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Abstract. The interactions between climate, vegetation and
fire can strongly influence the future trajectories of vegeta-
tion in Earth system models. We evaluate the relationships
between tropical climate, vegetation and fire in the global
vegetation model JSBACH, using a simple fire scheme and
the complex fire model SPITFIRE with the aim to iden-
tify potential for model improvement. We use two remote-
sensing products (based on MODIS and Landsat) in differ-
ent resolutions to assess the robustness of the obtained ob-
served relationships. We evaluate the model using a multi-
variate comparison that allows us to focus on the interac-
tions between climate, vegetation and fire and test the influ-
ence of land use change on the modelled patterns. Climate–
vegetation–fire relationships are known to differ between
continents; we therefore perform the analysis for each conti-
nent separately.

The observed relationships are similar in the two satellite
data sets, but maximum tree cover is reached at higher pre-
cipitation values for coarser resolution. This shows that the
spatial scale of models and data needs to be consistent for
meaningful comparisons. The model captures the broad spa-
tial patterns with regional differences, which are partly due
to the climate forcing derived from an Earth system model.
Compared to the simple fire scheme, SPITFIRE strongly im-
proves the spatial pattern of burned area and the distribution
of burned area along increasing precipitation. The correlation
between precipitation and tree cover is higher in the obser-
vations than in the largely climate-driven vegetation model,
with both fire models. The multivariate comparison identi-

fies excessive tree cover in low-precipitation areas and a too-
strong relationship between high fire occurrence and low tree
cover for the complex fire model. We therefore suggest that
drought effects on tree cover and the impact of burned area on
tree cover or the adaptation of trees to fire can be improved.

The observed variation in the relationship between precip-
itation and maximum tree cover between continents is higher
than the simulated one. Land use contributes to the inter-
continental differences in fire regimes with SPITFIRE and
strongly overprints the modelled multimodality of tree cover
with SPITFIRE.

The multivariate model–data comparison used here has
several advantages: it improves the attribution of model–data
mismatches to model processes, it reduces the impact of bi-
ases in the meteorological forcing on the evaluation and it
allows us to evaluate not only a specific target variable but
also the interactions.

1 Introduction

Capturing the interactions of vegetation cover and compo-
sition with the climatic drivers and related disturbances in
Earth system models is crucial to reliably estimate changes
in vegetation for a changing climate. Climate is the main
driver of global vegetation patterns, but vegetation also has
crucial impacts on the Earth system due to its influence on
the surface albedo and the water cycle (Bonan, 2008; Brovkin
et al., 2009). The importance of the vegetation type has been
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assessed in various studies: when compared to grasslands,
forests in tropical areas cool the climate due to higher evap-
otranspiration, while in boreal regions, forests warm the cli-
mate due to a reduction of the albedo (Bathiany et al., 2010).
The relevance of vegetation to the climate is also shown when
contrasting vegetated and non-vegetated surfaces: in the Sa-
hel region this difference is of major importance for the cli-
matic conditions (Brovkin et al., 1998).

Interactions between vegetation, fire and climate are par-
ticularly important to understand the spatial patterns in trop-
ical vegetation, which is characterised by strong gradients
from deserts to tropical rainforests. Remotely sensed tropi-
cal tree cover shows a bimodality between forest (T > 60 %)
and savanna (T < 60 %) states for grid cells with similar cli-
mate. Intermediate tree cover fractions (e.g. 60 %) are vir-
tually absent (Hirota et al., 2011; Staver et al., 2011b). The
occurrence of this “gap” in tree cover was suggested to be
caused by a feedback between fire and vegetation. Although
the reliability of remotely sensed tree cover data sets in diag-
nosing this gap was recently questioned (Gerard et al., 2017),
the bimodality in the distribution is also confirmed by canopy
height (Xu et al., 2016) or biomass (Yin et al., 2014). The
occurrence of both forest and savanna states under similar
climatic conditions due to a feedback between fire and vege-
tation is supported by conceptual (Staver et al., 2011a) and
process-based models (Higgins and Scheiter, 2012; Mon-
crieff et al., 2014; Lasslop et al., 2016).

While data analysis can provide insights into driving fac-
tors for certain variables, process-based models summarise
the understanding of the process and allow us to perform
experiments that are impossible in reality. Dynamic global
vegetation models (DGVMs) were developed to under-
stand ecosystem dynamics, the carbon cycle and biosphere–
atmosphere interactions (Sitch et al., 2003). Many of them
are part of Earth system models (ESMs) and represent the
dynamics of the land surface within the climate system. It is
therefore important that DGVMs include appropriate repre-
sentations of vegetation to obtain reliable simulations of the
Earth system.

