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Abstract

Dynamic Global Vegetation Models (DGVMs) typically abstract the immense diver-

sity of vegetation forms and functioning into a relatively small set of predefined semi-

empirical Plant Functional Types (PFTs). There is growing evidence, however, from

the field ecology community as well as from modelling studies that current PFT schemes

may not adequately represent the observed variations in plant functional traits and their

effect on ecosystem functioning. Also, these PFTs are defined a priori and their simu-

lated distribution is often based on observed relationships between present-day climate

and vegetation patterns. Climate model projections, however, point towards the possi-

bility of regional climates without present-day analogs. This PhD study concerns the

development, evaluation, and application of a novel global vegetation model, the Jena

Diversity-DGVM, which seeks to overcome these deficits with a richer representation

of functional diversity more closely based on first-principles.

JeDi-DGVM simulates the performance of a large number of randomly-generated

plant growth strategies (PGSs), each defined by a set of 15 trait parameters which

characterize various aspects of plant functioning including carbon allocation, ecophys-

iology and phenology. Each trait parameter is involved in one or more functional

tradeoffs. These tradeoffs ultimately determine whether a PGS is able to survive under

the climatic conditions in a given model grid cell and its performance relative to the

other PGSs. The biogeochemical fluxes and land-surface properties of the individual

PGSs are aggregated to the grid cell scale using a mass-based weighting scheme based

on the ‘biomass-ratio hypothesis.

Simulated global biogeochemical and biogeographical patterns are evaluated against

a variety of field and satellite-based observations following a protocol established by

the Carbon-Land Model Intercomparison Project. The land surface fluxes and vegeta-

tion structural properties are reasonably well simulated by JeDi-DGVM, and compare

favorably with other state-of-the-art terrestrial biosphere models. This is despite the

parameters describing the ecophysiological functioning and allometry of JeDi-DGVM

plants evolving as a function of vegetation survival in a given climate, as opposed to

typical approaches that assign land surface parameters for each PFT a priori.
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Abstract

JeDi-DGVM simulations are run in two configurations to quantify how the repre-

sentation of functional diversity influences the simulated magnitude and variability of

water and carbon fluxes. In the first configuration, we simulate a diverse biosphere

using a large number of plant growth strategies, allowing the modelled ecosystems to

adapt through emergent changes in ecosystem composition. In the second configura-

tion, we recreate a low diversity PFT-like representation of the terrestrial biosphere

by aggregating the surviving growth strategies from the diverse simulation to a sin-

gle community-weighted plant growth strategy per grid cell. In agreement with earlier

biodiversity-ecosystem functioning studies, the diverse representation of terrestrial veg-

etation leads generally to higher productivity and water-use efficiency. The land sur-

face fluxes in the diverse simulations show greater temporal stability and resilience to

climatic perturbations. These results demonstrate a need for improving the represen-

tation of functional diversity in comprehensive Earth System models and add support

for conserving biodiversity to maintain ecosystem services.

The JeDi-DGVM modelling approach developed in this thesis sets the foundation for

future applications, in which the simulated vegetation response to global change has a

greater ability to adapt through changes in ecosystem composition, having potentially

wide-ranging implications for biosphere-atmosphere interactions under global change.
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Chapter 1

Introduction

1.1 Motivation

Human activities are altering the terrestrial biosphere at a large scale and an alarming

rate (Millennium Ecosystem Assessment 2005). The risks associated with these activi-

ties have led to the development of Dynamic Global Vegetation Models (DGVMs; e.g.

Foley et al. 1996; Friend et al. 1997; Woodward et al. 1998; Cox 2001; Sitch et al. 2003).

These mechanistic, process-based, numerical models simulate the large-scale dynamics

of terrestrial ecosystems and have proven useful for testing hypotheses and making

predictions regarding the responses of ecosystem structure and functioning to past

and future environmental changes (see recent review by Quillet et al. 2010). DGVMs

have also been embedded within comprehensive Earth System Models (ESMs) to cap-

ture biogeochemical (e.g. Cox et al. 2000) and biogeophysical (e.g. Foley et al. 2000)

feedbacks between the terrestrial biosphere and the physical climate system. Intercom-

parison studies (Friedlingstein et al. 2006; Sitch et al. 2008), however, have revealed

considerable divergence among the results of these models with respect to the fate of

the terrestrial biosphere and its function as a driver of the global carbon cycle under

projected scenarios of climate change. This divergence may be, at least in part, due

to their coarse and differing treatment of plant functional diversity (Sitch et al. 2008;

Harrison et al. 2010; Fisher et al. 2010b).

For reasons of computational efficiency as well as a lack of sufficient data and theory,

global vegetation models typically represent the immense functional diversity of the

over 300,000 documented plant species to a small number (typically between 4 and

20) of discrete Plant Functional Types (PFTs; Kattge et al. 2011) which are defined a

priori before any simulations are run. In the context of DGVMs, PFTs represent broad

biogeographical, morphological, and phenological aggregations (e.g. tropical broadleaf

evergreen forest or boreal needleleaf deciduous forest) within which parameter values
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Chapter 1 Introduction

are held spatially and temporally constant and responses to physical and biotic factors

are assumed to be similar (Prentice et al. 2007). They have typically been classified

subjectively using expert knowledge and their occurence within a given model grid

cell is based, either directly or indirectly, on semi-empirical bioclimatic limits, such as

minimum or maximum annual temperature (e.g. Box 1996; Bonan et al. 2002; Sitch

et al. 2003). Inductive approaches have also been proposed wherein PFTs are objec-

tively classified by applying statistical techniques to large datasets of vegetation traits

and climatic variables (e.g. Chapin et al. 1996; Wang and Price 2007). Regardless of

approach, the PFT schemes used by current DGVMs have been criticized as ad hoc

and as ignoring much of our growing knowledge of comparative plant ecology (Harrison

et al. 2010).

In fact, the field ecology community has shown that for many plant traits there is

a large amount of variation within PFTs, and that for several important traits, there

is greater variation within PFTs than between PFTs (Wright et al. 2005; Reich et al.

2007; Kattge et al. 2011). This trait variation may play an important role for many

ecosystem functions (Dı́az and Cabido 2001; Westoby et al. 2002; Ackerly and Cornwell

2007) and for ecosystem resilience to environmental change (Dı́az et al. 2006). Recent

model-data assimilation studies using eddy covariance fluxes (Groenendijk et al. 2011)

as well as other field and satellite-based observations (Alton 2011) provide confirmation

that current PFT schemes are insufficient for representing the full variability of veg-

etation parameters necessary to accurately represent carbon cycle processes. A more

theoretical study by Kleidon et al. (2007) demonstrated that using a small number of

discrete vegetation classes in a coupled climate-vegetation model can lead to potentially

unrealistic multiple steady-states when compared with a more continuous representa-

tion of vegetation. Others have contended that DGVMs may overestimate the negative

effects of climate change by not accounting for potential shifts in ecosystem composi-

tions towards species with traits more suited to the new conditions (Purves and Pacala

2008; Tilman et al. 2006). For example, some coupled climate-vegetation models (e.g.

Cox et al. 2000) project an alarming dieback of the Amazon rainforest under plausible

scenarios of continuing anthropogenic greenhouse gas emissions. The coarse represen-

tation of functional diversity in these models provided by current PFT schemes could

be leading to an overestimation of the strength and abruptness of this response (Fisher

et al. 2010b). Likewise, DGVMs might underestimate the positive effects of environ-

mental changes on ecosystem performance, e.g. by ignoring warm-adapted species in

typically temperature-limited regions (Loehle 1998). Therefore, while PFTs have been

and will likely continue to be useful for many modelling applications, going forward we
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1.2 Research objectives

will need new approaches that allow for a richer representation of functional diversity

in DGVMs.

Many approaches have been proposed to meet the challenge of improving the repre-

sentation of functional diversity in DGVMs (e.g. Wright et al. 2005; Reich et al. 2007;

Kattge et al. 2009; Harrison et al. 2010). However, so far, most of these continue to

rely on empirical relationships between observed plant traits and environmental (pri-

marily climatic) factors. The utility of such correlational approaches for predicting the

effects of global change on the terrestrial biosphere may be limited, as climate model

projections point towards the possibility of novel climates without modern or paleo

analogs (Jackson and Williams 2004; Williams and Jackson 2007). Other modellers

have introduced schemes in which PFT parameters adapt to environmental conditions;

e.g. with adaptive parameters related to leaf nitrogen (Zaehle and Friend 2010), alloca-

tion (Friedlingstein et al. 1999), and phenology (Scheiter and Higgins 2009). However,

despite some interesting proposals (e.g. Falster et al. 2010; Van Bodegom et al. 2011),

so far no DGVM has sought to mechanistically represent the full range of functional

trait diversity within plant communities (i.e. at the sub-grid scale) using a trait-based

tradeoff approach. Similar approaches have enabled significant progress in modelling

the biogeographical and biogeochemical patterns of global marine ecosystems (Brugge-

man and Kooijman 2007; Litchman et al. 2007; Follows et al. 2007; Dutkiewicz et al.

2009; Follows and Dutkiewicz 2011)

1.2 Research objectives

This thesis introduces a prototype for a new class of vegetation models that mecha-

nistically resolves sub-grid scale trait variability using functional tradeoffs, the Jena

Diversity DGVM (hereafter JeDi-DGVM). Just as the first generation of PFT-based

DGVMs were built upon earlier PFT-based equilibrium biogeography models, JeDi-

DGVM builds upon an equilibrium biogeography model (Kleidon and Mooney 2000,

hereafter KM2000) based on the concept of functional tradeoffs and environmental

filtering. JeDi-DGVM and KM2000 were inspired by the hypothesis ‘Everything is

everywhere, but the environment selects!’ (Baas-Becking 1934; O’Malley 2007). This

nearly century-old idea from marine microbiology postulates that all species (or in the

case of JeDi-DGVM, combinations of trait parameter values) are, at least latently,

present in all places, and that the relative abundances of those species are determined

by the local environment based on selection pressures. Rather than simulating a hand-
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Chapter 1 Introduction

ful PFTs, JeDi-DGVM simulates the performance of a large number of plant growth

strategies, which are defined by a vector of 15 functional trait parameters. The trait

parameter values determine plant behavior in terms of carbon allocation, ecophysiology,

and phenology and are randomly selected from their complete theoretical or observed

ranges. JeDi-DGVM is constructed such that each trait parameter is involved in one

or more functional trade-offs (Bloom et al. 1985; Smith and Huston 1989; Hall et al.

1992; Westoby and Wright 2006). These tradeoffs ultimately determine which growth

strategies are able to survive under the climatic conditions in a given grid cell as well

as their relative biomasses.

KM2000 demonstrated that this bottom-up plant functional tradeoff approach is ca-

pable of reproducing the broad geographic distribution of plant species richness. More

recently, their approach has provided mechanistic insight into other biogeographical

phenomena including the global patterns of present-day biomes (Reu et al. 2010), com-

munity evenness and relative abundance distributions Kleidon et al. (2009), as well as

possible mechanisms for biome shifts and biodiversity changes under scenarios of global

warming (Reu et al. 2011). JeDi-DGVM extends the KM2000 modelling approach to

a population-based model capable of representing the large-scale dynamics of terres-

trial vegetation and associated biogeochemical fluxes by aggregating the fluxes from

the many individual growth strategies following the ‘biomass-ratio’ hypothesis (Grime

1998).

The major objectives of this study are to:

• To introduce a novel approach to representing functional diversity in a dynamic

global vegetation model, which is less coarse and less reliant on empirical biocli-

matic relationships than previous PFT-based approaches.

• Evaluate if this modelling approach is able to capture the broad-scale present-

day patterns of terrestrial biogeography and biogeochemical fluxes reasonably well

and compare its performance with previous PFT-based models.

• Investigate how a vegetation model with more diverse representation of func-

tional diversity behaves differently relative to a sparse PFT-like representation of

diversity. Specifically, we ask:

– Does a more diverse representation of the terrestrial biosphere lead to gen-

erally higher productivity and evapotranspiration? What modulates the

geographic pattern of these relationship?

– How does the representation of functional diversity influence the temporal
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variability of these biogeochemical fluxes?

– Does a more diverse representation of the terrestrial biosphere lead to greater

resilience of biospheric functioning to large climatic pertubations?

1.3 Thesis outline

The remainder of this thesis is structured as follows:

Chapter 2

The second chapter introduces the novel aspects of the Jena Diversity-Dynamic

Global Vegetation Model (JeDi-DGVM), including how functional diversity has

been implemented via mechanistic trade-offs and how the resulting biogeochemi-

cal fluxes and land-surface properties associated with many plant growth strate-

gies are aggregated to the ecosystem-scale.

Chapter 3

In the third chapter, simulated patterns of terrestrial biogeography and biogeo-

chemistry from JeDi-DGVM are evaluated against a variety of field and satellite-

based observations.The model evaluation follows a systematic protocol established

by the Carbon-Land Model Intercomparison Project (C-LAMP; Randerson et al.

2009). By following this protocol, it is possible to directly compare the bottom-up

functional tradeoff approach of JeDi-DGVM with evaluation results for terrestrial

biosphere models based on the dominant PFT paradigm.

Chapter 4

In the fourth chapter, we use JeDi-DGVM to quantify how differing representa-

tions of functional diversity impact the simulated magnitude and variability of

water and carbon fluxes.

Chapter 5

The fifth chapter begins with a concluding summary of the main findings of this

thesis. We then propose possible directions for further model development and

model evaluation and we highlight a few ongoing and potential applications of

JeDi-DGVM.

Appendices

The appendices contain a detailed description of JeDi-DGVM and the coupled

land–surface scheme.
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Parts of this thesis are published for 1 open discussion in Biogeosciences Discussions.

1Pavlick, R., Drewry, D. T., Bohn, K., Reu, B., and Kleidon, A.: The Jena Diversity-Dynamic
Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography
and biogeochemistry based on plant functional trade-offs, Biogeosciences Discuss., 9, 4627-4726,
doi:10.5194/bgd-9-4627-2012, 2012
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Chapter 2

The Jena Diversity-Dynamic Global

Vegetation Model (JeDi-DGVM)

2.1 Introduction

JeDi-DGVM consists of a plant growth module that is coupled tightly to a land sur-

face module. Both components contain parameterizations of ecophysiological and land

surface processes that are common to many current global vegetation and land sur-

face models. The main novelties in the vegetation component are (i) a mechanistic

representation of functional trade-offs, which (ii) constrain a large number of plant

growth strategies with trait parameter values randomly sampled from their complete

theoretical/observed ranges, and (iii) the aggregation of the fluxes/properties associ-

ated with those growth strategies to grid-scale structure and function based on their

relative abundances. . The following overview of the model focuses on describing the

novel combination of these components and how they are implemented in the model,

while the full description with the detailed parameterizations are described in the Ap-

pendices. A schematic diagram of the JeDi-DGVM modelling approach is shown in

Fig. 2.1.
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2.2 Representation of Trade-offs

2.2 Representation of Trade-offs

When we speak of terrestrial vegetation, we speak of a large number of plants of different

species that differ to some extent in how they grow and respond to the environment.

In fact, in a given environment there are potentially many different strategies by which

individual plant species could grow and cope with the environment, with some ways

being more beneficial to growth and reproductive success than other ways. Some plant

species, for instance, grow and reproduce rapidly, such as grasses, while others, such as

trees, grow slowly and it takes them a long time to reproduce. Some species allocate

a greater proportion of their assimilates to leaves, thereby able to capture more of

the incoming sunlight, while others allocate more to root growth and thereby being

able to access more moisture within the soil. Some species react quickly to a change

in environmental conditions, thereby potentially able to exploit more of the beneficial

conditions for growth, while others are more conservative, thereby potentially avoiding

damage by a turn to less favorable conditions.

To represent this flexibility of how to grow and reproduce in the model, many different

plant growth strategies are simulated simultaneously using the same ecophysiological

parameterizations under the same atmospheric forcing. The only part in which the

plant growth strategies differ is in their values for fifteen functional trait parameters

(Table C.2). These parameters control the amount of carbon from photosynthesis and

storage allocated to six plant carbon pools (allocation), the response times to changes in

environmental conditions and turnover times of the various carbon pools (phenology),

and other aspects of ecophysiological functioning (e.g. leaf nitrogen concentration,

which determines the balance between photosynthesis and respiration).

Each growth strategy is represented by six carbon pools representing leaves, fine

roots, aboveground and belowground wood (stems and coarse roots), storage, and re-

production (‘seeds’). These compartments are linked to the physical functioning of

the land surface in terms of the absorption of solar radiation and soil moisture dy-

namics, which are simulated by the land surface module. For instance, leaf biomass

is linked to the amount of absorbed solar radiation, and fine root biomass to the ca-

pability of a growth strategy to extract soil moisture from the rooting zone. Both of

these examples have functional consequences: more absorbed radiation enhances the

supply of energy for photosynthesis and evapotranspiration, and the amount of ex-

tracted soil water determines the water status of the plant and the supply of moisture

for evapotranspiration. This coupled plant-land surface model is therefore capable of

simulating the interaction between development of a plant growth strategy and land
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Chapter 2 Novel aspects of JeDi-DGVM

surface functioning in a process-based manner.

Each trait parameter is associated with costs and benefits, leading to functional

tradeoffs because no trait value (or set of trait values) can be optimal for plant fitness

in all environments. For example, a particular growth strategy may allocate a rela-

tively high fraction of carbon to fine roots, enhancing the rate at which it can extract

moisture from the soil matrix. This may be beneficial in terms of higher productivity.

However, it is also comes with both real and potential costs. That growth strategy

would incur the real metabolic costs of growth and maintenance respiration for the

additional fine root biomass. A higher fractional allocation to fine roots also neces-

sarily results in a lower fractional allocation to the other carbon pools (e.g. a lower

allocation to the aboveground pools and thus a decreased ability to capture light). In

a given environment, there will be some optimum allocation strategy that maximizes

productivity. However, in environments with plentiful sunlight and soil moisture, a

wide range of allocation strategies will perform close to the optimum. As the climate

becomes harsher, the range of well-performing strategies will decrease.

