bumke et al. (2016). This study
obtains false detection fractions of up to 20% at the equator, likely explained by
missed precipitation in the ship reference data set. To quantify the potential effect of
spatial under-representation in OceanRAIN, we treat all false detections as hits (red
shaded area in Fig. 5.16 bottom). The modified OceanRAIN average precipitation rate
resembles that of HOAPS in almost all latitudes. The very good agreement indicates
that likely most of the false detections point at insufficient spatial representativeness of
OceanRAIN in the HOAPS pixel. In lack of the sub-pixel precipitation distribution we
cannot correct for this effect. However, the attempted masking of this deficient spatial-
scale representation suggests a good agreement between HOAPS and OceanRAIN.
Nevertheless, the spatial representation of the reference data can only be statistically
adjusted for detected precipitation; missed precipitation remains a known unknown in
the validation of areal satellite data when using along-track shipboard data.

5.3.5 Adjusting the sensitivity of OceanRAIN to HOAPS

The different sensitivity to precipitation at the lower end of the spectrum remains as a
key difference after statistically adjusting OceanRAIN to HOAPS because both adjust-
ments do not depend on individual precipitation rates but were normalized. Thus, we
take into account the lowest precipitation rates that OceanRAIN and HOAPS are able
to resolve. The optical disdrometer used in OceanRAIN can resolve precipitation rates
as low as 0.01 mm h~!. In theory, much lower precipitation rates could be resolved with
the optical disdrometer but sea spray and ship vibrations introduce large uncertainties
particularly to tiny precipitation particles that mainly contribute to low precipitation
rates (Klepp, 2015). In addition, there exists no practical utility to resolve precipitation
rates below 0.01 mm h~!. The HOAPS retrieval excludes measured precipitation rates
below 0.3 mm h~! that fall below a signal-to-noise ratio under which precipitation is
not clearly distinguishable from sensor noise (Andersson et al., 2010b). The discrep-
ancy of more than one order of magnitude between the lowest precipitation rates in
HOAPS and those in OceanRAIN causes a systematic "overestimation" of light precip-
itation detected by HOAPS with respect to OceanRAIN after applying the statistical
adjustments as mentioned in Section 5.3.2 that also affects average precipitation rates.

By excluding all R < 0.3 mm h™!, OceanRAIN can be further adjusted to HOAPS
to simulate a similar sensitivity and yield a more meaningful average precipitation
rate. For the hit cases, the sensitivity-adjusted average precipitation rate resembles
that of HOAPS predominantly in the northern hemisphere (solid red line in Fig. 5.15).
However, in the southern hemisphere, large differences occur in particular at about
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40°S. Nevertheless, these average precipitation rates are based on a relatively small
sample of 207 cases that is left after excluding R§ < 0.3 mm h™!, besides 142 misses,
639 false detections and 18729 non-precipitation cases. In dry regions such as the
southern-hemisphere subtropics none to very few cases are left, which explains the
gap in Figure 5.15. For most OceanRAIN-sampled global regions, such a small num-
ber of remaining collocations does not suffice for a meaningful comparison of average
precipitation rates. Despite the small amount of data left, HOAPS and OceanRAIN
precipitation rates agree fairly well in the northern hemisphere.

The remaining small sample size for adjusted precipitation sensitivity in OceanRAIN
certainly allows a statistical comparison of precipitation-rate percentiles. Instead of
percentiles we rank all precipitation rates where either HOAPS or OceanRAIN detect
precipitation (R,qnx) to help identify how strongly certain precipitation rates contribute
to the average precipitation rate calculated from R < R,qnx (Fig. 5.17). Excluding non-
precipitating collocations makes the distribution independent from the ability to detect
precipitation. This means, we calculate the precipitation-rate contribution of ranked
precipitation rates for all cases in which one of the data sets detected precipitation for
each data set individually (thick lines). For HOAPS, these cases include hits and false
detections (h+f) while for OceanRAIN, these cases consist of hits and misses (h+m);
hit cases are shown as thin lines.

