
Florian Rauser

Berichte zur Erdsystemforschung

Reports on Earth System Science

 97
2011

Error Estimation
in Geophysical Fluid Dynamics

through Learning

Florian Rauser

Reports on Earth System Science

 Berichte zur Erdsystemforschung 97
2011

97
2011

ISSN 1614-1199

Hamburg 2010

aus Ratingen

Error Estimation
in Geophysical Fluid Dynamics

through Learning

ISSN 1614-1199

Als Dissertation angenommen
vom Department Geowissenschaften der Universität Hamburg

auf Grund der Gutachten von
Prof. Dr. Jochem Marotzke
und
Dr. Peter Korn

Hamburg, den 30. November 2010
Prof. Dr. Jürgen Oßenbrügge
Leiter des Departments für Geowissenschaften

Florian Rauser
Max-Planck-Institut für Meteorologie
Bundesstrasse 53
20146 Hamburg
Germany

Hamburg 2010

Florian Rauser

Error Estimation in Geophysical
Fluid Dynamics through Learning

Abstract

Current models of Geophysical Fluid Dynamics (GFD) lack the capability to quantify

computationally induced errors. To address this issue, we present a new approach for

numerical uncertainty quantification in GFD models: goal error estimation through

learning.

We estimate the error in important physical quantities – so-called goals – as a weighted

sum of local model errors. Our algorithm divides this goal error estimation into three

phases. In phase one, we select a mathematical description of local model errors,

either a deterministic functional of the solution or a stochastic process. In phase two,

a learning algorithm adapts the selected mathematical description to the numerical

experiment under consideration by determining the free parameters of the mathematical

description. The learning algorithm analyzes a series of short numerical simulations

on different resolutions. In phase three, goal errors are estimated using the learned

parameters of the local error description. The deterministic description produces a

goal error estimate that can be used to correct the original goal approximation. The

stochastic description produces a goal error estimate ensemble that can be used to

construct error bounds for the original goal approximation. The goal error ensemble

is generated from a single model forward evaluation. The weights that are required

for both approaches are the sensitivities of the goal with respect to local model errors.

These sensitivities are calculated automatically with an Algorithmic Differentiation tool

applied to the model’s source code.

We evaluate both algorithms within ICOSWM, a numerical model for the shallow water

equations on the sphere, and implement an Algorithmic Differentiation framework that

calculates any required goal sensitivity. With our deterministic approach, we are the

first to estimate time-dependent goal approximation errors for the spherical shallow

water equations. With our stochastic approach, we are the first to estimate an ensemble

of goal approximation errors from only one forward solution of the model. We combine

our local error learning algorithm with stochastic physics and initial condition ensemble

techniques and compare the results of both forward ensembles and our a posteriori

ensemble. For our test cases, we see that an a posteriori ensemble – derived from a

single model solution – delivers comparable results as a stochastic physics ensemble

that requires multiple model solutions. We suggest the extension of our method to

total model error and discuss the general nature of local model errors.

The algorithm proposed in this thesis bridges the gap between deterministic numerical

methods and stochastic ensemble methods. It is generally applicable, easy to use, and

simple compared to classical goal error estimation methods. Goal error estimation

through learning is a first step towards automatic error bars for GFD models.

Contents

1 Introduction 7

1.1 The Hierarchy of Model Errors . 8

1.2 Error Estimation and Optimization in GFD 9

1.3 Thesis Objective: A New Kind of Uncertainty Quantification in GFD . 10

1.4 Thesis Outline . 11

2 Problem Statement and Algorithm Proposal 13

2.1 The Connection between Goal Errors and Local Errors 14

2.2 Local Model Errors and Unresolved Processes 15

2.3 The Concept of Error Learning . 17

2.4 The Research Questions . 18

3 Predicting Goal Error Evolution from Near-Initial-Information: a Learning

Algorithm 19

3.1 Introduction . 20

3.2 Problem Statement . 22

3.3 Deterministic Estimation of Goal Approximation Errors 24

3.3.1 Goal Errors and Local Error Estimators 24

3.3.2 The Algorithm Proposal . 28

3.3.3 Step 1: Functional Form of Local Error Estimators 29

3.3.4 Step 2: Learning the Properties of Local Error

Estimators . 31

3.3.5 Step 3: Automatic Goal Sensitivities 32

3.4 Results and Discussion . 32

3.4.1 Unsteady Solid Body Rotation (TC1) 33

3.4.2 Zonal Flow against a Mountain (TC2) 39

3.4.3 Discussion . 43

3.5 Conclusion & Outlook . 44

4 On the Use of Discrete Adjoints for Goal Error Estimation 47

4.1 Introduction . 47

4.2 Goal Oriented Dual Weight Error Analysis 48

4.3 The Primal Problem . 49

5

Contents

4.4 The Computational Graph . 51

4.5 The Dual Problem . 51

4.5.1 The Differentiation-Enabled NAG Fortran Compiler 53

4.5.2 The Adjoint Linear Solver . 56

4.6 Results . 57

4.7 Conclusion . 60

5 Goal Error Ensembles with Local Error Random Processes 61

5.1 Introduction . 61

5.2 Problem Statement . 63

5.3 Stochastic Quantification of Goal Approximation Errors 64

5.3.1 The Algorithm Proposal . 65

5.3.2 Step 1: Local Error Random Processes 66

5.3.3 Step 2: Learning the Properties of Local Error Random Processes 66

5.3.4 Step 3: A Posteriori Goal Error Ensembles 67

5.3.5 Forward Ensembles . 69

5.4 The Testbed . 71

5.5 Results . 74

5.5.1 Learning for Different Test Cases 74

5.5.2 A Posteriori Goal Error Ensembles 76

5.5.3 Forward Ensembles . 85

5.6 Discussion . 85

5.7 Goal Error Ensembles and the Central Limit Theorem 88

5.8 Conclusion and Outlook . 89

6 Conclusions and Outlook 93

6.1 The Quintessence . 93

6.2 The Answers to the Research Questions 94

6.3 The Correct Interpretation of Local Model Errors 96

6.4 The Next Steps . 96

6.5 Concluding Remarks . 98

A The Development of the Differentiation-Enabled Shallow Water Model

ICOSWM-AD 99

Bibliography 111

Acknowledgements 117

6

Chapter 1

Introduction

The Earth System Sciences attempt to describe and understand Earth as a combination

of interrelating systems. The main focus is to understand the emerging interactions

between subsystems such as atmosphere, hydrosphere, lithosphere, and biosphere. The

Earth System Sciences rely heavily on computational models because it is impossible

to measure all relevant physical quantities on all scales and the complexity of most of

the Earth’s subsystems often prevents analytical analysis. One central component of

Earth System Modelling is Geophysical Fluid Dynamics (GFD), the science of the cir-

culation of atmosphere and ocean (e.g., Pedlosky 1982). Geophysical Fluid Dynamics

differ from Computational Fluid Dynamics (CFD) through the inclusion of rotational

effects and a variety of effects due to Earth’s geometry and scale (Charney et al. 1950).

We use the term “GFD model” for any computational model that yields approximated

solutions for the state of atmosphere or ocean.

Computational modelling applies numerical algorithms to solve problems that cannot

be solved analytically. In this thesis, we develop a new method for GFD models that

helps to combat one major problem of computational models: the reliability of numer-

ical outputs.

A natural part of scientific thinking is that the uncertainty in the magnitude of a

measured quantity is crucial to determine the physical significance of the measurement

itself. The use of standard error bars and confidence intervals is widely accepted as a

prerequisite to accept measured data as being representative for a real physical pro-

cess. The same principle holds for all numerical experiments. The uncertainty in the

magnitude of a simulated quantity is crucial to determine the physical significance of

the simulation itself. A numerical method should be able to attach an error bar to a

given numerical output for a physical quantity of interest.

Computational fluid dynamics is an excellent successfull example: the industrial need

to get reliable estimates of flow and drag for simulations of aerofoils has led to a mul-

titude of methods to enable aerodynamics computational models to assess and control

the error in important physical quantities (Giles et al. 2004). The development of GFD

models, however, lags behind. Even though GFD models are important for decision

7

Chapter 1 Introduction

Figure 1.1: A sketch of the two layers of model errors and different error sources.

processes in society (Treut et al. 2007, IPCC 2007) they usually deliver numerical ap-

proximations for relevant physical quantities without attached error bars. It seems

therefore highly appropriate to demand adequate uncertainty quantification for impor-

tant physical quantities derived from GFD models.

1.1 The Hierarchy of Model Errors

The problem of uncertainty quantification will not vanish with better models or more

computational power. No matter the increase in available computational power, some

processes will remain unresolved and the multi-scale nature of GFD will lead to no-

ticeable errors in macroscopic quantities. We need to develop ways to understand the

causes of model uncertainty and means to quantify them.

Every model is wrong for different reasons. GFD models are complicated and there is a

multitude of error sources that lead to final uncertainty in physical outputs. For a given

physical process we find a hierarchy of descriptions of the process: the supposedly real

values of the physical process, the measured values of a part of the state of this pro-

cess, the model values as described with (mathematical) models and the approximated

computational solutions. In this sense, total model error is the difference between the

approximated computational solution of a model and the measured representation of

reality. The evaluation of total model error cannot be completely separated from mea-

surement errors, as reality is only quantifiable with measurements. Nevertheless, to

structure the error that occurs during modelling, we can ignore measurement errors

(see Figure 1.1). Oden and Prudhomme (2002) define two layers of model errors as 1)

model formulation and specification error and 2) model approximation error.

8

1.2 Error Estimation and Optimization in GFD

1. Model formulation and specification errors: The first error layer incorpo-

rates everything that is part of the mathematical formulation and specification

process: choice of prognostic variables, governing equations, parameterizations,

forcings, boundary conditions, initial conditions.

2. Model approximation errors: If we have to use computational models to

get an approximate solution of our model, we necessarily introduce errors based

on finite degrees of freedom. Finite degrees of freedom imply unresolved scales

which have to be parameterized. The choice of grid, discretization scheme and

resolution can introduce additional errors. On top of that, computational models

always face the problem of round-off error for real-valued numbers.

Deterministic chaos is another important concept which strongly contributes to the fact

that every model is wrong. Chaotic systems are defined by their ability to allow small

finite perturbations to grow exponentially. This means that all attempts to reduce

model formulation, specification and approximation errors have only limited effects

because the remaining small errors still grow exponentially.

1.2 Error Estimation and Optimization in GFD

We give a brief overview on current progress in GFD modelling with a focus on uncer-

tainty quantification.� A strong worldwide effort to build “next-generation” dynamical cores for GFD

models tries to reduce the number of error sources in the model approximation

layer (e.g., Bonaventura and Ringler 2005).� The number of computational degrees of freedom has been steadily growing due

to increased available computational power (Dongarra et al. 2010).� The explicit inclusion of many subsystems into the GFD models has shifted

many uncertainty sources from external forcings to internal parameterizations

(e.g, Brovkin et al. 2009).� Model intercomparison projects of all types have been able to quantify general

model uncertainty (AMIP/PMIP/SMIP/APE/CMIP(e.g., Meehl et al. 2000)).� Models try to estimate parameterization uncertainty through the inclusion of

stochastic parameterizations into models (Buizza et al. 1999; Majda and Stech-

mann 2009).� Data assimilation techniques are used to decrease specification and formulation

error sources by fitting model outputs to data (Kalnay et al. 2007).

9

Chapter 1 Introduction� New mathematical methods are applied to GFD problems to augment existing-

model systems, e.g. low order modelling (Majda et al. 2009) or “super modelling”

(van den Berge et al. 2010).

It is very difficult to find a methodology that separates uncertainty due to different

error sources because it is nearly impossible to distinguish practically between the two

error layers. Differences between output of a computational model and reality are

always due to a combination of error sources in both layers at the same time. One

step towards a differentiated analysis of the two error layers is the development of an

error estimation technique that practically and conceptually separates both layers. To

do this, we suggest to start with the model approximation error. The approximation

error can be treated independently by setting the theoretical solution of a specified

model as truth. The detailed analysis of approximation error is not yet standard in

geophysical fluid dynamics for mainly two reasons: First, the approximation error

has been deemed to be less important (= smaller) than the model formulation errors

for long-term simulations. This is not a priori true for all models and all types of

approximation errors as has been shown for example by (Rasch et al. 2006). Second,

there are simply no techniques available that can be used for the technical variety of

GFD models to estimate the approximation error. It is for these reasons that GFD

models usually do not attach numerical error bars to numerical outputs. This has to

change with the ever increasing importance of GFD models.

1.3 Thesis Objective: A New Kind of Uncertainty

Quantification in GFD

The guiding research question:

How can we formulate an algorithm for GFD models that estimates the nu-

merical approximation error for important time-dependent physical quan-

tities (regional or global)?

As a first step towards comprehensive error bars for GFD models, we develop a new

error estimation algorithm for approximation errors that is applicable to existing GFD

models, easy to use, and easy to implement. To achieve this, we employ the idea of

algorithmic learning: the error estimation algorithm does as much of the work as possi-

ble without explicit user input. The algorithm is model-independent in the sense that

it automatically learns everything that is specific about a given model from the model

itself. This is the first time that the idea of learning is applied to approximation errors.

To develop such an algorithm, we start with the analysis of the fluid dynamical kernel

10

1.4 Thesis Outline

of GFD models. We focus on a CFD method that is called dual weight error estimation

(Giles et al. 2004; Becker and Rannacher 2002). It estimates the approximation error for

important physical quantities as a weighted aggregation of local model errors on each

computational grid cell. Classically, local model errors are estimated using the model

solution and information about the underlying model and discretization. To do this

for complex, time-dependent problems is a difficult undertaking. To become applicable

to GFD problems, this approach has to be substantially modified and extended. The

original method depends strongly on expert knowledge of the underlying discretization

to estimate local errors. At the same time, there is no general mathematical back-

ground for the types of discretizations and time-dependent problems that are typically

encountered in GFD models. In outlining ways in which to translate the method to

GFD models, we put specific focus on keeping the algorithm simple and general. We

require from a potential algorithm to learn the properties of local model errors from the

model itself and to calculate the aggregated goal approximation error automatically.

The algorithm should not change the forward evaluation of a given model but calculate

an error estimate for relevant goals a posteriori.

1.4 Thesis Outline

The Chapters 3, 4, and 5 of this thesis are written in the style of journal publications.

As a consequence, they contain their own abstract, introduction and conclusions, and

can be read largely independently of one another. Chapter 3 has been submitted to the

Journal of Computational Physics 2010 and is currently under revisions (Rauser et al.

2011). Chapter 4 has been published in the ICCS conference proceedings 2010 (Rauser

et al. 2010). Both Chapters deal with a deterministic approach to goal error estimation

and focus on different aspects of the goal error estimation algorithm. Chapter 5 is

currently being prepared for submission. It deals with a stochastic approach to goal

error estimation. Chapter 2 gives a mathematical motivation of our algorithmic idea

and Chapter 6 concludes the thesis with some final remarks. For editorial consistency,

references to the publications underlying Chapter 3 and 4 have been changed to link

to the respective Chapter.� In Chapter 2, we introduce the general idea behind everything we do. We define

a mathematical framework for a model and its different types of errors. We

propose an error estimation method based on the concept of local model error

learning and suggest two possible descriptions for local model errors: stochastic

and deterministic.� In Chapter 3, we use a deterministic description of local model errors and intro-

duce our adaptation of dual weight error estimation with deterministic, empirical

11

Chapter 1 Introduction

local error estimators. We explain our idea of modelling error production as func-

tional of the flow state and describe how to learn the properties of this functional

from comparison of model solutions. We show results for a numerical model of

the spherical shallow water equations. We discuss the robustness of our method

and show results for two different test cases.� In Chapter 4, we discuss the second component of our error estimation tech-

nique in detail, the adjoint sensitivities. We show a new way to efficiently calcu-

late adjoint solutions with AD tools by using discrete adjoints for large matrix

multiplications. This is of general interest to GFD applications because most

discretization schemes include the solution of large linear systems.� In Chapter 5, we introduce a stochastic extension of dual weight error estima-

tion, using a description of local model errors as a random process. We present

a new learning algorithm that determines the model-specific properties of these

local model error random processes from comparison of model solutions. This

approach leads to an a posterior goal ensemble derived from a single run. We

show results for a model of the spherical shallow water equations and two different

test cases. We analyze the connection between our a posteriori ensembles and

classical forward ensemble techniques.

The thesis closes with a summary of our main findings in Chapter 6, in which we

also propose directions for future research.

12

Chapter 2

Problem Statement and Algorithm

Proposal

In this chapter we introduce the mathematical nomenclature and motivate a general

algorithm that will be described, extended and evaluated throughout this thesis. We

start with the definition of a model. The process of defining a model is equivalent

to a sequence of discriminating choices. We select a subsystem of physical quantities

that we want to describe and call these variables “state vector” q, defined on a space-

time domain Ω × T . We then formulate mathematical rules that govern the evolution

of the state vector. These rules can either be deduced from microscopic principles

or heuristically from macroscopic observations. At this time, we also decide which

external processes to parameterize and which to describe as external forcings. We

decide for each variable if we want to use a deterministic or stochastic description. To

finish the model specification, we determine the boundary conditions qb and the initial

conditions q0. These boundary conditions determine the behavior of the state vector q

on the boundary ∂Ω× ∂T of the domain Ω× T . We formulate the rules as a nonlinear

(potentially stochastic) partial differential equation N

N(q(x, t)) = 0 on Ω × T, (2.1)

q(x, t) = qb on ∂Ω, (2.2)

q(x, t) = q0 on ∂T. (2.3)

We introduce physical quantities of interest J(q) that depend on the state vector q.

These derived quantities are called goals. Goals are affected by the whole variety of

model formulation errors, leading to the following definition of goal model error

ε1 := Jtrue − J. (2.4)

The goal model error is the difference between the real value Jtrue of a physical quantity

of interest and the solution of a model J . This error is rarely relevant in GFD modelling

because it is only applicable to simple models with an analytical solution for q. For

more complex models, we need computational tools to help us get an approximative

13

Chapter 2 Problem Statement and Algorithm Proposal

solution of our model. The next step is therefore the formulation of a discretized

model N∆. We introduce a discrete representation q∆ of the state vector q. We also

choose a discrete representation Ω∆ × T∆ of the domain Ω × T , a discrete boundary

condition Pqb that is a projection of the continuous boundary condition and a discrete

initial condition q0
∆. The details of the discretization process are problem-dependent

and involve the choice of grid, differential operators, and interpolation operators. We

formulate this discretization scheme as a general discrete operator N∆

N∆(q∆) = 0 on Ω∆, (2.5)

q∆ = Pqb on ∂Ω∆, (2.6)

q0
∆ = Pq0 on ∂T∆. (2.7)

Given the discrete state vector q∆ we introduce the goal approximation J∆(q∆). We

define the approximation error ε2 and the total model error ε

ε2 := J − J∆, (2.8)

ε := Jtrue − J∆. (2.9)

This total model error is the standard quantity for error quantification in GFD mod-

elling.

There are two possible strategies for error estimation: a priori and a posteriori. A pri-

ori error estimates are based on properties of the discrete model N∆ and give general

upper and lower error bounds for all possible solutions q∆. A posteriori methods use

a specific solution q∆ and estimate the solution error or goal error after the model is

solved. All error estimates throughout this thesis are a posteriori error estimates.

The problem statement

Given a model N , its discrete version N∆ and physical quantities of interest

J , our error estimation algorithm should produce an error estimate εest

that quantifies the approximation error ε2 in any goal J a posteriori. The

algorithm should be applicable to existing GFD models without extensive

code rewriting.

2.1 The Connection between Goal Errors and Local Errors

Given this problem statement, we connect goal approximation errors to local errors

because this enables us to construct an algorithm based on local model errors for all

possible goals. Local model errors are the errors at all computational grid cells. Our

14

2.2 Local Model Errors and Unresolved Processes

idea is a new interpretation of a classical error estimation technique called dual weight

error estimation (Giles et al. 2004; Becker and Rannacher 2002; Oden and Prudhomme

2002) that estimates any goal error ε2 as a weighted sum of local model errors

ε2 ≈
〈

q∗

∆, N̂∆(q∆)
〉

Ω×T
(2.10)

with an arbitrary scalar product 〈., .〉Ω×T , the adjoint solution q∗

∆ as weights and the lo-

cal model errors N̂∆(q∆) (details to (2.10) can be found in Chapter 3). Equation (2.10)

shows that an error estimate εest requires two components: First, the solution of the

adjoint problem q∗

∆ which is defined by the choice of model N , goal J , and scalar

product 〈., .〉Ω×T . The adjoint solution q∗

∆ represents the sensitivity of our goal with

respect to local changes of the discrete state vector q∆. Second, a local error estimator

N̂∆ that estimates local model errors and is dependent on the underlying discretization

N∆ and the discrete state vector q∆.

The first component q∗

∆ is conceptually easy: we “only” need a method to calculate

derivatives of any goal with respect to all local state vector changes. To do this for

existing GFD models we suggest to use Algorithmic Differentiation (AD) to obtain the

necessary goal sensitivities (details can be found in Chapter 4 and Appendix A). The

second component N̂∆ is very hard to construct for time-dependent problems and de-

pends strongly on the used discretization scheme. There is no mathematical basis for

general local error estimates for all types of discretization. We deviate strongly from

classical implementations in CFD to make the method useful for GFD applications.

We replace N̂∆ by proposing empirical local error estimators F∆(q∆,p). This results

in a new error estimate

εest := 〈q∗

∆, F∆(q∆,p)〉Ω×T , (2.11)

with p a set of parameters that defines and specifies a problem-specific empirical local

error estimator F∆. The information about the flow regime, discretization and model

is encapsulated in the parameter set p. We call these local error estimators “empirical

local error estimators” because the parameter set p is to be determined empirically and

not from prior knowledge. Before we present our idea to determine the parameter set

p, we motivate two different types of empirical local error estimators.

2.2 Local Model Errors and Unresolved Processes

Following original work from (Mori 1965; Mori et al. 1974; Zwanzig 1973) and a review

article from (Givon et al. 2004) we demonstrate that any model description implies local

errors that can be described both stochastically and deterministically. The operator

N (2.1) as introduced in the previous section is a general time-dependent stochastic

15

Chapter 2 Problem Statement and Algorithm Proposal

differential equation for q

N(q) :=
dq

dt
+ g(q) + γ(q)

dW

dt
= 0, (2.12)

with W (t) a Wiener process, g(q) and γ(q) deterministic functionals of the solution q.

The discrete approximation N∆ (2.5) solves only a part of the full dynamics of N . The

full state vector q = (q∆, q̂) can be written as a combination of a resolved part q∆ and

an unresolved part q̂ ∈ Y (with Y representing the space of unresolved scales). It is

possible to exactly rewrite (2.12) into two different equations for q∆ and q̂

dq∆

dt
+ h(q∆, q̂) + α(q∆, q̂)

dU

dt
= 0 (2.13)

dq̂

dt
+ i(q∆, q̂) + β(q∆, q̂)

dV

dt
= 0, (2.14)

with U, V Wiener processes and h, i, α, β deterministic functionals of q∆ and q̂ that

depend on the original functionals g, γ. Equations (2.13 – 2.14) both depend on the

resolved and unresolved state vectors. Mori and Zwanzig have shown that it is possible

to rewrite (2.13) to obtain a equation for the resolved state vector q∆ in which the

direct dependencies on q̂ are eliminated

dq∆

dt
+ f(q∆) + M(q∆(t)) + O(q∆(0), q̂(0)) = 0. (2.15)

The term M(q∆(t)) =
∫ t

0
K(q∆(t − s), s)ds is called memory kernel and includes the

memory of all interactions between q∆ and q̂. This means that to calculate the exact

tendency of q∆ at a time t we need to know the exact evolution of q∆ up to this point.

The term O(q∆(0), q̂(0)) is subject to an orthogonal dynamics equation that acts on

the unknown initial state of the unresolved scales q̂(0) at initial time. The solution of

the orthogonal dynamics can be interpreted as noise because the initial data for the full

problem is not known. The memory kernel is a noise with memory of the interactions

between resolved and unresolved scales.

In the case of most GFD discretization methods the evolution equation for the discrete

state vector q∆ includes only the explicit effects of the resolved scales f(q∆)

N∆(q∆) =
dq∆

dt
+ f(q∆) = 0. (2.16)

The representation of f(q∆) is not perfect for all resolved scales. Together with the

neglect of the effect of unresolved scales, this is the reason that numerical errors must

occur.

The interpretation of discrete model equations as a low order approximation of the

underlying model shows that local errors are the consequence of a combination of

deterministic and random processes.

16

2.3 The Concept of Error Learning

2.3 The Concept of Error Learning

Following the Mori Zwanzig formalism, we propose two strategies to estimate approxi-

mation errors: First, to use the deterministic interpretation of local errors to estimate

approximation error. Second, to use the stochastic interpretation of local errors to

quantify approximation error in a probabilistic setting. These methods can also be

combined or mixed. This means for the error estimate (2.11) that the empirical local

error estimators F∆ should be either a deterministic, empirical function of the flow

state q∆ or that the empirical local error estimators F∆ should represent local random

processes. In both cases, the mathematical form of the general class of local error de-

scriptions depends on a parameter set p. The concept of error learning means that we

use model information to determine a problem-specific parameter set p̃ to choose the

correct local error description for the problem under consideration. With deterministic

local error estimators, Equation (2.11) delivers a single error estimate that can also

be used for error correction purposes. With stochastic local error estimators, Equa-

tion (2.11) yields an ensemble of error estimates.

The error estimation algorithm must show how to learn the parameter set p̃ for a given

model, model discretization, flow regime, flow state, and resolution.

The Algorithm Proposal� Phase 0: Choose a reference truth.� Phase 1 - Specification: Choose a functional form (deterministic)

or a specific form of a random process (stochastic) for the empirical

local error estimators F∆(q∆,p) for a given model N∆ and goal J∆.� Phase 2 - Learning: The model learns the characteristics of local

model errors represented by a problem-specific parameter set p̃.� Phase 3 - Application: Estimate goal errors a posteriori with a

variant of dual weight error estimation. To do this obtain sensitivities

q∗

∆ for any goal and model with respect to local model errors and

calculate the scalar product with the local error estimators F∆(q∆, p̃).