The development of remotely sensed global burned area
products facilitated the implementation and evaluation of
complex fire models within DGVMs (Hantson et al., 2016).
Over recent years these models were applied to address the
impact of fire on the carbon cycle (Li et al., 2014; Yue et al.,
2016), the land surface temperature (Li et al., 2017) or the
sensitivity of the fire model to driving factors (Kloster et al.,
2010; Lasslop and Kloster, 2015). Evaluation of fire mod-
els mostly focused on evaluating the burned area and carbon
emissions, but the importance of benchmarking the effects
of fire on vegetation has also been noted (Hantson et al.,
2016) and applied in model development studies (Kelley
et al., 2013). The evaluation, however, is based on compar-
ing variables one by one and not the relationships between
them. Baudena et al. (2015) go beyond the geographic com-
parison by analysing the relationship between tree cover and

the main climatic driver (precipitation). The relationship be-
tween climate and fire was also evaluated in previous studies
(Prentice et al., 2011). However, to our knowledge, climate,
vegetation and fire have not been combined in a multivariate
model–observation comparison.

Here, we aim (1) to assess the robustness of observed
climate–vegetation–fire relationships across the tropical con-
tinents based on two remotely sensed tree cover data sets;
(2) to test a multivariate model evaluation to identify oppor-
tunities for model improvements in JSBACH, the vegetation
model used within the MPI Earth system model, and (3) to
test the contribution of land use change on the obtained rela-
tionships.

2 Model and data

To investigate the climate–fire–vegetation relationships in
the tropical regions, we represent climate by the mean annual
precipitation (P ), vegetation by the tree (TC), grass (GC) and
non-vegetated cover and fire as the burned fraction (BF).

We define the tropical region as between −30 and 30◦ lat-
itude. As continental limits we chose −20 to 60◦ longitude
and −30 to 30◦ latitude for Africa, −130 to −30◦ longitude
and −30 to 30◦ latitude for South America, 60 to 160◦ lon-
gitude and −10 to 30◦ latitude for Asia and 100 to 160◦ lon-
gitude and −30 to −10◦ latitude for Australia.

2.1 Model and simulation description

We use the JSBACH land surface model (Reick et al., 2013),
which is the land component of the MPI Earth system model
(MPI-ESM) (Giorgetta et al., 2013). JSBACH simulates the
terrestrial carbon and water cycle in a process based way. We
use two fire algorithms, a simple empirical model (Brovkin
et al., 2009; Reick et al., 2013) and the process-based fire
model SPITFIRE (Lasslop et al., 2014; Thonicke et al.,
2010). Results referring to simulations with the complex
SPITFIRE model are referred to as JSBACH-SPITFIRE,
simulations with the simple JSBACH standard fire scheme
are indicated as JSBACH-standard. These two approaches
span the range of complexity of currently used global-scale
fire models (Hantson et al., 2016). The JSBACH-standard
fire computes burned area based on a minimum burned frac-
tion, which increases as a function of the litter carbon pools
and relative humidity averaged over the last 3 weeks. It was
tuned to yield reasonable global emission estimates (around
2PG carbon) and to improve the tree cover, which is clearly
too high without fire. SPITFIRE computes burned area based
on human and lightning ignitions, fire spread rate and fire du-
ration. SPITFIRE distinguishes between different fuel parti-
cle sizes and uses a combination of minimum and maximum
temperature, precipitation and soil moisture to determine the
fuel moisture.
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Both fire models interact with the vegetation model as fol-
lows: JSBACH provides fuel amounts, vegetation composi-
tion and soil moisture as inputs to the fire model. The fire
model in turn reduces the carbon pools of JSBACH accord-
ing to the simulated carbon combustion of vegetation fires
and reduces the cover fractions of burned vegetation. In the
JSBACH-standard fire scheme the burned area directly trans-
lates into a reduction of the cover fractions of the plant func-
tional types (PFTs) (100 % of the cover fractions on burned
area are removed). However, in SPITFIRE the mortality of
woody vegetation depends on the fire intensity, fire residence
time, the vegetation height and bark thickness.