Before the statistical adjustments of OceanRAIN, the average precipitation rate of
HOAPS exceeds that of OceanRAIN by about 30 % when comparing exclusively those
cases in which the respective data set detected precipitation. For hit cases, the aver-
age precipitation rate of HOAPS stays almost 40 % below that of OceanRAIN. This
large difference between the OceanRAIN hits and misses points at the markedly lower
precipitation rate in cases where HOAPS misses precipitation compared to those cases
where HOAPS detects precipitation. Furthermore, these cases in which HOAPS misses
precipitation predominantly contain low precipitation-area fractions. Applying the first
and the second statistical adjustment to OceanRAIN does not essentially decrease the
relative difference between the average precipitation rate of hits and misses to those
of hits only. The only slightly decreasing relative difference after applied adjustments
indicates that this effect does not merely result from spatial-scale differences but likely
from the different instrument /retrieval sensitivities of HOAPS and OceanRAIN. How-
ever, the absolute average precipitation rates and, thus, the absolute difference strongly
decrease so that OceanRAIN precipitation rates for hits and misses become more simi-
lar to each other induced by the statistical adjustment of spatial-scale differences. After
excluding precipitation rates below 0.3 mm h~!, the difference between hits and misses
vanishes while the fraction of misses from all remaining 19 717 collocations decreases to
about 1%, confirming the assumption that a lower sensitivity in the HOAPS algorithm
explains most of the misses. The good agreement of hits and misses from OceanRAIN
approves that both kinds of adjustments — those due to spatial-scale differences and
that for different precipitation sensitivity — serve to achieve a fair comparison between
surface-based and satellite precipitation data.
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Figure 5.17: Average precipitation rate in mm h~! as a function of their ranked precipitation
rate from OceanRAIN (cyan lines) and HOAPS (purple) for OceanRAIN along-track averaged
rain rate Ro (a), RY (b), R (c) and R <0.3 mm h™! (d). Dotted lines indicate hit
cases only, whereas solid lines include all cases in which the respective data set detected
precipitation. Note the changed scaling in the abscissa of (d) that also contains 100 realizations
of 50 % randomly chosen values of each sub data set as a measure of uncertainty.

The precipitation-rate distribution agrees well for HOAPS and OceanRAIN after
applying the previously mentioned adjustments to OceanRAIN. In particular for
R <2 mm h™!, both precipitation-rate distributions resemble each other. This means,
precipitation rates below 1.3 mm h~! lead to 0.5 mm h~! average precipitation rate in
both data sets. For R >2 mm h~!, the HOAPS average precipitation-rate distribution
levels off earlier at about 3 mm h~! but keeps increasing between 4 and 8 mm h™,
which might also be subject to insufficient sampling. The highest OceanRAIN precip-
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itation rates exceed 10 mm h~! while the HOAPS precipitation rate stays below that
value. Overall, this leads to an average precipitation rate of 0.72 mm h~! for HOAPS

and 0.83 mm h™! for OceanRAIN, a 13 % underestimation of HOAPS that yet strongly
depends on few intense precipitation cases and thus depends on sampling (Sect. 5.3.7).

The difference between HOAPS hits and false detections increases to 0.55 mm h™!
(43%) after applying all adjustments while the difference used to be smaller before
(0.12 mm h™' or 14%). This difference is mainly driven by the false detections in
which HOAPS detects precipitation (Ry > 0) from which a certain percentage has not
been detected by OceanRAIN (Ro=0). A high fraction of false detections in Fig-
ure 5.16 (bottom) coincides with the largest differences in conditional precipitation
rates of HOAPS and OceanRAIN (Fig. 5.18). The conditional precipitation rate in-
cludes all collocations per product in which precipitation is detected, excluding Ocean-
RAIN precipitation rates below 0.3 mm h™'. However, the significance of these results
is strongly limited. First, the latitude averaged precipitation rates compare rather
statistically than directly because different cases are included (numbers in Fig. 5.18).
Second, the low number of remaining OceanRAIN hits and misses, e.g. of 12 cases
between 35°S and 10°S, decreases the robustness of the comparison of these adjusted
conditional precipitation rates. These latitudinal differences shed additional light on
the uncertainty of the averaged precipitation rate of HOAPS and OceanRAIN. This
internal uncertainty is estimated by resampling 100 randomly chosen halved subsets
of HOAPS and OceanRAIN conditional precipitation rates (bootstrapping statistics).
In the resulting distribution of the 100 realizations, the inter-quartile range is a robust
measure of the standard deviation. OceanRAIN conditional precipitation rate holds
an inter-quartile range of less than 15 %, whereas HOAPS remains below 10 % of the
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Figure 5.18: Average precipitation rate (mm h~!) per 10° latitude band for all 349 precipita-
tion detections of OceanRAIN with Rf >0.3 (red solid) and 846 precipitation detections of
HOAPS with Ry >0 (black dashed). Numbers indicate the number of collocations used for
the calculation per latitude.
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respective conditional precipitation rate (Fig. 5.17d). The lower uncertainty in HOAPS
likely results from the twice-as-large sample size. However, the estimated mean dif-
ference of 0.1 mm h™' (13%) between conditional precipitation rates lies within the

same range of the estimated uncertainty. This similarity complicates to deduce reliable
implications from the HOAPS-OceanRAIN validation.