The choice of reference truth is identical to the choice of the error type. The algorithm

estimates model approximation errors if we choose reference model solutions as local

reference truth. The algorithm estimates total model errors if we choose measurements

as local reference truth. Throughout this thesis we use high-resolution solutions as

local reference truth to estimate model approximation errors.

17

Chapter 2 Problem Statement and Algorithm Proposal

2.4 The Research Questions

The thesis is structured by the two possible strategies of Section 2.3. We use a discrete

shallow water model as a prototype model N∆ to approximate regional potential energy

as physical quantity of interest J∆ to evaluate both strategies.

1. Deterministic Error Correction of Goal Approximation Errors for GFD Models

(Chapter 3 and Chapter 4)

We derive a deterministic version of the proposed algorithm with deterministic empirical

local error estimators. This brings us to the following research questions:� Can empirical functionals of the flow state be used to estimate goal approximation

errors?� How can the algorithm learn the properties of these functionals?� Is the parameter set of these functionals dependent on flow-regime / goal / reso-

lution?� How do we obtain the sensitivities automatically and efficiently?� How long are the error estimates of our algorithm useful?

2. Stochastic Uncertainty Quantification of Goal Approximation Errors

(Chapter 5)

We derive a stochastic version of the proposed algorithm with stochastic empirical local

error estimators. The stochastic interpretation of local errors yields goal error PDFs,

which can be used to construct error bounds that constrain the goal approximation.

The stochastic approach leads to the following research questions:� Can a local error random process P be used to quantify goal approximation

errors?� How can the algorithm learn the properties of this random process?� Is the parameter set of these random process dependent on flow-regime / goal /

resolution?� How long is the goal error ensemble of our algorithm useful?� Can we use the local error learning algorithm to use classical ensembles to estimate

goal approximation error?� How does the computational cost of a posteriori goal ensembles compare to that

of a stochastic physics forward ensemble?

18

Chapter 3

Predicting Goal Error Evolution from

Near-Initial-Information: a Learning

Algorithm

We estimate the discretization error of time-dependent goals that are calculated

from a numerical model of the spherical shallow-water equations. The goal errors

are described as a weighted sum of local model errors. Our algorithm divides goal

error estimation into three phases. In phase one, we select deterministic function-

als of the flow as a mathematical description of local model error estimators. In

phase two, a learning algorithm adapts the selected functionals to the numerical

experiment under consideration by determining the free parameters of the func-

tionals. To do this, the learning algorithm analyzes a short numerical simulation

at two different resolutions. In phase three, goal errors are estimated using the

local error estimators with the parameters learned in phase two. The required

weights are the sensitivities of the goal with respect to local model errors; these

sensitivities are calculated automatically with an Algorithmic Differentiation tool

applied to the model’s source code.

We apply this new error estimation algorithm to two different shallow water

test cases: solid-body rotation and zonal flow against a mountain. For the solid-

body rotation we successfully estimate the error of simulated regional potential

energy and can track its evolution for up to 24 hours. For the zonal flow against

a mountain we also successfully estimate the error of simulated regional potential

energy. From the comparison of the two test cases we see that the learning period

must incorporate a similar flow state as the prediction period to enable useful goal

error estimators.

Our algorithm produces goal error estimates without detailed knowledge of the

employed discretization. We believe that this learning approach can be useful in

adapting error estimation techniques to complex models.

19

Chapter 3 Deterministic Goal Error Estimation

3.1 Introduction

Numerical models of atmospheric and oceanic circulations are affected by a variety of

error sources such as missing system components, closure problems, or heuristic physi-

cal parameterizations. The resulting total error of numerical models can be categorized

into two components (Oden and Prudhomme 2002): the modelling error caused by the

difference between model description and physical process, and the approximation er-

ror caused by the difference between the true model solution and the computational

approximation. Both types of solution errors lead to errors in physical quantities of

interest such as energy, vorticity, or transport quantities, that are derived from the

model solution. These quantities are called “goals” and they characterize the state of

the physical system. The approximation goal error is the difference between an ap-

proximated goal and its “true” value; they quantify how much we trust our model to

approximate the true solution of the model formulation. In this paper, we show how

to estimate goal errors for time-dependent solutions of a model of the rotating shallow

water equations.

We present a new algorithm that estimates the approximation goal error for a given

model solution a posteriori, and we evaluate the algorithm for the rotating shallow

water equations. The major novel feature of our algorithm is that it “learns” model-

specific properties of local error production by using information from a very limited

time interval at the beginning of the simulation to estimate the goal error at the end

of this simulation. The goal error at the end of the simulation is estimated as the

weighted sum of the local error estimates of each grid cell in space and time. The

local error estimators are described by a class of generic smoothness measures of the

solution. They are weighted with the sensitivity of the goal to changes in the grid cells.

The sensitivities are calculated with an Algorithmic Differentiation Griewank (2000)

tool. The local error estimators are adapted toward the behavior of a given numerical

model in a learning period. The learning period requires a short high-resolution inte-

gration of the model, where “short simulation” means an integration time significantly

smaller than the full integration time and where “high-resolution” means a resolution

that we cannot afford for the full integration time. By comparing the high-resolution

solution with a standard-resolution solution we determine the free parameters of the

local error estimators. The learning approach circumvents the error analysis of specific

model discretizations, a difficult task for nonlinear model equations. The contribution

of this paper is to introduce this idea of “learning” in the context of error estimation

for time-dependent goals.

The general idea to estimate goal errors as weighted sum of local errors is known

as “goal-oriented error estimation” or “dual-weighted-residual method” (Becker and

20

3.1 Introduction

Rannacher 2002) and has been researched in the computational fluid dynamics (CFD)

community for many years (Stewart and Hughes 1998; Giles and Pierce 2000; Giles

et al. 2004; Venditti and Darmofal 2000). The method originates in the theory of fi-

nite element discretizations (Ainsworth and Oden 1997; Babuska and Rheinboldt 1978;

Johnson et al. 1995), but attempts have been made to generalize the method to finite

volume discretizations (Sonar and Sueli 1998). The method connects local error esti-

mates in each computational grid cell with the output error in physical goals via the

solution of a goal-dependent adjoint problem. Parallel to the extension of goal-oriented

error estimation to various discretization schemes and different applications, the class

of treated problems has also been extended from elliptic equations to steady and un-

steady Euler and Navier-Stokes equations (Prudhomme and Oden 2002; Becker and

Rannacher 2002; Mani and Mavriplis 2009). There are two common applications of

goal-oriented a posteriori error estimation. In the first application, the local error esti-

mates can be used to dynamically adapt the spatial grid in order to improve the solution

and consequently the quality of the goal estimate. For geophysical problems, adaptive

grid adaptation for a primitive equation ocean model was investigated in (Power et al.

2006). Recently, progress has been reported towards the dynamic adaptation of tem-

poral grids (Mani and Mavriplis 2009). In the second application, an error estimate

is constructed and then used as a correction/improvement for certain model outputs

only. In (Giles et al. 2004) an error estimate for a time-evolving goal for a non-linear

equation, namely the 1D Burgers equation, is investigated. To our best knowledge,

we are the first to quantify numerical goal error evolution in a GFD environment for

the spherical shallow water equations. Our work employs the general philosophy of

goal-oriented error estimation and dual-weighted residual methods but it differs from

previous work in the crucial construction of local error estimators. The construction of

our “learning” goal error estimator does not directly rely on the structure of the under-

lying nonlinear Partial Differential Equation (PDE). This might appear as a drawback

as we lose important structural information about the problem. On the other hand

we believe that our understanding of these equations has not progressed towards the

points where we are able to construct goal error estimators from analytical considera-

tions. The potential drawback of the learning approach is furthermore compensated by

the possibility to apply our algorithm to future problems that do not have a pure PDE-

structure such as complex atmosphere/ocean circulation models that include physical

parameterizations without underlying PDE structure. By a thorough analysis of nu-

merical experiments we try to provide evidence that goal error prediction via learning

algorithms is a potential alternative to classical discretization-based approaches.

The paper is organized as follows: in Section 3.2 we introduce the shallow water

equations on a sphere and time-dependent solutions thereof as prototype GFD prob-

lems. We repeat in Section 3.3 the basics of general adjoint-based goal error estimation.

21

Chapter 3 Deterministic Goal Error Estimation

ICON grid properties

Resolution Number of cells Average cell distance Time step length

∆1 320 1115.3 km 900 s

∆2 1280 556.4 km 600 s

∆3 5120 278.0 km 450 s

∆4 20480 139.0 km 200 s

∆5 81920 69.5 km 100 s

∆6 327680 34.7 km 50 s

Table 3.1: Basic properties of the ICON discretization. The number of cells is identical

to the height field degrees of freedom. Average cell distance is the average of all the

distances between triangle cell centers.

We then define our new concept of empirical local error estimators and discuss their

specific characteristics. We introduce our concept of goal error estimation with local

error learning. In Section 3.4 we show that it is possible to estimate the goal error

of low-resolution runs with our empirical local error estimators. We show results for

different integration times and various regions. In Section 3.4.3 we conclude with a

review of the strengths and weaknesses of our approach.

3.2 Problem Statement

The shallow water equations (SWE) on a rotating sphere serve as testbed for our effort

to extend CFD error analysis techniques to GFD problems. The SWE share signifi-

cant properties of the global atmospheric and oceanic fluid system with more complex

descriptions and are able to simulate large-scale flows (Pedlosky 1982). The SWE are

typical for geophysical fluid dynamics but differ significantly from classical CFD appli-

cations because they include Coriolis effects on the sphere.

The inviscid SWE on the sphere Ω written in vector invariant form are

∂v

∂t
= (ξ + f)k× v −∇(gh +

1

2
|v|2) (3.1)

∂h

∂t
+ ∇ · (hv) = 0.

Here v is the horizontal velocity, ξ the vorticity, f the Coriolis parameter, g = 9.81m/s2

the gravitational acceleration and h the height of the fluid surface. The initial condi-

tions are v(t0) = v0 and h(t0) = h0. We consider (3.1) on a time interval T := [t0, tend]

and with periodic spatial boundary conditions. The state vector q = (h,v) consists of

22

3.2 Problem Statement

the prognostic fields height and velocity. The hyperbolic partial differential equations

(3.1) describe the flow of a single layer of fluid.

Our numerical framework is ICOSWM (Bonaventura and Ringler 2005), a shallow

water model on a triangular spherical grid with C-type staggering of the variables.

ICOSWM shares the operators and the grid with ICON, a next-generation General

Circulation Model. The grid is derived from an icosahedron (20 triangular cells) and

then refined (Bonaventura and Ringler 2005). One refinement level is equivalent to a

quadrupling of the number of cells by halving the triangle edge lengths. The lowest

resolution ∆1 is a two-times refined icosahedron and has 320 cells. More details can

be found in Table 3.1. ICOSWM uses a hybrid finite volume / finite difference method

to approximate the SWE (3.1). ICOSWM calculates a solution vector q∆ = (h∆,v∆)

with the discrete height field h∆ in the cell centres of our triangular grid and the normal

velocities v∆ at the mid points of the triangular edges. The solution process is sequen-

tial in nature; the discrete model yields discrete time slices qk
∆ for each time step. In

our notation, the solution vector q∆ = (qk
∆)k, k = 1, ..., n, incorporates all time slices

qk
∆ and represents the discrete approximation of the full solution. For further details

see (Giorgetta et al. 2009; Ripodas et al. 2009).

To evaluate our algorithm for a physically relevant goal, we introduce regionally

averaged potential energy density epot = gh2 at the end of the integration time tend as

a goal:

J(q) := J(h(tend)) =
g

A(Ω0)

∫

Ω0

h2(x, tend)dx, (3.2)

where Ω0 denotes an arbitrary subdomain of the sphere Ω and A(Ω0) denotes the area

of Ω0. The goal depends directly only on the height field h as part of state vector q.

We omit the factor 1/2 in the definition of potential energy because a constant factor

does not change the structural form of the goal functional and its error characteristics.

The computational equivalent of Equation (3.2) is the numerical integration of an

approximated discrete height field after n time steps hn
∆ on the discrete subdomain

Ω∆0

J∆(q∆) := J∆(hn
∆) =

g

A∆(Ω∆0)

∑

i∈Ω∆0

ai

(

hn
∆,i

)2
, (3.3)

where the ai denote the grid cell areas, hn
∆,i is the value of the discrete height field after

n time steps on the ith triangle. The discrete area A∆(Ω∆0) =
∑

i∈Ω∆0
ai is the sum of

all triangle areas that are part of the subdomain Ω∆0 and approximates the true area

A(Ω0). This midpoint integration is consistent with the assumptions that are made

in the ICON model discretization. Throughout this paper, we calculate the regional

potential energy goals for different areas on the sphere. All regions used in this chapter

always have the size of a grid resolution ∆1 triangle. This allows us easy comparisons

23

Chapter 3 Deterministic Goal Error Estimation

of model approximations for the same region at different resolutions without the need

for a sophisticated interpolation algorithm. We define the goal error as the difference

between (3.2) and (3.3)

ε := J∆(q∆) − J(q). (3.4)

This is the difference between an exact evaluation of the analytical solution of our

continuous problem and the approximated evaluation of the approximated solution of

the discrete problem. The exact evaluation of J(q) is usually impossible. The numerical

approximation J∆(Pq) of J(q) produces errors even if the correct solution q is known,

with P a projection operator that maps q on the same discrete grid as q∆. We can

neglect this approximation error of the goal because it is small compared to the error

that is caused by the solution error. Hence, the error in Equation (3.4) is approximated

by

ε ≈ J∆(q∆) − J∆(Pq). (3.5)

For time-dependent flows, the goal is changing in time. We want to be able to estimate

the error at the end of an arbitrary integration time. This leads to the following

questions that define our problem

1. How can the error for time-dependent goals as defined in Equation (3.5) be esti-

mated?

2. Is it possible to use these error estimates to correct goal approximations obtained

from low-resolution solutions, i.e., to improve their quality to the quality of goals

obtained from high-resolution solutions, without solving the underlying problem

at this high resolution?

3. Over how long integration times can the error be consistently reduced?

We attempt a general answer to question one in Section 3.3. The answers to ques-

tions two and three are inherently test-case specific and are addressed in the results

Section 3.4.

3.3 Deterministic Estimation of Goal Approximation Errors

In this section, we review the fundamentals of of goal-oriented a posteriori error esti-

mation, following closely the finite volume derivation proposed in (Giles 1998), before

we describe our learning goal error estimation algorithm.

3.3.1 Goal Errors and Local Error Estimators

The shallow water equations (3.1) can be described as a general nonlinear differential

operator N acting on the state vector q = (h,v)

N(q(x, t)) = 0, q(x, t0) = q0, (3.6)

24

3.3 Deterministic Estimation of Goal Approximation Errors

on the domain Ω × T with periodic spatial boundary conditions in x, and q0 as the

initial condition. The state vector q represents the solution on the complete space time

domain. The corresponding discretized equations can be formalized as

N∆(q∆) = 0, q0
∆ = q0, (3.7)

with q∆ := (qk
∆)k the full discrete solution vector, qk

∆ := (hk
∆,vk

∆) the state vector

time slice for time step k, N∆ the discretized version of operator N and P a projec-

tion operator that maps the initial condition q0 on the discrete space. The discrete

solution vector q∆ = (h∆,v∆) represents the discrete solution for all time steps and

spatial degrees of freedom. The dimensionality of q∆ is the number of time steps times

spatial degrees of freedom. Equation (3.7) is valid for all elements of q∆, the dimen-

sionality of N∆(q∆) is identical to the dimensionality of q∆. Equation (3.7) holds only

up to machine precision or the precision of the iterative solver in case of an implicit

discretization. We neglect both iteration and round-off error.

We introduce the pointwise solution error e∆ as

e∆ := q∆ − Pq, (3.8)

with P again the projection operator that evaluates q on the same discrete grid as q∆

and e∆. This vector of pointwise errors incorporates the solution error in all points of

space and time. The dependency of the goal error ε on the pointwise error e∆ can be

calculated by linearizing J∆ around the discrete solution q∆

ε = J∆(q∆) − J∆(Pq) = J∆(q∆) − J∆(q∆ − e∆)

≈
〈

∂J∆

∂q∆

∣

∣

∣

∣

q∆

, e∆

〉

Ω×T

. (3.9)

We introduce on the right hand side of (3.9) an arbitrary discrete scalar product 〈., .〉Ω×T

on the space-time domain. For our purposes, we use the Euclidean scalar product where

all discrete vector components are weighted with the associated volume in the space-

time domain (the product of cell area and time step length). We will from now on omit

the explicit notation of the space-time domain Ω × T unless needed for clarification.

From Equation (3.9) we observe that we need both the sensitivities of our goal with

respect to the solution errors and the pointwise solution errors itself to obtain an error

estimate. Unfortunately, the solution error e∆ is hard to estimate, especially for time-

dependent problems. It incorporates local error production, error advection, and local

error accumulation at each grid point. It is advisable to replace the solution error

by something that is easier to estimate. Therefore, we perform a linearization of the

25

Chapter 3 Deterministic Goal Error Estimation

discrete operator N∆ around q∆, using the definition of solution error (Equation (3.8))

N∆(Pq) = N∆(q∆ − e∆) (3.10)

≈ N∆(q∆) − ∂N∆

∂q∆

∣

∣

∣

∣

q∆

e∆.

The second term of the right hand side is a standard matrix vector product between

a square matrix
∂N∆

∂q∆

and the discrete vector of pointwise errors. The square matrix

can be assumed to be invertible; it is an upper triangular matrix because solutions at

a time step n can only depend on time slices qi
∆ if i <= n. We use (3.7) and (3.10) to

get

0 = N∆(q∆) ≈ N∆(Pq) +
∂N∆

∂q∆

∣

∣

∣

∣

q∆

e∆. (3.11)

We can now solve Equation (3.11) for the solution error e∆ and insert e∆ into Equa-

tion (3.9) to obtain an error estimate for ε without explicitly using the solution error

ε = J∆(q∆) − J∆(Pq) ≈
〈

∂J∆

∂q∆

∣

∣

∣

∣

q∆

,−
(

∂N∆

∂q∆

∣

∣

∣

∣

q∆

)

−1

N∆(Pq)

〉

=
〈

q∗

∆
T , N∆(Pq)

〉

, (3.12)

with q∗

∆
T the transposed of the solution q∗

∆ of the adjoint problem

(

∂N∆

∂q∆

∣

∣

∣

∣

q∆

)T

q∗

∆ +

(

∂J∆

∂q∆

∣

∣

∣

∣

q∆

)T

= 0. (3.13)

The adjoint problem can be derived from Equation (3.12) as

q∗

∆
T = −∂J∆

∂q∆

∣

∣

∣

∣

q∆

(

∂N∆

∂q∆

∣

∣

∣

∣

q∆

)

−1

⇔ q∗

∆
T ∂N∆

∂q∆

∣

∣

∣

∣

q∆

= −∂J∆

∂q∆

∣

∣

∣

∣

q∆

⇔
(

∂N∆

∂q∆

∣

∣

∣

∣

q∆

)T

q∗

∆ +

(

∂J∆

∂q∆

∣

∣

∣

∣

q∆

)T

= 0. (3.14)

The operator N∆ in Equation (3.12) is applied to the analytical solution q, which is not

known. The resulting vector N∆(Pq) is called the vector of truncation errors. Equa-

tion (3.12) shows that the goal error is approximately the scalar product of the adjoint

sensitivities q∗

∆ and the vector of truncation errors N∆(Pq). The adjoint sensitivities

26

3.3 Deterministic Estimation of Goal Approximation Errors

serve as weights for the vector of truncation errors and connect the goal error with lo-

cal truncation errors (Giles 1998). This connection is easier to use than Equation (3.9)

because the vector of truncation errors is usually easier to estimate than the pointwise

error used in Equation (3.9).

The adjoint problem (3.13) is also called dual problem to the primal problem that

consists of the model (3.7) and the goal (3.3). Formally, the adjoint problem is the

transposed linearized original problem. For a time-dependent problem, the adjoint

system propagates backwards in time and is initialized and forced via the choice of the

goal. For our specific problem of the global SWE, the adjoint problem has the same

(periodic) spatial boundary conditions as the forward problem (3.6). For our type of

forecast goal, the adjoint problem has one temporal initial condition, and its discrete

version is defined as the derivative of the discrete goal at the last time step

q∗

∆
n =

∂Jn
∆(qn

∆)

∂qn
∆

. (3.15)

This temporal initial condition is defined at the end of the forward integration time of

(3.7) and is sometimes called adjoint end condition. If one uses structurally different

goals that incorporate information from more than the last time step, the goal also

influences the adjoint solution as a forcing.

The derivation of the goal error estimate Equation (3.12) via a Taylor-series expan-

sion is only a linear estimate, holding if the linear approximations of the operator and

the goal functional J in (3.10) and (3.9) are justified. Giles et al. (2004) argue that

higher order terms become negligible compared to the linear error estimate if the solu-

tion errors for the nonlinear primal problem and the linear adjoint problem are of the

same order.

Every a posteriori error estimation technique needs to approximate the truncation-

error vector N∆(Pq) using the numerical solution q∆

N∆(q) ≈ N̂∆(q∆). (3.16)

The new operator N̂∆ has to be introduced because the naive evaluation of N∆(q∆) is

zero up to machine precision by definition. The approximation N̂∆ is called local error

estimator or local residual estimator and estimates the errors at each computational

grid point in space and time. The exact construction and derivation of this local error

estimator traditionally depends on the discretization that is used. The description of

local error estimators is a key feature of the whole methodology because it translates

the problem of estimating goal errors into that of estimating local errors for one time

step. It is at this point where our method deviates from previous work. To estimate

27

Chapter 3 Deterministic Goal Error Estimation

the local error one can start from an analysis of the spatial and temporal discretization

scheme to develop a measure for the error that takes into account different sources

of numerical errors as well as their mutual interplay. For a nonlinear time-dependent

problem such as the shallow water equations this is a rather complex task, and it would

be even more difficult for a 3D GFD model. Additionally, some proposed methods that

involve interpolation on higher resolution grids (Venditti and Darmofal 2000) are too

expensive to be used for time-dependent problems. We therefore decide to take a

different route and propose the construction of local error estimators that are based

on smoothness measures of the flow solution and not on the model discretization and

underlying PDE. These local error estimators feature degrees of freedom p that have to

be learned from model behavior. This means that we approximate N̂∆ with cheap and

simple functionals F∆ of the discrete solution q∆, characterized by a set of parameters

p,

N̂∆(q∆) := F∆(q∆,p). (3.17)

The structure of these local error estimators and the learning algorithm for the param-

eters p are explained in section 3.3.3. Inserting(3.17) into (3.12) leads to

εest :=
〈

q∗

∆
T , F∆(q∆,p)

〉

≈ ε, (3.18)

with εest the estimate for the goal error ε. We rewrite (3.18) to use the error estimate

to improve the original goal approximation J∆

J(q) ≈ J∆(q∆) − εest. (3.19)

Our error estimate εest must have the correct sign and magnitude for error correction.

This prevents the use of relative local error estimators that are commonly used for grid

adaptation purposes. Equation (3.18) shows that our algorithm needs two ingredients

to estimate the goal error:

1. The sensitivities q∗

∆ that are the solution of the adjoint problem (3.13) and

2. A local error estimator F∆(q∆,p).

3.3.2 The Algorithm Proposal

Our version of goal-oriented error estimation uses a general class of functionals F∆(q∆,p)

as local error estimators. We now propose an algorithm that selects a specific functional

F∆(q∆, p̃) from this class by learning a parameter set p̃ that includes information on

the model under consideration - from the model under consideration.

28

3.3 Deterministic Estimation of Goal Approximation Errors

Goal Error Estimation Algorithm

1. Define a general class of deterministic functionals F∆(q∆,p) of the

flow that can be used as error estimators.

2. Learn a specific parameter set p̃ from the model in short runs at

varying resolution.

3. Use Algorithmic Differentiation to obtain automatic goal sensitivities

q∗

∆. Calculate scalar product
〈

q∗

∆
T , F∆(q∆, p̃)

〉

between the local

error estimators and these sensitivities. Use this scalar product as a

goal error estimate or as error correction to improve the approximated

goal.

3.3.3 Step 1: Functional Form of Local Error Estimators

As a first step, we need a definition of our general class of local error estimators

F∆(q∆,p). Our approach grants complete freedom at this point to construct func-

tionals that relate flow states to error production. For the goal “potential energy” (3.3)

we do not use the complete state vector q∆ but construct a local error estimator as a

functional of the h∆ field only, i.e. we estimate the local errors in velocities to be zero

F∆(q∆,p) := F∆(h∆,p). (3.20)

The dimensionality of F∆ is equal to the number of time steps times the spatial degrees

of freedom. The spatial component of the scalar product for the error estimate (3.12)

therefore reduces to the dimensionality of the height field solution h∆. While we need

to compute the full adjoint solution including adjoint velocities for a correct solution

of the adjoint height field, we do not need to save the adjoint velocities for the scalar

product. We motivate this reduction of scalar product dimensionality because GFD

models classically feature a large number of variables in the state vector. For an efficient

usage of our method, it is necessary to reduce the learning aspect to the dominating

parts of the vector; here the variables that are used to calculate the goal. This reduction

is not fundamentally necessary for ICOSWM but the general applicability of our method

depends crucially on the computational costs that have to be lower than the full high-

resolution simulation. We choose a parameter set consisting of only one scalar scaling

factor p = ω. We use local error estimators F∆(h∆, ω) that are of the form

F∆(h∆, ω) = ωF̃∆(h∆), (3.21)

29

Chapter 3 Deterministic Goal Error Estimation

where F̃∆ is a smoothness measure of the height field (with the same dimensionality as

h∆). The smoothness measure F̃∆ takes the spatial structure of the error into account

while the term ω scales this error indication to a given discretization and grid resolu-

tion. It is here, in the scaling factor ω, that the information about discretization and

the grid resolution enters our error estimation algorithm.

The term ω is conceptually dependent on the discretization and grid resolution. If

the user of our algorithm is interested in applying the error estimates to many different

resolutions it is possible to model the resolution dependency of ω as a function of a

typical grid length (see for example the power laws of typical grid length for error esti-

mates in (Sonar and Sueli 1998)). We refrain from this approach because we are usually

only interested in estimating the error of goals derived from a standard resolution. If

we want to estimate errors for different resolutions we use separate scaling factors for

different resolutions.