The model’s plant functional types for the tropics include
C3 and C4 grass, tropical evergreen and deciduous trees, and
rain green shrubs. Shrubs and trees compete according to
their net primary productivity. Grasses and shrubs have an
advantage compared to trees in regions with disturbances due
to their lower establishment timescale (Reick et al., 2013,
grasses: 1 year, shrubs: 12 years, tropical trees: 30 years).
PFTs do not establish if the 5-year running mean net pri-
mary productivity (NPP) turns negative. Trees prevail in grid
cells without disturbance and positive NPP. Land use is in-
cluded following the protocol of Hurtt et al. (2011). The im-
plementation is described in detail in Reick et al. (2013).
Croplands are excluded from fire occurrence while pastures
are treated as natural grasslands with a higher fuel bulk den-
sity within JSBACH-SPITFIRE (Rabin et al., 2017). The
JSBACH-standard fire excludes fire occurrence on both an-
thropogenic land cover types.

JSBACH-SPITFIRE shows a reasonable agreement with
remotely sensed data products for present-day burned area
and carbon emissions for simulations with prescribed land
cover (Lasslop et al., 2014). The present set-up with dy-
namic biogeography has been evaluated along the human
dimensions population density and cropland fraction (Lass-
lop and Kloster, 2017). The model tends to overestimate the
burned fraction for high cropland fractions and underesti-
mate burned fraction for very low and high population den-
sities.

2.1.1 Simulation set-up

JSBACH was forced with meteorological data for the his-
torical period 1850–2005, which was extracted from a cou-
pled simulation with the MPI-ESM version 1.1. For the com-
putation of ignitions the SPITFIRE model additionally uses
a population density data set (Klein Goldewijk, 2001) with
decadal resolution and a monthly lightning climatology (Ce-
cil, 2006). The model’s spatial resolution is 1.875◦×1.875◦.
The time step for plant productivity and hydrology is 30 min,
while the disturbance routine is called once per day. Dur-
ing the 1000-year spin-up period the first 28 years of forcing
(1850–1877) were recycled and CO2 concentration fixed at
the value of 1850 (284.725 ppm). At the end of the spinup,
the PFT distribution was largely in equilibrium with only mi-

nor shifts between woody PFTs in a few grid cells. The sub-
sequent transient historical simulation (Hist) from 1850 to
2005 accounts for the changes in atmospheric CO2, climate,
population density and land use. A complementary simula-
tion accounting only for the rise in atmospheric CO2, tran-
sient climate and population density but using the land use of
1850 for the whole period (cLU) is used to isolate the effect
of land use change on the climate–vegetation–fire relation-
ships. When comparing the model output to observations, the
averaging period for the model simulations was 1996–2005,
as the forcing was only available until 2005.

2.2 Data sets for model evaluation

We averaged the remote-sensing data sets over the years that
were covered by all data sets (2001–2010). Model output is
only available until the year 2005. Using only the overlap-
ping period (2001–2005) would decrease the robustness of
the mean fire regime and climate characterisation. We there-
fore use different averaging periods for the model (1996–
2005) and observations (2001–2010). The presentation of
the relationship between precipitation, tree cover and burned
fraction based on remote-sensing data is based on 0.25◦ reso-
lution, and for comparison with the model, the data sets were
aggregated to the model resolution (1.875◦× 1.875◦).

2.2.1 Vegetation and land cover

We use two tree cover data sets based on satellite data, one
based on the MODIS (Moderate-Resolution Imaging Spec-
troradiometer) sensor (Townsend et al., 2011) and the other
on the Landsat satellite (Hansen et al., 2013). Additionally
we use the non-tree vegetation cover and non-vegetation
cover of the MOD44B product version 051 (downloaded
6 February 2017, using the R modis package Mattiuzzi and
Detsch, 2018). The data sets rely on different sensors; how-
ever, the algorithms used to derive vegetation cover are very
similar and the data sets are therefore not completely inde-
pendent. Nevertheless using the two data sets can give a first
insight on the robustness of the investigated patterns.

The maximum tree cover in the MODIS data set is 80 %.
This, however, corresponds to 100 % crown cover (Hansen
et al., 2003). The modelled cover fractions represent the
crown cover with a 100 % maximum. We therefore linearly
rescaled the tree cover data to improve the consistency be-
tween model and observations. The second data set based
on Landsat data builds on a high spatial resolution of 30 m
(Hansen et al., 2013). The data set provides annual forest
gain and loss over the period from 2000 to 2012. Alkama
and Cescatti (2016) reconstructed the annual tree cover and
aggregated the data set to 0.05◦. Here, we used the mean
over their reconstructed annual tree cover values from 2001
to 2010.