2.3 Environmental selection

In order to implement the notion that ‘everything is everywhere, but the environment

selects’, we test essentially the complete range of potential values for each of the 15 trait

parameters. For some trait parameters, we sample values from the full mathematically

possible range. For example, the trait parameters controlling the fractional allocation

of carbon to the different plant carbon pools are only constrained such that together

they sum to one. For other trait parameters (e.g. leaf nitrogen concentration), we

sample values from observed ranges taken from literature. To effectively implement

environmental selection, the model generates a large number of plant growth strategies

using a quasi-random Latin Hypercube sampling algorithm (McKay et al. 1979). A

15-dimensional hypervolume representing the potential trait space is first divided into

many equal subvolumes. A random point defining a plant growth strategy is then

selected from each subvolume.

Each grid cell is seeded with a small amount of initial seed biomass for each plant

growth strategy. The model mechanistically simulates the development of the plant

growth strategies and their interactions with the coupled land surface module. Growth

strategies which are able to maintain a positive balance of stored assimilates survive,

passing through what Webb et al. (2010) refers to as a ‘mechanistic performance filter’.
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2.4 Aggregation to ecosystem scale

As environmental conditions change, different strategies will respond in different ways,

some may become more productive, others may no longer able to cope with new con-

ditions and die out. Strategies which were previously filtered out will again be given

small amounts of seed carbon and may persist under the new conditions. This process

allows the composition of the plant communities in each grid cell to adapt through

time, without relying on a priori bioclimatic limits relating the presence or absence

of a growth strategy to environmental variables. This mechanistic trial-and-error ap-

proach seems potentially better suited to simulate the response of the biosphere to

climates without present-day analogs because even under new conditions fundamental

functional tradeoffs that all plants face are unlikely to change.

2.4 Aggregation to ecosystem scale

Some mechanism is needed to aggregate the biogeochemical fluxes and vegetation prop-

erties of the potentially many surviving growth strategies within each grid cell. Most

current DGVMs calculate grid-cell fluxes and properties as weighted averages across

fractional coverages of PFTs. Of those models, the competition between PFTs for frac-

tional area in a grid cell is typically computed implicitly based on moving averages of

bioclimatic limits (Arora and Boer 2006). This approach is not suitable for JeDi-DGVM

because its tradeoff-based framework does not rely on a priori bioclimatic limits. A few

DGVMs (e.g. Cox 2001; Arora and Boer 2006) calculate PFT fractional coverages using

a form of the Lotka–Volterra equations, in which the colonization rate of each of N

PFTs is linked through a N -by-N matrix of competition coefficients. For JeDi-DGVM,

this Lotka–Volterra approach quickly becomes computationally burdensome as the size

of the necessary competition matrix increases with the square of the potentially large

number of tested growth strategies. The necessary competition coefficients are also

difficult to determine theoretically (McGill et al. 2006).

Instead, JeDi-DGVM aggregates vegetation fluxes and properties to the grid-cell

scale following the ‘biomass–ratio’ hypothesis (Grime 1998), which postulates that the

immediate effects of the functional traits of a species are closely proportional to the

relative contribution of that species to the total biomass of the community. Recent

work (e.g. Garnier et al. 2004; Vile et al. 2006; Kazakou et al. 2006; Dı́az et al. 2007;

Quetier et al. 2007) supporting the ‘biomass-ratio’ hypothesis has shown strong sta-

tistical links between community-weighted functional traits (i.e. the mean trait values

of all species in a community, weighted by their mass-based relative abundances) and
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Chapter 2 Novel aspects of JeDi-DGVM

observed ecosystem functions (e.g. aboveground net primary productivity and litter

decomposition). Others have combined the concept of community-weighted functional

traits with the Maximum Entropy (MaxEnt) formalism from statistical mechanics to

successfully make predictions, in the other direction, about the relative abundances of

individual species within communities (e.g. Shipley et al. 2006b; Sonnier et al. 2010;

Laughlin et al. 2011).

Here, rather than weighting the functional traits, JeDi-DGVM calculates ecosystem-

scale variables by directly averaging the fluxes and properties across all surviving growth

strategies, weighting the contribution of each strategy by its current biomass relative

to the total biomass of all strategies within that grid cell (see Appendix A.9 for more

details). The resulting ecosystem-scale variables are for the most part diagnostic and do

not influence the development of the individual growth strategies or their environmen-

tal conditions. Although, the community-aggregated litter fluxes do form the input for

a relatively simple soil carbon module, which then provides simulated estimates of het-

erotrophic respiration (see Appendix A.10). This implementation of the ‘biomass-ratio’

hypothesis assumes that interactions between plants, both competitive and facilitative,

are weak and do not significantly alter plant survival or relative fitness. The potential

implications of this assumption are discussed in Chapter 5.2.3. In principle, the trait

parameters of the surviving growth strategies could also be aggregated, forming an

additional testable output of the model. This is discussed further in Chapter 5.2.4.
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Chapter 3

Evaluating the broad-scale patterns of

terrestrial biogeography and

biogeochemistry

3.1 Introduction

In this chapter, simulated patterns of terrestrial biogeography and biogeochemistry

from JeDi-DGVM are evaluated against a variety of field and satellite-based observa-

tions. The model evaluation follows a systematic protocol established by the Carbon-

Land Model Intercomparison Project (C-LAMP; Randerson et al. 2009). By following

this protocol, we are also able to directly compare the bottom-up functional trade-off

approach of JeDi-DGVM with evaluation results for terrestrial biosphere models based

on the dominant PFT paradigm. We also evaluate the simulated biogeographical pat-

terns of functional richness and relative abundances to illustrate the parsimonious na-

ture of a functional trade-off approach to dynamic global vegetation modelling, i.e. it

can provide more types of testable outputs with fewer inputs.

3.2 Simulation setup

In our simulation setup, we followed the experimental protocol from C-LAMP (Rander-

son et al. 2009) to facilitate comparison with other terrestrial biogeochemistry models.

JeDi-DGVM was run with 2000 randomly-sampled plant growth strategies on a global

grid at a spatial resolution of approximately 2.8◦ by 2.8◦ resolution, covering all land

areas except Antarctica. The model was forced at a daily time step with downward

shortwave and longwave radiation, precipitation, and near-surface air temperature from
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Chapter 3 JeDi-DGVM overview and evaluation

an improved NCEP/NCAR atmospheric reanalysis dataset (Qian et al. 2006). We

looped the first 25 years of the reanalysis dataset (1948-1972) with a fixed, preindus-

trial atmospheric CO2 concentration until the vegetation and soil carbon pools reached

a quasi-steady state (∼3500 years). After this spinup simulation, a transient simulation

was run for years 1798-2004 using prescribed global atmospheric CO2 concentrations

from the C4MIP reconstruction of Friedlingstein et al. (2006). This transient simula-

tion was forced by the same climate forcing as the spinup run for years 1798-1947 and

by the full reanalysis dataset for years 1948-2004. We ran an additional experiment to

compare the response of JeDi-DGVM to a sudden increase in atmospheric CO2 with re-

sults from the Free-Air CO2 Enrichment (FACE) experiments (Norby et al. 2005). This

FACE experiment simulation was similar to the transient simulation described above

but with the atmospheric CO2 concentration set to 550 ppm for years 1997-2004. We

deviated from the C-LAMP experimental protocol by allowing the vegetation to evolve

dynamically through the simulations, rather than prescribing the pre-industrial land

cover dataset. The aspects of the C-LAMP protocol related to N deposition were not

considered as a nitrogen cycle has not yet been implemented in JeDi-DGVM.

3.3 Evaluation protocol

We evaluated the performance of the JeDi-DGVM against multiple observational datasets

using a set of systematic metrics developed for the C-LAMP (Randerson et al. 2009).

As computed, each C-LAMP metric falls somewhere between zero and one and is then

scaled by a numerical weight to produce a score. The weights are based on subjec-

tive estimates of a metric’s uncertainty, considering both the measurement precision of

the observations and the scaling mismatch between the model and observations. Fur-

ther details about each metric and the justifications behind their particular numerical

weighting are described in Randerson et al. (2009). The metrics, their weights, along

with the resulting scores for JeDi-DGVM are summarized in Table 3.1. The scores for

two terrestrial biogeochemistry models based on the PFT concept, CLM-CN (Thornton

et al. 2007) and CLM-CASA’ (Fung et al. 2005; Doney et al. 2006), are also shown for

comparison (both were previously evaluated in Randerson et al. 2009). Below, we pro-

vide a brief summary of the datasets and scoring methods. The results of the evaluation

are described in the following section.
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Chapter 3 JeDi-DGVM overview and evaluation

Phenology

We compared the simulated leaf area index (LAI) values against observations from

the MODerate resolution Imaging Spectroradiometer (MODIS) (Myneni et al. 2002;

Zhao et al. 2005, MOD15A2 Collection 4). We consider three phenology metrics, the

timing of maximum LAI, the maximum monthly LAI, and the annual mean LAI. All

three metrics used monthly mean LAI observations and modelled estimates from years

2000 to 2004. The LAI phase metric was computed at each grid cell as the offset

in months between the observed and simulated maximum LAI values, normalized by

the maximum possible offset (6 months), and finally, averaged across biomes. The

maximum and annual mean LAI metrics M were computed using the equation:

M = 1−

n∑
i=1

|mi−oi|
mi+oi

n
(3.1)

where mi is the simulated LAI at the grid cell corresponding to the satellite observation

(oi) and n is the number of model grid cells in each biome. Global means for these

metrics were computed by averaging M across different biome types.

Global patterns of productivity and evapotranspiration

Modelled estimates of net primary productivity (NPP) are compared against a com-

pilation of field-based observations from the Ecosystem Model Data Intercomparison

(EMDI) (Olson et al. 2001) and remote sensing-based estimates extracted from the

MODIS MOD17A3 Collection 4.5 product (Heinsch et al. 2006; Zhao et al. 2005, 2006).

We compared the mean annual NPP as simulated by JeDi-DGVM for years 1975-2000

with the EMDI observations on a point-by-point basis of each observation site to the

corresponding model grid cell using Eq. 3.1 described above. As a second NPP metric,

we used Eq. 3.1 again with the modeled and observed values averaged into discrete

precipitation bins of 400mm per year. For the third and fourth NPP metrics, we com-

puted the square of the Pearson coefficient of determination (r2) between the mean

annual MODIS and modelled NPP (for years 2000-2004) for all non-glaciated land grid

cells and for the zonal means.

In addition to the NPP metrics from the C-LAMP protocol, we also evaluated JeDi-

DGVM against spatially-explicit, data-driven estimates of evapotranspiration (ET;

Jung et al. 2010) and gross primary productivity (GPP; Beer et al. 2010). The esti-

mate of ET (Jung et al. 2010) was compiled by upscaling FLUXNET site measurements
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with geospatial information from remote sensing and surface meteorological data using

a model tree ensemble algorithm (Jung et al. 2009). It covers years 1982-2008, although

here, we use only use model years 1982-2004 for the comparison due to the limitation

of the meteorological forcing dataset. The estimate of GPP (Beer et al. 2010) was

derived from five empirical models calibrated also against FLUXNET observations. It

covers years 1998-2005, although here, we use only use model years 1998-2004 for the

comparison.

Seasonal cycle of atmospheric CO2

We simulated the annual cycle of atmospheric CO2 by applying the atmospheric im-

pulse response functions from the Atmospheric Tracer Transport Model Intercompar-

ison Project (TRANSCOM) Phase 3 Level 2 experiments (Gurney et al. 2004) to the

JeDi-DGVM net ecosystem exchange (NEE) fluxes. The monthly JeDi-DGVM NEE

fluxes for years 1991-2000 were aggregated into the 11 TRANSCOM land basis regions.

The aggregated NEE fluxes are multiplied by monthly response functions from Baker

et al. (2006), yielding simulated atmospheric CO2 time series for 57 observation sta-

tions around the globe. This process was repeated for all 13 TRANSCOM atmospheric

transport models and the multi-model mean annual cycle was compared with observa-

tions from the GLOBALVIEW dataset (Masarie and Tans 1995). We computed the

square of the Pearson correlation coefficient (r2) as a measure of phase and the ratio

of modeled amplitude AM to observed amplitude AO as a measure of magnitude (see

Eq. 3.2).

M = 1−
∣∣∣∣AM

AO
− 1

∣∣∣∣ (3.2)

These two metrics were computed for three latitude bands in the northern hemisphere

(EQ-30◦N, 30-60◦N, 60-90◦N). All stations within each band were weighted equally. The

scores from the mid and high latitude bands were given more weight due to the stronger

annual signal and the relatively smaller contributions from oceanic and anthropogenic

fluxes.

Interannual variability in CO2 fluxes

The same TRANSCOM response functions (Baker et al. 2006) and the GLOBALVIEW

CO2 measurements (Masarie and Tans 1995) described above were combined to obtain

estimates of the interannual variability in the global terrestrial NEE fluxes for years
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1988-2004. We compared these estimates with JeDi-DGVM, again incorporating infor-

mation about the phase and magnitude. The phase agreement was evaluated by the

coefficient of determination (r2) between the simulated global annual mean NEE fluxes

and the TRANSCOM-based estimates. The magnitude of interannual variability was

calculated using the standard deviation of the simulated and observation values as AM

and AO in Eq. 3.2. The phase and magnitude metrics were then averaged together

with equal weighting.

In their C-LAMP evaluation, Randerson et al. (2009) also evaluated the magnitude

and pattern of simulated fire emissions against observations in the Global Fire Emissions

Database version 2 (GFEDv2; van der Werf et al. 2006). We set the score for this metric

to zero because JeDi-DGVM does not simulate fire emissions.

Eddy covariance measurements of energy and carbon

We compared the simulated monthly mean surface energy and carbon fluxes against

gap-filled L4 Ameriflux data (Falge et al. 2002; Heinsch et al. 2006; Stöckli et al. 2008).

For each Ameriflux data-month, we sampled the corresponding model grid output.

Then, we constructed an annual cycle of monthly means and using Eq. 3.1 computed

metrics for NEE, GPP, and the fluxes of sensible and latent heat. All 74 tower sites

were weighted equally.

Carbon stocks and flows in Amazonia

We evaluated the simulated aboveground living biomass in Amazonia against the LBA-

ECO LC-15 Amazon Basin Aboveground Live Biomass Distribution Map compiled by

Saatchi et al. (2007). We used Eq. 3.1 to calculate the model-data agreement between

the simulated aboveground live biomass and the observed biomass values at each grid

cell within the Amazon Basin. The model output used for comparison was the sum of

the simulated aboveground wood and leaf carbon pools for year 2000. Although, not

part of the metric calculation, we also compared the model results with carbon budget

observations from three mature forest ecosystems in Amazonia (Malhi et al. 2009).

Sensitivity of NPP to elevated CO2 concentrations

To evaluate the sensitivity of simulated NPP to elevated CO2 concentrations, we per-

formed a model experiment (described above in Chapter 3.2) to mimic the treatment
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plots in FACE experiments. We calculated the mean percentage increase in NPP be-

tween the control and elevated CO2 simulations for years 1997-2001. Using Eq. 3.1, we

compared the simulated increases at four temperate forest grid cells with corresponding

site-level average increases reported by Norby et al. (2005). We also report a global map

of the simulated NPP response to a step change in CO2 concentrations from ambient

to 550 ppm.

3.4 Results and discussion

The Jena Diversity DGVM described in this paper presents a new approach to ter-

restrial biogeochemical modeling, in which the functional properties of the vegetation

emerge as a result of reproductive success and productivity in a given climate. This

contrasts with the standard approach to mechanistic land surface modeling that uti-

lizes a set of fixed PFTs, whose pre-determined properties are specified by parameter

values often determined from databases of observed plant trait values. In an effort to

understand if a more diverse representation of the terrestrial biosphere can reasonably

capture observed patterns of biophysical and biogeochemical states and fluxes, we con-

trast below the performance of the less constrained JeDi-DGVM approach against the

performance of two previously evaluated land surface models.

3.4.1 Biodiversity patterns

In contrast to standard DGVMs, the broad sampling across a multi-dimensional trait

space allows JeDi-DGVM to provide insight into potential plant biodiversity through

an examination of the simulated functional richness (the number of sampled plants

that survive in a grid cell). The geographic pattern of simulated functional richness

(Fig. 3.1a) is highly and significantly (r2 = 0.71) correlated with a map of vascular

plant species richness derived from observations (Kreft and Jetz 2007). Out of the 2000

randomly-assembled plant growth strategies, 1411 growth strategies survived in at least

one grid cell and the maximum value for a single grid cell was 1322 in western Amazonia.

These fractions of surviving growth strategies are much higher than those reported by

KM2000. This is likely attributable to the difference in the survival criterion. In the

earlier model of KM2000, the criteria for survival was whether or not a growth strategy

was able to produce more seed carbon over its lifetime than its initial amount of seed

carbon. Here, the criterion for survival was simply whether or not a growth strategy

was able to maintain a positive carbon balance. Nonetheless, JeDi-DGVM is still able
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Chapter 3 JeDi-DGVM overview and evaluation

to reproduce the observed broad global pattern of plant diversity through mechanistic

environmental filtering due to functional trade-offs, and without invoking historical,

competitive, or other factors.

The mean relative abundance distributions for four richness classes (Fig. 3.2a) are

similar in shape to left-skewed log-normal distributions commonly observed throughout

nature (McGill et al. 2007). The left skewness means that rare species are greater

in number than abundant ones, another commonly observed attribute, especially in

tropical rainforests (Hubbell 1997). With increasing levels of functional richness, the

mean as well as the variance of the relative abundance distribution successively shifts to

lower values. We also see that there is not necessarily one optimal combination of trait

parameters for obtaining high biomass in an environment, but often many differing

growth strategies can reach similarly high levels of fitness (cf. Marks and Lechowicz

2006; Marks 2007). As the climate becomes less constraining, in terms of increasing

availability of light and precipitation, the range of feasible plant growth strategies

increases. The ranked abundances of growth strategies (Fig. 3.2b) clearly show that

the simulated relative abundances become increasingly even with higher richness. This

pattern is also evident when visually comparing the maps of simulated function richness

(Fig. 3.1a) and community evenness (Fig. 3.1b). This simulated trend towards greater

evenness in more productive regions qualitatively reproduces the observed trend in

rank-abundance plots of forests that show a much steeper decline in abundance in

boreal forests than in tropical rainforests (Hubbell 1979, 1997).