5.3.6 Geographical distribution of precipitation differences

The contribution of individual precipitation rates to the average precipitation rate re-
veals that HOAPS and OceanRAIN mainly differ in precipitation rates that exceed
2 mm h™!, whereas HOAPS cases classified as false detections reach markedly higher
precipitation rates. These higher precipitation rates for false detections likely result
from the large contribution by inner-tropical cases where on average higher precipita-
tion rates occur. Bringing the HOAPS-OceanRAIN collocations on a 2° by 2° grid al-
lows an insight into how the absolute precipitation-rate differences are distributed over
the climate regimes of the Atlantic Ocean and adjacent polar regions (Fig. 5.19). Be-
fore adjusting OceanRAIN to HOAPS, the precipitation rates of OceanRAIN strongly
exceed those of HOAPS in many regions, particularly in the tropics and mid-latitudes
where overall most cases are sampled (Fig. 5.20). Nevertheless, in few boxes HOAPS
precipitation rates strongly exceed those of OceanRAIN. After applying the statistical
adjustments to OceanRAIN, the differences between both data sets markedly decrease
while Ry exceeds Ry in the majority of grid-boxes. However, no clear differences be-
tween certain climate regions are noticeable, likely because of the very limited amount
of data that rarely exceeds 5 measurements per grid-box.

Including the non-precipitating cases adds an order of magnitude more data that visu-
alizes the most frequent ship tracks (see Fig. 5.20). These areas of most frequent ship
presence include the tropical East Atlantic from which most of the case-study scenes
are taken as well as the high-latitude Baffin Bay and the area south of Svalbard (Nor-
way). Fewer collocated ship measurements come from the West Atlantic Ocean. The
grid-box averaged difference in precipitation rate from OceanRAIN and HOAPS stays
below 0.2 mm h™! in most regions. In the inner tropics, HOAPS slightly tends to over-
estimate the average precipitation rate by about 0.4 mm h~! around the equator. The
tendency results from the fact that the overestimated precipitation occurrence with
respect to OceanRAIN outweighs the underestimated conditional precipitation rates
(Fig. 5.18). These cases highlight the influence of misrepresented false detections by
HOAPS according to the increased number of clustered convective precipitation events
in the tropics missed by RVs (discussed in Sect. 5.3.5). The number of grid-boxes in
which OceanRAIN precipitation rates strongly exceed those of HOAPS has markedly
decreased after applying the statistical adjustments to OceanRAIN.
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Figure 5.19: Maps of average precipitation-rate difference Ry —Ro (left) and of Ry — Ry
(right) for hit cases (top) and all cases (bottom) in mm h~! per 2° by 2° grid-box, all excluding
0<R<0.3mmh!
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Figure 5.20: Maps depict number of cases per 2° by 2° grid-box used in Fig 5.19 for hit cases
(left) and all collocations excluding 0 < R < 0.3 mm h~! (right).

5.3.7 OceanRAIN sampling: how long is long enough?

The global distribution of the HOAPS-OceanRAIN collocations entirely depends on
the ship positions as well as the availability of HOAPS satellite data in consequence
of available DMSP satellite overpasses. For such a heterogeneously sampled data set,
the question of the minimum sample size cannot be addressed easily but depends on
the objectives. A satellite validation requires the largest possible data sample size
with respect to direct collocations. A climatological comparison, however, stronger
depends on a homogeneous sampling with respect to seasons and multi-annual climate
influences. The long data sampling is required in order to statistically cover the internal
variability of precipitation in a certain region. Otherwise, recognized differences in
precipitation over time cannot be attributed to long-term changes as long as the local
precipitation variability remains unknown. For both kinds of comparisons, we discuss
the status and requirements of the OceanRAIN data set.

In some regions of the Atlantic Ocean and the polar regions, the OceanRAIN database
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has reached a reasonably large sample size. However, on a global scale, OceanRAIN
cannot yet represent the long-term latitude-averaged precipitation rates of the gridded
monthly HOAPS-G (blue-dotted line in Fig. 5.16, bottom). Largest differences appear
in the southern-hemisphere subtropics and the northern high-latitudes and are almost
entirely caused by the heterogeneous sampling of the RVs. Whereas most OceanRAIN
RVs predominantly operated on the Atlantic Ocean, only few samples exist from the
Pacific and Indian Ocean (not shown). This limitation implies that OceanRAIN in its
current state does not serve for a globally representative comparison of oceanic pre-
cipitation. Achieving this ambitious goal would require at least an order of magnitude
more RVs contributing to OceanRAIN, equally distributed over the global oceans. A
higher number of RVs could ensure most homogeneous sampling in time and space that
is essential to equally sample precipitation over all climate regions.