The MODIS collection 5 land cover data set (Friedl et al.,
2010) was used to test the influence of shrublands (open and

www.biogeosciences.net/15/5969/2018/ Biogeosciences, 15, 5969–5989, 2018



5972 G. Lasslop et al.: Climate–vegetation–fire relationships in the tropics

closed shrublands), as the tree cover data have a higher un-
certainty for shrublands. The filtering was applied on 0.05◦

spatial resolution. This data set is distributed by the Land
Processes Distributed Active Archive Center (LP DAAC), lo-
cated at the US Geological Survey (USGS) Earth Resources
Observation and Science (EROS) Center (lpdaac.usgs.gov),
distributed in netCDF format by the Integrated Climate Data
Center (ICDC, http://icdc.cen.uni-hamburg.de; last access:
June 2017), University of Hamburg, Hamburg, Germany in
0.05◦ spatial resolution and annual time step.

2.2.2 Fire

The Global Fire Emissions Database (GFED, http://www.
globalfiredata.org/; last access: November 2013) provides
globally gridded monthly burned area based on the MODIS
sensor. We used the version 4 of the data set (Giglio et al.,
2013).

2.2.3 Precipitation

The TRMM and Other Data Precipitation Data Set (TMPA)
is based on the version 7 TRMM Multi-satellite Precip-
itation Analysis algorithm (Huffman et al., 2007, 2010).
The product has near-global coverage from 50◦ N to 50◦ S.
The precipitation estimate (including rain, drizzle, snow,
graupel and hail) is based on a combination of multi-
ple data sources including precipitation gauges. The data
set is available online (http://disc.sci.gsfc.nasa.gov/gesNews/
trmm_v7_multisat_precip; last access: June 2017). For an
evaluation of the climate forcing, e.g. the precipitation sea-
sonality, we use the daily TMPA data set (Savtchenko and
Greenbelt, 2016).

2.2.4 Other climate parameters

We used the shortwave radiation and temperature of the
CRU-NCEP v5 data set reanalysis (Wei et al., 2014), which is
commonly used as an observation-based model forcing data
set (Rabin et al., 2017) to investigate whether biases in the
climate forcing might explain biases in modelled tree cover.
We compute the correlation between the difference in mod-
elled and observed tree cover and MPI-ESM and CRU-NCEP
for shortwave radiation and temperature.

2.3 Quantile regression

We use quantile regressions to characterise the relationship
between precipitation and maximum tree cover. The quan-
tile regressions were computed with the R package quantreg
(Koenker, 2018). We use the local quantile regression to
characterise the shape of the increase in maximum tree cover
with increases in precipitation. Moreover, we quantify the de-
viation from a linear increase by also including the linear
quantile regression. Both regressions were computed for the
0.9 quantile. For the local quantile regression the bandwidth

parameter was set to 300 and the number of points for which
the function was estimated was set to 10.

3 Results

We first give an overview of the geographical distribution
of the used observation and model output data sets. The
comparison of geographical patterns is an important assess-
ment of model performance, it is, however, difficult to assess
whether the interactions between precipitation, fire and tree
cover are well captured. Moreover as the JSBACH model
is usually used as a land surface model for the MPI-ESM
and therefore also forced here with MPI-ESM output, biases
in model forcing can cause geographical biases of vegeta-
tion and fire variables even with a perfect fire and vegeta-
tion model. To reduce the influence of biases in forcing data
on the model–data comparison and allow us to more closely
evaluate the interactions between model components we pro-
pose a multivariate evaluation of climate–fire–vegetation re-
lationships. We assess the robustness of observed relation-
ships for two tree cover data sets and two spatial resolu-
tions and compare them to the model simulations. The last
paragraph of this section addresses the influence of land use
change on the simulated relationships.

3.1 Spatial distribution of vegetation cover, area burnt
and precipitation in the tropics

The two observational satellite-based tree cover data sets are
consistent and show only small differences in their spatial
pattern (Fig. 1a). The overall clear pattern in tree cover is
a transition from very high tree cover in moist rainforest re-
gions to low tree cover in the drier savannas to the absence of
trees in the desert regions. Both models reproduce this over-
all observed pattern, but with marked local differences. Both
model versions overestimate tree cover in northern Australia
to a similar extent. In the north-eastern Amazon region, the
simulations underestimate tree cover compared to the obser-
vations. This underestimation is much smaller for JSBACH-
SPITFIRE. The simulations overestimate tree cover in south-
ern hemispheric Africa, which is again smaller for JSBACH-
SPITFIRE. The simulated grass cover has higher maximum
values that are generally often lower than those observed
by satellite (Fig. 1d). The spatial distribution of the non-
vegetated fraction is captured well in the model simulations
(Fig. 1e).