3.4.2 Phenology

For the C-LAMP phase metric, JeDi-DGVM received a score of 5.0 out of 6, performing

comparably with the two other land surface models (CLM-CN and CLM-CASA’) pre-

viously evaluated in Randerson et al. (2009). Fig. 3.3 shows the comparison between

the simulated and observed month of maximum LAI. The simulated timing of peak LAI

matched observations reasonably well in the moisture-limited grassland and savannah

regions of South America, Africa, and Australia. There were two clear patterns of bias,

however. First, like CLM-CN and CLM-CASA’, JeDi-DGVM simulated maximum

LAI occuring about one month later than the MODIS observations across much of the

northern hemisphere. Second, in the MODIS dataset, leaf area follows the seasonality

of incident solar radiation across large parts of the Amazon basin, peaking during the

early to mid part of the dry season when radiation levels are high and deep-rooted

vegetation still has access to sufficient moisture (Myneni et al. 2007). JeDi-DGVM
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Figure 3.1: Geographic patterns of (a) richness and (b) community evenness as simulated by
JeDi-DGVM. Richness is simply the number of surviving plant growth strategies in a grid cell
out of the 2000 tested plant growth strategies. Community evenness is calculated as H′

Hmax
′

where H ′ is the Shannon entropy of the abundance distribution in a grid cell and Hmax
′ is the

maximum possible value of H ′ if all growth strategies were equally abundant (Pielou 1966).

did not capture this opportunistic behavior, simulated peak LAI in the tropical moist

forests of Amazonia, central Africa, and southeast Asia occurs during the rainy season.

However, the issue of whether or not tropical forests green-up during dry periods is still

not settled (Samanta et al. 2010; Asner and Alencar 2010).

The comparisons of simulated and observed maximum and mean LAI are shown

in Figs. 3.4 and 3.5. Overall, JeDi-DGVM matched the observed values reasonably

well, receiving scores of 3.7/4.0 (score/maximum score) and 4.7/5.0 for the mean and

maximum LAI metrics, on par with the performances of CLM-CN and CLM-CASA’.

The simulated mean LAI values were generally low relative to the observations across

the boreal forest region. Also, both the simulated mean and maximum LAI were higher

than observed values in several regions, particularly southeast Brazil, northeast India,

the central United States, much of Europe, and eastern China. This may simply be
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Figure 3.2: (a) Simulated relative abundance distributions of plant growth strategies for four
richness quartiles. (b) Simulated relative abundance versus growth strategy rank for four rich-
ness quartiles. On the x-axis, growth strategies are ranked according to their abundances, which
in turn are plotted on the y-axis. The relative abundance distributions are averaged over all
grid points falling into four classes of functional richness: grid points with low richness (Q1;
0 < D > 0.25 of the maximum simulated richness level) to medium (Q2; 0.25 < D > 0.50),
high (Q3; 0.50 < D > 0.75) and very high richness (Q4; 0.75 < D > 1.00), where the richness
D is expressed in relation to the grid cell with maximum simulated value of functional richness

due to the fact that human land-use was not accounted for in the simulation set up

and these regions are used extensively for agricultural purposes. These disparities could

likewise indicate a need for reevaluation of the trade-off costs associated with root water

uptake, i.e. the construction and maintenance costs of coarse and fine roots.

Overall, the performance of JeDi-DGVM in capturing observed global phenologi-

cal patterns shows great promise in using less constrained approaches that allow the

dynamics of the land surface to emerge from climatic constraints.
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3.4 Results and discussion

Figure 3.3: Mean month of maximum leaf area index for years 2000-2004 from (a) MODIS
MOD15A2 Collection 4 LAI product (Myneni et al. 2002; Zhao et al. 2005); (b) as simulated
by JeDi-DGVM; and (c) the lag in months between the occurrence of maximum LAI in the
MODIS observations and the JeDi-DGVM model output.
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Figure 3.4: Mean intra-annual maximum leaf area index for years 2000-2004 from (a) MODIS
MOD15A2 Collection 4 LAI product (Myneni et al. 2002; Zhao et al. 2005); (b) as simulated
byJeDi-DGVM; and (c) the difference between the MODIS observations and the JeDi-DGVM
model output.
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Figure 3.5: Mean leaf area index for years 2000-2004 from (a) MODIS MOD15A2 Collection
4 LAI product (Myneni et al. 2002; Zhao et al. 2005); (b) as simulated by JeDi-DGVM; and
(c) the difference between the MODIS observations and the JeDi-DGVM model output.
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3.4.3 Global carbon stocks

JeDi-DGVM simulated global stocks of vegetation, soil, and litter carbon of 637 PgC,

1904 PgC, and 208 PgC, respectively. These values are averages over the simulation

period 1980-2004. The vegetation carbon stock simulated by JeDi-DGVM falls within

the range of reported values from several PFT-based DGVM studies (500-950 PgC;

Cramer et al. 2001; Sitch et al. 2003; Krinner et al. 2005; Zaehle et al. 2010) and esti-

mates from global carbon inventories (385-650 PgC; Houghton et al. 2009). Likewise,

the modelled estimate for litter carbon is close to the estimate based on carbon inven-

tories (300 PgC) reported in Houghton et al. (2009). The simulated soil carbon stock

also falls within previous inventory-based estimates (Houghton et al. 2009, 1200-3000

PgC;).

3.4.4 Gross Primary Productivity

JeDi-DGVM simulated a mean global terrestrial GPP of 138 PgC year−1, which is

higher than the data-driven estimate of 123 ± 8 PgC year−1 from Beer et al. (2010),

but within the range of uncertainty (118 ± 26 PgC year−1) of a recent estimate from

a processed-based model forced with remote sensing observations (Ryu et al. 2011).

The zonally-averaged simulated GPP shows close agreement (r2 = 0.89) with the me-

dian estimate from Beer et al. (2010), falling within or near the range of uncertainty

across most latitudes (Fig. 3.6a). JeDi-DGVM performed comparably with five PFT-

based biosphere models evaluated in that study in reproducing the latitudinal pattern

of GPP. Averaging zonally hides some offsetting regional biases, however. For instance,

simulated productivity in Amazonia is about 25% lower than observation-based esti-

mates, but productivity is overestimated throughout most of the Asian tropics (Fig.

3.7). Overall though, the broad spatial pattern of GPP is reasonably well captured

by JeDi-DGVM (r2 = 0.85) when compared to the map of data-driven estimates from

Beer et al. (2010).

3.4.5 Net Primary Productivity

JeDi-DGVM simulated a mean global terrestrial NPP of 79 PgC year−1, which is more

than one standard deviation greater than the mean estimate from a recent meta-analysis

of global NPP studies (56±14 PgC year−1; Ito 2011). We hypothesize that this overes-

timation stems, in part, from the lack of nitrogen limitation within the model. Global
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Figure 3.6: Comparison of mean annual zonally-averaged fluxes as simulated by JeDi-DGVM
with (a) observation-based estimates of gross primary productivity (Beer et al. 2010); (b) net
primary productivity from the MODIS MOD17A3 Collection 4.5 product (Heinsch et al. 2006;
Zhao et al. 2005, 2006); and (c) observation-based estimates of evapotranspiration (Jung et al.
2010). The blue-shaded region in (a) represents the median absolute deviation of the five
diagnostic models used in producing the observation-based estimate.

analyses of nutrient limitation studies (Elser et al. 2007; LeBauer and Treseder 2008)

suggest that soil nitrogen availability and the energetic cost of nitrogen fixation and

active ion uptake limit terrestrial productivity by about 20%. Adding a mechanistic

representation of plant nitrogen acquisition based on plant energetic trade-offs (e.g.

Fisher et al. 2010a) to future versions of JeDi-DGVM is critical, as it is thought that

nitrogen availability will likely constrain the capacity of terrestrial ecosystems to con-

tinue taking up a large part of anthropogenic carbon emissions (Reich et al. 2006).

In a site-by-site comparison with field-based EMDI NPP observations (Fig. 3.8),

JeDi-DGVM performed on par with CLM-CN and CLM-CASA’ with a score of 1.5/2.0.

JeDi-DGVM does relatively well in capturing the variability in NPP across the EMDI

observation network (Fig. 3.8a), although it tends to overestimate NPP, particularly at

intermediately productive sites. JeDi-DGVM also performed reasonably well and com-
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Figure 3.7: (a) Observation-based estimate of mean annual gross primary productivity for
years 1998-2005 (Beer et al. 2010); (b) mean annual terrestrial gross primary productivity from
JeDi-DGVM for years 1998-2004; and (c) the difference between the observation-based estimate
and the JeDi-DGVM model output.
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parably with the PFT-based models when the simulated NPP is binned by precipitation

class (Fig. 3.8b). JeDi-DGVM underestimated NPP at the driest sites (< 400 mm yr−1)

and overestimated NPP at wetter sites.

For the two MODIS NPP metrics, JeDi-DGVM performed on par with CLM-CN and

CLM-CASA’, receiving scores of 1.6/2.0 (spatial pattern) and 1.9/2.0 (zonal means).

The comparison with the MODIS NPP product reveals that JeDi-DGVM is able to

capture the broad spatial patterns of NPP (Fig. 3.9). JeDi-DGVM prominently over-

estimates productivity, though, in the grassland regions of South America and the Sahel

as well as the forested regions of the eastern United States, eastern China, and north-

ern Eurasian. This high bias also emerges in the comparison with the zonally averaged

MODIS NPP (Fig. 3.6b).

3.4.6 Evapotranspiration

JeDi-DGVM simulated a mean global terrestrial ET flux of 82×103 km3 year−1, which

is higher than the observation-based estimate of 65 ± 3 ×103 km3 year−1 of Jung et al.

(2010) but within the range of model-based estimates (60-85×103 km3 year−1) from the

the Water Model Intercomparison Project (WaterMIP; Haddeland et al. 2011). Fig.

3.10 shows a spatial comparison of simulated mean annual ET and the observation-

based estimates of Jung et al. (2010). Overall, the model performed reasonably well

(r2 = 0.78) in reproducing the global pattern of ET. The zonal averages, however, show

a strong positive bias in the equatorial tropics (Fig. 3.6c; r2 = 0.80). Further analysis

revealed that some of this model bias is attributable to an overestimation of canopy

interception, especially in tropical forests. Adjusting the parameterizations related to

canopy interception and canopy storage capacity has improved model performance for

other DGVMs (Bonan and Levis 2006; Liang and Xie 2008).

3.4.7 Seasonal cycle of atmospheric CO2

JeDi-DGVM captured the general temporal pattern (r = 0.84 ± 0.04, 0.83 ± 0.08,

0.80 ± 0.15) of a spring drawdown of atmospheric CO2 in the northern hemisphere

followed by an autumnal rise. However, there is a phase offset at many stations with

the simulated spring drawdown occurring about one to two months later than obser-

vations. This offset may be due to the late leaf expansion mentioned above (Fig. 3.3)

or to limitations stemming from the simple nature of heterotrophic respiration scheme.

JeDi-DGVM overestimated the seasonal amplitude of atmospheric CO2 in the northern
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Figure 3.8: Comparison of net primary productivity between JeDi-DGVM model output (mean
over years 1975-2000) and 933 site observations from the Ecosystem Model Data Intercompar-
ison Initiative (EMDI) class B dataset (Olson et al. 2001). Shown as (a) scatterplot where the
red dots represent matched pairs of model grid cells and observation sites and the black line
is a 1:1 line; and (b) the same but normalized by precipitation (binned in to 400 mm yr−1

increments)
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Figure 3.9: Mean annual net primary productivity for years 2000-2004 from (a) MODIS
MOD17A3 Collection 4.5 product (Heinsch et al. 2006; Zhao et al. 2005, 2006); (b) as simu-
lated by JeDi-DGVM; and (c) the difference between the MODIS product and the JeDi-DGVM
model output.
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Figure 3.10: (a) Observation-based estimate of mean annual evapotranspiration for years
1982-2008 (Jung et al. 2010); (b) mean annual gross primary productivity as simulated by JeDi-
DGVM for years 1982-2004; and (c) the difference between the observation-based estimate and
the JeDi-DGVM model output.
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hemisphere, particularly in the middle and high latitude bands. The ratios of simu-

lated to observed amplitudes were 1.23±0.08, 1.33±0.26, and 1.10±0.16, for the high,

middle, and equatorial latitude bands, respectively. This overestimation in seasonal

amplitude is directly attributable to the overestimation of NPP in those regions. Fig.

3.11 illustrates the reasonably good agreement between the simulated seasonal CO2 cy-

cle and GLOBALVIEW measurements at a high latitude (Point Barrow, Alaska, United

States), a mid-latitude (Niwot Ridge, Colorado, United States), and an equatorial sta-

tion (Mauna Loa, Hawaii, United States). The results for all GLOBALVIEW stations

considered here are summarized in a Taylor diagram (Taylor 2001) in Fig. 3.12.

Overall, JeDi-DGVM performed better than CLM-CN and CLM-CASA’ on this met-

ric with a combined score of 11.8/15.0. It scored better than both PFT-based models

on the measure of amplitude agreement and fell between the scores of those models on

the measure of phase agreement.

3.4.8 Net terrestrial carbon exchange

The net terrestrial carbon sink simulated by JeDi-DGVM is compatible with decadal

budgets of the global carbon cycle given the uncertainties regarding the oceanic and

anthropogenic fluxes. For the 1980s, JeDi-DGVM simulated a global terrestrial car-

bon flux of −2.89 PgC yr−1 (negative values indicate a net uptake of carbon by the

terrestrial biosphere), which lies within the range of uncertainty from the IPCC (-3.8

to 0.3 PgC yr−1; Denman et al. 2007). In agreement with the IPCC carbon budgets,

JeDi-DGVM simulated a larger carbon sink in the 1990s (−3.35 PgC yr−1), which also

lies within the IPCC range of -4.3 to -1.0 PgC yr−1 (Denman et al. 2007). The model

estimates presented here suggest a stronger land carbon sink than previous DGVM

studies (1.2-2.75 PgC; Sitch et al. 2008; Randerson et al. 2009).

JeDi-DGVM captured the magnitude of interannual variability of terrestrial NEE

quite well (σ = 0.94 Pg yr−1) when compared to the TRANSCOM-derived estimates

(σ = 1.04 PgC yr−1)or the period 1988-2004. The model results are also moderately

correlated (r = 0.42; p < 0.05) with the year-to-year TRANSCOM anomalies. The

simulated anomalies fell within one standard deviation of the multi-model TRANSCOM

mean in 12 of the 17 years.

The model captured the strong positive anomaly associated with the 1998 El Niño

event, but not the similarly strong anomaly in 1997. The rapid growth rate of at-

mospheric CO2 in 1997 has been linked with large peat and forest fires in the Asian
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Figure 3.11: Mean seasonal cycle of atmospheric CO2 at (a) Barrow, Alaska (71 ◦N), (b) Niwot
Ridge, Colorado (40 ◦N), (c) Mauna Loa, Hawaii (20 ◦N) for years 1991-2000. The dashed blue
lines represent the observations from the GLOBALVIEW dataset (Masarie and Tans 1995).
The JeDi-DGVM estimates were obtained by combining the simulated NEE fluxes with the
monthly impulse response functions (Gurney et al. 2004) of the 13 TRANSCOM atmospheric
tracer transport models. The red line represents the mean of the model estimates. The light
red shaded region represents one standard deviation around the multimodel mean.

tropics (Page et al. 2002; van der Werf et al. 2008). Incorporating mechanistic rep-

resentations of fire (e.g. Thonicke et al. 2008) and peat dynamics (e.g. Kleinen et al.

2012) in JeDi-DGVM may improve performance on this metric.

JeDi-DGVM was also not able to capture the negative anomaly in 1992-1993. This

drawdown has been associated with climate impacts from the Mount Pinatubo eruption,

including an increase in diffuse radiation due to elevated stratospheric aerosol loads

(Gu et al. 2003; Mercado et al. 2009). A more detailed canopy radiation transfer model

(e.g. Drewry et al. 2010) would be required to to appropriately capture the effects

of diffuse light on vegetation productivity. If the two years strongly affected by the

Pinatubo eruption (1992-1993) are excluded, the model time series is highly correlated

(r = 0.63; p < 0.01) with the interannual TRANSCOM anomalies.
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Figure 3.12: Taylor diagram comparing the simulated mean annual cycle of atmospheric CO2

for years 1991-2000 to GLOBALVIEW observations at 57 stations in the Northern Hemisphere.
The annual cycle of atmospheric CO2 was computed by applying TRANSCOM impulse response
functions (Gurney et al. 2004) to the monthly NEE fluxes simulated by JeDi-DGVM.

Figure 3.13: Comparison of the interannual variability in the global land net ecosystem ex-
change fluxes from the JeDi-DGVM to the TRANSCOM atmospheric model inversion estimates
(Baker et al. 2006) for years 1988-2004. The red line represents the JeDi-DGVM flux anoma-
lies from the long-term mean. The blue line represents the mean of the 13 models from the
TRANSCOM experiment after removing the seasonal cycle and the long-term mean for each
model. The light blue shaded region represents 1 standard deviation around the TRANSCOM
multimodel mean.
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3.4.9 Comparison with eddy covariance measurements

In the comparison with the Ameriflux observations, JeDi-DGVM performed compara-

bly to CLM-CASA’ and CLM-CN, both in terms of metric scores and overall patterns

of bias. Seasonal variation in NEE was often lower in the JeDi-DGVM results than

in the flux tower observations. And, although not always present, many sites showed

a phase offset of one to two months delay. This is consistent with the model biases

described above for the seasonal CO2 cycle and phenology. At many of the temperate

forest sites, JeDi-DGVM overestimated the length of the growing season (i.e. GPP was

higher than observed in the spring and autumn) and underestimated GPP during the

summer peak. Like CLM-CASA’ and CLM-CN, JeDi-DGVM captured the seasonal

pattern of latent heat fluxes (subscore 6.6/9.0) more accurately than that of sensi-

ble heat (5.6/9.0). JeDi-DGVM significantly overestimated the sensible heat fluxes at

many sites, indicating the need for a more sophisticated treatment of canopy energy

balance (e.g. Drewry et al. 2010).