Besides spatial sampling, the temporal sampling plays an important role in a climato-
logical comparison. In order to investigate the temporal sampling quality, we compare
the collocated HOAPS-S precipitation rates Ry with those of the 25-year averaged
precipitation rates of the monthly gridded HOAPS-G Ry, (Fig. 5.21). Except for the
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Figure 5.21: Map of the relative (left) and absolute (right) average precipitation-rate difference
of HOAPS-S (Rp) and the climatological average over 25 years of HOAPS-G (Rp,,) for all

2° by 2° grid-boxes of collocated cases in mm h™!. Note that non-precipitating boxes of Ry
are excluded from precipitation-rate ratio on left.
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same grid-boxes of particularly high HOAPS-S precipitation rates as in Figure 5.19
(bottom, right), widespread areas appear with on average slightly undersampled pre-
cipitation rates with respect to the long-term average of HOAPS-G. These under-
sampled areas include the tropical Atlantic northward the equator, the mid-latitude
area south of Greenland and the southern-hemisphere West Atlantic. However, the
southern-hemisphere West Atlantic HOAPS-S data is based on very few samples that
did not experience any precipitation (Fig. 5.21 left). The undersampled area north
of the equator and the oversampled area south of the equator in the tropical North
Atlantic likely result from a seasonal bias because the majority of samples from RV Po-
larstern, RV Maria S. Merian and RV Meteor originates from the boreal spring months
March, April and May (MAM) when the Intertropical Convergence Zone (ITCZ) with
its peak precipitation lies farthest south. Most other of the sampled regions hold more
patchy and nonuniform precipitation-rate differences that are shaped by short-term
weather events during the RV sampling period rather than by the average climatic
conditions. Predominantly, the mentioned areas coincide with areas of relatively low
data sample size according to Figure 5.20. The limited data sample size also arises
from the HOAPS ice-flag that strongly limits the number of available winter-season
collocations at the poles. For all these given reasons, the seasonal sampling of the
collocated HOAPS—OceanRAIN data sample does not yet suffice for a climatological
comparison.

However, for a direct comparison as intended in this chapter, the HOAPS—-OceanRAIN
collocation data sample size is close to being large enough in order to robustly validate
HOAPS satellite-retrieved data with OceanRAIN surface-reference data. As discussed
in Section 5.3.5, the uncertainty of the collocated data sample lies in the same range of
the difference in average conditional precipitation rates of HOAPS and OceanRAIN (cf.
Fig. 5.17d). Besides a barely insufficient sampling, however, the excellent agreement in
OceanRAIN and HOAPS at conditional precipitation rates below 2 mm h~! indicates a
good performance of the HOAPS precipitation algorithm as well as a sufficient sampling
for low to medium-intensity precipitation rates. For the complete range of precipitation
rates, a few years longer OceanRAIN data sample could underpin the outcome of this
study while better representing the extremes in the precipitation rate.

In general, the natural variability of precipitation occurrence and precipitation intensity
determine how long OceanRAIN would need to sample in a certain area to statistically
fully represent the precipitation distribution. Thus, insufficient sampling obtains a
potentially incomplete, partial image of the whole precipitation-rate distribution. The
completion of this image requires long and continuous sampling that are key to statis-
tically represent the rarely occurring intense precipitation events, which are the largest
contributor to the average precipitation rate.
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5.4 Summary and concluding remarks

This chapter focuses on directly comparing HOAPS-S precipitation satellite data to
surface-based ship-board OceanRAIN as reference using a collocation method. For
OceanRAIN, we applied the automatic PP distinction algorithm introduced in Chap-
ter 3 and the adjustment to statistically reduce spatial-scale differences of the ship
tracks to the precipitation estimates from the satellite sensors explained in Chapter 4.
Most of this chapter focuses on adjusting OceanRAIN to HOAPS in order to assure
a fair comparison between both data sets by reducing or neglecting the different spa-
tial and temporal sampling, spatial representativeness and instrument/algorithm sen-
sitivity between both precipitation data sets. A case study of few individual scenes
compares HOAPS—OceanRAIN collocations against other state-of-the-art precipitation
satellite products, followed by the actual comparison for latitude-averaged and gridded
precipitation-rate differences as well as ranked precipitation-rate distributions.

The collocation of HOAPS and OceanRAIN serves to match both data sets for individ-
ual cases in space and time. As collocation boundaries we used +20 km and £+30min,
both with respect to the center of a HOAPS pixel and its overpass time of the respec-
tive DMSP satellite. These collocation boundaries conform to values chosen for similar
ship-board disdrometer measurements in the literature (Bumke and Seltmann, 2012;
Bumke et al., 2012). Stricter collocation boundaries seem plausible in regions domi-
nated by convective precipitation but did not lead to significantly better skill scores
except for the accuracy. However, the inner tropics and the polar regions experienced
the largest tendency of better performing skill scores for £20min as temporal bound-
ary for collocation. Due to the very limited data sample size and the not consistently
better performance of stricter collocation boundaries we keep 20 km and £+30min.