Generally, JSBACH-standard strongly underestimates the
total area burnt and the spatial variability (Fig. 1b). JSBACH-
SPITFIRE improves its ability to represent fire regimes
with high fire occurrences. The observed tropical average
burned area is 315 Mha per year, JSBACH-standard simu-
lates 65 Mha, and JSBACH-SPITIFRE simulates 242 Mha
per year. In South America spatial patterns in JSBACH-
standard are inconsistent with the observations (most burn-
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ing in the north-east). JSBACH-SPITFIRE overestimates fire
occurrence in South America but the spatial patterns are
more similar to the observations. In Africa we find reason-
able agreement between JSBACH-SPITFIRE and the ob-
servations. JSBACH-standard shows a strong underestima-
tion of the burned fraction (max. 10 % of the grid cell
area year−1, while the observations show up to 100 %). In
Australia JSBACH-SPITFIRE and JSBACH-standard show
similar patterns and both strongly underestimate the burned
fraction.

Precipitation of the MPI-ESM forcing shows a dry bias in
the eastern and central Amazon region, a dry bias in Asia,
and moister conditions in the western part of southern hemi-
spheric Africa (Fig. 1c). The dry bias in South America
and Asia is known from previous ECHAM model versions
(Hagemann et al., 2013; Stevens et al., 2013). The dry bias in
precipitation in the Amazon may, for instance, explains the
high bias in burned fraction in that region.

3.2 Climate–fire–vegetation relationships: comparison
of observation data sets

Maximum tree cover shows an increase along the precipita-
tion gradient across all continents, with trees being absent un-
til a certain threshold (300–500 mm year−1), increasing max-
imum tree cover and saturation of maximum tree cover for
high precipitation (between 1500 and 2000 mm year−1). The
two remotely sensed tree cover data sets are consistent in
their variation along the precipitation gradient (Fig. 2). Fire
occurrence is much higher for the African and Australian
continents compared to South America and Asia. Burned
fraction increases with increasing precipitation until around
1000 mm mean annual precipitation due to the increasing
availability of fuels. For tree cover fractions higher than 0.8,
fire is virtually absent. Beyond this distinction there is no vi-
sually clear increase in burned fraction for decreasing tree
cover at a given precipitation value. The Spearman rank cor-
relation between burned fraction and tree cover for grid cells
with mean annual precipitation higher than 1000 mm and tree
cover lower than 0.8 is, however, significant for both data sets
in the 0.25◦ resolution. In the model resolution only the cor-
relation with the MODIS data set is significant. This correla-
tion is much stronger for the MODIS tree cover compared to
the Landsat tree cover (Table 1). For Australia and Africa fire
occurrence is very low below a mean annual precipitation of
300 mm year−1, and South America and Asia have precipita-
tion below 500 mm year−1.

The Spearman rank correlation between precipitation and
tree cover is very similar for both tree cover data sets (Ta-
ble 1). The statistical precipitation thresholds for low (but
higher than 0) and high tree cover differ by less than 100 mm.
The aggregation to the model resolution shows the strongest
effect on the precipitation threshold for high tree cover and
shifts this value to higher precipitation. The association be-
tween precipitation and burned area is less sensitive to the

aggregation: 80 % of the global burned area occurs in regions
with precipitation between 609 and 1518 mm at 0.25◦ reso-
lution and between 635 and 1495 mm at 1.875◦ resolution.

3.3 Climate–fire–vegetation relationships: evaluation
of model results

In the tropics, the observed burned area is strongly con-
strained by precipitation: around 80 % of the burned area
is observed in regions with mean annual precipitation be-
tween 600 and 1500 mm year−1 (Table 1). This precipitation
range is slightly larger for the model simulations (Table 1).
JSBACH-SPITFIRE reproduces the increase in burned area
for low precipitation but slightly overestimates the con-
tribution of grid cells with precipitation higher than ca.
1300 mm year−1 to the total burned area (Fig. 3). JSBACH-
standard overestimates the contribution of areas with low
precipitation but agrees well on the contribution of areas
with high precipitation (> 1300 mm year−1) when compared
to the satellite observations. Fire occurrence is limited in
regions with low precipitation due to low fuel availability
(Krawchuk and Moritz, 2011). This low fire occurrence is
also well reproduced by JSBACH-SPITFIRE and for most
continents by JSBACH-standard, with the exception of Aus-
tralia, where the burned fraction of JSBACH-standard shows
almost no variability (Fig. 4).