3.4.10 Carbon stocks and flows in Amazonia

JeDi-DGVM performed reasonably well in matching the spatial pattern of aboveground

living biomass density in South America (Fig. 3.14, r = 0.83). Within the Amazon

basin, JeDi-DGVM simulated a total aboveground biomass of 59 Pg C, slightly lower

than the total of 69 ± 7 PgC estimated from observations by Saatchi et al. (2007). We

attribute some of the overestimation of biomass around the perimeter of the Amazon

basin and further south in the Paraná basin to a lack of human land-use and fire as

model processes/drivers. The underestimation of aboveground biomass in the central

Amazon basin may be related to the lack of competitive interactions between plant

growth strategies. More specifically the competition for light, which if incorporated in

the model might favor plant growth strategies that invest proportionally more carbon

towards growing woody stems. The implications of the current ‘biomass-ratio’ aggre-

gation scheme and the current lack of resource competition within JeDi-DGVM are

discussed further in Chapter 5.2.3.

The carbon allocation and storage scheme in JeDi-DGVM provides a basis for con-

trasting model estimates of carbon pools against carbon budget observations from three

mature forest ecosystems in Amazonia synthesized by Malhi et al. (2009). This compar-

ison is summarized in Fig. 3.15. Despite differences between GPP simulated by JeDi-

DGVM (2474 gC m−2 yr−1) and observed values (3330± 420 gC m−2 yr−1; Figueira
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et al. 2008; Malhi et al. 2009), we find that JeDi-DGVM performs well when con-

trasting Amazon carbon pool and allocation flux estimates. The simulated ratio of

autotrophic respiration to GPP (52%) was slightly less than the range of the observa-

tions (65±10%). The fractions of NPP allocated to each plant carbon pool correspond

quite well with the observed allocation patterns. The simulated turnover times for the

woody pools (37 years) closely matches the the mean of the observations (40± 4 years)

from Malhi et al. (2009). Other studies, however, have suggested much longer wood

turnover times (∼ 90 years) (Vieira et al. 2004; Figueira et al. 2008). The simulated

stock of coarse woody debris (2421 gC m−2) closely matches the range of observed

values (2421± 560 gC m−2). The mean simulated soil carbon stock (23460 gC m−2)

for this region is significantly greater than the mean of the observations to 2 m depth

(14260± 2728 gC m−2; Malhi et al. 2009). However, Quesada et al. (2009) presents

evidence for substantial carbon storage below that depth, including a soil carbon stock

of 22000 gC m−2 to 3 m depth at the Tapajós site.

3.4.11 Sensitivity to elevated atmospheric CO2

Globally, simulated NPP increased by 18% during the first five years of simulated

CO2 enrichment at 550ppm, exhibiting a large step change in the first year. Not

surprisingly, simulated net terrestrial carbon uptake also quickly rose to 15.03 PgC yr−1

during that time. These values are similar to those exhibited by CLM-CASA’ (17%

and 12.5 PgC yr−1). During the same time period (1997-2001), mean NPP increased

by 15 ± 1% at the model grid cells corresponding to the four temperate forest FACE

experiments reported in Norby et al. (2005). The observed increase at those sites was

higher, 27± 2%. The geographic variation of NPP enhancement (Fig. 3.16) is broadly

similar to the pattern simulated by the global vegetation model LPJ-GUESS (Hickler

et al. 2008), with the strongest enhancement occurring in tropical forest regions. JeDi-

DGVM performed reasonably well on this metric with a score of 6.9/10. This was close

to the performance of CLM-CASA’ and significantly better than CLM-CN.
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Figure 3.14: Aboveground live biomass in the Amazon basin from (a) observation-based esti-
mates using plot measurements and remote sensing data (Saatchi et al. 2007); (b) as simulated
by JeDi-DGVM at model year 2000; and (c) the difference between the observation-based esti-
mates and the JeDi-DGVM model output.

38



3.4 Results and discussion

Canopy
103 gC

τ = 0.45 years

Wood
15318 gC

τ = 37 years

Fine roots
87 gC

τ = 0.45 years

Litter

Soil
23460 gC

τ =  21 years

GPP = 2474 gC m-2 yr-1

Ra = 1273 gC m-2 yr-1

NPP = 1201 gC m-2 yr-1

18%38%

43%

52%

48%

CWD
2373 gC

τ = 12.8 years

Canopy
255 gC

τ = 0.6 years

Wood
18560 gC

τ = 40 years
Fine roots

Litter
CWD

2421 gC
τ = 5.2 years

GPP = 3330 gC m-2 yr-1

Ra = 2180 gC m-2 yr-1

NPP = 1150 gC m-2 yr-1

18%41%41%

a) Observations
Malhi et al. (2009)

65%

35%

b) JeDi-DGVM

Soil to 2 m
14260 gC

Figure 3.15: Carbon pools and fluxes in Amazonia from a) synthesis of observations (Malhi
et al. 2009) and b) as simulated by JeDi-DGVM for years 1980-2004. GPP, gross primary
productivity; Ra, autotrophic respiration; NPP, net primary productivity; CWD, coarse woody
debris

Figure 3.16: Geographic pattern of the simulated enhancement of net primary productivity
(NPP) due to a step increase of atmospheric CO2 concentrations from ambient to 550 ppm.
NPP values averaged over the period 1997-2001.
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3.5 Summary of model evaluation

Overall, JeDi-DGVM received a score of 68.2 (out of 100 possible), exceeding the scores

of the two PFT-based models (CLM-CASA’; 65.7 and CLM-CN; 58.4) evaluated in Ran-

derson et al. (2009). The scores of the individual metrics are summarized in Table 3.1.

JeDi-DGVM matched or exceeded the performance of at least one of the other models

on almost every metric. The two exceptions were the comparisons with estimates of

interannual terrestrial carbon exchange and fire emissions. The results of this eval-

uation imply that that the bottom-up functional trade-off approach of JeDi-DGVM,

linked with an aggregation mechanism based on the ‘biomass-ratio’ hypothesis, is capa-

ble of simulating the broad-scale patterns of terrestrial biogeochemistry at least as well

as two other state-of-the-art terrestrial biosphere models based on the dominant PFT

paradigm. We have also shown that unlike PFT-based DGVMs, JeDi-DGVM is able

to mechanistically represent the large-scale biogeographical patterns of plant species

richness, community evenness, and relative abundance distributions, opening avenues

to explore the impacts of future climate variability on terrestrial ecosystem composition

and function in a much less constrained way than has been previously performed.
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Chapter 4

Quantifying functional diversity-biospheric

functioning relationships

4.1 Introduction

Ecologists have long suspected that plant functional diversity influences the magnitude

and variability of ecosystem functioning. This thinking is well illustrated by a passage

from Charles Darwin’s unfinished manuscript Natural Selection, which was later edited

and published nearly 100 years after his death (Darwin 1987):

We may . . . assert that a greater absolute amount of life can be supported;

. . . when life is developed under many & widely different forms, than when

under a few & allied forms; – the fairest measure of the amount of life,

being probably the amount chemical composition within a given period.

Imagine the case of an island, peopled with only three or four plants of

the same order all well adapted to their conditions of life, & by three or

four insects of the same order; the surface would no doubt be pretty well

clothed with plants & there would many individuals of these species; . . . but

assuredly there would seasons of the year, peculiar & intermediate stations,

. . . which would not be well searched for food, & the amount of life would

be consequently less, than if our island had been stocked with hundreds of

forms, belonging to the most diversified orders.

Field and laboratory experiments in the last several decades have confirmed Darwin’s

thinking. Diversity manipulation experiments have shown that higher levels of func-

tional diversity lead to higher ecosystem productivity (Cardinale et al. 2011; Hooper

et al. 2005; Hector et al. 1999; Flombaum and Sala 2008) and lower temporal variability

of ecosystem functioning (Tilman et al. 2006; Proulx et al. 2010; Ives and Carpenter
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2007; Balvanera et al. 2006). There is a growing consensus in the ecological science

community that human-induced biodiversity loss is a threat to the ecosystem services

we rely upon and thus our well-being (Dı́az et al. 2006). At the same time, the loss of

species and, more importantly, the functional traits of those species is likely going to

reduce the ability of ecosystems to adapt to environmental changes including ongoing

global warming (Elmqvist et al. 2003). This ability of ecosystems to adapt to changes

and to maintain their functioning in the face of those change is referred to as resilience

(Peterson et al. 1998).

In many ways, current global vegetation models (Dynamic Global Vegetation Models,

DGVMs) based on the PFT paradigm are simulating Darwin’s island. DGVMs reduce

the immense functional diversity of terrestrial vegetation to handful of PFTs. Recent

studies using trait data collected and compiled from all over the globe have shown that

for several functional traits, there is greater variation within PFTs than between PFTs

(Wright et al. 2005; Reich et al. 2007; Kattge et al. 2011). Current models, however,

can only use a single parameter value to represent this large within–PFT variation.

Model-data assimilation studies (Groenendijk et al. 2011; Alton 2011) have shown that

the coarse representation of functional diversity provided by these PFT schemes is

insufficient for representing the full variability of vegetation parameters necessary to

accurately represent carbon cycle processes.

Based on the growing consensus regarding biodiversity-ecosystem functioning rela-

tionships, we can hypothesize that PFT-based models would underestimate productiv-

ity and overestimate the response of terrestrial ecosystems to climatic variability and

change. In this chapter, we contrast the magnitude and variability of net primary pro-

ductivity and evapotranspiration fluxes of diverse communities to those of a single, but

representative PFT. This is accomplished by running a diverse JeDi-DGVM simulation

with many plant growth strategies and where the community fluxes are aggregated

from the different strategies (the Community Weighted Functioning, ”CWF” approach

in the following) and another simulation wherein the functional diversity is reduced.

This reduction is accomplished by recreating something like a PFT by simulating only a

single plant growth strategy at each grid cell characterized by the community-weighted

functional trait parameters from the diverse simulation (the Community Weighted Trait

”CWF” approach in the following). The major difference between the two approaches

is that in the CWT approach, the community-weighted mean trait values are fixed at

the start of the simulation. In the CWF approach of the diverse communities, the

relative abundances of the growth strategies change throughout the simulation as the

climate becomes relatively more or relatively less favorable for its particular set of trait
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values.

The two model simulations are investigated to evaluate the role of diversity in ecosys-

tem functioning. We focus on three different aspects with regard to the functioning. We

hypothesize that the diverse representation of the terrestrial biosphere leads to a higher

productivity in the climatic mean, to greater time stability, and to greater resilience

to large climatic perturbations. In the CWF approach, altered climatic conditions

would favor different trait combinations that are better suited to these conditions. If,

for instance, conditions become wetter, then this would favor trait combinations that

can exploit the greater availability of moisture, for instance by enhancing allocation

to leaves rather than roots. This is schematically shown by the blue line in Fig. 4.1.

Likewise, when conditions become drier, productivity is likely be reduced. The extent

of this reduction can, however, be partly compensated by trait combinations that can

achieve a higher productivity at lower water availability (shown by the red curve in

Fig. 4.1). In other words, the diverse ecosystem would be better able to exploit current

climatic conditions as well as altered conditions due to climatic variability or change.

In contrast, the CWT approach only captures the average trait composition of the

mean climate, implying that the vegetation that this approach represents would likely

to be best suited and most productive under climatic mean conditions. Any deviation

from the mean climate, for instance drier or wetter conditions due to climate variability

or change, the resulting trait combination would likely not to be most suitable to the

altered conditions. This is schematically illustrated in Fig. 4.1 on the right.

To demonstrate a the potential importance of vegetation diversity to climate, we also

evaluate these simulations with respect to the differences in evapotranspiration.
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Figure 4.1: Conceptual diagram to illustrate the expected effect of diversity on productivity
for altered climatic conditions. The left diagram shows the hypothesized outcome of a diverse
community where the community fluxes are aggregated from the individual fluxes of the differ-
ent trait combinations (the CWF approach). For present-day conditions (black curve), different
trait values of a certain trait ”c” are going to result in different values of the achieved produc-
tivity. As the trait combination that is most productive under current conditions is likely to
be the most dominant as well, the community is likely to have a productivity near the maxi-
mum, as indicated by the black square. When the climatic conditions are altered to wetter or
drier conditions (blue and red curves respectively), then the trait value that achieves highest
productivity is likely to be different (as indicated by the blue and red squares). The right
diagram shows the same reasoning but for the approach in which vegetation is represented by
the community-weighted trait (CWT approach). Here, the community-weighted trait parame-
ter would be fixed to the maximum for present-day conditions (black circle), and a change in
climatic conditions is going to result in a reduced increase or greater decrease in productivity.
Overall we would therefore expect lower productivity, less temporal stability, and lower ability
to adapt in the CWT approach.

4.2 Methods

4.2.1 Simulation setup

We ran JeDi-DGVM with two different approaches for representing plant functional di-

versity, a community-weighted functioning (CWF) approach and a community-weighted

traits (CWT) approach. The differences between the two approaches are described be-

low. A schematic diagram illustrating the relationship between these two approaches

is shown in Fig. 4.2.

We first ran JeDi-DGVM following the CWF approach, which is identical to the stan-

dard JeDi-DGVM approach for representing functional diversity described in Chapter

2. The development of two-thousand plant growth strategies were simulated indepen-
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Figure 4.2: Schematic diagram of simulation set up.

dently and in parallel. Each growth strategy characterized by a vector of 15 functional

trait parameters values (Tk = [t1, . . . , t15]), which determine its behavior in terms of

carbon allocation, phenological response times, and other morphological and metabolic

aspects. The trait values of each growth strategy were randomly–choosen from their

complete theoretical or observed ranges as described in Chapter 2.3. In the CWF

approach, diagnostic grid-cell scale variables are calculated at each timestep by averag-

ing the fluxes and properties of all surviving plant growth strategies at that grid cell,

weighting each its current mass-based relative abundances. The relative abundance pij

(Eq. 4.1) of each surviving growth strategy i in a given grid cell j is proportional to

its living biomass BMij at that grid cell relative to the sum of the living biomass of all

surviving growth strategies S in that grid cell. The living biomass of a growth strategy

being the sum of its leaf, fine root, woody, and storage carbon pools. Thus, the relative

abundances within a plant community range between zero and one and the sum of the

abundances is one.

pij =
BMij∑S

k=1BMkj

(4.1)
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Following Garnier et al. (2004), we refer to these diagnostic grid-cell scale variables

as community-weighted fluxes (or properties). As an example, the NPPij of each

growth strategy i at a grid cell j is a function of its traits parameter values Ti and

the environment forcing variables Xj . The community-weighted NPP1 〈NPPj〉 for

that grid cell is the sum of the NPP fluxes of all growth strategies S at that grid cell,

weighting the contribution of each growth strategy by its mass-based relative abundance

pi,j :

〈NPPj〉 =
S∑

i=1

pi,j NPPij =
S∑

i=1

pi,j f (Ti,Xj) . (4.2)

In the CWT approach, we use the time-averaged relative abundances pij from the

CWF simulation to calculate the community-weighted mean trait parameters (〈Tj〉 =∑S
i=1 pij Ti) at each grid cell j. We then run JeDi-DGVM with just one plant growth

strategy at each grid cell characterized by the community-weighted mean trait vector

〈Tj〉. Continuing the example from above, the community NPP NPPj in the CWT

approach is a function of the community-weighted mean trait vector 〈Tj〉 from the the

CWF approach and the same environment forcing variables Xj :

NPPj = f (〈Tj〉,Xj) = f(
∑

pij Ti,Xj). (4.3)

For both approaches, JeDi-DGVM was run on a global grid at a spatial resolution of

approximately 2.8◦ by 2.8◦ resolution, covering all land areas except Antarctica. The

model was forced at a daily time step with downward shortwave and longwave radia-

tion, precipitation, and near-surface air temperature from an improved NCEP/NCAR

atmospheric reanalysis dataset (Qian et al. 2006). The atmospheric CO2 concentration

was fixed at 380 ppm throughout all simulations. We looped through the reanalysis

dataset for 1000 years, allowing the vegetation carbon pools to reach a quasi-steady

state. We used only the last 100 years of model output to evaluate the differences

between the two approaches.

We also ran two additional 100 year pertubation simulations for both approaches to

investigate the role of modelled functional diversity on ecosystem resilience to sudden

climatic change. These pertubation simulations were branched from the end of the

spin-up simulations described above. In the first pertubation, we reduced the precipi-

tation at each time step by 50%. In the second pertubation, we added 2◦ C to the air

1We adopt chevron notation (e.g. 〈NPPj〉 to denote community-aggregated fluxes and properties.

46



4.2 Methods

temperature.

4.2.2 Diversity measures

We calculated three functional diversity measures for each grid cell of the CWF simu-

lation. We use these diversity measures in the following section to help understand the

differences between the CWT and CWF simulations.

The functional richness (FR) at each grid cell is derived from the number of surviving

growth strategies (Fig. 4.3a). The FR is normalized by the maximum number of

surviving PGSs in any of the grid cells. Here, survival is defined as maintaining a

positive balance of stored assimilates. Thus, FR varies between zero for grid cells with

no surviving PGSs and one at the grid cell (or grid cells) with the maximum number

of growth strategies.

Functional evenness (FE) at each grid cell is calculated following the Pielou index

(Pielou 1966), which is the the Shannon entropy of the relative abundances pi of the

S surviving growth strategies within that grid cell, normalized by the maximized pos-

sible Shannon entropy for that community (i.e. when all growth strategies are equally

abundant). A map of simulated FE is shown in Fig. 4.3b.

FE =

∑S
i=1 pi ln pi

lnS
(4.4)

FE approaches zero as more and more plant biomass is found in only one or a few

growth strategies. FE is set to zero when there is one or no surviving growth strategies.

The Shannon entropy of a given community is basically a measure of uncertainty in

predicting the relative abundances of the growth strategies that compose the relative

abundance vector p = (p1, p2, . . . , pS).

Functional dispersion (FD) is calculated as the weighted mean Euclidean distance

of all growth strategies to the community-weighted centroid of all growth strategies in
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Figure 4.3: Simulated geographic patterns of a) functional richness (FR), b) functional even-
ness (FE), and c) functional dispersion (FD). Functional richness values are normalized by the
maximum simulated FR value.
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Figure 4.4: Simulated relationships between a) functional richness (FR) and functional even-
ness (FE), b) functional richness (FR) and functional dispersion (FD), and (c) functional even-
ness (FE) and functional dispersion (FD). Functional richness (FR) values are normalized by
the maximum simulated FR value.
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multidimensional trait space (4.3c):

zi = ‖Ti − 〈T 〉‖ =

√√√√ n∑
k=1

(tik − 〈tk〉)2 (4.5)

FD =
S∑

i=1

pizi (4.6)

(4.7)

where pi is the relative abundance of growth strategy i, and zi is the distance of growth

strategy i to the community-weighted centroid 〈T 〉 (Laliberté and Legendre 2010). FD

is low when the most abundant growth strategies (possibly the only surviving growth

strategies) are all near the centroid. FD is highest when the community biomass is

dominated by a few growth strategies that differ widely in their trait values.