The chosen collocation boundaries lead to a HOAPS-OceanRAIN sample of 24990
cases of which 3.5 % agree on the presence of precipitation and 79.5 % on its absence.
In 14.2%, OceanRAIN detects precipitation not detected by HOAPS (miss) and in
2.8 % vice versa (false detection). The high fraction of HOAPS misses follows from
the lower sensitivity to low precipitation rates because the HOAPS algorithm cuts off
precipitation rates below 0.3 mm h~! where precipitation is no longer distinguishable
from noise. Excluding OceanRAIN precipitation rates below 0.3 mm h~! after applying
the spatial-scale adjustments, decreases the fraction of HOAPS misses from 14.2 % to
about 1% from 19894 remaining collocations. This reduction clearly indicates that
HOAPS well detects most precipitation in the collocated OceanRAIN measurements
but cannot detect very light or small showers of precipitation as stated in Burdanowitz
et al. (2015) for the subtropical North Atlantic.

The relatively high fraction of so called "false detections" by HOAPS with respect
to OceanRAIN mainly results from the very limited ability by the OceanRAIN ship
tracks to spatially represent the HOAPS pixel area. The highest false-detection fraction
with respect to OceanRAIN appears in the inner tropics (10°S—10°N). The inner-tropic
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latitude band frequently produces vigorous convection that is most challenging to be
captured along a ship track. This aspect is not explicitly considered in the study of
Bumke et al. (2016) to explain the high percentage of false detections by HOAPS of up
to 20 % against comparable RV data of the equatorial Atlantic. In the tropical Atlantic
region, RV Meteor missed precipitation along a 60-minute collocated track that was
detected by HOAPS and other satellite products in an exemplary case on 30 November
2015. The demonstrated spatial limitation of the ship tracks in representing the areal
precipitation distribution explains most of the "false detections" that, however, cannot
be determined without ancillary information of that areal precipitation distribution.

Precipitation rates of cases where both HOAPS and OceanRAIN detected precipitation
(hits), largely depend on the spatial-scale difference between both data sets. All col-
located OceanRAIN precipitation rates according to the above mentioned boundaries
are averaged (along-track average) to reach the largest possible coverage per satellite
pixel. The averaging procedure inevitably leads to collocations in which OceanRAIN
over- or undersamples the precipitation rate of the satellite pixel depending on the
track and the areal precipitation distribution. The spatial sampling bias is reduced by
adjusting OceanRAIN statistically, using the average duration of precipitation events
and the median-normalized along-track averaged precipitation rate. Both statistical
adjustments strongly narrow down the OceanRAIN precipitation-rate distribution but
do not improve the weak correlation (r=0.35 for linear regression in log-log space)
in a case-by-case comparison of HOAPS—-OceanRAIN collocations. Nevertheless, the
relative and absolute differences between the HOAPS and OceanRAIN precipitation
rates strongly decline. The weak correlation in the case-by-case comparison merely
results from individual cases in which OceanRAIN represents the HOAPS area par-
ticularly poorly. Reasons for the poor representation include a relatively low number
of OceanRAIN along-track samples per HOAPS collocation, very low ship speeds and
misclassified PPs. However, excluding those critical collocations from the data sample
does not only reduce the number of unrepresentative cases but predominantly excludes
cases where the precipitation rate of OceanRAIN strongly exceeds that of HOAPS.
However, as for the HOAPS "false detections", our study lacks information of the
spatial precipitation distribution within the HOAPS pixel in order to unveil those col-
locations in which OceanRAIN underrepresents precipitation in the area. From the
above mentioned 3 factors, only the fraction of low ship speed samples increases with
increasing overestimation of HOAPS precipitation rates with respect to OceanRAIN
while the other factors do not help to identify cases of underrepresented OceanRAIN
precipitation.

The latitude-averaged HOAPS precipitation rate of all collocations exceeds that of
OceanRAIN by a factor of 2 to 3. However, re-classifying cases of false detections
by HOAPS to hit cases increases the OceanRAIN precipitation rate substantially. In
the tropics, HOAPS underestimates the precipitation rate by 10 to 15% according
to the modified OceanRAIN sample with re-classified false detections. Though a re-
classification of false detections into hits seems plausible, not all false detections might
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have been caused by an OceanRAIN RV missing the precipitation. Therefore, the
latitude-averaged precipitation rates should be interpreted with caution.

Excluding non-precipitation collocations, HOAPS tends to underestimate the average
precipitation rate by 10 to 30 % in the inner tropics. In the mid-latitudes, HOAPS tends
to overestimate the average precipitation rate by more than 50 %; however based on
very few data samples. The one-sided exclusion of predominantly higher OceanRAIN
precipitation rates compared to HOAPS could explain a part of the large difference. In
the subtropics, HOAPS agrees well with OceanRAIN. Overall, considering the latitu-
dinal average does not suffice in order to diagnose conclusive limitations in the HOAPS
retrieval or algorithm.