We suggest three different smoothness measures F̃ i
∆:

1. Regions of large spatial gradients are a potential candidate for large errors. We

construct a smoothed field h̄∆,i = 1

3

∑3

j=1 h∆,j in each cell that is the average

over the respective three neighbor cell values h∆,j. The first smoothness measure

is the difference between this averaged field and the solution in the cell itself

F̃ 1
∆(h∆,i) := h∆,i − h̄∆,i. (3.22)

2. The second smoothness measure is a simplification of the finite element gradient

estimator method. We approximate the size of the height gradient in a cell i with

the finite differences of the height field at the three cell edges δhj

F̃ 2
∆(h∆,i) := max

j=1,2,3
δhj . (3.23)

3. Regions of large temporal gradients are another potential candidate for large

errors. The third smoothness measure is therefore based on temporal rates of

change and is given by

F̃ 3
∆(hk

∆) :=
hk+1

∆
− hk

∆

∆t
, (3.24)

with k the time step and ∆t the time step length. The last time step value

F̃ 3
∆(hn

∆) is set to be F̃ 3
∆(hn−1

∆
).

30

3.3 Deterministic Estimation of Goal Approximation Errors

The three proposed local error estimators are

F 1
∆(h∆,i) = ω

(

h∆,i − h̄∆,i

)

, (3.25)

F 2
∆(h∆,i) = ω max

j=1,2,3
δhj , (3.26)

F 3
∆(hk

∆) = ω
hk+1

∆
− hk

∆

∆t
. (3.27)

The smoothness measures above are similar to error indicator functions used for grid

refinement purposes (e.g., Power et al. 2006). The new aspect here is the concept to

“tune” a general local error indicator quantitatively with a parameter ω for a specific

model.

3.3.4 Step 2: Learning the Properties of Local Error Estimators

As a second step, we need to learn the correct parameter p̃ that completely determine

the local error estimators F∆(q∆, p̃) = F∆(h∆, ω̃) for a specific model. The learning

algorithm can be adjusted accordingly if the parameter set consists of more components.

We suggest to train the local error estimators with short high and low-resolution runs

on an arbitrarily chosen region:

1. Perform low and high-resolution runs for a short time interval and obtain the

height field solutions h∆,low and h∆,high.

2. Calculate the goal approximations J∆,high(h∆,high) and J∆,low(h∆,low) using the

two solutions h∆,low and h∆,high. The difference ε̃ = J∆,low − J∆,high is an ap-

proximation of the true error ε.

3. Perform the low-resolution adjoint run to obtain a low-resolution adjoint height

solution h∗

∆,low.

4. Calculate a smoothness measure with the low-resolution solution F̃∆,low(h∆,low).

Calculate the approximate scaling weight ω̃ by dividing the estimated error ε̃ by

the low-resolution error estimate

ω̃ =
ε̃

〈

q∗

∆,low, F̃∆,low

〉 . (3.28)

This procedure can be repeated for different regions to get an averaged and more

robust estimate of ω̃. The computational cost of this learning algorithm is cheaper than

a full solution at the higher resolution. During the learning period, the adjoint problem

needs to be solved only for a few time steps on the low-resolution grid. The result of

the learning algorithm is the determination of one degree of freedom that connects

31

Chapter 3 Deterministic Goal Error Estimation

smoothness properties with quantitative model errors. After the learning is done once

for a given model discretization and flow regime, the error estimator F∆(h∆, ω̃) can be

used to estimate goals in this flow regime, i.e., different goals, different regions, and

longer and varying integration times.

3.3.5 Step 3: Automatic Goal Sensitivities

The last step is to calculate the scalar product (3.18), which requires the solution of

the adjoint solution at the low resolution for the full period of the simulation. We

need the goal sensitivities for a given numerical model with respect to local changes

in the discrete state vector. We suggest to use Algorithmic Differentiation (AD) soft-

ware to directly get an approximation of the adjoint solution (e.g., Griewank 2000).

AD software interprets the execution of a discretized model as a series of simple ele-

mental operations. The output of an AD tool is the derivative of any model variable

with respect to any number of different model variables or variable instances. These

derivatives or sensitivities are calculated by the chain rule as a simple concatenation of

derivatives of the basic operations of the employed programming language. The pro-

cess yields an approximation of q∗

∆. The advantage of using an AD adjoint version of

our model is that we are as close as possible to the discretized solution of our model.

Additionally, this solution method of the adjoint problem does not involve new coding

and is expected to be easier and less error-prone.

For our specific mode, we have implemented an adjoint version of the shallow wa-

ter model ICOSWM. ICOSWM-AD is a parallel checkpoint runtime adjoint version of

ICOSWM obtained with the AD-enabled NAGware fortran95 compiler (Rauser et al.

2010). The adjoint sensitivities have been successfully compared to sensitivities ob-

tained from a tangent-linear solution of the model and finite-difference gradient ap-

proximations.

3.4 Results and Discussion

We apply our new error estimation technique to two test cases that are commonly used

in the GFD community.� Test case 1 (TC1): an unsteady solid body rotation as introduced in example 3

of (Laeuter et al. 2005).� Test case 2 (TC2): zonal wind against a mountain as described in test case 5 in

(Williamson and Drake 1992).

The topography, height field initial condition, and meridional velocity after 12 hours

of our test cases are plotted in Figure 3.1. Within these two test cases, we want

32

3.4 Results and Discussion

Figure 3.1: Topography (left), height field initial condition (middle), meridional ve-

locity after 24hours (right). Top row for unsteady solid body rotation (TC1), bottom

row for zonal wind against a mountain (TC2).

to showcase that our method can be used for error estimation of goals derived from

periodic, global flow patterns as in TC1, but also for local phenomena as the evolution

around the mountain in TC2.

3.4.1 Unsteady Solid Body Rotation (TC1)

The unsteady solid body rotation is a periodic test case that propagates a wave-like

structure in the height field westwards with a periodicity of 24 hours. It is called “un-

steady solid body rotation” because the unsteady solution is derived from a solid body

rotation of the atmosphere around a rotation axis that is inclined (45◦) with respect

to the Earth’s rotation axis. The westwards propagation is due to this inclination:

the height field appears to be moving westwards because the eastward velocities of the

inclined coordinate system are smaller than the actual Earth’s rotation. The exact

derivation can be found in (Laeuter et al. 2005). All goals that are derived from this

height field at a fixed latitude show the same 24 hour period, similar amplitudes but

differing phases, as can be seen in the left panel of Figure 3.2.

33

Chapter 3 Deterministic Goal Error Estimation

 1e+07

 5e+06

 0

-5e+06

 12 10 8 6 4 2 0

P
ot

en
tia

l e
ne

rg
y

va
ria

tio
n

Time [h]

Solid body rotation

Various regions

 200000

 100000

 0

-100000

 12 10 8 6 4 2 0

P
ot

en
tia

l e
ne

rg
y

va
ria

tio
n

Time [h]

Zonal flow against a mountain

Various regions

Figure 3.2: Variation in potential energy around the reference height for TC1 (left)

and TC2 (right) for a 12 hour evolution.

Local error evolution as a function of the flow state

First we show that local error evolution can be modelled as a functional of the flow

F∆(q∆,p). We define the discrete time derivative of the pointwise error (3.8)

ėn
∆ =

1

∆t

(

en+1
∆

− en
∆

)

. (3.29)

Equation (3.29) eliminates accumulated errors in time, allowing us a comparison be-

tween pointwise error evolution and local error estimators. We see that the initial error

evolution appears to be random (Figure 3.3), probably a consequence of the initializa-

tion of the test case. Later times show the emergence of an error pattern that is related

to the flow pattern. The error development after 6 hours shows a coherent pattern

that is structurally related to the flow of our test case, showing the same wave number

but different phase. The behavior of the three smoothness measures F 1
∆, F 2

∆ and F 3
∆

is also shown in Figure 3.3. The smoothness measure F 3
∆, which is based on tempo-

ral gradients, looks most promising because it exhibits similar large-scale structures

as the error evolution and exhibits the smallest amount of grid-scale noise (=differing

signs or strongly changing values between neighboring cells). The smoothness mea-

sure F 2
∆, which is based on spatial gradients, shows a large amount of grid scale noise

with strongly differing contributions from neighboring cells. The superiority of the

F 3
∆ smoothness measure might be due to the smooth and wavetype character of our

test case and the low-resolution. We conclude that our smoothness measures show

some structure that is related to the flow but also show significant differences in noise

characteristics.

34

3.4 Results and Discussion

Figure 3.3: TC1: the different local error estimators and the true error rate of change

for a 6h interval. The plotted fields are normalized.

ICON triangle center coordinates for cell sets on resolution ∆1

Cell ID −→
Cell Set ↓ 1 2 3 4 5 6 7 8 9 10 11

S1 (Lon) 108◦ 91◦ -163◦ 180◦ 163◦ -91◦ -108◦ -125◦ -19◦ -36◦ 53◦

(Lat) 11◦ 10◦ 10◦ 11◦ 10◦ 10◦ 11◦ 10◦ 10◦ 11◦ 10◦

S2 (Lon) -135◦ -137◦ -131◦ -118◦ -108◦ -91◦ -108◦ -125◦ -80◦

(Lat) 50◦ 34◦ 39◦ 37 42◦ 57◦ 52◦ 57◦ 50◦

S3 (Lon) -91◦ -108 -125

(Lat) 57◦ 52 57

Table 3.2: Cell center coordinates for all ICON ∆1 triangles used for goal calculations

35

Chapter 3 Deterministic Goal Error Estimation

TC1: Improvement Percentage for cells in set S1

Gauging LEE Cell ID −→
Set ↓ 1 2 3 4 5 6 7 8 9 10 11 ⊘

ω1 S1 F 3
∆ 50 53 90 70 70 81 81 50 85 67 88 71

ω∗ S1 F 3
∆ 62 64 90 86 86 54 99 16 96 82 92 75

Table 3.3: Improvement percentage for different cells of cell set S1 and TC1. The ω1

row shows the application of a trained weighting factor ω1 for a 6h integration. The

ω∗ shows the application of the optimal weighting factor ω∗ after 6h. Values between 0

and 100 mean an improvement (100 = we completely correct the error). ⊘ shows the

average improvement. Gauging set: the set of cells that is used to gauge the local error

estimator. LEE: the used local error estimator.

Learning the properties of local error estimators

Now we demonstrate that a specific parameter set p̃ of the functional local error de-

scription of Section 3.3.3 can be determined by the learning algorithm proposed in

Section 3.3.2. We determine a learned scaling factor ω1 for the estimator F 3
∆ (3.27)

for resolution ∆1 with a one-hour run. For this learning period, we choose a set of

grid cells S1 that are part of a zonal band at a latitude of about 10N for all learning

and robustness experiments, see Table 3.2. This specific test case with an analytical

solution allows us also to calculate the optimal weight ω∗ as the ratio of true goal error

and the smoothness measure. Table 3.3 shows the results after 6 hours for the trained

ω1 and with the optimal ω∗. We can see that the average improvement for our method

has an upper limit of 75% for optimal weights. This level can nearly be reached by the

gauged error estimates: the improvement averages to 71%. The single region results for

ω1 do not deviate more than 20% from the optimal weights. We conclude that for this

test case it is possible to find a useful scaling factor and to improve the goal estimates

by applying our goal errors.

Goal error estimates with a single scaling factor

We now provide evidence that the proposed simple smoothness measures lead to useful

goal error estimates in a variety of applications, given a specific value of ω̃. All follow-

ing experiments are conducted using the single value ω1 obtained in the previous section.

We have to be careful to get answers that are not simply tuned to fit the data due to

the degrees of freedom we introduced with our parameter set p̃. Our method must be

better than other simple hypotheses with similar degrees of freedom. With ω̃ we have

one degree of freedom, which means we have to beat one tuned number that estimates

36

3.4 Results and Discussion

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10

E
rr

or
 in

 p
ot

en
tia

l e
ne

rg
y

[1
0x

6]

Different Regions

Robustness in space

True Error
50% Improvement

F1 estimator
F2 estimator
F3 estimator

Zero Error

Figure 3.4: TC1: True error and error estimates of potential energy for different regions.

The thick line depicts the true error. The dots are estimated errors for the three different

classes of error estimators. The two thin lines indicate a goal improvement of at least

50% if the error estimate would be used for error correction.

the error for all regions, times, and goals. We thus have to look for robustness of various

error estimates for a single, learned value ω̃. The local error estimators F 1
∆, F 2

∆ or F 3
∆

should lead to robust error estimates for different regions on the sphere, different goals,

different resolutions, and different integration times.

The robustness requirements suggest four experiments: variation in location for fixed

resolution and integration time, variation in the formulation of the goal for fixed res-

olution and integration time, variation in time for fixed resolution and location, and

finally variation in resolution for fixed integration time. All experiments are shown

at the lowest resolution ∆1 (≈ 1100km grid spacing). For all experiments that follow

we evaluate the ”true” value of a goal with the analytical solution at the reference

resolution ∆6 of (≈ 35km).

Spatial robustness

To test the robustness with respect to region, we define a fixed integration time of six

hours and compare different estimators. Our local error estimators work sufficiently well

to estimate the errors of low-resolution runs of our model (Figure 3.4). We can observe

from Figure 3.4 that most error estimates improve the quality of the goal approximation

by at least 50%. Two error estimates from estimator F 2
∆ are close to zero and therefore

do not improve the quality of the goal approximation. The wide spread throughout

the different estimators (3.25) leaves no local error estimator the clear winner. The F 1
∆

37

Chapter 3 Deterministic Goal Error Estimation

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 6 5 4 3 2

E
rr

or
 in

 p
ot

en
tia

l e
ne

rg
y

Power of height field

Error evolution for different goals

Various regions
 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 6 5 4 3 2

E
rr

or
 r

at
io

Power of height field

Robustness in goal formulation

Various regions
Truth

Figure 3.5: TC1: absolute error (left) and ratio of error estimates and true errors

(right) for different regions (cells 9, 10, 11 from set S1). The goal error estimates use

the local error estimator F 1
∆. The absolute error increases drastically for higher powers

of the height field, the quality of the estimate stays nearly constant.

local error estimator appears to be the least volatile. The cells that fall out of the 50%

improvement region are identical to the bad performers identified from Table 3.3.

Goal formulation robustness

To test the robustness with respect to choice of functional, we define the same fixed

integration time of six hours as in the section before. We calculate different goals Jβ

as regional integrals over different powers of the height field Jβ ∼
∫

ghβ for β = 2, ..., 6.

Increasing β leads to fast increasing absolute errors in the output goals, with varying

numerical values of from order 106 to 1024. Our error method is robust against this kind

of changes in goal formulation (plotted for cells 9, 10 and 11 from Set S1 in Figure 3.5).

All regions show only small changes in the ratio between estimated and true errors,

within a range of 85% to 110%. Results are shown for three arbitrary regions and the

F 1
∆ local error estimator. The results are similar for all three types of estimators and

all regions we looked at.

Corrected estimates and higher resolution approximations

We test if our error estimates can be used as error correction when compared with

higher resolution goal approximations. We define a fixed integration time of six hours

and compare the solution at resolution ∆1 with two solutions at higher resolutions

(∆2 and ∆3, see Table 3.1). We use the F 2
∆ local error estimator to correct the goal

approximation (3.19) for cell 9 of set S1. We show in Figure 3.6 the best approximation

of the truth as constant green line. The corrected goal is of similar quality as the

uncorrected goal approximation from a two times refined resolution.

38

3.4 Results and Discussion

-2

 0

 2

 4

 6

 8

 3 2 1

A
bs

ol
ut

e
er

ro
r

in
 p

ot
en

tia
l e

ne
rg

y
[1

0x
6]

ICON grid refinement level

Error correction

Uncorrected approximations
Corrected level one approximation

Truth

Figure 3.6: TC1: absolute error in potential energy against resolution for cell 9 of set

S1. Red: uncorrected regional potential energy from approximated solutions. Blue:

corrected ∆1 approximation, using F 2
∆ local error estimator. Reference truth is the ∆6

reference solution.

Time evolution of goal error

To test the robustness with respect to integration time, we fix the region and use again

the lowest resolution ∆1 for different integration times. Looking at the timeseries of

estimated and true error for a single region (cell 9 of set S1) is instructive because it

allows us to see if the model evolution is captured correctly. We compare the estimated

errors with a F 3
∆ estimator to the true evolution of the pointwise error for 24 hours

(Figure 3.7). For each data point in time, the respective adjoint backward problem

is solved. The error estimation works well until the model error reaches its maximum

value after around 21 hours, but has difficulties following the decline of model error to

zero. The estimated error decreases and increases with roughly the same periodicity

as the true error but the decrease is not strong enough. This behavior is typical for

all cells that we have tested. The general characteristics of TC1 are apparently more

important than initial regional flow states to determine how long our error estimates

are useful. The F 1
∆ and F 2

∆ estimators are not plotted because they are not able to

correctly estimate a decrease in error.

3.4.2 Zonal Flow against a Mountain (TC2)

We now apply our error estimation algorithm to a flow that has a distinctive local fea-

ture. Our second test case TC2 was proposed in (Williamson and Drake 1992); a zonal

flow hits a Gaussian mountain, and the evolution of the perturbed flow is investigated.

For our learning algorithm, the immediate change of the flow after initialization is a

challenging property of this test case. We determine a reference solution by performing

an integration of ICOSWM at resolution ∆6 (≈ 35 km) with a time step of 50s because

we do not have an analytical solution. The evolving pattern of TC2 in the meridional

39

Chapter 3 Deterministic Goal Error Estimation

 0.5

 1

 1.5

 2

 2.5

 24 21 18 15 12 9 6 3 0

P
ot

en
tia

l e
ne

rg
y

[1
0x

6]

Time [h]

Evolution of absolute output functional error

True error
50% Improvement

Estimated error

Figure 3.7: TC1: evolution of true error and error estimate for 24 hours in cell 9 of set

S1. Blue: true goal error, calculated with the analytical solution. Red: error estimate,

using local error estimator F 3
∆. Thin blue: 50 % improvement regime.

velocity can be seen in the right panel of Figure 3.1. We do not prove nor claim con-

vergence at resolution ∆6 but instead try to show that our method can estimate the

error between solutions derived from two strongly different resolutions.

We are interested in the behavior of potential energy at the downstream side of the

mountain perturbation, in contrast to TC1, where we looked at randomly distributed

areas across the zonally symmetric Earth. We therefore choose a set S2 of nine re-

gions that lie downstream from the mountain for our experiments, see Table 3.2. The

evolution of potential energy in several of these regions is shown in the right panel of

Figure 3.2. The initial zonal flow is perturbed, and this perturbation is transported

throughout the flow. The effect of the disturbance sets in after a time that depends on

the distance between the region where potential energy is calculated and the mountain,

see the right part of Figure 3.2. This makes the learning process demanding: we do not

expect a steady zonal flow to show identical behavior to a newly excited gravity wave.

To test the dependence of the algorithm on the flow state throughout the learning pe-

riod, we introduce a second set of regions S3 that incorporates four regions that are

directly connected to the mountain and exhibit the perturbation immediately in the

first time steps, i.e., during the learning period. The fact that we gauge only during

the first very few time steps requires that the flow during these first time steps should

be ”typical“ for the forecast period.

40

3.4 Results and Discussion

TC2: Improvement Percentage for cells in set S2

Gauging LEE Cell ID −→
Set ↓ 1 2 3 4 5 6 7 8 9 ⊘

ω2 S2 F 2
∆ 4 22 -200 47 78 -551 -393 -351 -108 -161

ω3a S3 F 2
∆ 3 -100 0 68 74 95 95 94 5 38

ω3b S3 F 3
∆ 83 64 -112 62 32 61 74 72 92 57

Table 3.4: Improvement percentage for different cells of set S2 and TC2. Different rows

represent different learned parameters ω̃. Values between 0 and 100 mean an improve-

ment (100 = we completely correct the error), negative values mean a deterioration

of the results (-100 = the corrected absolute goal error is twice as big as the original

absolute error). ⊘ shows the average improvement. Gauging set: the set of cells that

is used to gauge the local error estimator. LEE: the used local error estimator.

The topographic representation of the mountain is very crude at the lowest resolution

∆1. This means that the starting height fields are already differing quite significantly

between different resolutions. We choose as a standard low resolution ∆2 for these

experiments.

Learning and spatial robustness

The first experiment aims at learning the parameter set of the local error estimators

and use them for a 12 hour forecast of potential energy. We use the spatial estimator

F 2
∆ (3.26) to obtain the scaling factor ω2 by applying the learning algorithm to the

set of grid cells S2. If we use this averaged weight to estimate the errors after 12

hours for all cells in S2 the quality of error estimates differ strongly (Table 3.4). Slight

improvements in four cells are contrasted with a strong deterioration of the results in

five different cells, resulting in an averaged deterioration of the results of 161%. We

use set S3, where the perturbation starts directly and is therefore present during the

complete learning period and obtain a different scaling factor ω3a. This scaling factor

leads to improved results, as can also be seen in Table 3.4. Here we can see significant

improvements in 5 out of 9 cells, small changes in 3 and deterioration in one, resulting

in an overall average improvement of 38%. We use the temporal estimator F 3
∆ (3.27)

to obtain the scaling factor ω3b, again for the set S3. The results are promising, with

8 out of 9 improved goal approximations and an average improvement of 57%, but the

results are not as consistent as for TC1. The strong dependency on the learning region

is a result of the original steady flow being replaced by an instantaneous perturbation.

41

Chapter 3 Deterministic Goal Error Estimation

 100000

 1e+10

 1e+15

 1e+20

 6 5 4 3 2

E
rr

or
 in

 p
ot

en
tia

l e
ne

rg
y

Power of height field

Error evolution for different goals

Various regions

 1.2

 1

 0.8

 6 5 4 3 2

E
rr

or
 r

at
io

Power of height field

Robustness in goal formulation

Various regions
Truth

Figure 3.8: TC2: absolute error (left) and ratio of error estimates and true errors

(right) for different regions (cells 1, 2 and 3 of set S3). The absolute error increases

drastically for higher β, the quality of the estimate stays nearly constant. The goal

error estimates use the local error estimator F 3
∆.

Goal formulation robustness

To test the robustness with respect to different goals, we repeat the goal formulation

experiment of Section 3.4.1. The results in Figure 3.8 look similar to Figure 3.5, albeit

slightly worse because the general quality of the error estimates is lower. The three

regions shown in Figure 3.8 are the three cells of set S3 of Table 3.4 and we use

ω3b to obtain these results. The goal formulation dependency is again taken care of

automatically by the adjoint sensitivities. The weights do not depend on the choice of

goal, at least not for slight changes of goal formulation.

Corrected estimates and higher resolution approximations

We test the quality of error correction with regard to resolution by repeating the same

experiment as for TC1 in Section 3.4.1. The results in Figure 3.9 show that we can

improve our results approximately by one level of grid refinement. This is a promis-

ing result but inferior compared to the equivalent improvement of two levels of grid

refinement that could be achieved for TC1.

The scaling factor and its flow-type dependency

We use the two learned parameters ω3a and ω3b and see how well our method estimates

the errors for single time steps between 3 hours and 24 hours for the three cells of set

S3. Each error estimate needs the solution of one separate adjoint problem. We can see

from Table 3.5 that the improvement of the goal approximations is irregular. While the

flow is still steady, the error estimates are degrading the original goal approximations.

Still, in absolute numbers this is not too surprising because the absolute errors are

42

3.4 Results and Discussion

-2

 0

 2

 4

 6

 8

 4 3 2

A
bs

ol
ut

e
er

ro
r

in
 p

ot
en

tia
l e

ne
rg

y
[1

0x
4]

ICON grid refinement level

Error correction

Uncorrected approximations
Corrected level two approximation

Truth

Figure 3.9: TC2: absolute error in potential energy against resolution for cell 1 of set

S3. Red: uncorrected regional potential energy from approximated solutions. Blue:

corrected ∆1 approximation, using the F 2
∆ local error estimator. Reference truth is the

∆6 reference solution.

very low while the original zonal flow is intact. As soon as the cells experience the

perturbation the error increases, and the quality of the error estimates improves as

well. This is in line with expectations because we have learned ω3a and ω3b in regions

where the perturbed initial wave dominated the flow for the first time steps. The

”learned“ flow state, the gravity wave, hits cell 1 approximately during the first hour,

cell 2 and cell 3 after approximately 10h. This explains the constant improvement with

both scaling factors for cell 1and the different behavior for cells 2 and 3.

3.4.3 Discussion

We have evaluated our algorithm proposal for two test cases. If we combine the results

from both test cases we see that the method works for certain flow regimes, given a

successful learning of ω̃. It appears, however, that our algorithm struggles with chang-

ing flow regimes. For TC1, we estimate a time window of 24 hours within which we

can improve goal approximations with a learned ω̃. For TC2, we conclude that there is

no clear time window because of the very different timings of the initial perturbation

in different cells. We can only estimate the error for the time frame during which the

flow state is similar to the flow state during the learning period. We estimate this time

frame to be around 12 hours for TC2.

The results from TC2 highlight an important point of our algorithm. It is paramount

for the learning algorithm to learn within a representative flow regime, i.e., the flow

type during the first time steps should be similar to the flow regime throughout the

forecast period. This is especially important if topography plays a role. If goals are

derived from parts of the solution that are heavily influenced by topography we should

43

Chapter 3 Deterministic Goal Error Estimation

TC2: Improvement Percentage for cells in set S3

Integration time −→
Cell ID ↓ ω 6h 9h 12h 15h 18h 24h

1 ω3a 90 42 95 64 42 76

2 ω3a -12 -30 95 54 30 64

3 ω3a -442 -123 94 38 95 -5

1 ω3b 61 56 61 44 66 66

2 ω3b -75 -45 74 94 75 94

3 ω3b -87 -90 72 97 10 56

Table 3.5: Improvement percentage for the three cells of set S3 and different integration

times for TC2. Values between 0 and 100 mean an improvement (100 = we completely

correct the error), negative values mean a deterioration of the results (-100 = the

absolute corrected goal error is twice as big as the absolute original error).

implement the learning algorithm in the same region. From the comparison between

both experiments and the importance of the learning region we can deduce a flow-regime

dependency of the learned scaling factor ω̃. This is exemplified in our test case because

an originally steady zonal flow is perturbed by a gravity wave and then establishes a

third, stable flow regime. For realistic test cases this means that our method needs to

be run in a “time window mode”, comparable to data assimilation: the scaling factor

ω should be re-determined to a new flow-specific value ω̃ every time we start a new

time window. The comparison of specific scaling factors ω̃ of different time windows

can also provide additional information about the flow regime at hand; the usefulness

of this information is subject to further research.