4.3 Results

4.3.1 Differences in mean productivity and evapotranspiration

Fig. 4.5 shows the absolute difference (top) and relative difference (bottom) between

the CWT and CWF simulations in mean NPP. The CWT simulation yielded lower NPP

than the CWF simulation in nearly all regions, however, the magnitude of this decrease

varies spatially. The relative difference in NPP varies nearly quite strongly with FR

and FE (Figs. 4.6a and 4.6b), grid cells with more surviving growth strategies and

strategies with more evenly distributed community biomass tend to have less difference

in productivity between the CWT and the CWF approaches. The relative decrease

in NPP is strongest in arid and arctic regions with high FD (Fig. 4.6c), i.e. regions

where the distribution of community biomass is dominated by a few growth strategies

with widely different in one or more trait parameter values. In fact, in some of these

high FD grid cells, the CWT simulation shows no NPP, indicating that the growth

strategy in the CWT simulation with community-weighted mean trait parameters from

the CWF simulation is not able to survive. The absolute differences in productivity

are most pronounced in the semi-arid tropical grassland and the temperate forests of

eastern North America, Europe, and east Asia.

Fig. 4.7 shows the absolute differences (top) and relative differences (bottom) in

the mean ET fluxes. Unlike the NPP fluxes, the ET fluxes in the CWT simulations
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Figure 4.5: Geographic patterns of the (top) absolute and (bottom) relative differences be-
tween mean net primary productivity (NPP) as simulated by the community-weighted trait
(CWT) and community-weighted functioning (CWF) approaches. These are the differences in
the mean NPP averaged over the last 100 years of the simulations. The relative difference is
calculated as the mean productivity of the CWT simulation minus the mean productivity of
the CWF simulation, divided by the mean productivity of the CWF simulation.
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Figure 4.6: The relative difference in percent between the mean net primary productivity
(NPP) simulated by the community-weighted trait (CWT) and community-weighted function-
ing (CWF) approaches plotted against the three measures of functional diversity: a) functional
richness (FR), b) functional evenness (FE), and c) functional dispersion (FD).
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are generally higher than in the CWF simulations. However, the strength of these

differences varies spatially and there are some regions where the ET flux is lower in the

CWT simulations. Also, the magnitude of these differences in relative terms, however,

is much less than for the NPP. For the ET fluxes, the patterns of absolute and relative

difference between the two simulations are quite similar. The absolute differences are

greatest in the tropics where the magnitude of the ET flux itself is highest. The greatest

absolute differences are generally in the tropical forests, especially the seasonal dry

forests of South America and southeast Asia, where the the land surface evapotranspires

more than 100 mm per year more in the CWT simulation than in the CWF simulation.

This corresponds to a relative increase of ET of about 10%. Larger relative differences

approaching 20% are found in the more temperate regions of western Europe, New

Zealand, and Chile.

The relationships between the relative differences in ET and the functional diversity

metrics (Fig. 4.8) are weaker and less clear than those for the relative differences in

NPP. There is a hump pattern in the relationships between the relative difference in

ET and the FR and FE diversity metrics, with low or negative relative differences

at the sites with the lowest FR and FE and the most pronounced relative difference

at intermediate richness and evenness, and again a reversion towards no change in ET

when approaching the grid cells with the highest FR and FE values. There is almost no

difference between the two approaches in the ET fluxes in the aseasonal and constantly

moist western Amazon basin, the region with the highest FR and FE values. Unlike

with NPP, the ET fluxes were also quite similar between the two approaches in regions

with the highest FD values.

4.3.2 Differences in variability of productivity and evapotranspiration

Fig. 4.9 shows the relative differences between the CWT and CWF simulation in the

interannual (top) and intraannual (bottom) variability of NPP. Fig. 4.10 shows the

same relative differences for the ET fluxes. The variability of the NPP and ET fluxes,

both interannual and intraannual, in the CWT simulation is generally higher than in

CWF simulation, although the spatial patterns vary between the the two fluxes and

the two measures of variability. There are no clear global relationships between the

relative differences in NPP or ET variability and the three functional diversity metrics.

The largest relative differences in the interannual variability of NPP (> 200% +) oc-

cur in the desert and arctic regions with high FD values, however, the temperate/boreal

forests and non-tropical grasslands also see strong positive relative differences. There
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Figure 4.7: Geographic patterns of the a) absolute and b) relative differences between the mean
evapotranspiration (ET) as simulated by the community-weighted trait (CWT) and community-
weighted functioning (CWF) approaches.

is little difference between the CWT and CWF approach in the interannual variability

of NPP in the tropical forests and grasslands of South America, Africa, and southeast

Asia. That spatial pattern is somewhat reversed for the relative differences in the in-

traannual variability of NPP, with the greatest relative differences in the intraannual

variability of NPP occuring in the seasonal dry forests in eastern Amazon basin, central

Africa, and southeast Asia. The positive differences in intraannual variability of NPP

are also smaller in the boreal and temperate forest regions of the northern hemisphere,

and even negative in a few desert grid cells.

The interannual variability of ET is much greater in the CWT simulation than the

54



4.3 Results

Figure 4.8: The relative difference in percent between the mean evapotranspiration (ET) sim-
ulated by the community-weighted trait (CWT) and community-weighted functioning (CWF)
approaches plotted against the three measures of functional diversity: a) functional richness
(FR), b) functional evenness (FE), and c) functional dispersion (FD).
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Figure 4.9: Geographic patterns of the relative differences the (top) interannual and (bottom)
intraannual variability of net primary productivity (NPP) as simulated by the community-
weighted trait (CWT) and community-weighted functioning (CWF) approaches. The interan-
nual variability is calculated as the coefficient of variation (CV) of the yearly mean NPP values.
The intraannual (or seasonal) variability is calculated as the CV of the multi-year monthly
means, that is the CV of the vector of length 12 containing the mean NPP values across all
Januaries, all Februaries, and so on.
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Figure 4.10: Geographic patterns of the relative differences the (top) interannual and (bottom)
intraannual variability of evapotranspiration (ET) as simulated by the community-weighted
trait (CWT) and community-weighted functioning (CWF) approaches. The interannual vari-
ability is calculated as the coefficient of variation (CV) of the yearly mean ET values. The
intraannual (or seasonal) variability is calculated as the CV of the multi-year monthly means,
that is the CV of the vector of length 12 containing the mean ET values across all Januaries,
all Februaries, and so on.
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CWF simulation throughout the temperate and boreal forest regions of North America

and Eurasia, more than 100% greater in some grid cells. There is little difference in

the interannual variability of ET in the tropics and arid region. The differences in

the intraannual variability of ET are more mixed. In some regions, e.g. around the

Mediterrean, the intraannual variability of ET is more than 25% greater in the CWT

simulation, while in other regions, e.g. the southern part of Amazon basin, it is 25%

less. There is no clear global trend relating the differences in the variability of ET and

any of the three functional diversity measures.

4.3.3 Differences in the resilience of the biosphere to climatic perturbation

Fig. 4.11 shows the simulated changes in global mean terrestrial NPP and ET over

the course of the first pertubation experiment in which the precipitation forcing was

reduced by 50%. . The changes shown are relative to the long-term means of each

flux prior to the imposing pertubation. Global mean NPP and ET fell significantly in

both the CWT and CWF simulations after reducing the precipitation. The simulated

fluxes associated with the diverse CWF simulation, however, were less affected by the

perturbation than the sparse CWT simulation. The NPP and ET fluxes decreased

across all regions (Fig. 4.13 and4.14, although the magnitude of these decreases varied

spatially. As one might expect, the semi-arid and arid regions showed the greatest

response to the reduction in precipitation in both simulations. The smallest changes

in both the CWT and CWF simulations are found in moist regions (e.g. tropical

rainforest, boreal forests).

Fig. 4.12 shows the simulated change in global mean terrestrial NPP over the course

of the second perturbation experiment in which a 2 degree warming was applied. Global

mean There was little difference between the two approaches in the global mean change

in ET after the warming pertubation. In the sparse PFT-like CWT simulation , the

warming resulted in lower NPP throughout the tropics (Fig. 4.15a) and mixed results

elsewhere. The diverse CWF simulation showed little change in NPP in the tropics

(Fig. 4.15b) and consistently positive changes throughout colder regions. The changes

in ET after the warming were relatively smaller (Fig. 4.16) than the changes in NPP

in both simulations.
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Figure 4.11: Relative change in terrestrial net primary productivity (NPP; top) and evapo-
transpiration (ET; bottom) from the mean of the control period as simulated by the community-
weighted trait (CWT; red dashed line) and community-weighted functioning (CWF; blue solid
line). The vertical black line denotes when the start of the simulated perturbation (50% de-
crease in precipitation). The horizontal black line denotes zero relative change. A 10 year
running mean has been applied to both lines to improve clarity.
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Figure 4.12: Relative change in terrestrial net primary productivity from the mean of the
control period as simulated by the community-weighted trait (CWT; red dashed line) and
community-weighted functioning (CWF; blue solid line). The vertical black line denotes when
the start of the simulated perturbation (+2◦ C warming). The horizontal black line denotes
zero relative change. A 10 year running mean has been applied to both lines to improve the
clarity.
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Figure 4.13: Relative change in net primary productivity (NPP) between the mean of the con-
trol period and the last 30 years of the 50% precipitation reduction perturbation experiment
as simulated by the community-weighted trait (CWT; top) and community-weighted function-
ing (CWF; middle). The bottom plot shows the difference in relative change between the two
approaches (CWT minus CWF).
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Figure 4.14: Relative change in evapotranspiration (ET) between the mean of the control
period and the last 30 years of the 50% precipitation reduction perturbation experiment as
simulated by the community-weighted trait (CWT; top) and community-weighted functioning
(CWF; middle). The bottom plot shows the difference in relative change between the two
approaches (CWT minus CWF).
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Figure 4.15: Relative change in net primary productivity (NPP) between the mean of the
control period and the last 30 years of the +2◦ C warming perturbation experiment as simulated
by the community-weighted trait (CWT; top) and community-weighted functioning (CWF;
middle). The bottom plot shows the difference in relative change between the two approaches
(CWT minus CWF).
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Figure 4.16: Relative change in evapotranspiration (ET) between the mean of the control
period and the last 30 years of the +2◦ C warming perturbation experiment as simulated by the
community-weighted trait (CWT; top) and community-weighted functioning (CWF; middle).
The bottom plot shows the difference in relative change between the two approaches (CWT
minus CWF).
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4.4 Discussion

This comparison of a diverse representation of functional diversity (CWF approach)

and coarse representation of functional diversity (CWT approach) yielded three major

results. The diverse approach resulted in (i) higher temporal mean vegetation produc-

tivity and water-use efficiency, (ii) a lower temporal variance of vegetation productivity

and evapotranspiration, and (iii) a more adaptive response to climatic perturbations

leading to more positive or less negative changes in productivity and evapotranspiration.

These insights are consistent with the ecological understanding of diversity-ecosystem

functioning relationships and are discussed in more detail in the following subsections.

4.4.1 Diversity-Productivity

The simulations showed that the diverse CWF approach yields higher temporal mean

productivity. This is consistent to what we hypothesized in the introduction of this

chapter (see Fig. 4.1). This effect of diversity on productivity is known as the diversity-

productivity hypothesis in ecological theory. This result of the JeDi-DGVM is surpris-

ing to some extent because the model does not account for faciliation, i.e. the beneficial

effects of one growth strategy on another.

We found that this productivity-enhancing effect was strongest in regions with the

highest FD. These are regions where the distribution of community biomass is dom-

inated by a few growth strategies which differ widely in one or more trait parameter

values. With a greater productivity, the diverse simulations also exhibited a greater

water-use efficiency (i.e. lower evapotranspiration flux relative to ecosystem productiv-

ity). This effect was strongest in tropical ecosystems. These results would imply that

the coarse representation of functional diversity in current PFT-based DGVMs may

lead to an underestimation of productivity and water-use efficiency.

4.4.2 Diversity-Variability

The simulations showed that the diverse CWF approach exhibits less temporal variation

in both productivity and evapotranspiration. This is the case for interannual variations

as well as seasonal variations within the year. This is again consistent to what we

hypothesized in the introduction and with previous diversity-manipulation experiments

(Tilman et al. 2006; Proulx et al. 2010; Allan et al. 2011) and models in theoretical

ecology (Tilman et al. 1998; Naeem 1998; Doak et al. 1998; Yachi 1999).
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To some extent, these result are mathematically inevitable due to the averaging and

negative covariance effects. The growth strategy that does best in the mean climate,

can not necessarily be the most productive during drier or wetter years. In the con-

trary, species that do better during wet period, for instance by allocating more to leaf

growth can not also do better during dry periods, when possibly a higher allocation

to roots would be favorable. When growth strategies under altered conditions perform

better, they gain more biomass, becoming more abundant and consequently, more

heavily weighted in the aggregation of fluxes to the ecosystem-scale functioning. Thus,

with a richer represenation of functional diversity, the impact of climatic variability on

ecosystem functioning will be reduced.

The strong effect of the representation of diversity on the evapotranspiration is likely

to alter feedbacks between the vegetation and the atmosphere. The lower temporal

variability in fluxes associated with the diverse approach would seem likely to stabilize

vegetation fluxes under atmospheric variability, whereas the greater variability asso-

ciated with the CWT approach could amplify these effects. This result supports the

need for integrating a more diverse representation of functional diversity in to the land

surface component of Earth System models.

4.4.3 Diversity-Resilience

The productivity response of the diverse CWF simulation was generally less negative

than the CWT simulation to drying perturbation experiment. The CWF simulation

also exhibited generally more positive changes in productivity in response to the warm-

ing perturbation experiment. On the other hand, in the CWT simulation, the produc-

tivity decreased dramatically in some regions. This outcome is expected because the

diverse representation allows for a shift in the dominance towards growth strategies

with traits more suited to the altered conditions. This is also consistent with other

two results described above. In a way this is the same result as the case of diversity-

productivity effect, except that climatic variability is replaced by a climatic change.

This insight is specifically relevant for climate change research. For instance, the

study by Cox et al. (2000) suggest an Amazon dieback under global warming scenar-

ios. This result was obtained with a coarse representation of functional diversity with

only a very few PFTs. Our results imply that with a more diverse representation of

vegetation within an Earth system model would lead to less severe vegetation changes

under climatic change. This would also support the importance of conserving func-

tional diversity in ecosystems for them to maintain their ability to adapt to changing
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conditions.

4.5 Summary of diversity-biospheric functioning relationships

JeDi-DGVM simulations were run in two configurations to quantify how the representa-

tion of functional diversity influences the simulated magnitude and variability of water

and carbon fluxes between the land surface and the atmosphere. In the first configura-

tion, we simulated a diverse biosphere using a large number of plant growth strategies,

allowing the modelled ecosystems to adapt through emergent changes in ecosystem

composition. In the second configuration, we recreated a low diversity PFT-like rep-

resentation of the terrestrial biosphere by aggregating the surviving growth strategies

from the diverse simulation to a single community-weighted plant growth strategy per

grid cell. In agreement with earlier biodiversity-ecosystem functioning studies, the di-

verse representation of terrestrial vegetation exhibited higher productivity and water-

use efficiency in many regions. The land surface fluxes of productivity in the diverse

simulations show greater temporal stability and resilience to climatic perturbations.

The strength of these differences in magnitude and variability were modulated by the

composition of the simulated ecosystems in the diverse simulations. In summary, these

results support the notion that functional diversity plays a role in the functioning of

the Earth System.

These results demonstrate a need for improving the representation of functional diver-

sity in comprehensive Earth System models and add support for conserving biodiversity

to maintain ecosystem services and land surface functioning.
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Chapter 5

Summary and outlook

5.1 Summary

In this thesis, we introduced JeDi-DGVM as a prototype for a new class of dynamic

global vegetation models with representation of functional diversity that are less coarse

and less reliant on empirical bioclimatic relationships than previous PFT-based ap-

proaches. This is accomplished with (i) a mechanistic representation of functional

trade-offs, which (ii) constrain a large number of plant growth strategies with trait pa-

rameter values randomly sampled from their complete theoretical/observed ranges, and

(iii) the aggregation of the fluxes/properties associated with those growth strategies to

grid-scale structure and function based on their relative abundances.

In a systematic evaluation of JeDi-DGVM in Chapter 3, we have shown that its

bottom-up plant functional tradeoff approach together with a simple mass-based ag-

gregation mechanism is able to capture the broad patterns of terrestrial biogeochemical

fluxes and associated land surface properties reasonably well. The evaluation results

compare favorably with two other state-of-the-art terrestrial biosphere models based

on the presently dominant PFT paradigm. Additionally, we have shown that JeDi-

DGVM is able to mechanistically reproduce the global-scale biogeographical patterns

of plant species richness and community evenness. Because it is more closely based on

first-principles, JeDi-DGVM requires less input data and is able to produce a wider

range of testable outputs than earlier DGVMs based on the PFT concept.

We have also shown in Chapter 4, that when compared with a coarser representation

of functional diversity, that the diverse JeDi-DGVM approach leads to a simulated

terrestrial biosphere with higher productivity and water-use efficiency, greater stability

in terms of its carbon and water fluxes, and greater resilience to climatic perturba-

tions. These findings fit with previous theoretical and empirical work on biodiversity-
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ecosystem functioning relationships. They highlight the need for improving the rep-

resentation of functional diversity within the vegetation component of comprehensive

Earth System models, but they also bolster support for conserving biodiversity to

maintain biospheric functioning in a changing climate.

The JeDi-DGVM modelling approach developed in this thesis sets the foundation

for future applications, in which the simulated vegetation response to global change

has a greater ability to adapt through changes in ecosystem composition, having po-

tentially wide-ranging implications for biosphere-atmosphere interactions under global

change. In the next and last section of this thesis, we propose possible directions for

further model development/evaluation and we highlight a few ongoing and potential

applications of JeDi-DGVM.