Though no direct implications for the HOAPS performance can be derived from the lat-
itudinal averages in different climate regimes, precipitation rates can be compared sta-
tistically. According to the ranked conditional precipitation-rate distribution for each
data set (without non-precipitating cases), HOAPS and OceanRAIN closely resemble
each other for conditional precipitation rates below 2 mm h~!. For this comparison,
OceanRAIN precipitation rates below 0.3 mm h™! were excluded to reflect the lower
sensitivity of HOAPS in detecting precipitation. Above 2 mm h™!, OceanRAIN precip-
itation rates contribute slightly stronger to the average precipitation rate than those of
HOAPS. In particular, the high conditional precipitation rates in OceanRAIN explain
the about 13 % higher average conditional precipitation rate compared to HOAPS. Due
to the relatively low sample size of HOAPS (n = 846) and OceanRAIN (346), the uncer-
tainty lies in the same range. As a measure of robustness, statistical resampling of 100
realizations yields an inter-quartile range of less than 15 % for OceanRAIN and of less
than 10 % for HOAPS. These uncertainties highlight the need for longer sampling in
order to statistically better resolve the high precipitation rates that mainly contribute
to average precipitation rates.

The average HOAPS precipitation rate for hit cases exceeds that of the false detections
by a factor of 2. The large difference between both distributions highlights the need
to either correct for the fraction of falsely identified "false" detections or consider the
effect in the HOAPS—OceanRAIN comparison. A lack of information on the areal pre-
cipitation distribution within the HOAPS pixel only leaves the option to estimate the
effect of collocations in which the ship track misses precipitation detected by HOAPS.
Stricter collocation boundaries in regions dominated by small-scale convective precip-
itation could help to reduce the number of cases in which an RV misses precipitation
and assigns a false detection to a satellite measurement. The adaptation of collocation
boundaries goes to the expense of a reduced along-track sample size per collocation and,
thus, requires careful checking of the conditions under which a validation is conducted.
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Chapter 6

Summary and conclusions

This thesis investigates the point-to-area validation of precipitation derived from pas-
sive microwave satellite sensors using shipboard disdrometer data on the example of the
HOAPS satellite climatology and the OceanRAIN ship database. The main focus lies
on the careful representativeness adjustment of the OceanRAIN surface reference data
to the characteristics of HOAPS in order to obtain a fair comparison. The adjustments,
summarized hereafter, mainly relate to the special precipitation characteristics: pre-
cipitation phase (PP) changes, high spatio-temporal variability and the non-Gaussian
frequency distribution of precipitation rates.

6.1 Summary of main results

The PP represents an important piece of information for an accurate retrieval of the
precipitation rate from the disdrometer-measured PSD. We developed a novel PP dis-
tinction algorithm that ingests various parameters from ancillary data available from
RVs in OceanRAIN. A combination of air temperature, relative humidity and the 99th
percentile of the particle diameter from the disdrometer turns out to predict best the
PP compared to a manually determined PP that is mainly based on 3-hourly present
weather reports from 4 years of RV Polarstern. The combination of these 3 meteorolog-
ical parameters reaches an accuracy of 91 % for the distinction of rain and snow using
one single PP probability distribution. However, using two independent PP probability
distributions allows to distinguish between rain, snow and mixed-phase precipitation.
This novel approach of using two independent PP probability distributions reaches
an accuracy of 81 % with a slight tendency to overpredict the occurrence of snowfall
(bias score: 0.93). Applying the newly developed automatic PP distinction algorithm
to OceanRAIN considerably speeds up the data processing and sets the ground to
provide an independent and efficient surface-based precipitation reference database.