Surprisingly the observations show a higher Spearman
correlation between tree cover and precipitation than the
models (Table 1). The lower correlation of the modelled re-
lationship most likely originates from the lower precipitation
regions (< 500 mm year−1), where the maximum tree cover
is very low in the observations and both models strongly
overestimate the maximum tree cover (Fig. 4).

Models and observations generally agree on the absence
of fire for very high tree cover (> 0.8) and on the decrease
of burned fraction for mean annual precipitation decreas-
ing below 1000 mm. However for regions with tree cover
< 0.8 and mean annual precipitation > 1000 mm we find
strong differences. JSBACH-SPITFIRE shows a strong nega-
tive Spearman rank correlation between burned fraction and
tree cover, while the observations show a weaker negative
correlation, and JSBACH-standard shows a positive corre-
lation (Table 1). This can also be seen in Fig. 4, where for
the JSBACH-SPITFIRE simulation the highest burned frac-
tions (> 50 % of grid cells year−1) are found in Africa for the
lowest tree covers (0.1) and for precipitation between 1000
and 2000 mm year−1. JSBACH-standard in many grid cells
shows low fire occurrence for low tree cover, especially for
South America (Fig. 4). These grid cells have a high fraction
of crops or pasture, which are both excluded from burning in
JSBACH-standard (in SPITFIRE only crops are excluded).
The observations (also Fig. 4) show highest values of the
burned fraction for tree cover values up to 0.3 for MODIS
and up to 0.5 for Landsat.
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Figure 1. Spatial distribution of modelled and observed data sets used in this study. (a) Spatial distribution of tree cover fraction over the
global tropics for the JSBACH-SPITFIRE and JSBACH-standard model simulation and the satellite data products from Landsat and MODIS.
(b) Burned fraction (year−1) as modelled by JSBACH-SPITFIRE and JSBACH-standard and the GFED v4 satellite product. (c) Precipitation
in mm year−1 of the MPI-ESM and the TMPA data set. (d) Grass cover fraction and (e) non-vegetated fraction of the grid cell for the models
and the MODIS satellite product. All data sets were remapped to 1.875◦ model resolution.

Figure 2. Tree cover (TC) versus precipitation (mm year−1) with colour-coded burned fraction (BF) for different continents for the two
satellite data sets. Burned area is averaged over data points with the same precipitation (40 mm steps) and tree cover (in steps of 0.01) to
avoid overplotting based on a spatial resolution of 0.25◦. For Asia some higher precipitation values were cut off.

Biogeosciences, 15, 5969–5989, 2018 www.biogeosciences.net/15/5969/2018/
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Table 1. Spearman rank correlation (R) between precipitation (P ) and tree cover (TC), and rank correlation between burned fraction (BF) and
TC for data points with mean annual precipitation higher than 1000 mm and tree cover less than 0.8. The required precipitation (mm year−1)
for 0.05 < TC < 0.15 and 0.85 < TC < 0.95, estimated as 0.05 quantile of precipitation for grid cells with the specific TC only, and precipita-
tion value (mm year−1), where 10 % and 90 % of the burned area (BA) originates from areas with lower precipitation. For the remote-sensing
data sets TMPA was used as precipitation, for the simulations (Hist, cLU, and JSBACH-standard) the MPI-ESM precipitation was used.
Model results are all in 1.875◦ resolution. Bold font indicates significance (p value < 0.05) of the correlation.

Data R (P , TC) R (BF, TC) 0.05 quantile of P 0.05 quantile of P 10 % of BA 90 % of BA
for 0.05 < T C < 0.15 for 0.85 < T C < 0.95 has lower P has lower P

Landsat 0.25◦ 0.90 −0.05 568 1417
Landsat 1.875◦ 0.91 −0.08 569 1596
MODIS 0.25◦ 0.91 −0.26 425 1514
MODIS 1.875◦ 0.93 −0.4 462 1644
GFED v4 0.25◦ 607 1517
GFED v4 1.875◦ 635 1489
JSBACH-SPITFIRE Hist 0.79 −0.5 31 1268 652 1663
JSBACH-SPITFIRE cLU 0.78 −0.64 13 1000 700 1654
JSBACH-standard 0.87 0.17 34 1597 266 1519

Figure 3. Cumulative burned area normalised with the total burned
area for increasing precipitation. For the GFEDv4 burned area the
TMPA data set was used; for the model simulations the MPI-ESM
precipitation was used.

Burned fraction is much lower in Asia and South Amer-
ica compared to Australia and Africa in the observations.
Both models show an underestimation of the fire occur-
rence in Australia. SPITFIRE reproduces the fire regime with
high annual burned fraction in Africa. In JSBACH-standard
the difference in burned fraction between the continents is
smaller than in JSBACH-SPITFIRE (Fig. 4).