5.2 Outlook

JeDi-DGVM introduces several elements novel to dynamic vegetation modeling, allow-

ing for an explicit representation of functional diversity that can evolve temporally. As

the current implementation represents an initial prototype from which refinements and

added functionality will be made, we discuss below several key concepts that underlie

the formulation of JeDi-DGVM, and which will likely result in the greatest impact on

model improvement in future efforts. We also highlight several ongoing and potential

applications of the model.

5.2.1 Representation of tradeoffs

JeDi-DGVM is a prototype meant to explore the potential utility of a trait-based

functional tradeoff approach for transitioning the state-of-the-art of global vegetation

modelling beyond the limitations of a set of fixed PFTs. One of the greatest potential

advantages of this approach is that it does not constrain the vegetated land surface

to be represented by a small set of functional types, but instead allows for a more

continuous representation of vegetation types that can evolve as a function of climatic

suitability. We demonstrate in this work that from this tradeoff-based approach a

realistic representation of land surface biophysical form and function can emerge.

For this approach to be successful, several key requirements must be met, particularly

(1) identification of the key tradeoffs that determine the ability of a plant to survive

in a given environment, and (2) proper parameterization of the costs and benefits of
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the traits associated with those tradeoffs. In this current implementation, JeDi-DGVM

utilizes 15 functional parameters that characterize the behavior of a growth strategy

in terms of its carbon allocation strategy, phenological dynamics, tissue turnover and

the balance between respiration and photosynthesis. The positive performance of JeDi-

DGVM in the C-LAMP evaluation lends credibility to this approach, and will motivate

further evaluation of the critical plant traits and tradeoffs that determine the perfor-

mance of the vegetated land surface. New information sources linking costs and benefits

with observed traits, such as the TRY database (Kattge et al. 2011), will provide im-

portant constraints on future refinements of this approach.

5.2.2 Is everything everywhere?

JeDi-DGVM assumes that the distribution of plant growth strategies is able to ad-

just quickly to climatic changes, allowing all of the sampled plant growth strategies

to emerge when a given climate anywhere on the globe becomes suitable. This can be

stated through the ecological hypothesis of “Everything is everywhere, but the environ-

ment selects.” While this ecological hypothesis was originally formulated with respect

to the biogeography of marine microbes, terrestrial plant species face considerable bar-

riers to migration (e.g. mountain ranges, deserts, oceans). The timescales of terrestrial

plant growth and dispersal also differ greatly from those of fast-lived marine microbes

transported along ocean currents. A model-based study (Malcolm et al. 2002) showed

that the preferred ranges of many plant species could shift tens to hundreds of kilome-

ters over the next century due to anthropogenic greenhouse warming, making the issue

of estimating migration rates, and the extent to which everything is truly everywhere,

key to predicting future vegetation composition.

Despite the importance of this issue to the vegetation modelling community (Neilson

et al. 2005), only one modelling group (Lee 2011) has introduced mechanistic migration

processes in a DGVM. Lee (2011) attributes this partially to the difficulties associated

with the considerable variation in seed dispersal rates within the PFTs used by the

current generation of DGVMs. Incorporating aspects of seed dispersal in a functional

tradeoff framework, through additional traits such as seed size, could help to constrain

plant migration rates in climate change simulation experiments. Seed dispersal range,

and consequently the rate of plant migration, is closely linked to seed size. Smaller seeds

are more easily transported by the wind and animals than larger seeds (Ezoe 1998). On

the other hand, larger seeds allow establishing plants to persist through longer periods

of stress. Parameterizing the tradeoff between seed size and dispersal rates will be
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challenging but possibly less so than modelling migration with a PFT-based scheme.

5.2.3 Aggregation scheme and competition

The aggregation of vegetation states and fluxes across the diversity represented in

each computational grid cell is based on the ‘biomass-ratio’ hypothesis. This scheme

determines the grid cell flux or state as an average across all surviving plant growth

strategies in the grid cell, weighted by their respective biomass, imposing the implicit

assumption that interaction between plant growth strategies is weak. For example,

JeDi-DGVM does not currently account for shading of plant growth strategies that

resemble understory plants by those that resemble dominant canopy trees. Likewise,

the hydrologic conditions that a plant growth strategy experiences are not influenced

by the other surviving plant growth strategies in its grid cell. Thus, understory plant

growth strategies do not stand to benefit during periods of drought from the observed

phenomena of hydraulic distribution, wherein deep-rooted plants redistribute soil water

from lower soil layers (Lee et al. 2005; Prieto et al. 2012). These types of competitive

and facilitative interactions are known to influence community-assembly processes at

the local scale (Cavender-Bares et al. 2009), leading to trait divergence. However, at

larger scales, including the spatial resolution of the simulation results presented here,

trait selection and trait convergence due to environmental filtering have been shown to

be the dominant community-assembly processes (Kraft et al. 2008; Swenson and Weiser

2010; Freschet et al. 2011; Kraft et al. 2011).

This ‘biomass-ratio’ aggregation scheme was chosen for its simplicity and its demon-

strated effectiveness for making statistical predictions about community fluxes from

trait abundance information at the field-scale (Garnier et al. 2004; Vile et al. 2006;

Kazakou et al. 2006; Dı́az et al. 2007; Quetier et al. 2007). However, the mechanistic

tradeoff-based trait filtering framework of JeDi-DGVM does not preclude the inte-

gration of more sophisticated aggregation schemes. For example, Bohn et al. (2011)

recently used JeDi-DGVM model output together with a simple population dynamics

model DIVE (Dynamics and Interactions of VEgetation) to explore how seed competi-

tion, resource competition and environmental disturbance might influence community

structure. In the future, the tradeoff-based modelling approach of the JeDi-DGVM

could be directly integrated with the representation of population dynamics from the

DIVE model or from other recent models (e.g. the Ecosystem Demography model;

Moorcroft et al. 2001; Medvigy et al. 2009; Fisher et al. 2010b) which explicitly ac-

count for canopy height structure and age classes.
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5.2.4 Further evaluation

In this thesis, we evaluated the feasibility of using the JeDi-DGVM modelling approach

to simulate broad-scale patterns of terrestrial biogeochemistry and ecosystem proper-

ties. However, another key and unique test for this approach would be to directly com-

pare the emergent patterns of simulated FT parameters with our growing knowledge

about the geographic distribution of plant traits and their environmental co-variates.

This information could come from trait databases (e.g. TRY; Kattge et al. 2011) or

remote sensing products (e.g. canopy nitrogen observations; Ollinger et al. 2008). A

further test would be to compare simulated shifts in FT parameters and allocation

patterns with observed shifts in trait abundances from ecosystem manipulation exper-

iments, e.g. irrigation (Axelsson and Axelsson 1986), CO2 enhancement (Ainsworth

and Long 2004), or throughfall exclusion (Fisher et al. 2007). These fine-scale compar-

isons would help further refine various aspects of the biogeochemical formulations and

trade-offs incorporated into JeDi-DGVM, and give greater confidence in projections

regarding the future fate of the terrestrial biosphere.

In Chapter 3.4.10, we briefly compared the simulated allocation of NPP to differ-

ent plant carbon pools with carbon budget observations (Malhi et al. 2009) from three

Amazonian forest ecosystems. This analysis should be expanded globally by comparing

the the simulated patterns of carbon flows and stocks with observations from other ex-

isting datasets based on carbon inventories (Cannell 1982; Litton et al. 2007; Luyssaert

et al. 2007; Malhi et al. 2011). More specifically, one could look at how the simu-

lated allocation patterns vary along environmental gradients (cf. Litton and Giardina

2008; Cornwell and Ackerly 2009). In this study we only examined at the community-

weighted allocation fluxes. It would be equally interesting to explore how the simulated

partitioning of NPP varies among surviving plant growth strategies within grid cells

(cf. Ackerly and Cornwell 2007).

For instance, Wolf et al. (2011) and Malhi et al. (2011) found evidence that the

strongest allocation trade-off was not between root and shoots, as has been commonly

thought, but rather more specifically between allocation to fine roots and aboveground

wood. This relationship is likely mediated between sites by hydrological conditions and

within sites by the competitive dynamics between faster and slower growing trees. In

principle, the functional tradeoff modelling approach of JeDi-DGVM should be able to

capture both of these phenomena. However, it might require the introduction of further

constraints related to disturbances (Bohn et al. 2011) and FT parameters related to

wood economics and plant hydraulics (cf. Hickler et al. 2006; Chave et al. 2009; Falster
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et al. 2010)

5.2.5 Ongoing and potential applications

The “bottom-up” functional tradeoff-based modelling framework presented here repre-

sents a step forward in the development of a comprehensive and predictive representa-

tion of the terrestrial biosphere for use in Earth System Models. By mechanistically

simulating the full range and continuous nature of plant functional diversity, it will be

possible to explore new areas of research including:

1. The JeDi-DGVM is currently participating in the Intersectoral Model Intercom-

parison Project. This initiative is seeking to make quantitative estimates regard-

ing climate change impacts and their uncertainties across different sectors (e.g.

agriculture, water, ecosystems, infrastructure and health) with multiple impact

models. We hypothesize based on the results from Chapter 4, which showed

the more flexible approach of JeDi led to greater productivity, stability, and re-

silience than a more coarse PFT-like represenation of functional diversity, that

JeDi-DGVM will simulate less severe biospheric impacts of projected climate

change than the other participating DGVMs based on the PFT paradigm.

2. By coupling the JeDi-DGVM tradeoff-based approach with an optimization algo-

rithm, it is possible to seek out those functional trait combinations that maximize

a particular ecosystem service. For example, Drewry et al. (in prep), have used

JeDi-DGVM to investigate the the optimal set of trait parameters which maxi-

mize the allocation to seed biomass under the present-day climate of each model

grid cell, allowing for estimates of the upper bound of realizable yields as a func-

tion of climatic constraint. One could also apply the same methodology with

climate model projections to identify regions where the optimal crop traits shift

in order to inform agricultural and food security policies. The same methodology

could also easily be applied to many other ecosystem system services of inter-

est (e.g. maximizing leaf biomass production for forage/fodder or belowground

carbon allocation for carbon sequestration).

3. Climate model projections point towards the possibility of novel climates without

present-day analogs (Jackson and Williams 2004; Williams and Jackson 2007).

This causes difficulties for PFT-based modelling approaches because they often

rely so heavily on bioclimatic relationships based on present-day empirical ob-

servations. Because JeDi-DGVM samples functional trait parameters from their
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full theoretical or observed ranges, it may produce surviving growth strategies

or compositions of growth strategies without present-day analogs (Reu et al., in

review). Coupling JeDi-DGVM directly within an Earth System Model would

allow for the exciting possibility of exploring where these no-analog vegetation

compositions appear in climates that widely different from that of today. It

would also be interesting to explore the role of functional diversity in moderat-

ing atmosphere-biosphere feedbacks. As an example, one could compare “online”

and “offline” simulations to quantify the net effect of biodiversity on sustaining

continental moisture recycling.
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Appendix A

Jena Diversity-Dynamic Global Vegetation

(JeDi-DGVM) Model Description

JeDi-DGVM builds upon the plant diversity model of KM2000, which itself took many

model formulations from earlier land surface (Roeckner et al. 1996) and terrestrial bio-

sphere models (e.g. Potter et al. 1993; Knorr and Heimann 1995; Kaduk and Heimann

1996). Here, the ecophysiological parameterizations have been kept relatively simple to

keep the computational requirements manageable. This makes it possible to simulate

many the development of many plant growth strategies in parallel across a global grid

over long simulation periods within a reasonable timeframe on a single Linux worksta-

tion. That said, several of the formulations and parameter values, particularly with

respect to the calculation of productivity and respiration, have been changed to im-

prove the realism of the simulated fluxes. Also, whereas the KM2000 model simulated

the life-cycle of individual generic plants from germination to death, the JeDi-DGVM

introduces tissue turnover and thus simulates something closer to the mean of a pop-

ulation for each plant growth strategy. Finally, the most important new feature is

the introduction of a scaling mechanism to aggregate the exchange fluxes and land-

surface properties of many plant growth strategies to the community-level based on the

‘biomass-ratio’ hypothesis.

A.1 Plant module overview

The plant module simulates the development of plant growth strategies based on the

fundamental ecophysiological processes of photosynthesis, respiration, allocation, phe-

nology, and reproduction. Plant development is coupled in a process-based manner

to a land-surface hydrology module which simulates canopy interception, throughfall,

infiltration, evaporation, root-water uptake, and surface runoff, using daily meteoro-
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logical forcing of downwelling shortwave and net longwave radiation, precipitation, and

near-surface air temperature. The variables and parameters involved in the develop-

ment of the plant growth strategies are summarized in Table C.1. The details of the

land-surface module are described in Appendix B.

Each plant growth strategy is represented by six carbon tissue pools: stored assim-

ilates CA, leaves CL, fine roots CR, aboveground wood (branches and stems) CWL,

belowground wood (coarse roots) CWR, and a reproductive (or ‘seed’) pool CS. When

growing conditions are favorable, carbon germinates from the ‘seed’ pool to the storage

pool. The plant then begins to grow by allocating carbon from the storage pool to

the various tissue pools. The tissue pools are also subject to turnover and senescence.

The litter fluxes from these two processes serve as input to the soil carbon module.

The sizes of the tissue pools influence the parameter values of the land-surface module,

affecting both the absorption of solar radiation and the land-surface hydrology. For ex-

ample, the absorption of solar radiation, which supplies the energy for photosynthesis

and evapotranspiration, is proportional to leaf area index (LAI) which is derived from

leaf biomass. Fine root biomass affects the maximum rate of water uptake from the

rooting zone, influencing the plant’s water status and the supply of moisture for evap-

otranspiration. Likewise, the coarse root biomass of a plant determines the hydrologic

depth of its rooting zone. The land-surface conditions in turn affect the net primary

productivity (NPP), which forms the input to the storage pool. A plant growth strat-

egy is considered to be alive as long as the carbon in the storage pool is greater than

zero (CA > 0). The details of these processes are described in the following subsections.

The particular functioning of a plant growth strategy is defined by a set of 15 func-

tional trait (FT) parameters (t1 ... t15). These FT parameters control the allocation

of carbon from the storage pool to the other tissue pools, the tissue turnover rates, the

phenological response to environmental conditions, and the ecophysiological balance

between photosynthesis and respiration. All of the FT parameters range between zero

and one. However, these ranges are often extended by using the FT parameters as

either exponents or coefficients. Each FT parameter is associated with one or more

functional tradeoffs. For instance, a higher allocation to fine roots enhances the rate at

which a plant can extract moisture from the soil matrix, but this comes at the expense

of allocation to the aboveground pools and thus a decreased ability to capture light for

photosynthesis, as well as the metabolic cost of maintaining that biomass. The imple-

mentation of these tradeoffs are explained in further detail below. The descriptions of

the FT parameters are summarized in Table C.2.
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A.2 Vegetation carbon pool dynamics

The following differential equations describe the dynamics of the vegetation carbon

pools:

dCA

dt
= NPP + GERM−

∑
CAAtissue (1− cRES,tissue)

dCS

dt
= CAAS (1− cRES,S)−GERM− CS

τS

dCL

dt
= CAAL (1− cRES,L)− CL

τL
(A.1)

dCR

dt
= CAAR (1− cRES,R)− CR

τR

dCWL

dt
= CAAWL (1− cRES,WL)− CWL

τWL

dCWR

dt
= CAAWR (1− cRES,WR)− CWR

τWR

The details of the various terms are described below in the following subsections.

A.3 Growing Conditions

The timing of plant growth and germination is controlled by environmental conditions,

specifically, soil wetness fW and near-surface air temperature T . Soil wetness fW being

defined as the ratio of moisture W stored in the rooting zone relative to the maximum

storage capacity of the rooting zone WMAX. FT parameters t1 and t2 in time constants

τW and τT determine how quickly a plant responds to changes in the environmental
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conditions.

fGROW,T (t) =
T + τT fGROW,T (t−∆t)

1 + τT

with τT = 104 t1−2

fGROW,W (t) =
fW + τW fGROW,W (t−∆t)

1 + τW

with fW =
W

WMAX
and τW = 104 t2−2 (A.2)

fGROW,G (t) =
fW,bare + τW fGROW,G (t−∆t)

1 + τW

with fW,bare =
Wbare

WMAX,0

Values of FT parameters t1 and t2 near zero represent a short memory and thus a

quick response to change, while larger values represent a longer memory and a slower

response. For example, a plant with a low value of τT would react almost immediately

to a warm day in early spring, whereas a plant with a larger value would react only

after several days or weeks of spring warmth. Likewise, a high value of τW would lead

a plant to continue to allocate carbon despite persisting drought conditions.

For germination, only the soil wetness of the top 50mm Wtop (see Eq. B.16) relative

to the storage capacity of bare non-vegetated soil is considered. Germination and

growth only occur when both the temperature function fGROW,T is above a critical

temperature Tcrit and the relevant soil wetness condition, fGROW,W or fGROW,G, is

greater than a critical value of 0.5. The critical temperature Tcrit is a linear function

of FT parameter t3 between −5 ◦C and 10 ◦C.

fGROW =

0 fGROW,W < 0.5 and fGROW,T < Tcrit

1 fGROW,W ≥ 0.5 or fGROW,T ≥ Tcrit

fGERM =

0 fGROW,G < 0.5 and fGROW,T < Tcrit

1 fGROW,G ≥ 0.5 or fGROW,T ≥ Tcrit

(A.3)
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A.4 Germination

Germination of carbon from the ‘seed’ pool CS to the storage pool CA occurs when

germination conditions are favorable (fGERM = 1) and the ‘seed’ pool is not empty

(CS > 0):

GERM = fGERM γGERM
CS

max (p, kGERM)
(A.4)

with γGERM = 104 t4−4.

FT parameter t4 modulates the germination fraction γGERM, the fraction of ‘seed’

carbon CS which can germinate to the storage pool CA in a single daily time step (Cohen

1968; Alvarado and Bradford 2002). Values of t4 near zero result in a conservative

strategy with only a small fraction of ‘seed’ carbon germinating to the storage pool per

day when germination conditions are met (fGERM = 1). Higher values yield increasingly

more opportunistic strategies. When germination conditions are favorable (fGERM = 1)

and the ‘seed’ pool is (CS = 0), a small amount of initial carbon is added to the ‘seed’

pool to allow a growth strategy to begin growth. When this occurs, an equivalent

amount of carbon is added to the community-aggregated gross primary productivity

(see Appendix A.9) to maintain the conservation of mass in the grid-cell variables.