The high variability of precipitation in both time and space poses a particular chal-
lenge to the HOAPS validation due to largely different temporal and spatial resolutions
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of both data sets. The influence of the resulting point-to-area effect is studied inde-
pendently using 2 months of S-Pol radar data from the subtropical island of Barbuda
during the RICO campaign. During RICO, the S-Pol radar mainly sampled small-scale
shallow-convective precipitation as well as some more widespread precipitation events
(Burdanowitz et al., 2015). In the S-Pol domain, we define 4 areas in which we place
several randomly chosen ship-like tracks of 60 radar pixels in length corresponding to
about 24 km. These simulated ship tracks detect precipitation in more than 14 % while
missing it in less than 18 % of the scenes when neglecting scenes of below 2% areal
precipitation coverage. In contrast to the synthetic ship tracks put into the S-Pol radar
domain, the detection in reality is mainly hampered by low ship speed, heterogeneous
areal precipitation distribution as well as the detection sensitivity of the PMW sensor
for particularly low area coverage. On average, ship tracks tend to slightly overesti-
mate the spatial extent of precipitation events while underestimating their intensity.
This bias can be quantified and corrected by defining the average precipitation event
duration Tg (sum of event durations per track divided by their number). On average,
low Tz coincide with strongly undersampled events while medium to high 7% coincide
with oversampled events, which can be expressed in a statistical adjustment function
of exponential type. Applying the Tr-adjustment reduces the systematic bias by about
80 % with respect to the sum of squared errors. However, a remaining bias in the rel-
ative precipitation-rate difference provokes a second adjustment using the along-track
precipitation rate itself, normalized by its median. The normalization ensures an in-
dependence from the radar data when applying this second statistical adjustment to
reduce the precipitation-rate bias. After the statistical adjustment, a small bias re-
mains for precipitation rates below 1.5 mm h~! that the track underestimates by less
than 0.2 mm h~! with respect to the area. This remaining bias can, however, not
be corrected statistically. After both statistical adjustments, the random error of the
precipitation-rate difference in form of the standard deviation equals the track precip-
itation rate at about 1 mm h~' and decreases in relative terms for higher precipitation
rates. The bias adjustments increase the standard deviation by up to 70 % at about
0.8 mm h~! indicating a shift of the systematic error into the random error. Simul-
taneously, the distribution of the track—area precipitation-rate difference progressively
approximates a Gaussian distribution, particularly at high precipitation rates, which
indicates the remaining bias to be largest for low precipitation rates.

The generally non-Gaussian frequency distribution of precipitation rates reflects a sub-
stantially higher occurrence of low precipitation rates compared to high precipitation
rates with twofold implications. First, the high occurrence of low precipitation rates
requires a high measurement sensitivity in order to obtain a realistic precipitation oc-
currence. Second, the low occurrence of high precipitation rates calls for sufficiently
long sampling in order to resolve the extreme events that mainly contribute to the
average precipitation rate. Despite the low sensitivity of the HOAPS algorithm to
resolve precipitation rates less or equal to 0.3 mm h™!, in 75% of all hit cases, the
OceanRAIN precipitation rate remains below that threshold. The relatively low sensi-
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tivity of HOAPS explains most of the low probability of detection of 0.2-0.4 in regions
where light rain and snowfall dominate the precipitation occurrence. The percentage
of false detections by HOAPS exceeds 5% only in the inner tropics. A certain frac-
tion of false detections likely represents misclassified hit cases when the RV missed
the precipitation in a HOAPS pixel. A case study with other satellite data sets could
give evidence for such a case. However, these cases strongly impact the average pre-
cipitation rate: the OceanRAIN precipitation rate of hit cases is underestimated while
the HOAPS precipitation rate of hit cases is overestimated. For that reason, HOAPS
strongly exceeds average precipitation rates when considering hit cases only. Com-
paring hits and misses of OceanRAIN with hits and false detections of HOAPS yields
a fairer comparison. For precipitation rates of at least 0.3 mm h~!, HOAPS under-
estimates the precipitation rate by about 13 %, mainly due to underestimated high
precipitation rates. However, the uncertainty estimated by resampling lies in the same
range as the difference between HOAPS and OceanRAIN. Together with the stronger
contribution of high precipitation rates to the estimated HOAPS—-OceanRAIN differ-
ence, more collocations are required for a more robust statement on the performance
of HOAPS. The derived statistical adjustments prove to be useful for the validation of
satellite data using along-track ship data as reference; however, they cannot improve
the representativeness of every single collocation and might even exacerbate scenes well
represented by the RVs. Nevertheless, applying both statistical adjustments paves the
way towards a more reliable point-to-area validation by correcting for extreme over- or
underrepresentation of precipitation along a ship track.

6.2 Implications

This thesis investigated the influence of spatial-scale differences on the validation of
precipitation from passive microwave satellite data using ship-based disdrometer mea-
surements. The following implications follow from the obtained results.

Implications for HOAPS and other satellite data sets

HOAPS performed well in detecting precipitation in most oceanic regions. The amount
of false detections is rather small so that HOAPS can be used for precipitation detection
with the limitation of a reduced sensitivity to very light precipitation. The precipitation
rates are on average in the range of the observations with a tendency to underestimate
precipitation in the inner tropics. As for light precipitation, this is a result of the
relatively low spatial resolution of about 50 km. Studies that aim for investigating
extreme precipitation or small-scale precipitation features might want to choose a multi-
satellite data set with higher temporal resolution such as the Global Satellite Mapping
of Precipitation (GSMaP; Okamoto et al., 2005) at hourly resolution, the CMORPH
(Joyce et al., 2004), the GPM IMERG (Huffman, 2015) at half-hourly resolution, or
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the daytime-only MSG-CPP (Roebeling et al., 2006) at 15 min resolution, respectively.
For light precipitation, Cloudsat (Stephens et al., 2002) is recommended with its very
high sensitivity for snow and drizzle. Owing to the independence from other data sets
and model assumptions,; and the long SSMI/SSMIS record, HOAPS serves better for
climate model validation and long-term precipitation monitoring.