3.5 Conclusion & Outlook

We have introduced a novel goal error estimation algorithm and have evaluated its

application to a discrete model of the shallow water equations and two test cases. For

a global unsteady flow (TC1), our evaluation has shown robustness of the goal error

estimate with respect to resolution, integration time and goal specification (functional

form and region). For TC1, it is possible to improve the quality of a goal approximation

from a low-resolution solution to the quality of a goal derived from a higher-resolution

solution (with 16 times more spatial degrees of freedom and two times more temporal

degrees of freedom). We estimate the time span over which the error can be reduced

consistently to be around a day for our current set of local error estimators. We have

also shown for TC1 that our learning algorithm allows us to reach 95% of the theoreti-

cally possible improvement of our method, i.e., the gauged error estimators lead to an

44

3.5 Conclusion & Outlook

improvement of 71% compared to a maximum of 75%. For TC2, our evaluation has

also shown robustness of the goal error estimate with respect to goal specification and

resolution, although the results are not as good as for TC1. The average improvement

rate is 38% to 57%, depending on the type of estimator chosen. We have also shown

for TC2 that it is possible to improve the quality of a goal approximation from a low-

resolution solution to the quality of a goal derived from a higher-resolution solution

(with 4 times more spatial degrees of freedom and 1.5 times more temporal degrees of

freedom).

The key idea of our error estimation algorithm, namely to train the error estima-

tion algorithm on short time scales, can be interpreted in a more general context: how

long can “initial information” (here: the flow state in the learning period) be used for

general forecasting purposes (here: error correction)? What happens if the near-initial

flow state is not representative of the prediction flow state? Answering these questions

needs a more elaborate testbed and possible lines of future research are clear: First, the

simple smoothness measures are general and can be refined, extended and combined in

the future to obtain improved goal error estimates. Second, the learning algorithm itself

is an integral point of our method that should be refined in the future. We believe that

it is necessary to implement a truly automatic flow-regime-dependent learning mech-

anism for our local error estimators that determines at the beginning of a simulation

the correct weights. We also think that all local information at grid cell level should be

used to make the learned parameters more robust. This means that the local solution

differences should be used to learn the correct properties of local error estimators and

not only the resulting differences in goals. Third, a logical extension of our work is to

also analyze velocity and vorticity-derived goals and to investigate if this forces us to

include velocity-based functionals or not. The two test cases and robustness tests in

this work do not conclusively answer the question of general applicability. Instead, they

are meant as a proof-of-concept for our new concept of goal-oriented error estimation

through learning.

Our method has the advantage of avoiding the difficult process of analyzing the spe-

cific numerical model and of manually learning where the model locally produces errors.

It is reasonable to assume that the use of information on the underlying PDE and the

model discretization within local error estimators can lead to more reliable goal error

estimates when compared to our empirical approach. This potential for better error

estimation has to be balanced, however, with the inherently increased complexity of

these approaches which may prevent actual application in some fields. The structural

complexity of General Circulation Models with parameterizations prevents the direct

use of classical adjoint error estimation techniques because these parameterizations of-

ten do not have an underlying PDE. This is why we believe that our learning approach

45

Chapter 3 Deterministic Goal Error Estimation

may lead to a compromise between complexity and accuracy that is suitable for GFD

applications. Our goal error estimation method is a first step towards enabling geophys-

ical models to deliver estimates of the discretization error together with each numerical

output. 1

Summary of Chapter 3� We describe the mathematical framework of classical dual weight error

estimation.� We show how to adapt this framework to enable its application for

GFD applications.� We introduce empirical local error estimators that represent a general

functional dependency between local model errors and the solution.� We present a learning algorithm that determines the specific parame-

ters of these empirical local error estimators for a given model.� We apply the empirical local error estimators successfully to a shallow

water model and two test cases.

1This Chapter has been published as Rauser et al. (2011).

46

Chapter 4

On the Use of Discrete Adjoints for Goal

Error Estimation

Goal oriented dual weight error estimation has been used in the context of

computational fluid dynamics for several years. The technical adaptation of this

method to geophysical models is the subject of this chapter. We use a differentiation-

enabled prototype of the NAG Fortran compiler to generate a discrete adjoint

version of such a geophysical model that computes the required goal sensitivities.

We present numerical results for a shallow water configuration of the Icosahedral

Non-Hydrostatic General Circulation Model (ICON) and discuss a special treat-

ment of the underlying linear solver, yielding improved scalability of this approach

and a significant reduction in runtime. 1

4.1 Introduction

During the past decades the needs of society, policy makers and industry have led to

the increasing usage of Earth system models (ESM) for forecasting tasks (Meehl et al.

2007). This change from predominantly analytic usage to predictive usage has substan-

tially increased the demands on the modeling community to supply not only physically

meaningful answers but also uncertainty estimates for these answers. ESMs incorpo-

rate a huge number of different possible error sources. The identification and reduction

of these error sources is one of the major challenges on the way to reliable climate

predictions / projections. One classical example for the efforts to reduce model error

is data assimilation for atmospheric and oceanic models (Wunsch et al. 2009; Kalnay

2003). Data assimilation minimizes the distance between model trajectories and any

given set of measurements but it remains unclear how to identify and quantify different

1The work for the publication (Rauser et al. 2010) was collaborative by nature. Uwe Naumann and

Jan Riehme develop the AD extension of the NAG compiler in Aachen. I have constructed the

ICOSWM-AD version. Klaus Leppkes has implemented the direct solver for speed-up of the AD

version. The writeup was mostly done by Jan Riehme (4.5) and myself (4.1, 4.2, 4.3, 4.6, 4.7). This

chapter has been changed and extended for editorial purposes.

47

Chapter 4 Discrete adjoints for goal error estimation

sources of uncertainty.

The total error of numerical models can be separated into two components (Oden

and Prudhomme 2002): the “modelling error” as the difference between model descrip-

tion and physical process, and the “approximation error” as the difference between the

true model solution and the computational approximation. The problem can be simpli-

fied because compared to the underlying large number of discrete prognostic variables

usually only a limited number of output variables is useful. These outputs are called

goals. We therefore need only to estimate the error of these goals and not the error of

all the prognostic fields. This a posteriori error estimation of model goals is a method

well known from computational fluid dynamics (CFD) and is called goal oriented dual

weight error estimation (Giles et al. 2004; Becker and Rannacher 2002; Babuska and

Rheinboldt 1978; Johnson et al. 1995). In this chapter we estimate goal errors for a

geophysical fluid dynamics numerical model.

4.2 Goal Oriented Dual Weight Error Analysis

We look at a system defined by a nonlinear evolution equation for a state vector q, an

initial condition q0 and a goal J that is evaluated always at the final time tend on a

periodic domain Ω

N(q(x, t)) = 0, q(x, t0) = q0, J = J(q(x, tend)). (4.1)

We define the error between the true model goal value J and a numerical approximated

goal J∆ as

ε := J(q) − J∆(q∆), (4.2)

with q∆ the numerical approximation of q. The fundamental principle of this approach

is to solve for a given output goal of interest J an adjoint system that yields the

sensitivities q∗ of the goal J(q) towards changes of the prognostic variables q. These

sensitivities are then integrated over the space time domain as weights for a function

that indicates the error produced by our model. Literature derivations (e.g. (Giles

et al. 2004)) show that Equation (4.2) can be approximated as

ε ≈
〈

q∗

∆
T , N̂∆(q∆)

〉

, (4.3)

with q∗

∆ the discrete solution of the continuous adjoint problem to Equation (4.1) and

N̂∆(q∆) a residual estimator that is a function of the approximated flow state q∆. This

estimator is strongly problem dependent. Classical approaches to construct N̂∆(q∆)

are discretization dependent. We have shown in Chapter 3 how to construct local error

estimators N̂∆(q∆) that are discretization independent.

48

4.3 The Primal Problem

Level Cells Edges Average

length [km]

∆1 320 480 1115

∆2 1280 1920 556

∆3 5120 7680 278

∆4 20480 30720 139

∆5 81920 122880 70

Figure 4.1: Left: Table of ICON grid properties. “Level” equals the number of refine-

ment steps. Right: The initial surface height field is plotted [m].

Equation (4.3) is the scalar product of two components. Therefore, two steps are

necessary to adapt this method to geophysical problems: First, we want to obtain an

approximation of q∗

∆ automatically. Second, we want to construct an estimator that

is cheap to compute and easy to implement for arbitrary discretizations. We focus in

this chapter on an efficient way to obtain the approximation of q∗

∆ with automatic

differentiation tools, especially the use of discrete adjoints. Details on the properties

of the second component can be found in Chapter 3.

4.3 The Primal Problem

As a prototype application for our error estimation method we choose the shallow

water equations (SWE) on a sphere. The SWE share significant properties of the

global atmospheric and oceanic fluid system with more complex descriptions and are

able to simulate large scale flows. The following equations are the vector invariant form

of the shallow water equations on the sphere

∂v

∂t
= (ξ + f)k× v −∇(gh +

1

2
|v|2) (4.4)

∂h

∂t
+ ∇ · (hv) = 0.

Here v is the horizontal velocity, ξ the vorticity, f the rotational parameter, g the

gravitational acceleration and h the height surface elevation. The state vector q = (h,v)

consists of the prognostic fields height and velocity.

An important physical quantity in a flow is the potential energy density gh2 with h the

solution of Equation (4.4). We are interested in the behavior of the potential energy

in generic subdomains Ω0 of the domain Ω, the sphere. The goal is defined as regional

potential energy averaged over this subdomain Ω0 at the end of an integration time

49

Chapter 4 Discrete adjoints for goal error estimation

tend

J(q) := J(h(tend)) =
g

A(Ω0)

∫

Ω0

h2(x, tend)dx, (4.5)

where Ω0 denotes an arbitrary subdomain of the sphere Ω and A(Ω0) denotes the area

of Ω0.

The shallow water equations can simulate a variety of flow regimes. For testing pur-

pose we start with a simple wave like setting. We use the time-dependent solid body

rotation test case proposed in example 3 in (Laeuter et al. 2005). Atmospheric values

for velocities are used that are comparable with Williamson’s test cases (Williamson

and Drake 1992). The initial condition can be seen in Figure 4.1. The analytical solu-

tion consists of a propagation of a global wave structure westwards, with a periodicity

of 24 hours. This periodic flow field implies also a periodic behavior of our goal J(q)

from Equation (4.5).

The numerical framework is ICOSWM, a recently developed shallow water model on

a triangular grid with C-type staggering on the sphere (Bonaventura and Ringler

2005). ICOSWM uses a hybrid finite volume / finite difference method with a two-level

timestepping to approximate the SWE (4.4). For further details see (Giorgetta et al.

2009; Ripodas et al. 2009). ICOSWM calculates the discrete state vector q∆ = (h∆,v∆)

with discrete height field h∆ in the cell centers of the triangular grid and normal ve-

locities v∆ at the middle points of the triangular edges.

The horizontal grid is derived from the regular icosahedron. The projection of the

regular icosahedron on the unit sphere provides a regular grid on the sphere with 20

equilateral spherical triangles, 30 great circle edges, and 12 vertices. Its dual grid is

the projection of the regular dodecahedron on the sphere. The Delaunay triangulation

then allows to refine each triangle into n2 smaller triangles by dividing each edge into

n sections. For our purposes we use n = 2. This procedure may be then repeated ν

times, resulting in 20×4ν triangular cells. The lowest ICON resolution is equivalent to

320 grid cells or two refinements. For this chapter we mainly use this lowest resolution

and for comparison the next two refinement levels, see the table in Figure 4.1. It is

important to note that the regularity of the spherical triangles of the base grid is lost

in the refinement process, though the differences in areas between triangles or lengths

between edges remain small. This break in symmetry is obvious in the dual grid that

consists of pentagons and hexagons.

50

4.4 The Computational Graph

h
j

∆
v

j

∆

Aj−1 bj−1

v
j−1

∆
h

j−1

∆

v
µ

∆
h

µ

∆

J∆

h0
∆

v
0
∆

Figure 4.2: Computational Graph

4.4 The Computational Graph

The semi-implicit two level discretization of the shallow water equations on the spherical

icosahedral grid is described in detail in (Bonaventura and Ringler 2005). The details

of goal error estimation with empirical estimators is described in (Rauser et al. 2011).

The complete computational problem combines solving the shallow water equations

and estimating the error for output goals. A summary of the whole algorithm is the

following:

(1) Do for µ time steps (j = 1, . . . , µ):

(a) Calculate new surface height hj
∆

by solving linear free surface equation

Aj−1(hj−1

∆
,vj−1

∆
) · hj

∆
= bj−1(hj−1

∆
,vj−1

∆
) (implicit step)

(b) Update velocity vj
∆

= vj
∆

(hj
∆

,vj−1

∆
) (explicit step)

(2) Evaluate discrete goal J∆(q∆) = J∆(hµ
∆

), with hµ
∆

= hµ
∆

(h0
∆,v0

∆).

(3) Perform error estimation using discrete adjoint of J∆.

The matrix Aj−1 depends on the height field and the velocities of the last time step.

The right hand side bj−1 is a vector that also depends on the old height field and the

old velocities.

The corresponding computational graph is shown in Figure 4.2.

4.5 The Dual Problem

As an alternative to the derivation of the dual / adjoint system followed by its approxi-

mate numerical solution to get q∗

∆ we apply the adjoint (or reverse) mode of algorithmic

51

Chapter 4 Discrete adjoints for goal error estimation

differentiation (AD) (Griewank 2000) to the given numerical solution scheme for the

primal problem defined in Equation (4.4). Adjoint mode AD yields the gradient ∇J∆

of the discrete goal J∆ at a typically small constant factor of the computational cost

Cost(J∆) of a single evaluation of J∆. Forward sensitivities computed by the tangent-

linear (or forward) mode of AD or approximations thereof based on finite difference

quotients yield an often infeasible computational cost of O(n) · Cost(J∆).

Let N(q(x, t)) be solved by an iterative algorithm F as the semi-implicit scheme that

is sketched in Section 4.4 for a given start vector q0
∆ and let qµ

∆
= F (q0

∆) denote the

state vector after µ time steps. Conceptionally, adjoint mode AD runs the primal code

qµ
∆

= F (q0
∆)

J∆(q∆) = J∆(qµ
∆

)

in order to memorize intermediate quantities required for the evaluation of products of

the transposed Jacobian ∇F T = ∇F (q0
∆)T with a vector in IRn followed by the adjoint

code

q̄µ
∆

= ∇J∆(qµ
∆

)T · J̄∆

q̄0
∆ = ∇F (q0

∆)T · q̄µ
∆

.

Initializing J̄∆ = 1 yields the required gradient q̄0
∆ = ∇J∆(q0

∆). The general relation-

ship between the discrete adjoints q̄0
∆ and the discrete solution q∗

∆ of the continuous

adjoint problem for Equation (4.1) is the subject of ongoing investigations. A new

prototype of the NAG Fortran compiler is currently being developed to enable the

mostly automatic semantical transformation of numerical input code into adjoint code

(Naumann and Riehme 2005). The derivative code compiler has been applied suc-

cessfully to ICOSWM in order to provide the required discrete adjoints. For a given

implementation (in Fortran) of

F : IRn → IRn, qµ
∆

= F (q0
∆),

the compiler produces code for the evaluation of q̄0
∆ = ∇F (q0

∆)T · q̄µ
∆

.

While a detailed discussion of adjoint code generation is beyond the scope of this

chapter we still need to take a closer look at some of the underlying principles. The

given implementation of F is assumed to decompose into a single assignment code

(SAC) at every point of interest as follows:

for j = n + 1, . . . , n + p + m

vj = ϕj(vi)i≺j ,
(4.6)

52

4.5 The Dual Problem

Forward code Adjoint code

v3 = v1 · v2 v̄3 = − sin (v3) · v̄4

v4 = cos (v3) v̄2 = v1 · v̄3

v̄1 = v2 · v̄3

Figure 4.3: A simple example for automatic differentiation of single assignment codes

where i ≺ j denotes a direct dependence of vj on vi. The result of each elemental

function ϕj is assigned to a unique auxiliary variable vj. The n independent inputs

xi = vi, for i = 1, . . . , n, are mapped onto m dependent outputs yj = vn+p+j, for

j = 1, . . . ,m, and involve the computation of the values of p intermediate variables vk,

for k = n + 1, . . . , n + p.

For given adjoints of the dependent and independent variables, reverse mode AD

propagates adjoints backward through the SAC as follows:

for j =n + p + m, . . . , n + 1 and i ≺ j

v̄i = v̄i + v̄j ·
∂ϕj

∂vi
(vi)i≺j .

(4.7)

The variables v̄j are assumed to be initialized to ȳj for j = n+p+1, . . . , n+p+m and to

zero for j = 1, . . . , n + p. A forward evaluation of the SAC is performed to compute all

intermediate variables whose values are required for the adjoint propagation in reverse

order. The elemental functions in the SAC are processed in reverse order in the second

part of Equation (4.7). See Figure 4.3 for a simple example. The two entries of the

gradient are computed by setting v̄4 = 1. The correctness of this approach follows

immediately from the associativity of the chain rule of differential calculus.

4.5.1 The Differentiation-Enabled NAG Fortran Compiler

The differentiation-enabled NAG Fortran compiler (from now on referred to as “the

compiler”) combines a two stage semantical transformation with a set of runtime sup-

port libraries in a hybrid approach to AD that blends source transformation capabilities

and overloading techniques. The robustness of the runtime solution based on overload-

ing is supported by potential performance gains to be expected from a source code

transformation algorithm. Without loss of generality, we present the discrete adjoint in

the light of overloading rather than pure source transformation. Our current research

prototype compiler cannot handle the full ICOSWM code in source transformation

mode. Nevertheless we are able to achieve very good runtime results that are shown in

Section 4.6.

53

Chapter 4 Discrete adjoints for goal error estimation

i Tape (forward eval.) Variables (forward) Tape (reverse)

opc a1 a2 val x y adj

1 IDP 0 0 v1 = x%val {v1, 1} {v2, 0} − sin(v3) ∗ v2

2 IDP 0 0 v2 = y%val {v1, 1} {v2, 2} − sin(v3) ∗ v1

3 MUL 1 2 v3 = v1 ∗ v2 {v1, 1} {v2, 2} − sin(v3)

4 COS 3 0 v4 = cos(v3) {v1, 1} {v4, 4} 1

Table 4.1: Tape generated for code in Figures 4.4 and 4.5

SUBROUTINE F(x, y) ! 1

DOUBLE PRECISION :: x, y ! 2

y = cos(x * y) ! 3

END SUBROUTINE

Figure 4.4: Source for SAC in Figure 4.3

Every support library (compad module) defines an active datatype (compad type)

with corresponding overloaded arithmetic operators and intrinsic functions (for exam-

ple, forward and reverse mode AD, second order derivatives by forward over reverse).

After selecting a specific compad module, the first stage of AD-related semantical trans-

formation changes the datatype of all floating-point variables into compad type. Any

operation with arguments of compad type are resolved by the compiler to operators

from the selected compad module. In the optional second stage of semantical transfor-

mation the compiler modifies the internal representation by inserting code that works

directly on the components of compad type. Thereby the overhead of calling over-

loaded operators and intrinsics from the compad module can be avoided.

Discrete adjoints for ICOSWM are obtained using a support library that records

every arithmetic operation on a tape during the augmented forward evaluation of F .

Adjoints are propagated during a subsequent interpretative reverse evaluation of the

tape. Each tape entry represent one unique auxiliary variable vj in Equation (4.6).

A tape entry (see columns 2–5 in Table 4.1) contains an operation code (opc), tape

index(es) of the argument(s), the value of the corresponding auxiliary variable vj , and

its adjoints (see last column in Table 4.1, initially set to 0). The data type compad type

consists of the value and the index of the corresponding auxiliary variable / tape en-

try (see columns 6–7 in Table 4.1). We apply the compiler to the simple Fortran

source code in Figure 4.4, that corresponds to the SAC in Figure 4.3, for illustration.

Figure 4.5 shows the hand-written driver program required to compute sensitivities

54

4.5 The Dual Problem

PROGRAM TEST_TAPE

USE compad_module ! 1

TYPE(COMPAD_TYPE) :: x, y ! 2

DOUBLE PRECISION :: grad(2) ! 3

INTEGER(TAPE_IKND) :: idy ! 4

x = 1.3D0; y = 0.4D0 ! 5

CALL TAPE_INIT(100) ! 6

CALL TAPE_TURN_ON ! 7

CALL INDEPENDENT(x) ! 8

CALL INDEPENDENT(y, idy) ! 9

CALL F(x, y) !10

CALL TAPE_TURN_OFF !11

CALL SEED(y, 1.D0) !12

CALL TAPE_INTERPRETER !13

grad(1) = DERIV(x) !14

grad(2) = DERIV_INDEX(idy) !15

END PROGRAM TEST_TAPE

Figure 4.5: Driver program for code in Figure 4.4

by the tape based discrete adjoint code generated by the compiler. The driver in-

cludes compad module (line 1), and declares independent and dependent variables as

compad type (line 2). Memory for storing the sensitivities is allocated in line 3. Af-

ter initializing the tape environment (line 6) the beginning of the computation to be

recorded on the tape is marked (line 7). Both independent variables are recorded (lines

8–9). The tape indexes are stored in the corresponding compad type data structures

(see rows 1 – 2 in Table 4.1). All adjoint values are initialized to 0. The tape index

of y as an independent input needs to be stored explicitly (see declaration and use of

idy in lines 4 and 9, respectively) as y is overwritten by calling the adjoined version of

F (line 3, Figure 4.4). The value of idy is used to access the correct tape entry when

retrieving the corresponding gradient entry in line 15.

The augmented forward evaluation of the code in Figure 4.4 is performed in line 10

of the driver. Two new tape entries (v3 = x ∗ y, v4 = cos(v3)) (see rows 3 and 4 in

Table 4.1) are created. The overloaded assignment of the result (v4) to y stores the

tape index 4 in the compad type data structure associated with y (row 4, column 7 in

Table 4.1). The end of the augmented forward evaluation is marked in line 11 of the

driver.

Following the initialization of the adjoint of the dependent variable y in line 12 (com-

monly referred to as seeding; see also row 4, last column in Table 4.1), the reverse

evaluation (interpretation of the tape) is started in line 13. Three steps are performed

55

Chapter 4 Discrete adjoints for goal error estimation

h̄
j

∆
ū

j

∆

Āj−1 b̄j−1

ū
j−1

∆
ū

j−1

∆

h̄
µ

∆
ū

µ

∆

J̄∆

h̄0
∆

ū
0
∆

Figure 4.6: Adjoint Computational Graph

yielding the third, second, and first entries in the last row of Table 4.1. Finally, the

gradient is harvested from the accumulated adjoints of the independent variables (lines

14 and 15) utilizing the tape index idy stored for the overwritten instance of y.

4.5.2 The Adjoint Linear Solver

Figure 4.6 shows the adjoint computational graph computing h̄0
∆ and v̄0

∆ for given v0
∆,

h0
∆, J̄∆ and v̄µ

∆
based on information stored during the augmented forward evaluation

of J∆(hµ
∆

(h0
∆,v0

∆)) (in our case, the tape).

The semi-implicit method involves the solution of the linear system

Aj−1 · hj
∆

= bj−1 (4.8)

for j = 1, . . . , µ. Both the adjoints Āj−1 of Aj−1 and b̄j−1 of bj−1 are functions of the

adjoint h̄j
∆

of hj
∆

. A black-box differentiation by the compiler would record all opera-

tions performed by the linear solver on the tape followed by an interpretative reverse

propagation as outlined in Section 4.5.1.

Alternatively, the following algebraic manipulations of the the linear system (4.8)

yield the adjoints Āj−1(h̄j
∆

) and b̄j−1(h̄j
∆

) at a significantly lower computational cost.

Partial differentiation of Equation (4.8) with respect to Aj−1 yields

Aj−1 · ∂hj
∆

∂Aj−1
+

∂Aj−1

∂Aj−1
· hj

∆
= Aj−1 · ∂hj

∆

∂Aj−1
+ hj

∆
=

∂bj−1

∂Aj−1
= 0

56

4.6 Results

and hence

Aj−1 · ∂hj
∆

∂Aj−1
= −hj

∆
.

The corresponding discrete adjoint becomes

(h̄j
∆

)T · ∂hj
∆

∂Aj−1
= −(h̄j

∆
)T · (Aj−1)−1 · hj

∆
.

Similarly, partial differentiation of Equation (4.8) with respect to bj−1 leads to

Aj−1 · ∂hj
∆

∂bj−1
=

∂bj−1

∂bj−1
and hence (h̄j

∆
)T · ∂hj

∆

∂bj−1
= (h̄j

∆
)T · (Aj−1)−1 .

The solution hj
∆

of the linear system (4.8) is computed passively during the augmented

forward execution by a direct solver. The resulting LU or QR decomposition of Aj−1

is reused during the reverse execution yielding a computational cost of O(n2) for the

adjoint as opposed to O(n3) if taking the black-box approach. With α := (h̄j
∆

)T ·
(Aj−1)−1 we get Āj−1(k1, k2) = −α(k1) · hj

∆
(k2) for each (nonzero) entry A(k1, k2) of

A. Similarly, b̄j−1(k1) = α(k1). A graphical illustration is shown in Figure 4.7.

h̄
j

∆

Āj−1 b̄j−1

q̄
j−1

∆

∂
A
j
−

1 /∂
q

j
−

1

∆

∂
b j

−

1
/∂

q j
−

1
∆

∂
h j
∆ /∂

A j
−

1
∂
h
j
∆

/∂
b
j
−

1

h̄
j

∆

α

Āj−1 b̄j−1

q̄
j−1

∆

∂
A
j
−

1 /∂
q

j
−

1

∆

∂
b j

−

1
/∂

q j
−

1
∆

”
−

h j
∆ ” 1

(A
j
−

1
)−

1

(a) (b)

Figure 4.7: Adjoint Linear Solver: All arithmetic operations performed by the linear

solver are recorded on the tape during the augmented forward evaluation to be used

by the subsequent reverse propagation of the adjoints in (a). Dashed lines in (b) mark

the tapeless computation of the adjoints Āj−1 and b̄j−1 based on a passively derived

decomposition of Aj−1.