Models and observations show differences between con-
tinents in the relationship between precipitation and max-
imum tree cover (Fig. 5). For Africa, South America and
Asia the relationship between maximum tree cover and pre-
cipitation shows saturation for high precipitation. For Aus-

tralia maximum tree cover increases linearly with increasing
precipitation for models and observations, but the precipi-
tation range also does not reach values where a clear sat-
uration is reached for the other continents. For JSBACH-
standard the curves are very similar for the different conti-
nents. JSBACH-SPITFIRE shows a stronger variation, which
must be due to the differences in fire as the model is other-
wise the same. The observations show an even stronger vari-
ation between continents, with clearly lower tree cover val-
ues for Australia, followed by Asia. For Africa local quantile
regression clearly differs from the linear quantile regression
for the satellite data, indicating a sigmoid shape, while the
other continents show a rather linear increase until satura-
tion (Fig. 5). JSBACH-SPITFIRE reproduces the higher tree
cover for South America compared to Africa (albeit the dif-
ference is stronger) for mean annual precipitation lower than
1000 mm, but JSBACH-standard also shows a small differ-
ence.

The grass cover has a much higher variability in the model
compared to the MODIS data (Fig. 6). The modelled non-
vegetated fraction decreases faster with increasing precip-
itation compared to the observations (Fig. 6). The domi-
nance of trees (computed as TC / total vegetation cover) is
strongly overestimated in the model for low precipitation
(< 500 mm year−1, Fig. 6). While the relationship between
precipitation and non-vegetated fraction is similar among the
continents, the relationship for grass cover differs (Fig. 6).
For Australia, observations and modelled grass cover in-
creases with increasing precipitation. In Africa, South Amer-
ica and Asia, grass cover first increases and then decreases
with increasing precipitation.
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Figure 4. Modelled and observed tree cover (TC) versus precipitation (P ), and colour-coded burned area fraction (BF). Satellite data sets
were aggregated to model grid resolution (1.875◦).

Figure 5. Modelled and observed relationship between precipitation and maximum tree cover based on a linear quantile regression (dashed
line) and a local quantile regression (solid line). Different colours indicate the different continents.

3.4 Climate–fire–vegetation relationships: influences of
land use change

The simulation with pre-industrial land use represents a state
with low influence of land use change. The comparison with
the historical simulation allows us to assess the influence

of land use change after 1850. The impact of fire on tree
cover, as quantified by the Spearman rank correlation, be-
tween burned fraction and tree cover is higher for simula-
tion with pre-industrial land use (Table 1). This indicates
that anthropogenic land cover change decreases the impact
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Figure 6. Modelled and observed grass cover (GC) and non-vegetated fraction over precipitation (P ), with colour-coded burned area fraction
(BF) for the grass cover and dominance of trees as TC (total vegetation cover) for the non-vegetated fraction.

of fire on the vegetation distribution. Land use change did
not affect the rank correlation between precipitation and tree
cover. The precipitation range for 80 % of the burned area is
only slightly narrower for the simulation including land use
change (Table 1). Tree cover, however, is even higher for low
precipitation and reaches canopy closure for lower precipita-
tion Table 1 and Fig. 7 compared to Fig. 4). The simulation
with land use of 1850 shows a strong gap between the sa-
vanna systems (TC < 40 %) and closed forests (TC > 70 %)

for Africa and a less strong gap for South America (Fig. 7).
For Australia and Asia the simulation does not show this pat-
tern. In the historical simulation, land use overprints this gap
in the natural vegetation dynamics. The difference in fire oc-
currence between Africa and South America is smaller for
the simulation with pre-industrial land use compared to the
historical simulation (Fig. 7 compared to Fig. 4).
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Figure 7. Same as Fig. 4 for JSBACH-SPITFIRE but with pre-industrial land use.

4 Discussion

The multivariate model–data comparison identified differ-
ences and agreements between modelled and observed in-
teractions between fire, vegetation and climate. It goes be-
yond spatial comparisons by providing better guidance on
which processes in the model need improvement. Here we
discuss which model improvements can help to address the
differences, what causes agreements in intercontinental dif-
ferences and whether limitations of the observations might
influence our findings.