A.5 Carbon allocation

Plants allocate carbon from the storage pool to growth when the growing conditions

are favorable (fGROW = 1). Allocation to the ‘seed’ pool occurs when net primary

productivity is greater then zero (fSEED = 1 when NPP > 0). The amount of carbon

allocated to each tissue pool is proportional to the size of the storage pool CA and to

the set of FT parameters, t5 . . . t10, which together form the plant’s carbon allocation
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strategy:

AS = fSEED
t5

t5 + t6 + t7 + t8

AL = fGROW (1− t9)
t6

t5 + t6 + t7 + t8

AR = fGROW (1− t10)
t7

t5 + t6 + t7 + t8
(A.5)

AWL = fGROW fVEG t9
t6

t5 + t6 + t7 + t8

AWR = fGROW fVEG t10
t7

t5 + t6 + t7 + t8
.

The allocation fractions are mathematically constrained such that they sum to less than

one (
∑
Atissue < 1). The unallocated fraction (1 −

∑
Atissue) remains in the storage

pool CA for future growth or maintenance respiration.

A.6 Turnover and Senescence

The turnover times τWL and τWR of the woody tissue pools are defined as functions of

FT parameter t11:

τWL = τWR = 365 (79 t11 + 1) (A.6)

Eq. A.6 yields a range of turnover times between 1 and 80 years. The base turnover

time τL,0 for the leaf and fine root pools is defined as a function of FT parameter t12:

τL,0 =
365

12
102.0 t12 . (A.7)

Eq. A.7 yields a range of turnover times log-distributed between 1 and 100 months,

which covers the range of observations in the TRY database (Kattge et al. 2011). The

turnover times for the ‘seed’ and storage pools are assumed constant across all plant

growth strategies (see Table C.1).

Senescence is triggered when both NPP and the time-averaged net primary produc-

tivity fNPP are negative, where:

fNPP (t) =
NPP + τNPP fNPP (t−∆t)

1 + τNPP
(A.8)

with τNPP = 105 t13−2.
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fSEN =

0 fNPP ≥ 0 or NPP ≥ 0

1 fNPP < 0 and NPP < 0
(A.9)

FT parameter t13 in time constant τNPP describes the memory to past NPP conditions.

Values of t13 near zero represent a short persistence during periods of negative NPP,

while values closer to one represent longer persistence. During periods of senescence,

the turnover rates of the leaf and fine root pools increase proportional to a constant

factor τSEN. The relative magnitude of this increase is determined by FT parameter

t14:

τL =

(
1

τL,0
+

1

τSEN
fSEN t14

)−1

τR =

(
1

τL,0
+

1

τSEN
fSEN (1− t14)

)−1

(A.10)

A.7 Land Surface Parameters

The land-surface parameters (maximum plant available water storage in the rooting

zone WMAX, leaf area index LAI, potential supply rate for transpiration S, fractional

vegetative cover fVEG, fractional forest cover fFOR, snow-free surface albedo ans, and

the storage capacity of the canopy WLMAX) relate the development of a plant growth

strategy to the coupled land-surface module which simulates its environmental con-

ditions. The module itself is based on the land-surface component of the ECHAM4

atmospheric General Circulation Model (Roeckner et al. 1996) along with modifica-

tions introduced by KM2000 and is described in detail in Appendix B. These parame-

ters are computed for each plant growth strategy from its carbon tissue pools and FT

parameters:

LAI = CL SLA

fVEG = 1− e−k LAI

fFOR = 1− e−cFOR CWL

WLMAX = cWLMAX LAI (A.11)

ans = fVEG aVEG + (1− fVEG) aSOIL

Wmax = max
[
Wmax,0, cPAW

√
cSRLCWR

]
S = cSRUCR fW
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The land-surface parameters and their conversion constants are summarized in Table

C.3.

The leaf area index LAI of a plant growth strategy is calculated as the product of

its leaf biomass CL and its specific leaf area SLA. The SLA of a plant growth strategy

being estimated as a function of leaf lifespan using an empirical relationship derived by

Reich et al. (1997), where τL0 is the base leaf turnover rate from Eq. A.7.

SLA = 0.030

(
365

τL0

)−0.46

(A.12)

This establishes a trade-off such that a plant growth strategy falls along a spectrum

between an evergreen strategy with thicker, long-lived leaves and a deciduous strategy

with thinner, short-lived leaves (Reich et al. 1998; Westoby et al. 2002; Shipley et al.

2006a).

The leaf area index LAI is then used to determine both the fractional vegetation

cover fVEG according to the Lambert-Beer law (Monsi and Saeki 1953) and the water

storage capacity of the canopy WLMAX . The parameterization of the fractional forest

cover fFOR is taken as an analogy to the formulation used for vegetative cover fVEG.

The snow-free surface albedo ans is calculated as the mean of its canopy albedo aVEG

and the bare soil albedo aSOIL (constant for all plant growth strategies), weighted by its

fractional vegetation cover fVEG. The canopy albedo aVEG of a plant growth strategy

is a linear function of the canopy nitrogen concentration [NL] (Hollinger et al. 2010).

aVEG = 3.216 [NL] + 0.02 (A.13)

The formulations regarding root properties (WMAX and S) are obtained from first

principles. The motivation for using a square-root relationship for the maximum plant

available water storage in the rooting zone comes from the Shinozaki et al. (1964) pipe

model. From the pipe model perspective, the root system is viewed as an assemblage

of pipes which connect the root ends (the organs responsible for water absorption from

the soil) with the leaves. If we assume a uniform density of root ends within the

rooting zone, we obtain a square root relationship between the depth of the rooting

zone and the total length of the coarse roots (given by the product of the coarse root

biomass CWR and an assumed constant specific root length parameter cSRL). The

maximum plant available soil water storage WMAX is then given by the product of this

rooting zone depth and the unit plant available water capacity cPAW (i.e. the difference

between field capacity and permanent wilting point per unit depth) taken from a global
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dataset (Dunne and Willmott 1996). Finally, we assume the potential supply rate for

transpiration S is related to the fine root biomass CR and soil wetness fW via a constant

specific root water uptake parameter cSRU.

A.8 Net Primary Productivity

The net primary productivity NPP of each plant growth strategy is computed as the

difference between its gross primary productivity GPP and its autotrophic respiration

flux RESa.

NPP = GPP −RESa (A.14)

The parameters and variables involved in the calculation of these fluxes are summarized

in Table C.4.

GPP is estimated using a big-leaf non-rectangular hyperbola approach (Johnson and

Thornley 1984; Franklin 2007):

GPP =
h

2θ

[
(φIa + Pmax)−

√
(φIa + Pmax)2 − 4θφIaPmax

]
αH2O (A.15)

While more sophisticated and likely more accurate photosynthesis schemes are abun-

dant, we chose to use this relatively simple approach for its computational expediency

and to keep the number of necessary parameters low. Absorbed photosynthetically

active radiation Ia is derived, following the Lambert-Beer law of light extinction, from

the photosynthetically active radiation (assumed to be half of downward shortwave

radiation) above the canopy I0 and the fractional coverage of vegetation (Monsi and

Saeki 1953):

Ia = I0 fVEG (A.16)

The light-saturated canopy photosynthetic capacity Pmax of a plant growth strategy

is estimated as a linear function of the canopy nitrogen concentration [NL] following

an empirical relationship proposed by Ollinger et al. (2008) assuming a foliar carbon

content of 0.48 gC gDM−1. Similar relationships between N content and photosynthetic

capacity are well-documented at the leaf scale (Field and Mooney 1986; Reich et al.

1997; Wright et al. 2004).

Pmax = (59.2× 10−4 [NL] + 1.1× 10−4) αT (A.17)

[NL] = 10t15−2
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The canopy nitrogen concentration [NL] itself is a function of FT parameter t15 leading

to a range of values log-distributed between 0.01 and 0.10 gN gC−1. The supply of

nitrogen is not considered as a limiting factor. The curvature parameter θ is assumed

constant across all plant growth strategies. Daylength h is computed from the cosine

of the solar zenith angle, which varies with season and latitude (Hartmann 1994). The

quantum efficiency φ and the factor αT modifying the light-saturated photosynthetic

capacity are computed as functions of both air temperature and ambient CO2 concen-

trations following Cannell and Thornley (1998).

The moisture stress factor αH2O is a function of the the ratio between the potential

supply rate for transpiration (S) and the atmospheric demand for transpiration (D;

further details in Appendix B).

αH2O = 1− e−
S
D (A.18)

The autotrophic respiration RESa of a plant growth strategy is calculated as the

sum of its growth respiration RESg and maintenance respiration RESm fluxes (McCree

1970; Thornley 1970). Growth respiration consumes a fixed fraction cRES,tissue of the

carbon allocated from the storage pool CA to the each tissue pool. These fractions are

assumed to be constant across all plant growth strategies.

RESg = CA

∑
(Atissue cRES,tissue) . (A.19)

Following Ryan (1991), maintenance respiration RESm is calculated based on the ni-

trogen content of each tissue, a specific respiration rate cRES,N at 20◦C and a Q10

temperature function.

RESm = cRES,NQ10,a
(T−20

10
) [NL] [(CL + CR) + csapwood (CWL + CWR)] (A.20)

The fine root nitrogen concentration [NR] is assumed to be equal to the leaf nitrogen

concentration [NL] for all plant growth strategies. The fractions of sapwood carbon to

woody carbon (0.05) and sapwood nitrogen to leaf nitrogen (0.10) are similarly assumed

constant across all plant growth strategies and are accounted for by parameter csapwood.

The ‘seed’ and storage carbon pools are not subject to maintenance respiration within

the model, however, they do decay at a constant rate as described in Section A.6.
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A.9 Scaling from plant growth strategies to

community-aggregated fluxes

JeDi-DGVM calculates community-aggregated fluxes and land surface properties as-

suming the ‘biomass-ratio’ hypothesis (Grime 1998), i.e. as the mean over the indi-

vidual plant growth strategies weighted by their mass-based relative abundances. The

instantaneous relative abundance p∗(i,j) of a plant growth strategy i in a grid cell j is

assumed to be proportional to its living biomass at that grid cell relative to the sum

of the living biomass of all surviving growth strategies S in that grid cell. The living

biomass Ctot(i,j) of a growth strategy being the sum of its leaf, fine root, woody and

storage carbon pools (Ctot(i,j) = CA(i,j) + CL(i,j) + CR(i,j) + CWL(i,j) + CWR(i,j)).

p∗(i,j) =
Ctot(i,j)∑S

k=1Ctot(k,j)

dp(i,j)

dt
=
p∗(i,j) − p(i,j)

τp
(A.21)

The relative abundance p(i,j) used for the calculation of community-aggregated fluxes

and properties relaxes towards the instantaneous relative abundance p∗(i,j) at time scale

τp (= 365 days). This relaxation mechanism was necessary to alleviate numerical

issues related to the conservation of mass. In the previous subsections describing the

development of a individual plant growth strategies, we omitted this subscript notation

to improve readability. Throughout the remainder of this appendix, we adopt chevron

(angled bracket) notation to denote community-aggregated fluxes and properties. As

an example, the community-aggregated gross primary productivity 〈GPPj〉 for a given

grid cell j is equal to the sum of the GPP fluxes of all the plant growth strategies S in

that grid cell weighted by their respective mass-based relative abundances.

〈GPPj〉 =

S∑
i=1

p(i,j)GPP(i,j) (A.22)

A.10 Soil Carbon

The soil carbon module in JeDi-DGVM is loosely based on the soil carbon component

of the JSBACH land surface model (Raddatz et al. 2007; Thum et al. 2011). The

parameters and variables of the soil carbon module are summarized in Table C.5. The

following differential equations describe the dynamics of the three detritus carbon pools,
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fine litter carbon CLIT, woody litter carbon CCWD, and soil carbon CSOIL:

dCLIT

dt
= 〈LITL〉+ 〈LITR〉+ 〈LITA〉+ 〈LITS〉 −DECLIT

dCCWD

dt
= 〈LITWL〉+ 〈LITWR〉 −DECCWD (A.23)

dCSOIL

dt
= (1− clit.atm)DECLIT + (1− ccwd.atm)DECCWD −DECSOIL

The soil carbon dynamics are not computed separately for each plant growth strategy.

Instead, carbon enters the two common litter pools through the community-aggregated

litter fluxes 〈LITtissue〉 from the turnover of the various vegetation tissue pools.

〈LITtissue〉 =
n∑

k=1

(
p(k)

Ctissue(k)

τtissue(k)

)
+

n∑
k=1

(
Ctissue(k) max

(
0,−∆p(k)

))
(A.24)

〈LITS〉 =
n∑

k=1

CS(k)

τA(k)

The second term in the calculation of 〈LITtissue〉 is necessary to maintain the conserva-

tion of carbon when the relative abundance of a plant growth strategy decreases during

the current time step. Likewise, the vegetation carbon pools (except the ‘seed’ pool

CS) are scaled down when the relative abundance of a growth strategy increases during

the current time step.

Ctissue(t) = Ctissue(t−∆t)

p(t−∆t)

p(t−∆t) + max (0,∆p)
(A.25)

The decomposition fluxes DECx out of the detritus carbon pools are computed from

the amount of carbon in that pool, a Q10 temperature response function, and a fixed

turnover time for that pool at reference temperature 20◦C. The value of 1.4 for the

sensitivity of heterotrophic respiration to air temperature Q10,h is taken from a re-

cent global study of FLUXNET sites (Mahecha et al. 2010). Fixed fractions of the

decomposition fluxes from the litter pools enter the common soil carbon pool.

DECx = Q10,h
(T−20

10
) Cx

τx
(A.26)

The heterotrophic respiration flux RESh to the atmosphere is estimated as the sum

of the fractions of the decomposition fluxes from the litter pools not entering the soil

carbon pool and the decomposition flux out of the soil carbon pool.

RESh = clit.atmDECLIT + ccwd.atmDECCWD +DECSOIL (A.27)
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Finally, the community-aggregated net ecosystem exchange NEE is calculated as the

difference the heterotrophic respiration and the community-aggregated net primary

productivity fluxes.

NEE = RESh − 〈NPP 〉 (A.28)
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Land Surface Module

The land-surface hydrology module of JeDi-DGVM is largely based on the land-surface

component of the ECHAM4 atmospheric General Circulation Model (Roeckner et al.

1996) along with modifications introduced by KM2000. It consists of four budget

equations for water stored in the vegetation canopy WL, in the snow cover WS, in the

rooting zone W , and below the rooting zone WSUB:

dWL

dt
= Prain − Ecan − Fthfall (B.1)

dWS

dt
= Psnow − Fmelt − Esnow

dW

dt
= Fthfall + Fmelt − Frunoff − Ebare − Etrans − Fdrain − F∆Wmax

dWSUB

dt
= Fdrain − Fsubdrain + F∆Wmax

The variables and parameters of the land-surface module are summarized in Tables C.6

and C.7. The module runs on a daily time step using forcing variables: precipitation

flux (P ), near-surface air temperature (T ), and downward shortwave and longwave

radiation fluxes (Rsw↓ and Rlw↓). The various flux terms of the budget equations are

described below. A schematic diagram of the land-surface module is shown in Fig. B.1.
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WSUB,max

Wmax

CWL

CWR

CL

CR

W

WSUB

WS WLFmelt

Fthfall

FrainFmelt

Fruno↵

Fsubdrain
Fdrain

F�Wmax

Fbevap

Fsublim Flevap

Ftrans

Figure B.1: Schematic diagram of the land-surface module. For symbols, see Tables C.1, C.3,
C.6, and C.7.
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B.1 Water storage and runoff generation

The partitioning of precipitation between snow Psnow and rain Prain depends on near-

surface air temperature T following Wigmosta et al. (1994).

Psnow =


P T ≤ −1.1

P 3.3−T
4.4 −1.1 < T < 3.3

0 T ≥ 3.3

(B.2)

Prain = P − Psnow

Rainfall is first intercepted in the canopy reservoir WL up to a maximum storage ca-

pacity WLmax which depends on LAI (see Eq. A.11). If a precipitation event causes

the water in the canopy reservoir to exceed its storage capacity, the excess water flows

from the canopy reservoir to the rooting zone as throughfall Fthfall.

Fthfall = max(0, WL + Prain −WLmax) (B.3)

Snowmelt Fmelt is computed according to a day-degree formula using a melt rate of

3.22 mm d−1 ◦C−1 (Hagemann and Dümenil 1997).

Fmelt =

0 T < 0

min (3.22 T, Psnow +WS) T ≥ 0
(B.4)

Surface runoff Frunoff occurs when the throughfall or snowmelt fluxes cause the rooting

zone reservoir to exceed its maximum capacity WMAX (see Eq. A.11).

Frunoff =

Fthfall T ≤ 0

max (0, W + Fthfall + Fmelt −Wmax) T > 0
(B.5)

When the air temperature drops below 0 ◦C, the soil is assumed to be frozen, inhibiting

infiltration, and the entire throughfall flux becomes surface runoff.

Drainage from the rooting zone Fdrain supplies water to the sub-rooting zone and
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depends on the soil wetness (fW = W/WMAX).

Fdrain =


0 fW ≤ 0.05

dmin fW; 0.05 < fW < 0.9

dmin fW + (dmax − dmin)
(
fW−0.9
1−0.9

)d
; fW ≥ 0.9

(B.6)

When the rooting zone is between 5% and 90% of field capacity, it drains slowly (dmin =

0.24 mm d−1) with a linear dependence on soil wetness. When the rooting zone nears

saturation (fW ≥ 0.9), the drainage rate quickly increases with increasing wetness

towards its maximum drainage rate (dmax = 2.40 mm d−1). Drainage from the rooting

zone ceases when the soil wetness falls below 5%.

When the incoming drainage from the overlying rooting zone Fdrain causes the sub-

rooting zone to exceed its maximum capacity (WSUB,max), the excess flows out as sub-

rooting zone drainage Fsubdrain:

Fsubdrain = max (0, WSUB + Fdrain − (WSUB,max −Wmax)) (B.7)

where WSUB,max is maximum storage capacity of the entire soil column.

The flux term F∆Wmax accounts for changes in the depth of the rooting zone WMAX

(see Eq. A.11) due to the balance between carbon allocation to coarse root growth and

the loss of coarse root biomass via turnover.