4.6 Results

We have shown in the previous section how to efficiently obtain an approximation to the

goal sensitivities needed for Equation (4.3). To estimate the error of the goal defined in

57

Chapter 4 Discrete adjoints for goal error estimation

Equation (4.5) we introduce now simple empirical residual error estimators into Equa-

tion (4.3). They depend only on flow field information and not on explicit information

about the used discretization. The information about the model discretization comes

into play via the solution of the adjoint model. We perform different robustness tests

with respect to region and functional with a fixed integration time of 6h. To avoid

a possible influence of the topography we choose a set of grid cells that are part of a

zonal band parallel to the equator.

In the left panel of Figure 4.8 it can be seen that our residual estimator works suf-

ficiently well to estimate the goal errors for the lowest resolution of our model. The

estimate is higher than 50% of the true error for most regions. This quality of the

error estimates allows us to use them as an error correction term to the original goal

approximation, following again (Giles et al. 2004). The right panel of Figure 4.8 high-

lights that corrected low-resolution goals can be of similar quality as goals derived from

higher resolution runs. For the lowest resolution we correct at least half of the error,

for higher resolution we approach 100%. The method is also extremely robust versus

modifications of the goal functional as can be seen in Figure 4.9. The left plot shows

that the numerical values of the output goal vary from order 106 to 1024 for different

powers of the potential energy density. At the same time, the error estimates scale

well: the ratio between estimated error and true error stays close to one as can be seen

 2

 4

 6

 8

 10

 0 2 4 6 8 10

E
rr

or
 in

 p
ot

en
tia

l e
ne

rg
y

[1
0x

6]

Different Regions

Robustness in space

True Error
Estimated Error

-2

 0

 2

 4

 6

 8

 3 2 1

E
rr

or
 in

 p
ot

en
tia

l e
ne

rg
y

[1
0x

6]

Number of ICON grid refinements

Error correction for different resolutions

Uncorrected
Corrected

Truth

Figure 4.8: Left: On the x-axis different regions are plotted, sorted by the longitude

of their cell center. On the y-axis the error in regional potential energy is plotted. The

thick solid line represents the true error. The red line represents the estimated error.

All estimates that lie between the two thin blue lines represent an improvement of the

goal estimate by at least 50 percent. Right: On the x-axis the resolution is plotted. On

the y-axis the errors in regional potential energy are plotted. The best approximation

of the truth is the green line (no error). The red lines show calculated goals. The blue

lines show corrected goals.

58

4.6 Results

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 6 5 4 3 2

E
rr

or
 in

 p
ot

en
tia

l e
ne

rg
y

Power of height field

Error evolution for different goals

Various regions
 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 6 5 4 3 2

E
rr

or
 r

at
io

Power of height field

Robustness in goal formulation

Various regions
Truth

Figure 4.9: Left: On the x-axis different powers of the goal field are plotted. On the

y-axis the error in regional potential energy is plotted for three random regions. Right:

On the x-axis different powers of the goal field are plotted. On the y-axis the ratio

between the estimated error and the true error is plotted for the same three regions.

The green line indicates a perfect match between estimate and true error.

in the right plot of Figure 4.9. These results show that our empirical error estimator

can work. A detailed discussion of the empirical error estimators is beyond the scope

of this chapter and can be found in (Rauser et al. 2010).

For the special treatment of the linear solver outlined in Section 4.5.2 we replaced

the originally used custom iterative sparse solver by the direct sparse linear solver

UMFPACK Version 5.4 (Davis 2004) running without taping as the factorization of

Aj−1 is reused in the adjoint propagation. For a relevant problem size we get impressive

improvements of the adjoint computation for the linear solver both in terms of memory

requirement and runtime.

Black-Box Adjoint

Direct Solver

Time for solving linear system (in sec.) 2.4 1.1

Memory for tape and factorization (in GB) 1.2 0.077

Time for computing Āj−1(h̄j

∆
) and b̄j−1(h̄j

∆
) (in sec.) 2.08 0.01

We observe a local speedup of 4 in runtime and savings in memory of 94% for adjoining

the linear problem, and for the overall process a 50% memory reduction and 27%

reduced runtime. The ratio of the runtime of the discrete adjoint to compute h̄0
∆ and

v̄0
∆ with respect to the runtime of a single evaluation of J∆ is roughly 10 – a very good

value for a solution that is based purely on overloading and tape interpretation rather

than source transformation. We are working on a further reduction of this factor by

59

Chapter 4 Discrete adjoints for goal error estimation

generating parts of the discrete adjoint through source transformation and by exploiting

parallelism during the augmented forward evaluation.

4.7 Conclusion

We have shown in this chapter how to construct and improve an differentiation-enabled

version of ICOSWM. Differentiating linear operations of the type Ax = b manually im-

proves the performance of the AD version tremendously. This is of general significance

because many GFD models solve at least parts of the state vector implicitly. These

implicit solvers involve the application of high dimensional matrices, which requires

high amounts of memory. In case of iterative solvers, these matrix multiplications are

repeated many times. We believe therefore that it is a useful idea to optimize this part

of the differentiation process by hand. A next step is the inclusion of manual differenti-

ations into a module to facilitate the implementation. Our idea of manually linearizing

these parts of the code by hand will lead to significant performance improvements in

many application scenarios.

Summary of Chapter 4� We show how to obtain the sensitivities that are needed for goal error

estimation with Algorithmic Differentiation tools.� We discuss the properties of the NAG Fortran compiler that are rele-

vant to the problem.� We suggest a new way to calculate the derivatives of code that involves

large matrix multiplication. This is of general interest because many

GFD models have to solve large linear systems, especially all implicit

methods.

60

Chapter 5

Goal Error Ensembles with Local Error

Random Processes

We introduce a new a posteriori ensemble method to obtain approximation error

estimates for relevant physical quantities from a single evaluation of a numerical

model. The approximation errors in physical quantities – so-called goals – are

estimated as a weighted sum of local model errors on all computational grid cells.

The weights are the sensitivities of the goals with respect to local changes of the

state of the system. We use an Algorithmic Differentiation tool to approximate

these sensitivities. We describe local model errors as a local random process. The

full algorithm consists of three steps. First, we choose a general class of local error

random processes. Second, we determine a model-specific random process through

a local error learning algorithm. The algorithm learns local error properties from

local differences between two solutions calculated on varying resolutions. These

properties represent the underlying model, the discretization, resolution, and the

flow regime. Third, we use different realizations of the local error random pro-

cess to obtain an ensemble of goal error estimates. The algorithm can be applied

to any model of geophysical fluid dynamics because it learns the model-specific

properties from model solutions. We use the learned local error random process

to produce ensembles of goal approximations with forward ensemble techniques:

one ensemble started from perturbed initial conditions and one ensemble produced

with stochastic perturbations in the model formulation. We evaluate the algorithm

for a shallow water model and examine the evolution of regional potential energy.

We show error bounds for a solid body rotation test case and zonal flow against a

mountain. A posteriori ensembles compare favorably to stochastic physics ensem-

bles.

5.1 Introduction

Uncertainty quantification is an essential step to improve existing, imperfect models of

geophysical fluid dynamics (GFD). It is possible to conceptually separate the sources

61

Chapter 5 A Posteriori Goal Ensembles

of this uncertainty into two error layers, the model formulation / specification error

and the approximation error (Oden and Prudhomme 2002). The approximation error

is the difference between the hypothetically true model solution and a numerical ap-

proximation. We estimate the approximation error for physical quantities of interest

(goals) that are derived from the solution of a GFD model. These derived physical

quantities are called goals. The quantification of goal approximation errors is usually

done deterministically (Giles et al. 2004). Deterministic means that local model errors

are a deterministic consequence of the modelled flow and the goal error is a determin-

istic consequence of these local errors. With this work we want to show that stochastic

methods can also be used to quantify goal approximation error by generating goal error

ensembles. Stochastic means that local model errors are a realization of a random pro-

cess and the goal error is estimated as a goal error probability density function (PDF).

The two interpretations “deterministic” and “stochastic” are closely connected to the

Mori Zwanzig formalism (Mori et al. 1974; Zwanzig 1973). This formalism motivates

that local model errors are the result of deterministic errors in approximating resolved

processes and the effectively stochastic influence of unresolved processes. We show how

to use this interpretation of local model error as a random process to construct an error

ensemble for relevant goals from a single model solution.

Our concept relies on an original idea how to estimate goal approximation error that

was brought forward originally as dual weight error estimation for computational fluid

dynamics models (Oden and Prudhomme 2002; Giles et al. 2004; Becker and Rannacher

2002). The main idea of this method is to divide goal errors into local model errors

and estimate goal errors as weighted sums thereof. The weights represent the influ-

ence of the local model errors, that is the sensitivity of the goal with respect to local

changes. The weights are the adjoint solution of a goal-dependent dual problem. The

local model errors are modelled a posteriori with local error estimators that depend

on the discretization scheme and use the solution. In Chapter 3 we have suggested

an extension of this algorithm for GFD applications that incorporates the basic idea

and additionally introduces the concept of local learning. The local model errors are

described with empirical functionals that structurally do not depend on the underlying

Partial Differential Equation (PDE) or its discretization. For a given model and flow

the required dependency is expressed in form of degrees of freedom; it is possible to

specify a single empirical functional by determining its degrees of freedom. The de-

grees of freedom are learned in short training runs on different resolutions. The adjoint

solution is obtained with Algorithmic Differentiation (Griewank 2000). The empirical

functionals of Section 3.3.2 are a deterministic functional of the solution.

In this chapter we describe local errors as a general class of local error random processes.

To determine a single random process for a given model and flow, we specify a local

error random process with information learned from the model, similarly to the local

62

5.2 Problem Statement

error learning algorithm suggested in Section 3.3.2. The resulting “learned” random

process incorporates information on the model, the discretization and the flow state.

This stochastic approach leads to an ensemble of error estimates from one single model

run. In the context of numerical goal error estimation, we are the first to interpret local

error production as a local error random process.

The idea of an a posteriori ensemble from a single solution appears counterintuitive

at first because classical ensembles consist of multiple solutions of a given problem

(forward ensembles). To show how our a posteriori ensemble is connected to this clas-

sical concept of an ensemble we combine also forward ensembles with our concept of

learning local model errors. We want to investigate if forward ensemble techniques can

be used to estimate approximation error, given a “correct” perturbation. There are

two commonly used ensemble techniques that rely on multiple forward model runs, the

initial condition ensemble and the stochastic physics ensemble. The former has been

used for a long time to obtain forecast ensembles to combat initial condition error and

model bias (Molteni et al. 1996). The latter is a newer approach that uses stochastic

perturbations of the model physics to construct forecast ensembles on top of already

perturbed initial conditions (Buizza et al. 1999). We suggest to use both forward en-

semble methods to quantify approximation error by using the learned local model error

random processes as perturbations. We implement simplified versions of both forward

ensembles and compare the result to our a posteriori goal error ensemble.

This chapter is organized as follows: in Section 5.2 we formulate the general problem.

Section 5.3 deals with our algorithm proposal to solve this problem. We propose our

concepts of stochastic local error estimation and local error learning. In Section 5.4 we

introduce a model to evaluate our algorithm and in Section 5.5 results are shown for

this model and two test cases. In Section 5.6 we compare the results from a posteriori

goal error ensembles with the results of forward ensembles. We conclude in Section 5.8

with some discussion and an outlook.

5.2 Problem Statement

We keep the problem statement general to permit a general formulation of our error

estimation algorithm in Section 5.3. We introduce the general model N

N(q(x, t)) = 0, q(x, t0) = q0, q(x, t) = qb on ∂Ω, (5.1)

with q(x, t) the solution state vector on a space-time domain Ω × T , q0 the initial

condition and qb(t) the boundary conditions on the boundary ∂Ω. The corresponding

63

Chapter 5 A Posteriori Goal Ensembles

discrete equations can be summarized as

N∆(q∆) = 0, q0
∆ = Pq0, q∆ = Pqb on ∂Ω∆ (5.2)

with q∆ = (qn
∆)n the discrete state vector that incorporates all timeslices of the state

qn
∆ in the discrete space-time domain, and the projection operator P that maps the

continuous initial and boundary conditions on the discrete space. We are interested

in selected physical quantities (goals) J(q) and their approximations J∆(q∆). The

dependency of a goal on the state may include only parts of the full state vector and it

may focus on specific regions or times. The error we are interested in is the goal error

ε := J∆(q∆) − J(q). (5.3)

The classical solution error e∆ = q−q∆ is a special case of (5.3) with identity as goal,

J = ID. We try to estimate the error bounds in goals a posteriori, i.e., for a given

solution q∆. We introduce the error bounds εmax > 0 and εmin < 0 that constrain the

original functional value

J∆(q∆) + εmin < J(q) < J∆(q∆) + εmax. (5.4)

We summarize the general problem statement: Given a model N and its discretization

N∆, how can we estimate error bounds εmax and εmin that quantify the uncertainty

for arbitrary physical quantities J so that εmin < ε < εmax?

5.3 Stochastic Quantification of Goal Approximation Errors

Following original work from (Mori 1965; Mori et al. 1974; Zwanzig 1973) and a review

article from (Givon et al. 2004) we see that any model description implies local errors

that can be described both stochastically and deterministically. Any discrete model

description is equivalent to the extraction of resolved dynamics from a process of higher

complexity. The numerical model N∆ (5.2) is a low order approximation of the full

problem N (5.1). The state vector q = (q∆, q̂) consists of a resolved part q∆ and an

unresolved part q̂ ∈ Y (with Y representing the space of unresolved scales). Classical

GFD models model the time evolution of resolved scales as a function f of the resolved

scales

N∆(q∆) :=
dq∆

dt
− f(q∆) = 0. (5.5)

We use the Mori Zwanzig approach to rewrite Equation (5.1) as

dq∆

dt
− f(q∆) + M(q∆(t)) + O(q∆(0), q̂(0)) = 0, (5.6)

64

5.3 The algorithm

with M , the so-called memory kernel of all interactions between q∆ and q̂, and O

the orthogonal dynamics equation. We see in (5.6) that the unresolved scales q̂ also

have an influence on the exact time evolution of the resolved scales q∆. If we compare

Equation (5.5) and Equation (5.6) we see that this influence is usually neglected. De-

terministic local model errors occur if we handle the influence f of the resolved scales

q∆ wrongly. Stochastic local model errors occur because we neglect the influence of the

unresolved scales. Therefore, as long as there are unresolved scales, numerical errors

always occur.

Local error production is a complicated function of the resolved and unresolved vari-

ables and can be described either stochastically or deterministically. Previous works

have tried to describe local model errors with a deterministic function of the state q∆.

In this chapter we describe local model errors as a stochastic random process.

5.3.1 The Algorithm Proposal

If local model errors are realizations of a random process, the outcome of a specific

model run is an aggregated random process, with respective probability distributions

for the approximations of relevant goals. The model is uncertain of the solution it

calculates and the algorithm we propose needs to quantify this degree of uncertainty.

We assume that the uncertainty in goal approximation is connected to the properties

of local model errors. The advantage of this reasoning is the fact that the properties

of local model errors can be learned from model solutions on different resolutions. The

local grid point differences of model solutions on different resolutions are an indicator

of the local model error. This concept shares the general idea of error learning with

the algorithm in Section 3.3. We propose a three-step algorithm:

Algorithm 1

1. Define a general class of local error random processes P(p) that de-

scribe local model errors and that are determined by a parameter set

p.

2. Learn a model-specific parameter set p̃ in short training runs on vary-

ing resolution, using local differences between solutions on different

resolutions as realizations of the local error random process.

3. Use the local error random process P(p̃) with learned parameter set

p̃ as local perturbations to create goal approximation ensembles for a

given solution.

65

Chapter 5 A Posteriori Goal Ensembles

This approach is general and does not yet indicate a particular choice for steps 1 to

3. The key idea is that the class of random processes P can be chosen a priori model-

independent. The model-dependency comes into play through a specific parameter set

p̃ that is different for different models, discretizations or resolutions and has to be

tuned accordingly. This tuning is a learning step: the model uses solutions on various

resolutions to learn a specific parameter set p̃. We show proposals for steps 1 to 3 in

the next sections.

5.3.2 Step 1: Local Error Random Processes

As a first step, Algorithm 1 requires to specify a set of local error random processes P
that describe the distribution of local model errors. We suggest a memory-less Gaussian

Normal distribution N as null hypothesis

P(p) := N (µ, σ). (5.7)

The parameter set p = (µ, σ) consists of the mean µ and the standard deviation σ. The

exact structure of the local error random process depends on model, discretization and

resolution. The Normal distribution is a priori equivalent to the assumption that all

unresolved processes combine to an approximately Normal distribution by the Central

Limit Theorem. This holds strictly only in case of a scale separation when a large

number of unresolved processes act on the resolved scales. We use the Gaussian process

for its simplicity but it is clear that other distributions can also be chosen at this point.

5.3.3 Step 2: Learning the Properties of Local Error Random Processes

As a second step, Algorithm 1 requires a learning algorithm that determines a unique

parameter set p̃ that selects a single model-specific random process out of the set of

the random processes P(p). We have introduced the Gaussian N (µ, σ) as the class of

local error random processes and need therefore a learning technique that determines

the specific mean µ̃ and the specific standard deviation σ̃ for a given model and model

solution. We suggest a learning algorithm that uses all local grid point errors between

model solutions on varying resolutions (at least one higher resolution is necessary).

1. Integrate the model for one time step on the low standard resolution and j ≥ 1

available higher resolutions and obtain a set of high-resolution solutions q∆j and

the standard solution q∆,low.

2. Use a projection operator Ij to project all higher resolution solutions onto the

grid of the low-resolution solution

q∆j,low := Ijq∆j . (5.8)

66

5.3 The algorithm

3. For each higher resolution solution q∆j calculate the vector of pointwise local

errors as grid point differences between the projected high-resolution solution

and the original low-resolution solution

e∆j := q∆j,low − q∆,low. (5.9)

4. For each higher resolution j calculate one parameter set of mean µ∆j and standard

deviation σ∆j of local errors

µ∆j :=
1

K

∑

∆j

e∆j (5.10)

and

σ∆j :=

√

1

K

∑

∆j

(e∆j − µ∆j)2, (5.11)

with K the number of computational cells of the low-resolution solution and
∑

∆

the sum over each computational grid cell on resolution ∆j.

5. Average the different µ∆j and σ∆j over all resolutions j to determine the final

parameter set p̃ = (µ̃, σ̃).

This training algorithm is cheap because it only needs one time step of the forward

higher resolution solutions. It is also robust because the total number of realizations

scales with the spatial degrees of freedom. More available different resolutions mean

a higher amount of information that the algorithm can analyze to determine p̃, or

in turn N (µ̃, σ̃). There are two points in this algorithm that necessitate further ex-

planation: the projection operator Ij and the length of the time step. We suggest

reconstruction-type projection operators for Ij , i.e., operators that reconstruct point-

wise values from the high-resolution solution. A nearest neighbor approach is a very

simple reconstruction-type approach, where the value of nearest neighbor cells of a high-

resolution solution are used to reconstruct the value of the low-resolution solution. We

have chosen this method to keep the implementation simple but other projection oper-

ators are also possible. We suggest to use the length of the time step of the standard

model solution as length of the learning period. For reference solutions q∆j that are

much higher resolved than the standard resolution q∆,low we need to adapt the time

step so that the model is still stable.

5.3.4 Step 3: A Posteriori Goal Error Ensembles

As a third step, Algorithm 1 requires to construct a goal error ensemble based on a

given specified local error random process P(p̃). To do this we propose a stochastic

67

Chapter 5 A Posteriori Goal Ensembles

variant of the deterministic method suggested in Section 3.3.

Our method is based on the assumption that goal errors ε (5.3) can be approximated

as the scalar product of estimated local model errors N̂∆(q∆) and the sensitivity q∗

∆ of

the goal with respect to local model changes (e.g., Giles and Pierce 2000; Becker and

Rannacher 2002; Johnson et al. 1995)

εest :=
〈

q∗

∆, N̂∆(q∆)
〉

Ω×T
≈ ε. (5.12)

The choice of the scalar product 〈., .〉Ω×T in time and space is a priori arbitrary. The

adjoint solution q∗

∆ depends on this choice, though, and on the choice of model and goal.

Throughout this Chapter we use a standard Euclidean scalar product (each discrete

grid point is weighted with areas and time step length). We omit the explicit notation

of Ω × T unless needed for clarification. The sensitivities q∗

∆ are the solution of an

adjoint problem defined by the model N and the goal J . They are approximated with

the help of Algorithmic Differentiation (see Chapter 4, (Naumann and Riehme 2006)).

The local model error estimator N̂∆(q∆) is classically discretization-dependent and

reflects the structure of the underlying PDE. We suggest a new variant that interprets

local errors as a stochastic local random process. Instead of one error estimate we

aim to obtain a goal approximation error PDF. We replace the local error estimators

N̂∆(q∆) of Equation (5.12) by the specified random process P(p̃)

N̂∆(q∆) :=
1

∆t
P(p̃)

(

=
1

∆t
N (µ̃, σ̃)

)

, (5.13)

with ∆t the timestep and the brackets reflecting our specific choice of random process

in step 1. The procedure to determine a posteriori ensembles works for any chosen

and specified random process P(p̃). The error estimates are fully determined by the

parameter set p̃

εest =

〈

q∗

∆,
1

∆t
P(p̃)

〉

. (5.14)

This means that for each computational cell in space and time we draw a random

number from the identical random process P(p̃) and multiply the resulting random

number with the adjoint sensitivity at that cell. Equation (5.14) is not a useful error

estimate in it self. Instead of a single error estimate we calculate R realizations of the

scalar product (5.14) to obtain error bounds

εmax = max
R

〈

q∗

∆,
1

∆t
P(p̃)

〉

, (5.15)

εmin = min
R

〈

q∗

∆,
1

∆t
P(p̃)

〉

. (5.16)

68

5.3 The algorithm

The goal error ensemble can be constructed as an ensemble of perturbed goal approxi-

mations J̃∆

J̃∆ := J∆(q∆) +

〈

q∗

∆,
1

∆t
P(p̃)

〉

. (5.17)

The resulting ensemble of goal error estimates from a single solution q∆ is called “A

Posteriori Goal Error Ensemble”.

We summarize step 3 of our algorithm:

1. Calculate a solution q∆ of the model N∆ to obtain an approximation of a relevant

goal J∆(q∆).

2. Calculate an adjoint solution q∗

∆ of the problem to obtain the weights q∗

∆.

3. Calculate R scalar products (5.14) between q∗

∆ and the specified local error ran-

dom process P(p̃) from steps 1 and 2.

Multi-component state vectors

For complex models and on high resolutions the discrete state vector q∆ is high di-

mensional and may consist of various fields of different prognostic variables q∆ =

(q1, ...,qm) (for m prognostic variables). It is reasonable to assume that the local error

properties of different prognostic variables qi are not identical. We therefore suggest

to learn local error random processes for each part of the state vector q∆ separately.

At the same time we suggest to only use local error random process for those parts of

the state vector that are actually used to calculate the goal J∆. This is due to technical

reasons. To calculate the scalar product in Equation (5.17) requires local error esti-

mates for all prognostic variables qi and the solution of the adjoint sensitivities for all

prognostic variables. This becomes computationally expensive to accomplish for a high

number of prognostic variables in high spatial and temporal resolutions. Using only

local error random processes for variables that are used directly to calculate the goal is

identical to the assumption that the errors in the other parts of the state vector have

only a minor influence on the goal because the corresponding sensitivities are small.

5.3.5 Forward Ensembles

We propose that classical forward ensemble techniques can be used for quantification of

goal approximation error if they use the correct local error random process P(p̃). The

forward ensembles can be used to understand the concept of our a posteriori ensemble

better. We introduce the basic concepts of two classical forward ensemble techniques.

69

Chapter 5 A Posteriori Goal Ensembles

Initial Condition Ensemble (ICE)

The main properties of initial condition ensembles are� The initial state q0
∆ is perturbed by the random process P(p̃)

q̃0
∆ := q0

∆ + P(p̃). (5.18)� The model N∆ is solved R times from R different initial condition q̃0
∆, yielding

an ensemble of solutions q̃∆.� The goal J̃∆ represents one instance of the ensemble and is derived from each

model solution q̃∆. We define the error bounds as minimum and maximum over

the ensemble

εmin := min
R

(J̃∆ − J∆) (5.19)

εmax := max
R

(J̃∆ − J∆) (5.20)

with J∆ the solution without initial condition noise and J̃∆ one perturbed instance

of the goal ensemble.

Stochastic Physics Ensemble (SPE)

The main properties of stochastic physics ensembles are� The model formulation N∆(q∆) = 0 is perturbed. The perturbations can act on

parameterizations, tendencies, forcings or boundary conditions. We use the local

error random process P(p̃) as stochastic forcing

N∆(q∆) = P(p̃) (5.21)� The model N∆ is solved R times, using different realizations of the stochastic

process P(p̃), yielding an ensemble of solutions q̃∆.� The goal J̃∆ represents one instance of the ensemble and is derived from each

model solution q̃∆. We define the error bounds identical to the initial condition

ensemble as minimum and maximum over the ensemble

εmin := min
R

(J̃∆ − J∆) (5.22)

εmax := max
R

(J̃∆ − J∆) (5.23)

with J∆ the solution without initial condition noise and J̃∆ one perturbed instance

of the goal ensemble.

70

5.4 The Testbed

ICON grid properties

Refinement Number Average cell Time step

level of cells distance length

∆1 320 1115.3 km 900 s

∆2 1280 556.4 km 600 s

∆3 5120 278.0 km 450 s

∆4 20480 139.0 km 200 s

∆5 81920 69.5 km 100 s

∆6 327680 34.7 km 50 s

Table 5.1: Basic properties of ICON discretization. One refinement level is equivalent

to a quadrupling of the number of cells by halving the triangle edge lengths. Refinement

level ∆1 is a two times refined icosahedron (4 * 4 * 20 cells). Average cell distance is

the average of all the distances between triangle cell centers.