Implications for OceanRAIN

The novel PP distinction algorithm to distinguish between rainfall, snowfall and mixed-
phase precipitation achieves a speedup in the OceanRAIN data processing. At the same
time, the algorithm reduces the dependence on human observers and adds physical
information on the PP, which can change frequently in-between two 3-hourly observa-
tions. Nevertheless, a manageable number of uncertain cases requires visual inspection
to detect and correctly assign PP changes. We recommend inspecting cases with a PP
probability between 0.4 and 0.6. For application over land, the PP distinction algo-
rithm would need to be re-calibrated against land-based reference data. However, the
algorithm can easily be transferred to other oceanic precipitation products.

In this thesis, OceanRAIN demonstrates its utility in validating precipitation data over
the ocean. Besides other PMW-based satellite data sets, IR /VIS satellite products such
as MSG-CPP could profit from a validation with OceanRAIN. A number of studies exist
that validate MSG-CPP over land (e.g. Roebeling and Holleman, 2009; Wolters et al.,
2011) but MSG-CPP has not yet been validated over the ocean. The case study of this
thesis considers a number of cases in which the majority of precipitation detections
seems promising; however, an in-depth validation could assess the ability of MSG-CPP
to detect and correctly quantify precipitation in various climate zones. Such a study

is easier to conduct due to the markedly higher spatial and temporal resolution of
MSG-CPP compared to PMW satellite products.

Implications for the sample size of validation data

The sample size of precipitation reference data sets is crucial to derive meaningful
implications for the validated satellite data set. Therein, OceanRAIN represents a
suitable base for ocean precipitation validation using high-quality disdrometers. The
OceanRAIN sample size suffices in order to derive a tendency for the performance of
a satellite data set as well as to conduct high-quality case studies. Nevertheless, the
current OceanRAIN sample size lies on the border to become useful for the broader
validation of precipitation satellite products. The sample size and distribution of the
OceanRAIN database does not yet satisfy the requirements for deriving global mean
precipitation estimates. In particular, more data samples need to be collected from
the Indian and the Pacific Ocean while sufficient extreme precipitation events should
be contained. In these regions, RV Sonne (Pacific Ocean), RV Investigator (Southern
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Pacific and Indian Ocean) and RV Roger Revelle (tropical Pacific) collect data available
in OceanRAIN after the end of the current HOAPS version of December 2015. Due
to the lack of other high-quality systematic precipitation data sets over the ocean, the
unique OceanRAIN database is worth to be continued and extended.

Implications for the point-to-area problem

For precipitation, the main challenge in the point-to-area problem actually lies in the
adjustment of the reference data set in order to represent the satellite data set without
distorting the reference data. For this purpose, the statistical adjustments developed
in this thesis use precipitation event duration and median-normalized precipitation
rate as data-independent parameters from an independent radar data set. That the
statistical adjustments are based on one single island-based radar in the subtropics
represents one of the major shortcomings. It remains open to which extent radar data
from other climate zones with frontal and frozen precipitation would lead to different
results. However, the basic statistical feature of over-/undersampling of precipitation
from short/long events should remain the same. A second aspect not considered in
this thesis arises from the neglected cloud movement that mainly influences the spatial
representativeness of the ship track. The resulting vector of ship velocity and cloud
movement could act as a measure of quality for the spatial representativeness of an
along-track collocation. In this respect, variable collocation boundaries could signifi-
cantly reduce the number of precipitation events in the satellite pixel that are missed
by the RVs. Specifically in the inner tropics, 20 min seems plausible as a maximum
time lag from a satellite overpass and £18 km as a maximum distance from the center
of a HOAPS pixel, respectively. As an alternative, a convective—stratiform distinction
could assist to decide for reasonable collocation boundaries using a lookup table.

6.3 Final remarks

In conclusion, this thesis reveals a good performance of HOAPS both in detecting and
quantifying precipitation. At the same time, these results are a first step towards an
error decomposition of the HOAPS precipitation parameter. As of now, the uncer-
tainty following from the limited number of HOAPS-OceanRAIN collocations remains
too high to conclude robust error estimates or implications for the HOAPS algorithm
development. Besides this direct outcome, a valuable algorithm could be developed
to predict the precipitation phase using atmospheric parameters available from most
ship measurements. For the satellite product validation, careful statistical adjustments
have been derived from independent radar data that help reducing the different spatial-
scale representativeness of precipitation between ship tracks and PMW satellite pixels.
These results provide valuable information for the upcoming validation of precipitation
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satellite products within the GPM community as well as for IR and potential future
geo-microwave sensor products.
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