F∆Wmax =

∆Wmax · WSUB
WSUB,max−Wmax

∆Wmax < 0

∆Wmax · W
Wmax

∆Wmax > 0
(B.8)

Coarse root growth (i.e. an increase in the depth of the rooting zone WMAX) leads

to a virtual flow of water from the sub-rooting zone to the rooting zone. Likewise, a

decrease in the depth of rooting zone due to coarse root turnover leads to a virtual flow

of water from the rooting zone to the sub-rooting zone.
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B.2 Potential evapotranspiration

The fractional snow area fSNOW depends on the amount of water in the snow cover

WS:

fSNOW = min(1,
WS

WScrit
) (B.9)

where WS,crit is the critical snow depth (water-equivalent). Following Robock (1980),

the albedo of snow as depends on air temperature T and the fractional forest cover

fFOR (see Eq. A.11).

as,min = 0.3 fFOR + 0.4 (1− fFOR)

as,max = 0.4 fFOR + 0.8 (1− fFOR)

as =


0 T ≥ 0

as,max − (as,max − as,min) T+10
10 −10 < T < 0

1 T ≤ −10

(B.10)

The potential evapotranspiration fluxes for the snow-covered and snow-free fractions

are estimated using the Priestley-Taylor equation (Priestley and Taylor 1972) from the

net radiation fluxes described below, the slope of the saturation-vapor pressure curve

ε at air temperature T , the psychrometric constant Γ, the latent heat of vaporization

λ, and the Priestley-Taylor coefficient αp.

Ds = αp
ε(T )

ε(T ) + Γ

Rnet,s

λ

Dns = αp
ε(T )

ε(T ) + Γ

Rnet,ns

λ
(B.11)

The net radiative energy available for evaporative processes Rnet is calculated separately

for the snow-covered and snow-free fractions from the downward shortwave Rsw↓ and

net longwave Rlw radiation fluxes, daylength h, and the albedo of the respective fraction

(as and ans).

Rnet,s = fSNOW 86400

(
Rsw↓ (1− as) +

h

86400
Rlw

)
Rnet,ns = (1− fSNOW) 86400

(
Rsw↓ (1− ans) +

h

86400
Rlw

)
(B.12)
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Net longwave radiation Rlw is the sum of the downward longwave radiation forcing Rlw↓

and upward longwave radiation Rlw↑ estimated from the near-surface air temperature

in Kelvin (TK = T + 273.16) using the Stefan-Boltzmann equation:

Rlw↑ = εσTK
4 (B.13)

where ε is the average emissivity of land surfaces (Brutsaert 1982) and σ is the Stefan-

Boltzmann constant.

B.3 Actual evapotranspiration

B.3.1 Sublimation from snow cover

Sublimation from snow Esnow is taken as the minimum of the potential evaporation

rate for the snow-covered fraction Ds and the supply of water in the snow cover WS.

Fsublim = min(Ds,WS) (B.14)

B.3.2 Evaporation from canopy interception reservoir

Similarly, evaporation from the canopy reservoir Ecan is taken as the minimum of the

potential evapotranspiration rate for the snow-free fraction and the supply of water in

the canopy WL.

Ecan = min (Dns, WL) (B.15)
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B.3.3 Bare soil evaporation

Bare soil evaporation Ebare occurs in the fraction of the snow-free area not covered by

vegetation (1− fVEG) and declines linearly within decreasing soil moisture.

Ebare = min

b (1− fVEG) (Dns − Ecan)

W
(B.16)

b =

0.5
[
1− cos

(
π
W−(Wmax−Wtop)

Wtop

)]
W ≥Wmax −Wtop

0 W < Wmax −Wtop

(B.17)

The factor b limits soil evaporation to the water in the top 50mm of the rooting zone

(Wtop).

B.3.4 Transpiration

Transpiration Etrans is reduced by factor αH2O from Eq. A.18, which is a saturating

function of the available supply for transpiration S and the the atmospheric demand

for transpiration (Dns − Ecan).

Etrans = min

αH2O fVEG (Dns − Ecan)

W − Ebare

(B.18)

B.4 Approximation of latent and sensible heat fluxes

The total evapotranspiration flux ET is calculated as the sum of evaporation from

the canopy reservoir and bare soil, sublimation from snow, and transpiration by the

vegatation.

ET = Ecan + Ebare + Esnow + Etrans

L = λET

Rnet = fSNOW Rnet,s + (1− fSNOW) Rnet,ns (B.19)

H = Rnet − L
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The latent heat flux L is estimated by multiplying the evapotranspiration flux by

the latent heat of vaporization for water λ. Total net radiation Rnet is computed as

the weighted combination of the net radiation over snow-covered and snow-free areas.

Sensible heat H is assumed to make up the difference between the net radiation and

latent heat fluxes.
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Table C.1: State variables and parameters of the plant growth module

Symbol Description Value/units

Vegetation carbon pools
CA assimilates/storage carbon pool gC m−2

CL leaves carbon pool gC m−2

CR fine roots carbon pool gC m−2

CWL woody stem carbon pool gC m−2

CWR coarse roots carbon pool gC m−2

CS reproduction carbon pool gC m−2

Growing conditions
fGROW,T time-weighted temperature conditions ◦C
fGROW,W time-weighted soil moisture conditions 0 . . . 1
fGERM,W time-weighted soil moisture conditions for germination 0 . . . 1
fGERM 0: no germination, 1: germination
fGROW 0: no growth, 1: growth
τT response time to temperature conditions d
τW response time to moisture conditions d

Allocation and Germination
AL allocation from storage to leaves 0 . . . 1
AR allocation from storage to fine roots 0 . . . 1
AWL allocation from storage to stem 0 . . . 1
AWR allocation from storage to coarse roots 0 . . . 1
AS allocation from storage to reproduction 0 . . . 1
γGERM germination fraction d−1

Turnover and Senescence
τtissue turnover times of vegetation carbon pools d
fNPP time-weighted productivity conditions gC m−2 d−1

τNPP response time to productivity conditions d
fSEN 0: no senescence, 1: senescence

Carbon fluxes
GERM germination gC m−2 d−1

GPP gross primary productivity gC m−2 d−1

RESa autotrophic respiration gC m−2 d−1

NPP net primary productivity gC m−2 d−1
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Table C.2: Summary of the functional trait (FT) parameters. This table summarizes the
parameters in the model description which define a plant growth strategy. Column 2 gives a
brief description of the effect of this parameter on the plant behaviour and column 3 gives the
equation in which the parameter occurs. All of these parameters range between zero and one.

Parameter Description Equation

t1 growth response time to moisture conditions (A.2)
t2 growth response time to temperature conditions (A.2)
t3 critical temperature for growth (A.3)
t4 germination fraction (A.4)
t5 allocation to reproduction (A.5)
t6 allocation to aboveground growth (A.5)
t7 allocation to belowground growth (A.5)
t8 allocation to storage (A.5)
t9 relative allocation to aboveground structure (A.5)
t10 relative allocation to belowground structure (A.5)
t11 turnover time of structural pools (A.6)
t12 turnover time of leaf and fine root pools (A.7)
t13 senescence response time to productivity conditions (A.8)
t14 relative senescence aboveground (A.9)
t15 plant nitrogen status (A.17)
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Table C.4: Variables and parameters used in net primary productivity calculations

Symbol Description Value/units

h day length s
θ convexity of photosynthesis-radiation curve 0.9
φ photosyntheic quantum efficiency 2.73 µgC J−1

Ia absorbed photosynthetically active radiation W m−2

Pmax light-saturated photosynthetic rate gC m−2 s−1

[NL] canopy nitrogen concentration gN gC−1

αT temperature limitation on productivity 0 . . . 1
αH2O water limitation on productivity 0 . . . 1
cRES,tissue growth respiration coefficient gC gC−1

cRES,N maintenance respiration coefficient gC gN−1

Q10,AR temperature sensitivity of autotrophic respiration 1.6

Table C.5: State variables, fluxes, and parameters of the soil carbon module

Symbol Description Value/units

Detritus carbon pools
CLIT fine litter carbon pool gC m−2

CCWD woody litter carbon pool gC m−2

CSOIL soil carbon pool gC m−2

Carbon fluxes
〈LITtissue〉 community-aggregated litter fluxes gC m−2 d−1

DECx decomposition fluxes from the detritus carbon pools gC m−2 d−1

〈GPP 〉 community-aggregated gross primary productivity gC m−2 d−1

〈RESa〉 community-aggregated autotrophic respiration gC m−2 d−1

RESh heterotrophic respiration gC m−2 d−1

NEE net ecosystem exchange gC m−2 d−1

Parameters
clit.atm fraction of fine litter decomposition to atmosphere 0.77
ccwd.atm fraction of woody litter decomposition to atmosphere 0.2
τLIT turnover time of fine litter at 20◦C 2.05 years
τCWD turnover time of woody litter at 20◦C 60 years
τSOIL turnover time of soil carbon at 20◦C 100 years
Q10,HR heterotrophic respiration coefficient 1.4
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Appendix C Model parameters and variables

Table C.6: Forcing, state, and flux variables of the land-surface module

Symbol Description Value/units

Forcing variables
P precipitation mm d−1

Rsw↓ downwelling shortwave radiation W m−2

Rlw↓ downward longwave radiation W m−2

T 2m air temperature ◦C

Water pools
WS water stored in snow cover mm
WL water intercepted in canopy mm
W water stored in rooting zone mm
WSUB water stored below rooting zone mm

Water fluxes
Psnow snowfall mm d−1

Prain rainfall mm d−1

Fmelt snow melt mm d−1

Fthfall throughfall mm d−1

Frunoff runoff mm d−1

Fdrain drainage from rooting zone mm d−1

F∆Wmax flux due to change in rooting zone depth mm d−1

Fsubdrain drainage from sub-rooting zone mm d−1

Ebare bare soil evaporation mm d−1

Ecan evaporation from the canopy reservoir mm d−1

Esnow sublimiation from snow cover mm d−1

Etrans transpiration mm d−1
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Y., Didan, K., Fu, R., Negrón Juárez, R. I., Saatchi, S. S., Hashimoto, H., Ichii,

K., Shabanov, N. V., Tan, B., Ratana, P., Privette, J. L., Morisette, J. T., Vermote,

120



Bibliography

E. F., Roy, D. P., Wolfe, R. E., Friedl, M. A., Running, S. W., Votava, P., El-Saleous,

N., Devadiga, S., Su, Y., and Salomonson, V. V. (2007). Large seasonal swings in

leaf area of Amazon rainforests. Proceedings of the National Academy of Sciences of

the United States of America, 104(12):4820–4823.

Naeem, S. (1998). Species redundancy and ecosystem reliability. Conservation Biology.

Neilson, R., Pitelka, L., Solomon, A., Nathan, R., Midgley, G., Fragoso, J., Lischke, H.,

and Thompson, K. (2005). Forecasting regional to global plant migration in response

to climate change. Bioscience, 55(9):749–759.

Norby, R., DeLucia, E., Gielen, B., Calfapietra, C., Giardina, C., King, J., Ledford,

J., McCarthy, H., Moore, D., and Ceulemans, R. (2005). Forest response to elevated

CO2 is conserved across a broad range of productivity. Proceedings of the National

Academy of Sciences of the United States of America, 102(50):18052.

Ollinger, S. V., Richardson, A. D., Martin, M. E., Hollinger, D. Y., Frolking, S. E.,

Reich, P. B., Plourde, L. C., Katul, G. G., Munger, J. W., Oren, R., Smith, M. L.,

Paw U, K. T., Bolstad, P. V., Cook, B. D., Day, M. C., Martin, T. A., Monson,

R. K., and Schmid, H. P. (2008). Canopy nitrogen, carbon assimilation, and albedo

in temperate and boreal forests: Functional relations and potential climate feedbacks.

Proceedings of the National Academy of Sciences of the United States of America,

105(49):19336–19341.

Olson, R. J., Scurlock, J. M. O., Prince, S. D., Zheng, D. L., and Johnson, K. R.

(2001). NPP Multi-Biome: NPP and Driver Data for Ecosystem Model-Data Inter-

comparison. Data set. Technical report, Environmental Sciences Division, Oak Ridge

National Laboratory, ORNL Distributed Active Archive Cener for Biogeochemical

Dynamics, Oak Ridge, TN USA.

O’Malley, M. A. (2007). The nineteenth century roots of ’everything is everywhere’.

Nature Reviews Microbiology, 5(8):647–651.

Page, S. E., Siegert, F., Rieley, J. O., Boehm, H.-D. V., Jaya, A., and Limin, S. (2002).

The amount of carbon released from peat and forest fires in Indonesia during 1997.

Nature, 420(6911):61–65.

Peterson, G., Allen, C. R., and Holling, C. S. (1998). Ecological Resilience, Biodiversity,

and Scale. Ecosystems, 1(1):6–18.

Pielou, E. C. (1966). The measurement of diversity in different types of biological

collections. Journal of Theoretical Biology, 13:131–144.

121



Bibliography

Potter, C., Randerson, J., Field, C., Matson, P., Vitousek, P., Mooney, H., and

Klooster, S. (1993). Terrestrial Ecosystem Production - a Process Model-Based on

Global Satellite and Surface Data. Global Biogeochemical Cycles, 7(4):811–841.

Prentice, I. C., Bondeau, A., Cramer, W., Harrison, S. P., Hickler, T., Lucht, W.,

Sitch, S., Smith, B., and Sykes, M. T. (2007). Dynamic Global Vegetation Modeling:

Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental Change.

In Canadell, J. G., Pataki, D. E., and Pitelka, L. F., editors, Terrestrial Ecosystems

in a Changing World, pages 175–192. Springer Berlin Heidelberg, Berlin, Heidelberg.

Priestley, C. and Taylor, R. (1972). On the assessment of Surface Heat-Flux and

Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2):81–89.

Prieto, I., Armas, C., and Pugnaire, F. I. (2012). Water release through plant roots: new

insights into its consequences at the plant and ecosystem level. The New Phytologist,

193(4):830–841.

Proulx, R., Wirth, C., Voigt, W., Weigelt, A., Roscher, C., Attinger, S., Baade, J.,

Barnard, R. L., Buchmann, N., Buscot, F., Eisenhauer, N., Fischer, M., Gleixner,

G., Halle, S., Hildebrandt, A., Kowalski, E., Kuu, A., Lange, M., Milcu, A., Niklaus,

P. A., Oelmann, Y., Rosenkranz, S., Sabais, A., Scherber, C., Scherer-Lorenzen,

M., Scheu, S., Schulze, E.-D., Schumacher, J., Schwichtenberg, G., Soussana, j.-F.,

Temperton, V. M., Weisser, W. W., Wilcke, W., and Schmid, B. (2010). Diversity

Promotes Temporal Stability across Levels of Ecosystem Organization in Experimen-

tal Grasslands. PLoS ONE, 5(10).

Purves, D. and Pacala, S. (2008). Predictive models of forest dynamics. Science,

320(5882):1452–1453.

Qian, T., Dai, A., Trenberth, K. E., and Oleson, K. W. (2006). Simulation of global

land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations.

Journal of Hydrometeorology, 7(5):953–975.

Quesada, C. A., Lloyd, J., Anderson, L. O., Fyllas, N. M., Schwarz, M., and Czim-

czik, C. I. (2009). Soils of amazonia with particular reference to the rainfor sites.

Biogeosciences Discussions, 6(2):3851–3921.

Quetier, F., Thebault, A., and Lavorel, S. (2007). Plant traits in a state and tran-

sition framework as markers of ecosystem response to land-use change. Ecological

Monographs, 77(1):33–52.

122



Bibliography

Quillet, A., Peng, C., and Garneau, M. (2010). Toward dynamic global vegetation

models for simulating vegetation-climate interactions and feedbacks: recent develop-

ments, limitations, and future challenges. Environmental Reviews, 18:333–353.

Raddatz, T. J., Reick, C. H., Knorr, W., Kattge, J., Roeckner, E., Schnur, R., Schnit-

zler, K. G., Wetzel, P., and Jungclaus, J. (2007). Will the tropical land biosphere

dominate the climate–carbon cycle feedback during the twenty-first century? Climate

Dynamics, 29(6):565–574.

Randerson, J. T., Hoffman, F. M., Thornton, P. E., Mahowald, N. M., Lindsay, K.,

Leee, Y.-H., Nevison, C. D., Doney, S., Bonan, G., Stoeckli, R., Covey, C., Running,

S. W., and Fung, I. Y. (2009). Systematic assessment of terrestrial biogeochemistry

in coupled climate-carbon models. Global Change Biology, 15(10):2462–2484.

Reich, P. B., Hobbie, S. E., Lee, T., Ellsworth, D. S., West, J. B., Tilman, D., Knops, J.

M. H., Naeem, S., and Trost, J. (2006). Nitrogen limitation constrains sustainability

of ecosystem response to CO2. Nature, 440(7086):922–925.

Reich, P. B., Walters, M., Ellsworth, D., Vose, J., Volin, J., Gresham, C., and Bowman,

W. (1998). Relationships of leaf dark respiration to leaf nitrogen, specific leaf area

and leaf life-span: a test across biomes and functional groups. Oecologia, 114(4):471–

482.

Reich, P. B., Walters, M. B., and Ellsworth, D. S. (1997). From tropics to tundra:

global convergence in plant functioning. Proceedings of the National Academy of

Sciences of the United States of America, 94(25):13730–13734.

Reich, P. B., Wright, I. J., and Lusk, C. H. (2007). Predicting leaf physiology from

simple plant and climate attributes: a global GLOPNET analysis. Ecological Appli-

cations, 17(7):1982–1988.

Reu, B., Proulx, R., Bohn, K., Dyke, J. G., Kleidon, A., Pavlick, R., and Schmidtlein,

S. (2010). The role of climate and plant functional trade-offs in shaping global biome

and biodiversity patterns. Global Ecology and Biogeography, 20:570–581.

Reu, B., Zaehle, S., Proulx, R., Bohn, K., Kleidon, A., Pavlick, R., and Schmidtlein,

S. (2011). The role of plant functional trade-offs for biodiversity changes and biome

shifts under scenarios of global climatic change. Biogeosciences, 8:1255–1266.

Robock, A. (1980). The Seasonal Cycle of Snow Cover, Sea Ice and Surface Albedo.

Monthly Weather Review, 108(3):267–285.

123



Bibliography

Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dümenil, L.,
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