Both initial condition and stochastic physics ensembles are forward ensembles because

they are created by solving a given model N∆ for different realizations of a perturbation.

Both create a goal approximation ensemble; the goal error ensembles are derived from

comparisons to the unperturbed solutions.

5.4 The Testbed

We have introduced the general problem in Section 5.2 and a general possible solution

strategy in Section 5.3. We now introduce the testbed for the evaluation of our algo-

rithm: the model and two test cases.

The shallow water equations (SWE) on a rotating sphere are a specific example of the

general operator N of Section 5.2. We write the inviscid SWE on the sphere Ω in vector

invariant form as

∂v

∂t
= (ξ + f)k× v −∇(gh +

1

2
|v|2) (5.24)

∂h

∂t
+ ∇ · (hv) = 0.

Here v is the horizontal velocity, ξ the vorticity, f the Coriolis parameter, g = 9.81m/s2

the gravitational acceleration, and h the height of the fluid surface. The initial condi-

tions are v(t0) = v0 and h(t0) = h0. We consider (5.24) on a time interval T := [t0, tn]

and with periodic spatial boundary conditions on the sphere Ω. The state vector

q = (h,v) consists of the prognostic fields height and velocity. The hyperbolic partial

differential equations (5.24) describe the flow of a single layer of fluid.

Our numerical framework N∆ is ICOSWM, a shallow water model on a triangular

71

Chapter 5 A Posteriori Goal Ensembles

spherical grid with C-type staggering of the variables. ICOSWM uses a hybrid finite

volume / finite difference method to approximate the SWE (5.24). ICOSWM calculates

a solution vector q∆ = (h∆,v∆) with h∆ the discrete height field in the cell centres

of our triangular grid and v∆ the normal velocities at the mid points of the triangular

edges. The solution process is sequential in nature, the discrete model yields discrete

time slices qn
∆ for each time step. In our notation, the solution vector q∆ = (h∆,v∆)

incorporates all time slices and represents the discrete approximation of the full solu-

tion. For further details see (Giorgetta et al. 2009; Ripodas et al. 2009).

We choose a reference goal J for our evaluation: regionally averaged potential energy.

J(q) := J(h(tend)) =
g

A(Ω0)

∫

Ω0

h2(x, tend)dx, (5.25)

where Ω0 denotes an arbitrary subdomain of the sphere Ω and A(Ω0) denotes the area

of Ω0. The goal depends directly only on the height field h at the end time tend as

part of the state vector q. We omit the factor 1/2 in the definition of potential energy

because a constant factor does not change the structural form of the goal functional and

its error characteristics. The computational equivalent is the numerical integration of

an approximated discrete height field after n time steps hn
∆ on the discrete subdomain

Ω∆0

J∆(q∆) := J∆(hn
∆) =

g

A∆(Ω∆0)

∑

i∈Ω∆0

ai

(

hn
∆,i

)2
, (5.26)

where the ai denote the grid cell areas, hn
∆,i is the value of the discrete height field after

n time steps on the ith triangle. The discrete area A∆(Ω∆0) =
∑

i∈Ω∆0
ai is the sum of

all triangle areas that are part of the subdomain Ω∆0 and approximates the true area

A(Ω0).

We apply our new error estimation technique to two test cases that are commonly

used in the GFD community: 1) a solid body rotation test case (TC1) as introduced in

example 3 of (Laeuter et al. 2005) and 2) zonal wind against a mountain as described in

(Williamson and Drake 1992) (TC2). The topography and height field initial condition

of our test cases are plotted in Figure 5.1. The solid body rotation test case (TC1) is

interesting because it has an analytical solution that allows clear comparisons between

actual performance of our error estimation algorithm and the best theoretical possible

performance. It covers a smooth wave-type flow on a zonal topography with realistic

velocities. This test case is not very realistic but it allows us a first evaluation if our

method can be applied to time-dependent GFD models at all. We prefer it to other

classical test cases with analytical solution because of its time-dependent nature. The

second test case (TC2) is taken from the classical Williamson test suite for shallow wa-

ter models. It describes an initial steady zonal flow that gets perturbed by a mountain.

72

5.4 The Testbed

Figure 5.1: Topography (left), height field initial condition (middle), meridional veloc-

ity after 24hours (right). Top row for solid body rotation, bottom row for zonal wind

against a mountain.

The initial condition is a smooth height field and the mountain appears instantaneously

in the flow. This perturbation excites an initial gravity wave. After the initial perturba-

tion the mountain causes Rossby waves that form a standing wave behind the mountain.

We implement the ensemble strategies of Section 5.3.4 and Section 5.3.5 for ICOSWM.

The perturbations for all ensembles are instances of a Gaussian random process N that

are derived from the standard Fortran uniform random generator via the Marsaglia po-

lar method (Marsaglia 1991) for a specified set p̃. The initial condition perturbations

are added on the initial height field

h̃0
∆ := h0

∆ + N (µ̃, σ̃). (5.27)

The stochastic physics perturbations are added as a stochastic forcing on the height

field at each time step n

h̃n
∆ := hn

∆ + N (µ̃, σ̃). (5.28)

The perturbations for the a posteriori ensembles are included in the scalar product

〈

q∗

∆,
1

∆t
N (µ̃, σ̃)

〉

. (5.29)

73

Chapter 5 A Posteriori Goal Ensembles

TC1 height field properties for 1 time step: mean µ̃

(Analytical solution)

Evaluation time of analytical solution−→
Resolution ↓ 50s 100s 200s 450s 600s 900s

∆1 1.0×10−6 1.7×10−5 6.5×10−5 3.1×10−4 5.2×10−4 1.0×10−3

∆2 5.4×10−7 8.6×10−6 3.3×10−5 1.4×10−4 2.0×10−4 3.2×10−4

∆3 2.4×10−7 3.6×10−6 1.2×10−5 3.4×10−5 4.4×10−5 7.5×10−5

TC1 height field properties for 1 time step: standard deviation σ̃

(Analytical solution)

Evaluation time of analytical solution−→
Resolution ↓ 50s 100s 200s 450s 600s 900s

∆1 8.94×10−2 0.357 0.711 1.55 2.03 2.86

∆2 4.87×10−2 0.194 0.379 0.774 0.955 1.21

∆3 2.76×10−2 0.108 0.201 0.348 0.398 0.477

Table 5.2: Mean and standard deviation as obtained from one time step learning runs

on different standard resolutions compared to the analytical solutions. The three rows

are equivalent to the three different standard model resolutions. The six columns are

equivalent to the six standard model time step lengths.

5.5 Results

In this section we evaluate Algorithm 1 in the test bed of Section 5.4. First, we analyze

the behavior of our learning algorithm (Step 2 of Algorithm 1). We then show results

when the gauged random process is used to produce an a posteriori ensemble of error

estimates for important regional physical quantities (Step 3 of Algorithm 1). As a last

step we show results for two forward ensembles, perturbed by the same local error

random process.

5.5.1 Learning for Different Test Cases

As a first step, we want to analyze the true form of the local error rate of change. We

can do this within the solid body rotation test case (TC1) because of its analytical

solution. We look at regional potential energy J derived from the solution of TC1. The

fact that this functional depends only on a part of our state vector allows us to use the

suggested reduction in dimensionality of Section 5.3.4. We only look at the height field

h∆ as part of the state vector q∆ and ignore the local errors in velocities.

74

5.5 Results

TC1 height field properties for 1 time step: σ̃

(Reference numerical solution ∆5)

Time step of model and reference solution−→
Resolution ↓ 50s 100s 200s 450s 600s 900s

∆1 12.1 12.1 12.1 12.21 12.3 12.4

∆2 7.3 7.3 7.3 7.3 7.3 7.4

∆3 2.4 2.4 2.4 2.4 2.4 2.5

Table 5.3: Mean and standard deviation as obtained from one time step learning

runs on different standard resolutions compared to a reference numerical solution on

resolution ∆5. The three rows denote the three different standard model resolutions.

The six columns denote the six standard model time step lengths.

TC1 height field properties for 1 time step: σ̃

(Reference numerical solution time step 900s)

Resolution of reference solution−→
Resolution ↓ 1 2 3 4 5 6 ⊘
∆1 0 19.7 10.1 14.8 12.4 13.6 14.1

∆2 - 0 9.8 5.0 7.4 6.2 7.1

∆3 - - 0 4.9 2.5 3.7 3.7

TC2 height field properties for 1 time step: σ̃

(Reference numerical solution time step 900s)

Resolution of reference solution−→
Resolution ↓ 1 2 3 4 5 6 ⊘
∆1 0 10.6 5.4 8 6.7 7.4 7.6

∆2 - 0 5.3 2.7 4.0 3.34 3.8

∆3 - - 0 2.6 1.3 2.0 2.0

Table 5.4: Standard deviation as obtained from one time step learning runs on different

reference resolutions. The three rows are equivalent to the three different standard

model resolutions. The six columns are equivalent to the six possible reference model

resolutions. The ⊘ column denotes the average of the standard deviations.

75

Chapter 5 A Posteriori Goal Ensembles

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

Local Height Field Error

O
cc

u
rr

en
ce

Level 1

Level 2

Level 3

Figure 5.2: TC1 local error PDF calculated from three resolutions (one time step).

We solve ICOSWM for one time step on resolutions ∆1 to ∆3 (see table for their

respective resolution and time step length). We compare the respective local height field

solution h∆ pointwise with the discrete projection of the analytical solution after one

time step to calculate the local errors of Equation (5.9). Using the learning algorithm

of Section 5.3.3 we obtain values for the mean and the standard deviation for all time

step lengths that are used in ICOSWM with a focus on the typical time step length

for each resolution, see Table 5.2. The first conclusion is that the mean of our process

is effectively zero. This is in line with expectations, a non-zero local error distribution

would introduce strong biases in local solutions and would probably not be stable. As

a second conclusion, we see that the standard deviation critically depends on the choice

of time step length. This can be easily explained by the initialization with pointwise

values of the underlying analytical initial condition. For very short integration time

the errors between the discrete model and the analytical solution therefore converge to

zero, the initial state. It is not a priori clear which is the “correct” random process

but we think that clearly the most useful data comes from the time step length that is

actually used in the model (bold in Table 5.2).

We use the analytical solution of TC1 to plot the approximate PDFs of the local error

random process for resolutions ∆1 to ∆3 in Figure 5.2.

5.5.2 A Posteriori Goal Error Ensembles

We use the learned mean and standard deviation from Section 5.5.1 to estimate goal

approximation error PDFs for regional potential energy J . We use the averaged learned

76

5.5 Results

 1.9e+08

 1.8e+08

 1.7e+08

 1.6e+08

 24 18 12 6 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC1: a posteriori ensemble for region 109

Model
Truth

Upper Bound
Lower Bound

 3.3e+07

 3.2e+07

 3.1e+07

 3e+07

 24 18 12 6 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC2: a posteriori ensemble for region 54

Model
Truth

Upper Bound
Lower Bound

Figure 5.3: Goal approximation and error bounds for regional potential energy on res-

olution ∆1 for 24 hours. Left solid body rotation, right zonal flow against a mountain.

 1.9e+08

 1.85e+08

 1.8e+08

 1.75e+08

 24 18 12 6 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC1: a posteriori ensemble for region 109

Model
Truth

Upper Bound
Lower Bound

 3.22e+07

 3.2e+07

 3.23e+07

 3.21e+07

 24 18 12 6 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC2: a posteriori ensemble for region 54

Model
Truth

Upper Bound
Lower Bound

Figure 5.4: Goal approximation and error bounds for regional potential energy on res-

olution ∆2 for 24 hours. Left solid body rotation, right zonal flow against a mountain.

 1.89e+08

 1.84e+08

 1.79e+08

 1.74e+08

 60 48 36 24 12 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC1: a posteriori ensemble for region 109

Model
Truth

Upper Bound
Lower Bound

 3.3e+07

 3.2e+07

 3.1e+07

 3e+07

 60 48 36 24 12 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC2: a posteriori ensemble for region 54

Model
Truth

Upper Bound
Lower Bound

Figure 5.5: Goal approximation and error bounds for regional potential energy on res-

olution ∆1 for 60 hours. Left solid body rotation, right zonal flow against a mountain.

77

Chapter 5 A Posteriori Goal Ensembles

 5e+06

 4e+06

 3e+06

 2e+06

 1e+06

 24 21 18 15 12 9 6 3 0

A
bs

ol
ut

e
er

ro
r

in
 p

ot
en

tia
l e

ne
rg

y

Time [h]

TC1: absolute errors for regions 109 and 110
Level One
Level Two

 1.2e+06

 900000

 600000

 300000

 24 21 18 15 12 9 6 3 0

A
bs

ol
ut

e
er

ro
r

in
 p

ot
en

tia
l e

ne
rg

y

Time [h]

TC2: absolute errors for regions 54 and 55
Level One
Level Two

Figure 5.6: The evolution of absolute error bounds in time for TC1 (left) and TC2

(right) on resolution ∆1

σ̃ from Table 5.4 to create an a posteriori ensemble of 100 stochastic error estimates and

calculate error bounds (Equation (5.15)) to see if the “true” error lies within the error

bound. To calculate the “true” error we define the true goal value as the reference truth

of the highest possible resolution ∆6 for both test cases. We solve the model on the

three low standard resolutions ∆1 and ∆2 for both test cases. For all four experiments

we show results for a typical region for regional potential energy for 24 hours. The

respective learned σ̃ lead to error bounds that confine the true error. The error bounds

seem to cover the original model error quite well for 24 hours. We can see that we

overestimate the error on the lowest resolution ∆1 but capture it quite well on ∆2 (see

Figure 5.3 and Figure 5.4). We plot the mean, minimum and maximum of the ensemble

to represent the ensemble spread. The most probable error from this ensemble is much

closer to the original approximation than to the lower and upper bounds.

We extend the integration time to 60 hours for the low-resolution ∆1 experiments to

check the long-term development of the ensemble spread, again for both test cases TC1

and TC2. The spread behavior is similar; for both TC1 and TC2 the ensemble spread

only increases slightly after the initial 24 hours (see Figure 5.5). The initial increase is

stronger for TC2. It appears that the ensemble spread depends on the linearity of the

test case. We test if the ensemble spread grows linearly by taking the absolute values

of εmin and εmax. The errors do not grow strictly linearly in time (see Figure 5.6).

Robustness with Respect to Goal Changes

To test the robustness of our method with respect to goal changes we introduce two

new goals J∆
2 and J∆

3

J∆
2 := J∆(hn

∆) =
g

A∆(Ω0)

∑

i∈Ω0

ai

(

hn
∆,i

)10
, (5.30)

J∆
3 := J∆(vn

∆) = (▽× vn
∆)Ωi . (5.31)

78

5.5 Results

 2.5e+41

 2e+41

 1.5e+41

 1e+41

 24 18 12 6 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC1: a posteriori ensemble for region 109

Model
Truth

Upper Bound
Lower Bound

 4.3e-06

 4.4e-06

 4.5e-06

 4.6e-06

 4.7e-06

 4.8e-06

 4.9e-06

 5e-06

 5.1e-06

 5.2e-06

 24 18 12 6 1

R
el

at
iv

e
vo

rt
ic

ity

Time [h]

TC2: a posteriori ensemble for region 54

Model
Truth

Upper Bound
Lower Bound

Figure 5.7: Error bounds for two goals for 24 hours. Left J∆
2 for TC1, right J∆

3 for

TC2.

Goal J∆
2 is a variation of the potential energy goal J∆ with a different functional

dependency on the height field. Goal J∆
3 is the relative vorticity at a given grid vertex

with no direct dependency on the height field. We use the identical specified local

random process N (µ̃, σ̃) to calculate an ensemble of scalar products. For J∆
2, the

change of the goal formulation does not change the behavior of the error estimates

although it changes the size of the errors itself quite drastically (compare TC1 results

in Figure 5.3 and Figure 5.7). For J∆
3, the radical change of the goal formulation

does not change the structural behavior of the error estimates (compare TC2 results

in Figure 5.3 and Figure 5.7). We conclude that – given a specified random process –

variations in the goal formulation do not change the error estimation behavior.

The Distribution of A Posteriori Goal Errors

We have argued that the Gaussian is a reasonable starting point for local error random

processes because it is the natural distribution if there is a scale separation between

the resolved and unresolved processes. However, this necessary scale separation is not

given a priori for arbitrary resolutions of our discrete model. Looking at the data from

Figure 5.2, one might argue that for our test case the local error PDF fits also to an

exponential distributions. Given the inherent ambiguity of the choice of the local error

process we want to check how sensitive our algorithm is to the choice of the form of

local error random processes.

We introduce a second local error random process (approximately an exponential dis-

tribution) with an underlying PDF of the following form:

f(x) = σe−x, (5.32)

with σ the standard deviation we used before for the Gaussian process. We compare

this new random process to the original Gaussian process in Figure 5.9. The two local

model error PDFs look distinctively different. To see the form of the approximate PDF

79

Chapter 5 A Posteriori Goal Ensembles

−2 −1 0 1 2

x 10
6

0

100

200

300

Goal Error Random Process (6h)

Goal Error

O
cc

u
rr

en
ce

"True" Error

−2 −1 0 1 2

x 10
6

0

100

200

300

Goal Error Random Process (12h)

Goal Error

O
cc

u
rr

en
ce

"True" Error

−2 −1 0 1 2

x 10
6

0

100

200

300

Goal Error Random Process (18h)

Goal Error

O
cc

u
rr

en
ce

"True" Error

−2 −1 0 1 2

x 10
6

0

100

200

300

Goal Error Random Process (24h)

Goal Error

O
cc

u
rr

en
ce

"True" Error

Figure 5.8: The a posteriori goal error ensemble for TC1 on resolution ∆1 after 6, 12,

18 and 24 hours for a Gaussian local error random process. The “true” error denotes

the actual model error at that time step.

−4 −2 0 2 4
0

200

400

600

Local Error

O
cc

u
rr

en
ce

Gaussian Local Error Random Process

−4 −2 0 2 4
0

600

1200

1800

Local Error

O
cc

u
rr

en
ce

Exponential Local Error Random Process

Figure 5.9: The local error distributions for resolution ∆1 for Gaussian and Exponential

distributions (with increased ensemble size for better visibility).

80

5.5 Results

−2 −1 0 1 2

x 10
6

0

100

200

300

Goal Error Random Process (6h)

Goal Error

O
cc

u
rr

en
ce

−4 −2 0 2 4

x 10
6

0

200

400

600

Goal Error

O
cc

u
rr

en
ce

Goal Error Random Process (6h)

Figure 5.10: The resulting a posteriori goal error ensemble for TC1 for resolution ∆1

after 6 hours for Gaussian (left) and Exponential (right) local error random processes

(with increased ensemble size for better visibility).

Spread between maximum and minimum

goal approximation (TC1, J)

×108 Integration time−→
Ensemble ↓ 1h 3h 6h 12h 18h 24h 48 72

ICE 13 12 8 5 6 4 2 2

SPE 24 34 41 59 71 66 72 88

APE 20 35 50 50 84 62 69 90

Table 5.5: The difference between minimum and maximum goal approximation is

shown for three different ensemble techniques. ICE = Initial Condition Ensemble. SP

= Stochastic Physics Ensemble. APE = A Posteriori Ensemble

of the goal error distribution, we plot an approximate PDF of the goal error estimate

for regional potential energy for TC1, see Figure 5.8. To clarify the structure of the

underlying PDF we increase the ensemble size to 10′000 and look at approximated

histograms. For Gaussian local error estimates the resulting distribution from our

stochastic post-processing is also Gaussian, with increasing standard deviation in time,

see Figure 5.8. This is not overly surprising, an accumulation of Gaussians random

processes remains Gaussian. We compare this accumulated Gaussian after 6 hours

with the goal error PDF from an exponential local error distribution in Figure 5.10.

Both PDFs approximate a Gaussian distribution with different standard deviations.

81

Chapter 5 A Posteriori Goal Ensembles

Spread between maximum and minimum

goal approximation (TC2, J)

×107 Integration time−→
Ensemble ↓ 1h 3h 6h 12h 18h 24h 48 72

ICE 18 29 23 14 12 8 - -

SPE 47 53 98 105 149 191 - -

APE 48 87 119 153 164 180 - -

Table 5.6: The difference between minimum and maximum goal approximation is

shown for three different ensemble techniques. ICE = Initial Condition Ensemble.

SPE = Stochastic Physics Ensemble. APE = A Posteriori Ensemble

Process time forward and a posteriori ensembles

Integration Process Time Process Time

Time [h] ICE /SPE [s] APE [s] Ratio

2 28 2 14

4 79 6 13.2

6 166 10 16.6

8 328 15 21.8

10 503 29 17.4

⊘ 16.6

Table 5.7: The process time is shown for both forward ensembles (ICE/SPE = Ini-

tial Condition Ensemble and Stochastic Physics Ensemble) and A Posteriori Ensemble

(APE) for different integration times.

82

5.5 Results

Comparison of three ensemble techniques for goal J and both test cases

 1.9e+08

 1.8e+08

 1.7e+08

 1.6e+08

 24 18 12 6 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC1: initial condition ensemble for region 109

Model
Truth

Upper Bound
Lower Bound

 3.3e+07

 3.2e+07

 3.1e+07

 3e+07

 24 18 12 6 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC2: initial condition ensemble for region 54

Model
Truth

Upper Bound
Lower Bound

 1.9e+08

 1.8e+08

 1.7e+08

 1.6e+08

 24 18 12 6 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC1: stochastic physics ensemble for region 109

Model
Truth

Upper Bound
Lower Bound

 3.3e+07

 3.2e+07

 3.1e+07

 3e+07

 24 18 12 6 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC2: stochastic physics ensemble for region 54

Model
Truth

Upper Bound
Lower Bound

 1.9e+08

 1.8e+08

 1.7e+08

 1.6e+08

 24 18 12 6 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC1: a posteriori ensemble for region 109

Model
Truth

Upper Bound
Lower Bound

 3.3e+07

 3.2e+07

 3.1e+07

 3e+07

 24 18 12 6 1

P
ot

en
tia

l e
ne

rg
y

Time [h]

TC2: a posteriori ensemble for region 54

Model
Truth

Upper Bound
Lower Bound

Figure 5.11: Error bounds from all three ensemble techniques for one typical goal for

TC1 (left) and TC2 (right). All experiments of one test case share the same underlying

local random process. Model resolution ∆1, ensemble size 100.

83

Chapter 5 A Posteriori Goal Ensembles

.
1.76 1.77 1.78 1.79 1.8

x 10
8

0

1

2
Stochastic Physics Goal Ensemble (10)

Goal

O
cc

u
rr

en
ce

1.76 1.77 1.78 1.79 1.8

x 10
8

0

4

8

12

16
Stochastic Physics Goal Ensemble (100)

Goal

O
cc

u
rr

en
ce

1.76 1.77 1.78 1.79 1.8

x 10
8

0

30

60

90

Stochastic Physics Goal Ensemble (1000)

Goal

O
cc

u
rr

en
ce

1.76 1.77 1.78 1.79 1.8

x 10
8

0

200

400

600

800
Stochastic Physics Goal Ensemble (10000)

Goal

O
cc

u
rr

en
ce

Figure 5.12: Goal error PDF after 6 hours for a stochastic physics ensemble for different

ensemble sizes.

84

5.6 Discussion

5.5.3 Forward Ensembles

As an alternative to our new a posteriori goal error ensemble we calculate two forward

ensembles according to Section 5.3.5. The model is solved on the lowest ICON resolu-

tion ∆1, see Table 5.1. As a first test we use the goal J in both test cases TC1 and TC2.

We plot the solutions without noise as model solution and the maximum and minimum

values of the goal ensembles as error bounds, see Figure 5.11. The zero-noise curves

are identical for all three ensembles (by construction). The spread in error is distinctly

different for the three plots. We can identify two types of behavior. For the initial

condition ensemble (ICE), the ensemble spread introduced by the initial condition per-

turbation remains the same for a short time and decreases for the rest of the integration

period. The second type of behavior can be found for both a posteriori ensemble (APE)

and stochastic physics ensembles (SPE): the ensemble spread introduced by local per-

turbations increases over the full integration period. To quantify the behavior, we look

at the spread εmax − εmin at different time steps in Table 5.5. The behavior for both

test cases is similar: during the first 24 hours the spread of the IC ensemble is reduced

to a minimum and fluctuates around this. For the APE and SPE spread, the same

holds in opposite direction: during the first 24 hours the spread increases rapidly, with

a very slow increase afterwards. For TC2, the similarity of APE and SPE is not as re-

markable as for TC1. The size of the ensemble spread is still similar but the stochastic

physics experiments show more variation, see Table 5.6. It appears that the ensemble

size of 100 is not enough to guarantee a robust estimate of lower and higher bound

for all time steps. To test this, we show the dependency of the resulting goal PDF

on the number of ensemble members in Figure 5.12 for a 6 hour run of the stochastic

physics ensemble. The number 100 for the ensemble size is chosen low, the resulting

Gaussian goal error distribution is far from converged. This can explain that the lower

and upper bounds are sometimes closer to the mean goal approximation than expected.

We show the computational costs for our experiments in Table 5.7. Both the initial

condition ensemble and the stochastic physics ensemble are forward ensembles and need

multiple model solutions. Our simple evaluation shows that forward ensembles that rely

on multiple forward solutions are more expensive than our ensemble post-processing.

The time needed for these forward approaches is about 18 times higher (mean ratios

for 6 -10 hour runs): 100 forward runs vs 1 forward and 1 adjoint run.

5.6 Discussion

An increasing error ensemble spread means that the probability density function of the

state gets less constrained by the initial condition in time, which is an expected result

for approximation errors. Our a posteriori ensembles quantify the decreasing confidence

85

Chapter 5 A Posteriori Goal Ensembles

in the numerical solution in time, based on a local error learning algorithm.

We see that the increase of ensemble spread depends on the test case; the initial in-

crease is larger for the shock-type initialization of the zonal flow against a mountain

(TC2). It is hard to determine a clear cut-off criterion that exactly determines how

long the error bounds are useful because of their probabilistic nature. For the solid

body rotation (TC1) we obtain a reasonable error PDF for at least 60 hours. For TC2

we obtain a reasonable error PDF for at least 60 hours. These are promising results

because the validity of atmospheric adjoint solutions becomes also questionable at time

frames longer than a few days.

However, the applicability of the method is challenged if the flow faces regime changes

because the characteristic properties of the local error random process change in the

case of a flow regime change, as has been shown for the initial states of TC1 and TC2.

86

5.6 Discussion

The ensemble spread behavior of APE and SPE ensemble techniques look remarkably

similar, qualitatively and quantitatively. Both are conceptually closely connected. APE

can be described as a linearized, simplified version of SPE, derived from only one model

solution. Stochastic physics ensemble are usually initialized with stochastic processes

that are either based on the study of physical processes (Majda and Stechmann 2009)

or on empirical studies of the shortcomings of the underlying model (Seiffert et al.

2006) Both methods do look at total model error spread, not focussing on approxi-

mation error. We can conclude that a) stochastic physics ensembles can be used for

goal approximation estimation when combined with our local learning algorithm and

b) our a posteriori ensembles are - at least for linear test cases - a viable alternative to

stochastic physics ensembles.

The ensemble spread behavior of initial condition ensembles shows that ICE are not

suited to estimate goal approximation error, even if equipped with our local learning

algorithm. The inherent tendency to decrease variance is a fatal property for an ap-

proximation error estimation algorithm. This result is known in a different context

(total model error) for initial condition ensembles as variance deflation. The concept

of covariance inflation has been introduced to combat this problem (Anderson and

Anderson 1999). It is not clear how to implement a similar technique in single time

frame. However, it is interesting to compare our local error initialization with classical

initialization methods for GFD initial condition ensembles. Initial condition ensem-

bles are routinely initiated by time-lag initializations, using instances of previous time

steps or different instances of a long control run to initialize the model run (Jungclaus

et al. 2010). The concept of optimal perturbations is a more sophisticated way to

create an initial condition ensemble. These perturbations maximize error growth from

a tangent-linear error evolution point of view (Ehrendorfer 1997). The optimal per-

turbation concept can be seen as a worst-case error-growth scenario for the first time

step. It is as unrealistic as the time-lag initialization to get a useful ensemble spread

of approximation error. It is possible though to connect our method to the optimal

perturbation point of view: our adjoint solution includes the tangential directions of

error growth for the full run, not only the directions of maximum growth for the first

time step. This means that ensemble post-processing propagates all random errors,

not on random trajectories (time-lag initialization) or worst-case-scenarios (optimum

perturbations) but on the “correct” trajectory.

A posteriori ensembles are computationally cheap and produce similar results as

stochastic physics ensembles for our test cases. Can they replace stochastic physics

ensembles? The answer depends on the experimental setting. The computational

expense is only in favor of a posteriori ensembles if the number of goals (here = 1)

is small compared to the number of ensemble realizations(here = 100). For higher

numbers of goals, the additional cost of the adjoint is larger than the additional cost

87

Chapter 5 A Posteriori Goal Ensembles

caused by a forward ensemble: we need one adjoint solution per goal, while the cost

of the forward ensemble is independent of the number of goals. At the same time the

computational expense of the a posteriori ensemble is practically independent of the

number of ensemble members while the cost for both forward ensembles scales linearly

with the number of ensemble members. This is an important property because the

ensemble size is decisive for the quality of the goal PDF approximation. The ensemble

size is also very important if we look at one major difference between the ensemble

techniques: how they deal with the nonlinearity of the model. A posteriori ensembles

cannot quantify errors induced by nonlinearity because they rely on one model solution

and linear perturbations around it. Forward ensembles can - but only if the ensemble

size is large enough. A posteriori ensembles can have a large ensemble size but do not

capture nonlinearity while stochastic physics ensembles capture nonlinearity but are

limited to small ensemble sizes.

5.7 Goal Error Ensembles and the Central Limit Theorem

We have shown in Section 5.5.2 that a posteriori goal errors are approximatelye nor-

mally distributed even for non-normal distributions of local errors. This behavior can

be explained with the Central Limit Theorem1 (CLT). The most common variant of a

CLT (e.g., von Storch and Zwiers 1999) states that the average distribution of a sum

of independent random variables is asymptotically normally distributed, regardless of

the distributions of the respective random variables.

If Xk, k = 1, 2, ... is an infinite series of independent and identically dis-

tributed random variables with E(Xk) = µ and V ar(Xk) = σ2 then the

average
1

n

∑n
k=1 Xk is asymptotically normally distributed. That is

lim
n→∞

1

n

∑n
k=1(Xk − µ)

1/
√

nσ
∼ N (0, 1) (5.33)

We can interpret the spatial scalar product 〈., .〉Ω between adjoint solution q∗k
∆ at time

step k, k = 1, ..., N , and local random process P(p̃) at the same time step as a random

variable Yk

Yk :=

〈

q∗k
∆ ,

1

∆t
P(p̃)

〉

Ω

. (5.34)

1There are a multitude of Central Limit Theorems, each one describing the conditions for cumulative

random processes that are necessary to lead to a Normal distribution. The first version of a CLT

was formulated by de Moivre in 1733. A historical overview can be found in (Cam 1986). The term

“Zentraler Grenzwertsatz” was first used in (Polya 1920).

88

5.8 Conclusion and Outlook

The independent random variables Yk are based on the same underlying random pro-

cess N and have finite means and variances. They do not have constant values for

mean and variance so we cannot simply use (5.33) to derive a Normal distribution with

zero mean an standard deviation σ = 1. We can still argue that for many time steps

it appears reasonable that the distribution of
∑

k=1,..,,N Yk is asymptotically Normally

distributed. It is surprising to see in Figure 5.10 that the tendency to become Nor-

mally distributed is already so pronounced after 6 hours because the adjoint solution

q∗k
∆ masks out many elements of the random processes for the last time steps (the ad-

joint variable is zero at time step k = N everywhere, except on the region of the goal).

A posteriori ensembles always yield Normal distributions with a zero mean which in

turn means a symmetric error distribution around a systematically wrong goal approx-

imation J∆ and no indication of asymmetric model biases. This is a consequence of our

symmetric Gaussian local error random processes. Local error random processes with

memory or dependent realizations of random processes can lead to non-Normal distri-

butions. The general conclusion is: goal error distributions with non-zero mean imply

that not all local errors can be described by random processes without memory. This

fits very well with the Mori Zwanzig formalism introduced in Section 5.3: our method

estimates the part of the local errors that is produced by unresolved processes that can

be modelled purely stochastically. The method cannot estimate the consequence of the

local error processes with memory and the deterministic approximation errors. The

error that is introduced by the deterministic influence of the unresolved processes and

the memory effect can become larger at some point than the stochastic noise. In that

case our stochastic assessment of the uncertainty of the numerical solution has to be

extended to include asymmetries and memory effects or be augmented by deterministic

methods similar to those proposed in Chapter 3.

The same argument holds for simple stochastic physics ensembles: if the stochastic

perturbation distribution is symmetric, with constant mean and without memory, the

resulting ensemble will be Normal. There are literature results that show that stochastic

perturbations can affect the mean state (Shutts 2005). These stochastic perturbations

either are spatially and temporally correlated (cellular automata) or are inserted into

nonlinear functions that result in effectively skewed distributions, which in the end

lead to model biases. The results support our conclusion that the principle of the

Central Limit Theorem effectively limits the effect of symmetric independent random

perturbations to a Gaussian blurring of the model approximation.

5.8 Conclusion and Outlook

A posteriori goal ensembles are a simple way to obtain an estimate of goal approxima-

tion uncertainty. The concept of learning to specify a local error estimator is closely

related to the deterministic concept of Section 5.3. The stochastic description of lo-

89

Chapter 5 A Posteriori Goal Ensembles

cal errors allows us to create a much simpler and more robust learning algorithm. A

posteriori goal ensembles are unique compared to other ensembles because they are

produced from only one forward evaluation of the model. We believe that the influence

and structure of local error processes on resulting goal error probability distributions

should be investigated further.

It is possible to extend a posterior goal ensembles to total model error. We have

determined our local error random process P for goal approximation errors by com-

paring different solutions of the numerical model. The counterpart for total model

error is to compare the model solution with measurements to train a new local error

random process P2. However, this is problematic: models usually do not start from

the identical same state as reality. In contrast, the initialization of GFD models is

complex and involves complicated routines that infer optimal initial states from given

data. We suggest to approximate local error realizations as the differences between the

tendencies of the model for the first few time steps and the tendencies as derived from

real data. If the method that is used to derive the discrete initial conditions from data

is not a variant of 4DVAR the first time steps of the model might not be representative

for the error evolution because the model will experience initialization shock and drift.

In this case, we suggest to use the last few time steps of the assimilation time window

to do the learning. For complex GFD models, approximation and total model error

tend to overlap because the underlying models do not converge in a classical sense. Our

method may be an option to separate the two by choosing a different local reference

truth. To quantify total model error, the exact choice of local reference truth requires

further reserch.

It is also possible to use a posteriori goal ensembles to quantify the predictability

of the numerical solution. The increasing spread of the a posteriori ensemble means

that the initial data constraint gets weaker and the system approaches the equilibrium

background statistics. Most physically relevant quantities in equilibrium or forced-

dissipative systems without trend are bounded and the time scales of usability for our

method are sufficiently small to assume a system in quasi-equilibrium. This means we

can identify properties of the system through equilibrium statistics as mean µprior and

standard deviation σprior. Predictability means that knowledge of initial data leads

to results that are better then the properties of the equilibrium statistics. We can

quantify predictability as a function of the standard deviation σ of the goal error dis-

tributions and the background standard deviation σprior. We argue that predictions of

the numerical system stop making sense if σ > σprior. If a system is in its mean state

and its numerical uncertainty σ is equal to the background standard deviation σprior

the probability of the numerical solution to be in any state of the system is identical

to the background distribution. While ensemble methods do not command a specific

90

5.8 Conclusion and Outlook

relationship between σ and σprior they support the ability to construct a consistent

concept of numerical predictability.

Our algorithm is a new combination of stochastic ideas and numerical methods and

enables goal error estimation for any GFD model with AD abilities.

Summary of Chapter 5� We extend the method of dual weight error estimation to a stochastic

description of local model error. This leads to our concept of a poste-

riori goal error ensembles for relevant physical quantities, calculated

from a single model solution.� We present a learning algorithm for the local error random process

that uses local differences between solutions on different resolutions.� The algorithm is evaluated for a shallow water model and two test

cases and shows consistently good results.� We use the learned local error random process to a) perturb initial

conditions for ICOSWM and to b) perturb the model formulation of

ICOSWM and obtain two forward ensembles of goal approximations.� We examine the consequences of the Central Limit Theorem for goal

error distributions.

91

Chapter 6

Conclusions and Outlook

6.1 The Quintessence

To our best knowledge – for the spherical shallow water equations or any global model

of Geophysical Fluid Dynamics – we are the first� to estimate deterministic time-dependent goal approximation errors with empir-

ical local error estimators.� to estimate stochastic time-dependent a posteriori goal ensembles from a single

model evaluation.� to employ methods of algorithmic learning for (automatic) goal approximation

error estimation.� to use Algorithmic Differentiation tools to obtain the required sensitivities for

dual weight error estimation for error correction purposes.

We have created an algorithm that estimates goal approximation error as an aggrega-

tion of local model errors. Local model errors can be described deterministically and

stochastically. We have presented algorithms that learn the properties of these descrip-

tions for a given model and flow. The concept of local model error learning can also be

used to equip stochastic physics ensembles with information on local model error. Our

algorithm is sufficiently general to be extended to total model error in the future.

Goal error estimation through learning combines deterministic numerical methods with

probabilistic approaches. Our algorithm is an important step towards automatic full

error bars for GFD models by creating error bars for approximation error without user

knowledge of the model’s discretization. A posteriori ensembles that are derived from

a single model solution can – if used carefully – challenge classical forward ensembles.

93

Chapter 6 Conclusions and Outlook

6.2 The Answers to the Research Questions

The guiding research questions (Section 2.4) are divided into two categories, following

the two possible interpretations of local model errors (Section 2.2).

1. Deterministic Error Correction of Goal Approximation Errors for GFD Models� Can empirical functionals of the flow state be used for the estimation of goal

approximation errors?

Yes. We have successfully used smoothness measures with a scaling weight to estimate

approximation errors for regional potential energy with ICOSWM.� How can the algorithm learn to train these functionals?

We use a learning period of one time step to calculate goal approximations on two differ-

ent resolutions. We determine the scaling factor of the empirical local error estimators

by comparing the error estimate with the difference between these goal approximations.� Is the parameter set of these functionals flow-regime-dependent?

Yes. The scaling factor is flow-regime dependent. In case of topographic inhomogeneity

the learning should be done in regions that exhibit similar flow states as the target

region.� Is the parameter set of these functionals goal-dependent?

No. For goals that depend on the same parts of the state vector the sensitivities

“handle” the specification of the goal.� Is the parameter set of these functionals resolution-dependent?

Yes. For different resolutions we have to re-use our learning algorithm.� How do we obtain the sensitivities automatically and efficiently?

We have constructed an differentiation-enabled version of ICOSWM.� How long are the error estimates of our algorithm useful?

For our solid body rotation test case, we can track the error evolution well for 24

hours. Over that period we can improve the approximated goals more than 50%. For

the zonal flow against a mountain, we can track the error for the length of the initial

perturbation, around 12 hours.

94

6.2 The Answers to the Research Questions

2. Stochastic Uncertainty Quantification of Goal Approximation Errors� Can a local error random process P be used for the estimation of goal approxi-

mation errors?

Yes. We have successfully used local error random processes with a learned standard

deviation to estimate approximation errors for regional potential energy with ICOSWM.� How can the algorithm learn the properties of the correct stochastic process?

We look at solution differences at a grid-cell level to calculate properties of an error

distribution (e.g., mean and variance for a Gaussian distribution).� Is the stochastic process flow-regime dependent?

Yes. The dependency is weaker compared to the deterministic learning attempts. Re-

sults using the parameter set of the solid body rotation are useful for the zonal flow

against the mountain and vice versa.� Is the stochastic process goal-dependent?

No. The results are similar as for the deterministic approach. The automatic sensitiv-

ities take care of the exact specification of the goal.� Is the stochastic process resolution-dependent?

Yes. With increasing resolution the standard deviation of the local error random process

decreases.� How long is the goal error ensemble of our algorithm useful?

The spread of our error ensembles increases in time, so it seems that we can theoretically

estimate the errors infinitely. When the error bounds become bigger than the natural

signal, these error bounds are not too useful anymore. For both analyzed test cases we

estimate the reasonable time frame to be at least 60 hours.� Can we use the local error learning algorithm to use classical ensembles to estimate

goal approximation error?

Yes. We show that it is possible to use a stochastic physics ensemble to estimate goal

approximation error. The results are very similar to our a posteriori goals. It is not

possible to use initial condition ensembles to estimate goal approximation error because

of the inherent tendency to decrease ensemble spread.� How does the computational cost of a posteriori goal ensembles compare to that

of a stochastic physics forward ensemble?

The a posteriori ensemble is much cheaper to obtain than a classical stochastic physics

ensemble (for a large number of ensemble members and few goals).

95

Chapter 6 Conclusions and Outlook

6.3 The Correct Interpretation of Local Model Errors

We have suggested two strategies for goal error estimation based on two different de-

scriptions of local model errors, stochastic and deterministic. Which of the two is the

“correct” description? The answer is simple: local model errors are the consequence of

both local error random processes and local errors as a deterministic functional of the

solution.

We have shown in Section 3.4 that local error production is spatially correlated and

structurally similar to the underlying flow. We have also argued in Section 5.6 that

structural model biases imply a local error process with either deterministic or mem-

ory component. This holds also for stochastic physics experiments that exhibit similar

properties as our a posteriori ensembles. At the same time, the results in Section 5.5

show that a local error random process is an efficient tool to quantify decreasing con-

fidence in the numerical solution, consistent with local model properties. This grow-

ing uncertainty covers and blurs the potential model bias but ultimately cannot fully

compensate for the deterministic effects. The need for both descriptions is in perfect

agreement with the Mori Zwanzig formalism in Section 2.2.

We conclude that the stochastic description provides efficient error estimates consis-

tent with learned properties of the model that also cover deterministic effects for short

runs. We encourage the usage of a posteriori ensembles because they are a simple and

cheap way to quantify the numerical uncertainty that can be deduced from local model

properties. The direction of any systematic bias, however, cannot be learned from this

simple stochastic approach. For longer runs with distinct model bias, we need the de-

terministic interpretation of local errors or more complex local random processes with

memory.

6.4 The Next Steps

There is one natural technical extension of the work presented in this thesis: the con-

tinued evaluation of the algorithm for different models, different goals, and more de-

manding test cases.

There are also a lot of conceptual extensions of this work. For the deterministic ap-

proach: the smoothness measures of Section 3.3.3 can be refined, extended and com-

bined. Additionally, the learning algorithm for the deterministic algorithm seems to be

insufficient. The stochastic learning concept brought forward in Section 5.3.3 could be

applied to the deterministic estimators, too. To do this, one should determine random

process properties as mean and variance for the smoothness measures themselves. By

comparing the random process properties to the learned local random process proper-

ties the parameters of the deterministic estimators could be robustly determined. That

96

6.4 The Next Steps

Figure 6.1: A sketch of a working environment for this algorithm. The properties of

the error estimation technique are routinely gauged at the beginning of forecast time

frames. At the end of the forecast period, an error estimate is calculated for important

physical quantities (goals).

method could potentially be more stable than the original learning algorithm because it

uses local information. For the stochastic approach: the type of random process should

be investigated more closely. Knowledge on topography and possible flow state should

be incorporated into the specification of the local model error random process. The

effect of memory and asymmetry is potentially large to enable a posteriori ensembles

with goal error distributions that are not Normal.

For both parts: our error algorithm depends on a solution of the goal-dependent adjoint

problem. The construction of simplified adjoints could help to reduce the computational

cost of this method enormously. We believe that simplified low order adjoint solutions

could be used to estimate the influence of local errors on the goal error (Hinze and

Volkwein 2005).

To apply our algorithm to real world problems we suggest a more elaborate frame-

work. Given a data assimilation system that initializes the model at the beginning

of recurring assimilation windows, we propose a similar error estimation window ap-

proach, see Figure 6.4. At the beginning of each time window, our learning algorithm

determines the flow specific local error parameter set for a given local error random

process / empirical functional. For that type of application, the stochastic approach is

more promising because of its superior learning algorithm. The time window approach

for error estimation leads to suitable approximation error estimates for the respective

97

Chapter 6 Conclusions and Outlook

time frames. If the learned properties differ strongly between two time windows this is

an indication of the current quality of the goal error approximations. In this combined

data assimilation and error estimation environment, our local error learning algorithm

can quantify approximation uncertainties for important physical quantities of interest.

Our algorithm could also be used to produce estimates of the total model error uncer-

tainty if the difficulties of defining a correct local reference truth for total model error

can be overcome. The possibility to systematically use a posteriori ensemble spread to

determine limits of predictability should be investigated further.

Algorithm Proposal for Error Estimation Time Window Approach

Define a class of random processes P(p) that can describe the distribution

of local (total) model errors.

At each time frame:

1. Initialize model with data assimilation scheme.

2. Determine the specific properties p̃ of the random process P for either

local model error or local total model error in a short learning period.

3. Use the local error random process P(p̃) as perturbation random pro-

cess to create goal approximation ensembles for relevant goals.

6.5 Concluding Remarks

The increasing complexity in computational models can only efficiently be countered

if the algorithms themselves become smarter. Our method of goal error estimation

through learning is a new approach to uncertainty quantification in GFD models. The

algorithm is simple, easy to extend and – comparatively – straightforward to apply to

new models. It offers a new perspective on the connection between ensemble techniques

and numerical error. Goal error estimation through learning is a first step towards

the necessary ability of GFD models to automatically generate error bars for every

calculated physical quantity.

98

Appendix A

The Development of the

Differentiation-Enabled Shallow Water

Model ICOSWM-AD

We introduce the concept of Algorithmic Differentiation (AD). We describe the

two conceptual modes of AD, forward and reverse mode, and the two possible

technical approaches to AD, source code transformation and operator overload-

ing. The development of a differentiation-enabled shallow water version ICOSWM

is one step towards a differentiation-enabled version of the 3D general circulation

model ICON. For the development of a differentiation-enabled shallow water ver-

sion ICOSWM-AD we implement reverse mode AD with an operator overloading

approach. We motivate the use of computational graphs to understand the concept

of AD. We show a computational graph of ICOSWM and a corresponding com-

putational graph of reverse mode ICOSWM. We introduce our version of memory

checkpointing.

The Concept: Algorithmic Differentiation

A growing number of Earth system model applications need high dimensional gradients

due to several reasons. First, the dependency of key quantities on a set of parameters

is needed during the construction process of a model to construct realistic models. Sec-

ond, the dependency of cost/distance functions on controls variables (initial condition

or forcings) is needed to optimize the model for forecast-type applications. Automatic

differentiation is an algorithmic concept that allows us to evaluate the gradients of

any function specified by computational programs (code) with respect to any control

variable within this program (if the derivatives exist). Two other options for com-

puting gradients are symbolic derivatives and numerical derivatives by the method of

finite differences. A full blown GFD application can not be differentiated in a symbolic

way. Algorithmic Differentiation is also superior to the standard numerical method of

evaluating derivatives (the method of finite differences) because it deals better with

truncation error. For these reasons AD tools and GFD models have been developed

99

Appendix A Development of ICOSWM-AD

concertedly since the 1990s (Marotzke et al. 1999).

The underlying principle of Algorithmic Differentiation is the consequent usage of the

chain rule for all computational operations. Every computational program - complex

as it might be - is a sequence of simple elemental operations E. For most of those

elemental operations the exact (symbolic) derivative is known. We can interpret GFD

models as a the application of an operator F on a control vector q0, resulting in a final

state qN (N time steps)

qN = F (q0). (A.1)

For algebraic simplicity we assume that the control q0 acts in the first time step (initial

condition control) but the same derivation can also be done if the control acts on each

time step. The solution operator F for GFD models is usually iterative, it solves a new

state vector qi+1 from a state vector qi as

qi+1 = F i(q1). (A.2)

The operator F is therefore a concatenation of operators F i

F = FN ◦ FN−1 ◦ ... ◦ F 2 ◦ F 1 (A.3)

Each time step operator F i is again a concatenation of the aforementioned elemental

operators E. Given M elemental operations per time step this allows to write

F i = EM ◦ EM−1 ◦ ... ◦ E2 ◦ E1. (A.4)

If we now create a cost function of the solution q = (q0, ...,qN) we can rewrite this

function also symbolically as a function of the initial state vector q0

J(q) = H(q0). (A.5)

To optimize J most numerical routines need the derivative
dJ

dq0

. We write the derivative

as chain rule to calculate the derivative of J that incorporates all time step operators

F i

dJ

dq0
=

dH

dqN
· dqN

dqN−1
· ... · dq1

dq0
(A.6)

=
dH

dqN
· dFN−1

dqN−1
· ...dF 0

dq0
. (A.7)

We write the ith derivatives as chain rule of the elemental operations E

dF i

dqi
=

dF i

dEM
· dEM

dEM−1
· ... · dE1

dqi
. (A.8)

100

We summarize: the numerical evaluation of a cost function J can be split up into

single elemental operations. The derivative of such a cost function with respect to a

control vector q0 can be calculated through the chain rule of derivatives of each ele-

mental operation. Algorithmic Differentiation tools interpret model code to calculate

this derivative of cost functions automatically and exact up to machine precision.

There are two major conceptual modes of Algorithmic Differentiation: tangent linear

mode (forward) and adjoint mode (reverse/backward). Tangent linear mode propagates

initial derivatives through the chain rule from right to left, i.e., from the beginning of a

computation to the end. Tangent linear mode is useful if large numbers of outputs are

dependent on a low number of controls because each dimension of control needs one

forward run. Reverse mode propagates initial derivatives through the chain rule from

left to right, i.e., from the end of a computation to the beginning. Reverse mode is

useful if low numbers of outputs are dependent on a large number of controls because

each dimension of outputs needs one backward run.

There are also two major technical modes of Algorithmic Differentiation: source code

transformation (SCT) and operator overloading (OO). Source code transformation pro-

duces new source code that still incorporates the original model evaluation and at the

same time the necessary code for derivative propagation. The advantage of this process

is the possibility to optimize the AD code afterwards by hand. Operator overloading

means that we introduce “new” real numbers and elementary mathematical operations

to also calculate derivatives. Operator overloading is easy to implement and much more

robust but – at the same time – it is much harder to optimize.

To understand AD it is useful to think of a computational program as a realization of

a graph: variables and operations are vertices, dependencies are represented as directed

edges. This concept can be applied to any computational program, no matter its inher-

ent complexity. Automatic differentiation transforms the elements of a computational

graph but keeps the structure of the graph. The nodes for real numbers are replaced

by nodes that also include the adjoint / tangent component. The edges are augmented

with local partial derivatives with respect to local dependencies. The two modes of

Algorithmic Differentiation are now much easier to understand: forward mode means

that we propagate tangents along with original values through the computational graph.

Reverse mode means we propagate through the graph once for the original components

and then once backwards for the adjoint components. More information on Automatic

differentiation can be found in books (e.g., Griewank 2000; Bischof et al. 2008), on a

central webpage 1 or various survey papers (e.g., Bischof et al. 2002).

1http://www.autodiff.org

101

Appendix A Development of ICOSWM-AD

Technical mode −→
Conceptual ↓ Source code transformation Operator Overloading

Forward not planned ICOSWM-AD

Reverse planned for ICON 3D Ocean ICOSWM-AD &

planned for ICON 3D Ocean

Table A.1: An overview of the four possible AD strategies and its (planned) realizations

within the ICON framework. The version that is used throughout this thesis is in bold.

GFD applications are usually interested in reverse mode because for typical data

assimilation applications the dimension of the output is one (the cost function) and the

number of controls large (e.g., dimensionality of discrete initial condition vector). The

same holds for the error estimation algorithm of this thesis: we need the sensitivities

of a few important goals with respect to a high dimensional control vector.

The Tool: the Differentiation-Enabled NAG Fortran Compiler

The development of the differentiation-enabled version of ICOSWM for this thesis was

done in cooperation with the RWTH Aachen university and the CompAD project. The

mission statement of CompAD is “to put Algorithmic Differentiation into the NAG-

Ware Fortran compiler”, for more details see the project’s webpage2.

The differentiation-enabled NAG Fortran compiler combines a two stage semantical

transformation with a set of runtime support libraries in a hybrid approach to AD that

blends source transformation capabilities and overloading techniques. More details can

be found in (Naumann and Riehme 2006).

Practically, the tool consists of two pieces, the compiler and modules. There are mod-

ules for each AD mode (i.e., forward / reverse, SCT/OO). The compiler takes care of

operator overloading / overloaded data types. The module - if linked into your project

- provides a set of routines that can be used to determine which variable should be

differentiated with respect to which. Every real variable in the code is transformed into

a variable of type CompAD-type automatically by the compiler. The specific structure

of this CompAD-type depends on the chosen AD-mode. The changed variables include

the information about the propagated gradients. These derivative components can be

accessed via routines supplied by the module.

2http://wiki.stce.rwth-aachen.de/twiki/bin/view/Projects/CompAD/WebHome

102

Figure A.1: A sketch of the computational graph of ICOSWM. The left part of this

figure shows standard forward evaluation. The right part introduces the concept of a

TAPE that records every operation throughout the program.

The Model: ICOSWM

The shallow water equations on the sphere are

∂v

∂t
= (ξ + f)k× v −∇(gh +

1

2
|v|2) (A.9)

∂h

∂t
+ ∇ · (hv) = 0.

Here v is the horizontal velocity, ξ the vorticity, f the Coriolis parameter, g = 9.81

the gravitational constant and h the height of the fluid surface. The initial conditions

are v(t0) = v0 and h(t0) = h0. We consider (3.1) on a time interval T := [t0, tn] and

with periodic spatial boundary conditions. The state vector q = (h,v) consists of the

prognostic fields height and velocity.

Our numerical framework is ICOSWM3, a shallow water model on a triangular spherical

grid with C-type staggering of the variables. ICOSWM uses a hybrid finite volume /

finite difference method to approximate the SWE (3.1). ICOSWM calculates a solution

3http://www.icon.enes.org/swm/index.html

103

Appendix A Development of ICOSWM-AD

vector qprog = (h, vn) of prognostic variables h, the height field in the cell centres of our

triangular grid, and vn, the normal velocities at the mid points of the triangular edges.

The solution process is sequential in nature, the discrete model yields discrete time

slices qn
prog for each time step. The time stepping schemes include Runge-Kutta, Semi-

Implicit and Adam Bashford. For further details see (Giorgetta et al. 2009; Ripodas

et al. 2009).

The starting version of ICOSWM is ICOSWM 1.054. The finalized version is checked

into the ZMAW SVN system as

http://svn.zmaw.de/svn/icon/branches/icon-1.0.5 AD/

ICOSWM produces the state vector q∆ = (h∆,vn) that consists of the prognostic

fields height and velocity. We now introduce the concept of prognostic and diagnostic

variables that is very common to GFD models. The state vector q∆ = qprog consists

of prognostic variables. The program produces at each time step diagnostic variables

qdiag that are derived quantities such as kinetic energy, vorticity or reconstructed zonal

and meridional velocities. These diagnostic variables are only intermediate steps for the

routines, they can be calculated from the prognostic variables at each time step. The

concept is used for conceptual simplicity during the programming. If we account for

both types of variables the main structure of ICOSWM is the following (see Figure A.1):

1. Initialization: the prognostic variables h and vn are initialized from external

data or analytic functions at the beginning.

2. Time stepping: ICOSWM computes a set of so-called diagnostic variables which

also represent physical quantities such as kinetic energy, vorticity or velocities

in geographical coordinates at the cell center. The time stepping can also be

separated into the two components height field and velocities as has been shown

in chapter 4:� Implicit step: calculate new surface height hi+1 by solving linear free surface

equation

Ai(hi, vi) · hi+1 = bi(hi, vi) (A.10)� Explicit step: update velocity

vi+1 = h(hi+1, vi) (A.11)

The code of ICOSWM is structured in a similar two step way per time step. First,

it calculates a new set of diagnostic variables. Second, it uses the diagnostic vari-

ables and the prognostic variables of time step i to calculate the new prognostic

4http://svn.zmaw.de/svn/icon/branches/icon-1.0.5 fr/

104

variables at time step i + 1.

qi+1
prog = f(qi

prog,qdiag), (A.12)

with f a combination of the implicit and explicit step. This procedure is repeated

for all time steps.

3. Post-processing: We calculate a goal approximation from the solution of the

last time step, qN
prog. After the last time step our error algorithm sets in and tries

to estimate the error of the approximated goal.

ICOSWM does not save all intermediate time steps. The model uses two instances

of the prognostic variables qprog and one instance of the diagnostic variable qdiag and

exchanges the two prognostic instances each time step. This is a standard procedure

for GFD models because the memory requirement to save all intermediate time steps is

much too high (and mass storage devices are much too slow). At the same time, this is

a significant problem for reverse mode AD because reverse mode AD requires the full

forward solution for the backward run.

The Implementation of ICOSWM-AD

We construct a simplified reverse mode diagram of ICOSWM (Figure A.2). The NAG-

ware compiler uses the concept of a TAPE to realize reverse mode AD. The TAPE is a

recorder that records any variable instance and any action that occurs throughout the

run of a computational model. The TAPE saves the complete computational graph.

It is activated at the beginning of program, stopped at the end and interpreted to go

backward through the computational graph. If the TAPE is activated we speak of

an active forward run, if the TAPE is deactivated we speak of a passive forward run.

A conceptual version of the ICOSWM Fortran program with original syntax for the

TAPE commands looks like:

Forward model run

CALL TAPE INIT

CALL TAPE TURN ON

CALL ICON INIT(controls)

CALL ICON TIMELOOP

CALL GOAL CALCULATION (goal)

CALL TAPE TURN OFF

Backward model run

CALL SEED (goal,1)

CALL TAPE INTERPRETER

derivatives = ACCESS DERIV (controls)

105

Appendix A Development of ICOSWM-AD

Figure A.2: A sketch of the computational graph of ICOSWM-AD, for reverse mode

derivative propagation. The left part shows the forward evaluation, starting from the

initial state, continuing with iterative time stepping and concluding with the goal cal-

culation. The right part shows the corresponding propagation of derivatives from the

seeds of the final goal to the adjoint variables of the initial conditions.

106

The routines TAPE INIT and TAPE TURN OFF do exactly what they promise to do.

TAPE INIT creates the data construct TAPE that records all variable instances and all

types of operations performed on these instances; TAPE TURN OFF stops recording. The

routine SEED (A,B) initializes the backward run: the adjoint variable corresponding to

variable A is initialized with the value B. The routine TAPE INTERPRETER is equivalent to

the full backward run: the derivative components are propagated through the reverse

mode computational graph. The routine ACCESS DERIV (A) returns the propagated

derivatives saved in the adjoint variables of variable A. We see that both for seeding

and accessing the derivatives we use the standard forward variable to reach the con-

nected adjoint variable. There is no need in the code for explicit and separate adjoint

variables.

There are two problems with this approach. First, memory requirement: the TAPE

saves all variables in all instances and all operations between them in memory. We have

already mentioned in Section A that this is not feasible for high resolution GFD appli-

cations. This is a general problem for the reverse mode of Algorithmic Differentiation

because we need to save every value of the forward model evaluation for a backward

sweep. The memory requirements are especially high for implicit time scheme solvers

that overwrite certain fields many times during an iterative process. In our case, the

TAPE saves all instances of the fields (see Figure A.1). For ICOSWM this means we

have memory demands in the order of tens of Gigabyte for only a few time steps on

resolutions larger than ∆5 (Table 3.1). The second problem is that for the application

of error estimation in this thesis we need the derivatives of the goal with respect to

ALL local changes, not only the initial controls.

The memory problem is common to both TAPE (operator overloading) and SCT ap-

proaches. There is a solution, the concept of checkpoints. During a passive forward

evaluation, only certain states of the system are saved in memory (called checkpoints).

During the backward propagation, these checkpoints are used to actively recalculate

the missing parts of the solution that could not be saved in memory. Checkpointing

therefore replaces memory demand by additional load on the CPU (some parts of the

integration are done redundantly). There is a theory of optimal checkpointing (Kowarz

and Walther 2006), optimal online checkpointing and more. For ICOSWM, we are

in the comfortable situation that the computational graph gets very “thin” at certain

points during the computation: all information transfer between one time step and the

next is done via the prognostic variables. If forward information transfer is only done

via these edges of the computational graph, this means that adjoint propagation is also

done only along these edges. This means we only have to save the prognostic variables

as checkpoints. For ICOSWM is a 2D model it is possible to save all prognostic vari-

ables qprog in the memory (for runs of limited length). This means: we do one passive

forward run and save all prognostic fields. We then restart from the last check point

107

Appendix A Development of ICOSWM-AD

and do a reverse mode sweep time step after time step. This allows efficient usage

of the concept of checkpoints: we only need to recompute each time step once. The

second problem is very specific to our model and application. For goal error estimation

we need the full adjoint sensitivity for all prognostic variables to get weights for local

error estimates. This is usually not the case for GFD applications. 4DVar and other

optimization routines only need the final derivative with respect to the controls. The

derivatives of the goal with respect to the prognostic variables at any intermediate time

step are identical to the intermediate propagated derivatives when we differentiate the

goal with respect to the initial conditions of these prognostic variables. This is good

news, we solve the same adjoint problem as all typical applications. The only additional

thing we have to do is to access and save all intermediate adjoint values, the full adjoint

solution.

At this point, Equation (A.12) is of crucial importance: the dependency of the prog-

nostic variables in one time step on the previous one is not just a simple function of

the previous one but includes the dependency on the diagnostic variables. During the

forward evaluation of one time step i to i+1, the values of the prognostic variable qi
prog

do not change. During the backward propagation of the same time step from i + 1 to

i the adjoint values q,i
prog do change because the derivatives are added:

dqi+1
prog

qi+1
prog

=
∂f

∂qi
prog

+
∂f

∂qdiag

. (A.13)

We have to make sure to access the adjoint solutions of the correct original instance of

prognostic variables before the calculation of the diagnostic variables, see Figure A.3.

This is an important point for all attempts to access the full adjoint solution in systems

with diagnostic variables.

The Full Algorithm of ICOSWM-AD

We can now introduce a simplified version of the actual ICOSWM-AD algorithm includ-

ing checkpointing. During a first passive forward sweep ICOSWM-AD saves the check-

points for all time steps but the last one with the routine SAVE CHECKPOINT (qi
prog).

The last time step is solved with activated TAPE. We seed the goal with a partial

derivative of one and the CompAD module routine TAPE INTERPRETER propagates this

information backwards (to the beginning of the last time step). We then load each

time step with the routine LOAD CHECKPOINT (qi
prog), solve the time step with acti-

vated TAPE, seed with the propagated derivatives of the next time step and repeat

backward sweep with the routine TAPE INTERPRETER. We use the accessed derivatives

for our goal error estimation that are also used for seeding the previous time step. We

see a sketch of this checkpointing behavior in Figure A.3.

108

Figure A.3: A sketch of the checkpointing concept in ICOSWM-AD. The top part

shows the general concept. The bottom part shows the active computation of one time

step. The left part shows the forward evaluation, starting from one checkpoint of state

qi
prog. The right part shows the corresponding propagation of derivatives from the seeds

of state q
′i+1
prog.

109

Appendix A Development of ICOSWM-AD

Full ICOSWM-AD algorithm with checkpointing

Forward model run

CALL ICON INIT(controls)

DO i LOOP from 1 to N-1

CALL SAVE CHECKPOINT (qi
prog)

CALL ICON TIMESTEP

END LOOP

Backward model run

CALL TAPE INIT

CALL LOAD CHECKPOINT (qN−1
prog)

CALL ICON TIMESTEP

CALL GOAL CALCULATION (goal)

CALL TAPE TURN OFF

CALL SEED (goal,1)

CALL TAPE INTERPRETER

q
′N−1
prog = ACCESS DERIV (qN−1

prog)

CALL ICON INIT(controls)

DO i LOOP from N-1 to 1

CALL TAPE INIT

CALL LOAD CHECKPOINT (qi
prog)

CALL ICON TIMESTEP

CALL TAPE TURN OFF

CALL SEED (qi+1
prog,q

′i
prog)

CALL TAPE INTERPRETER

q
′i
prog= ACCESS DERIV (qi

prog)

END LOOP

ICOSWM shares the grid, the discrete operators, and a big portion of its code with

the dynamical kernel of the atmosphere/ocean general circulation model ICON. The

construction of ICOSWM-AD is a first step towards a differentiation-enabled version

of ICON.

110

Bibliography

Ainsworth, M. and J. Oden, 1997: A posteriori error estimation in finite element anal-

ysis. Computer Methods in Applied Mechanics and Engineering, 142 (1–2), 1–88.

Anderson, J. L. and S. L. Anderson, 1999: A monte carlo implementation of the non-

linear filtering problem to produce ensemble assimilations and forecasts. Monthly

Weather Review, 127 (12), 2741–2758.

Babuska, I. and W. Rheinboldt, 1978: A-posteriori error estimates for the finite element

method. International Journal for Numerical Methods in Engineering, 12 (10), 1597

– 1615.

Becker, R. and R. Rannacher, 2002: An optimal control approach to a posteriori error

estimation in finite element methods. Acta Numerica, 10, 1–102.

Bischof, C. H., H. M. Bücker, P. D. Hovland, U. Naumann, and J. Utke, (Eds.) , 2008:

Advances in Automatic Differentiation, Lecture Notes in Computational Science and

Engineering, Vol. 64. Springer, Berlin.

Bischof, C. H., H. M. Bücker, and B. Lang, 2002: Automatic differentiation for com-

putational finance. Computational Methods in Decision-Making, Economics and Fi-

nance, E. J. Kontoghiorghes, B. Rustem, and S. Siokos, Eds., Kluwer Academic

Publishers, Dordrecht, Applied Optimization, Vol. 74, chap. 15, 297–310.

Bonaventura, L. and T. Ringler, 2005: Analysis of discrete shallow-water models on

geodesic delaunay grids with c-type staggering. Monthly Weather Reviews, 133,

2351–2373.

Brovkin, V., T. Raddatz, C. H. Reick, M. Claussen, and V. Gayler, 2009: Global

biogeophysical interactions between forest and climate. Bulletin of the American

Meteorological Society, 36, L07 405.

Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model

uncertainties in the ECMWF ensemble prediction system. Quarterly Journal of the

Royal Meteorological Society, 125, 2887–2908.

Cam, L. L., 1986: The central limit theorem around 1935. Statistical science, 1 (1),

78–96.

111

Bibliography

Charney, J. G., R. Fjoertoft, and J. von Neumann, 1950: Numerical integration of the

barotropic vorticity equation. Tellus, 2, 237 254.

Davis, T. A., 2004: Algorithm 832: UMFPACK V4.3 – An unsymmetric-pattern mul-

tifrontal method. ACM Transactions on Mathematical Software, 30 (2), 196–199.

Dongarra, J. J., H. W. Meuer, and E. Strohmaier, 2010: Top500 supercomputer sites.

http://www.netlib.org/benchmark/top500.html. (updated every 6 months).

Ehrendorfer, J. J. T., Martin, 1997: Optimal prediction of forecast error covariances

through singular vectors. Journal of the Atmospheric Sciences, 54, 286–313.

Giles, M. B., 1998: On adjoint equations for error analysis and optimal grid adaptation

in CFD. Frontiers of computational fluid dynamics, 155–169.

Giles, M. B. and N. Pierce, 2000: Adjoint recovery of superconvergent functionals from

PDE approximations. SIAM Review, 42 (2), 247–264.

Giles, M. B., N. Pierce, and E.Sueli, 2004: Progress in adjoint error correction for

integral functionals. Computing and Visualization in Science, 6, 113–121.

Giorgetta, M., T. Hundertmark, P. Korn, S. Reich, and M. Restelli, 2009: Conservative

space and time regularizations for the ICON model. Berichte zur Erdsystemforschung,

67.

Givon, D., R. Kupferman, and A. Stuart, 2004: Extracting macroscopic dynamics:

model problems and algorithms. Nonlinearity, 17, R55–R127.

Griewank, A., 2000: Evaluating Derivatives: Principles and Techniques of Algorithmic

Differentiation. No. 19 in Frontiers in Appl. Math., SIAM, Philadelphia, PA.

Hinze, M. and S. Volkwein, 2005: Proper orthogonal decomposition surrogate models

for nonlinear dynamical systems: Error estimates and suboptimal control. Dimen-

sion Reduction of Large-Scale Systems, Lecture Notes in Computational Science and

Engineering, Vol. 45, chap. 10, 297–310.

Johnson, C., R. Rannacher, and M. Boman, 1995: Numerics and hydrodynamic sta-

bility: Toward error control in computational fluid dynamics. SIAM Journal on Nu-

merical Analysis, 32 (4), 1058–1079.

Jungclaus, J. H., et al., 2010: Climate and carbon-cycle variability over the last mil-

lennium. Climate of the Past, 6 (5), 723–737.

Kalnay, E., 2003: Atmospheric modeling, data assimilation, and predictability. Cam-

bridge University Press.

112

Bibliography

Kalnay, E., H. Li, T. Miyoshi, S. Yang, and J. Ballabera-Poy, 2007: 4-D-Var or ensemble

kalman filter? Tellus A, 59 (5), 758–773.

Kowarz, A. and A. Walther, 2006: Optimal checkpointing for time-stepping procedures

in ADOL-C. International Conference on Computational Science (4), 541–549.

Laeuter, M., D. Handorf, and K. Dethloff, 2005: Unsteady analytical solutions of the

spherical shallow water equations. Journal of Computational Physics, 210, 535–553.

Majda, A. J., C. Franzke, and D. Crommelin, 2009: Normal forms for reduced stochastic

climate models. Proceedings of the National Academy of Sciences, 16 (10), 3649–

3653.

Majda, A. J. and S. Stechmann, 2009: Gravity waves in shear and implications for

organized convecion. Journal of the Atmospheric Sciences, 66 (9), 2579–2599.

Mani, K. and D. J. Mavriplis, 2009: Error estimation and adaptation for functional

outputs in time-dependent flow problems. Journal of Computational Physics, 229,

415–440.

Marotzke, J., R. Giering, K. Zhang, D. Stammer, C. Hill, and T. Lee, 1999: Construc-

tion of the adjoint MIT ocean general circulation model and application to atlantic

heat transport sensitivity. Journal of Geophysical Research, 104 (C12), 29,529 –

29,547.

Marsaglia, G., 1991: Normal (gaussian) random variables for supercomputers. The

Journal of Supercomputing, 5 (1), 49–55.

Meehl, G., et al., 2007: Global Climate Projections in Climate Change 2007: The

Physical Science Basis. Contribution of Working Group I to the Fourth Assessment

Report of the Intergovernmental Panel on Climate Change. Cambridge University

Press, Cambridge, UK.

Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The coupled

model intercomparison project (CMIP). Bulletin of the American Meteorological So-

ciety, 81, 313 – 318.

Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensem-

ble prediction system: Methodology and validation. Quarterly Journal of the Royal

Meteorological Society, 122, 73–119.

Mori, H., 1965: Transport, collective motion, and brownian motion. Progress of Theo-

retical Physics, 33, 423–450.

113

Bibliography

Mori, H., H. Fujisaka, and H. Shigematsu, 1974: A new expansion of the master equa-

tion. Progress of Theoretical Physics, 51, 109–122.

Naumann, U. and J. Riehme, 2005: A differentiation-enabled Fortran 95 compiler.

ACM Transactions on Mathematical Software, 31 (4), 458–474.

Naumann, U. and J. Riehme, 2006: Computing adjoints with the nagware fortran 95

compiler. M. Buecker et. al., editors, Automatic Differentiation: Applications, The-

ory, and Tools, 50, 159–170.

Oden, J. T. and S. Prudhomme, 2002: Estimation of modeling error in computational

mechanics. Journal of Computational Physics, 182, 496–515.

Pedlosky, J., 1982: Geophysical Fluid Dynamics. Springer-Verlag, 58++ pp.

Polya, G., 1920: Über den Zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung

und das Momentproblem. Mathematische Zeitschrift, 8, 171–180.

Power, P., M. Piggott, F. Fang, G. Gorman, C. Pain, D. Marshall, A. Goddard, and

I. Navon, 2006: Adjoint goal-based error norms for adaptive mesh ocean modelling.

Ocean Modelling, 15, 3–38.

Prudhomme, S. and J. Oden, 2002: Computable error estimators and adaptive tech-

niques for fluid flow problems. In: Barth, T.J., Deconinck, H. (Eds.), Error Estima-

tion and Adaptive Discretization Methods in Computational Fluid Dynamics, Lect.

Notes Comput. Sci. Eng. 25, Springer, 25, 207–268.

Rasch, P. J., D. B. Coleman, N. Mahowald, D. L. Williamson, S.-J. Lin, B. A. Boville,

and P. Hess, 2006: Characteristics of atmospheric transport using three numerical

formulations for atmospheric dynamics in a single GCM framework. Journal of Cli-

mate, 19, 2243 –2266.

Rauser, F., P. Korn, and J. Marotzke, 2011: Predicting goal error evolution from

near-initial-information: A learning algorithm. Journal of Computational Physics,

230 (19), 7284–7299.

Rauser, F., J. Riehme, U. Naumann, P. Korn, and K. Leppke, 2010: On the use

of discrete adjoints in goal error estimation for shallow water equations. Procedia

Computer Science (ICCS 2010 Proceedings), 1, 1.

Ripodas, P., et al., 2009: Icosahedral shallow water model (ICOSWM): results of shal-

low water test cases and sensitivity to model parameters. Geoscientific Model Devel-

opment Discussions.

114

Bibliography

Seiffert, R., R. Blender, and K. Fraedrich, 2006: Subscale forcing in a global atmo-

spheric circulation model and stochastic parametrization. Quarterly Journal of the

Royal Meteorological Society, 132, 1627 – 1643.

Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction

systems. Quarterly Journal of the Royal Meteorological Society, 131 (612), 3079–

3102.

Sonar, T. and E. Sueli, 1998: A dual graph-norm refinement indicator for finite volume

approximations of the euler equations. Numerische Mathematik, 78, 619–658.

Stewart, J. R. and T. Hughes, 1998: A tutorial in elementary finite element error anal-

ysis: A systematic presentation of a priori and a posteriori error estimates. Computer

methods in applied mechanics and engineering, 158, 1–22.

Treut, H. L., R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Pe-

terson, and M. Prather, 2007: Historical Overview of Climate Change. Cambridge

University Press, Cambridge, UK.

van den Berge, L., F. Selten, W. Wiegerinck, and G. Duane, 2010: A multi-model

ensemble method that combines imperfect models through learning. Earth System

Dynamics.

Venditti, D. A. and D. L. Darmofal, 2000: Adjoint error estimation and grid adapta-

tion for functional outputs: Application to quasi-one-dimensional flows. Journal of

Computational Physics, 164, 204–227.

von Storch, H. and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cam-

bridge University Press, Cambridge, UK.

Williamson, D. and J. Drake, 1992: A standard test set for numerical approximations to

the shallow water equations in spherical geometry. Journal of Computational Physics,

102 (1), 211 – 224.

Wunsch, C., P. Heimbach, R. Ponte, and I. Fukumori, 2009: The global general circu-

lation of the ocean estimated by the ecco-consortium. Oceanography, 22, 88 – 103.

Zwanzig, R., 1973: Nonlinear generalized langevin equations. Journal of Statistical

Physics, 9, 215–220.

115

Acknowledgements

Consistency is the last refuge of the unimaginative.

Oscar Wilde

First, I wish to thank Peter (Korn) to be an exceptional supervisor during the last

years. I enjoyed the trustful cooperation and I am grateful that the results of this the-

sis were not hidden somewhere before I even started. Second, I wish to thank Jochem

(Marotzke) to be an excellent co-advisor. Your insights in the principles of science,

scientific communication and writing were very helpful in developing a way to under-

stand and communicate science. Third, I wish to thank Detlef Stammer for chairing

my panel and for guidance throughout my panel meetings.

I would like to thank the IMPRS-ESM office for providing an outstanding PhD environ-

ment. Special thanks to Antje Weitz and Cornelia Kampmann for their organizational

and personal support. Thanks to the Central IT Services for their technical support.

Personal thanks go especially to Dr. Malte Heinemann, Dr. Juliane Otto, Dr. Jonas

Bhend, Dr. Julia Pongratz, Dr. Aiko Voigt, Rosi, Fanny, Freja, Steffen, Mario, Ronny,

Daniel, Jaison, Eleftheria, Stergios, Maria Paz, Sebastian, Laura and Iris! I hereby

officially acknowledge my dear colleague and dearest friend Nils Fischer: we did it!

Special greetings to the LA2010 Venice Beach crowd, Peter, Werner & Lorenzo, that

was no place for the weary kind! Thanks also to Cafe Alibi for enabling Werner and

myself to survive Berlin 2008! Thanks to the original thursday group, the participants

of COP15 MUN 2009 and the development team of WOODSTOCK-CM! Thanks also

to PT, Christina, Magdalena, Heather, Burkhard, Martin, Fadi, Sophia, Franzi, Ste-

fan, Pauline, Fadi, Christine, Julia, my personal Wednesday evening support group for

anonymous scientists!

I do thank Jan Riehme and Uwe Naumann for excellent support concerning the usage

and development of the Differentiation-enabled NAGware F95 compiler - and for good

times.

I also want to thank Mike Giles for kindly providing example Matlab code in the be-

ginning of this work. I am grateful to Marco Giorgetta for reading the manuscript of

117

Acknowledgements

Chapter 3 carefully during the internal review process and for many helpful comments.

I thank the external reviewers of Chapters 3 and 4 for helpful insights.

Special thanks to Peter, Peter, Laura, Lorenzo, Kevin, Dirk, Jan, Nils and Heather for

proofreading and revision comments!

I wish to say thanks to my family for always being supportive. I also thank Mela, for

always being there and believing in me. The last years were slightly tiresome. It’s high

time to reboot the world.

I dedicate this work to Barney Stinson. True Story.

118

ISSN 1614-1199