4.1 Opportunities for model improvements

JSBACH overestimates tree cover for low precipitation on
all tropical continents. In these dry regions no or only very
low burned fractions are observed, and SPITFIRE shows a
good response to precipitation, while the JSBACH-standard
overestimates the burned area (Fig. 3). The improved burned
area pattern of SPITFIRE did not lead to an improvement in
tree cover for these dry regions. It is therefore unlikely that
further improvements in burned fraction will improve this
model–data mismatch for tree cover in dry regions. Satel-
lite data, however, show that the intensity of fires increases
in these regions (Hantson et al., 2017). The impact on vege-
tation per burned area might therefore be stronger and could
support the disappearance of trees in these regions. The pro-
ductivity of vegetation in the JSBACH model depends on
the availability of water and is therefore sensitive to drought.
The establishment timescale of trees, however, is a constant
(30 years for tropical PFTs) and only if a 5-year average
of NPP turns negative, do PFTs stop establishing. Other
models require a minimum of 100 mm year−1 precipitation
for sapling establishment (Sitch et al., 2003). The excessive
tree cover could be partly improved by improving the non-
vegetated fraction, which decreases too fast with increasing
precipitation. In JSBACH, this non-vegetated fraction de-
pends on the productivity of vegetation. Further investigation
of effects of the soil moisture memory, not only on climate
(Hagemann and Stacke, 2015) but also on the vegetation,
might also lead to useful insights. The excessive dominance
of trees (Fig. 5), however, indicates that the tree–grass com-

petition is also not well represented in the model. Tree–grass
competition for water could, for example, be improved in the
model by introducing a sapling stage of trees, which are com-
petitively inferior to grasses (D’Onofrio et al., 2015). Includ-
ing this mechanism could improve the balance between tree
and grass cover, but it could also reduce the establishment
rate of trees and therefore the tree cover in the dry regions
with excessive tree cover. Including a PFT-specific rooting
depth of vegetation would be an important extension of the
model that would improve the competition for water between
grasses, saplings and adult trees.

The absence of fire for closed canopies is captured well by
JSBACH-SPITFIRE. The modelled strong relationship be-
tween higher burned fraction and lower tree cover for open
canopies (Fig. 4, with the exception of Australia, Table 1),
however, is not found in the observations (Figs. 2, 4, Ta-
ble 1). Many general processes determining the savanna–
forest boundary are included in the JSBACH-SPITFIRE
model: increased tree cover leads to a suppression of fire by
excluding grasses, while higher flammability of grasses leads
to increases in fire occurrence with increasing grass biomass
(Hoffmann et al., 2012). In JSBACH-SPITFIRE bark thick-
ness is PFT specific and depends on the biomass. Tropi-
cal trees are represented by two PFTs, one of which has a
lower sensitivity to fire due to a higher bark thickness. This
is also observed in field studies where savanna species show
a higher ratio of bark thickness to stem diameter and are
more resistent to fire (Hoffmann et al., 2003). However, the
modelled bark thickness does not adapt to the fire regime as
observations indicate (Pellegrini et al., 2017). Kelley et al.
(2014) included bark thickness as an adaptive trait in the
LPX model, increasing bark thickness for high fire frequen-
cies. This increased and improved the tree cover for Aus-
tralia. Resprouting is an important plant characteristic that
changes the balance between mortality and recovery and also
led to an increase in tree cover in fire-affected areas in a mod-
elling study (Kelley et al., 2014). A third mechanism for de-
creasing the strong association between high burned area and
tree cover could be a negative feedback between fire occur-
rence and tree mortality: frequent fire occurrence leads to low
fuel loads and low fuel loads allow only low-intensity fires
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with associated lower mortality of trees. As a consequence
a high burning frequency could lead to lower tree mortality
and therefore higher tree cover. This feedback between fire,
fuel load, fire intensity and tree mortality is included in the
SPITFIRE model. However, there is no decrease in fire line
intensity with increasing annual burned area (Fig. C1). This
feedback might therefore be too weak and result in a stronger
correlation between burned fraction and tree cover (Table 1).

A more detailed representation of vegetation structure, in-
cluding a sapling state of trees that is more sensitive to fire
(e.g. Higgins et al., 2000) and a long-lived adult tree state,
could also increase the survival of trees. The “fire trap” de-
scribes a mechanism where in regions with frequent fires top-
kill of saplings maintains them in a non-reproductive state
(Hoffmann et al., 2009). It explains the importance of the
fire-free intervals that allow accumulation of sufficient bark
to gain sufficient fire resistance. The JSBACH model does
not represent the age structure of vegetation; therefore fire
always affects the average tree, while in reality only trees
that did not accumulate sufficient bark are affected (Hoff-
mann et al., 2012). Moreover, fire does not influence the tree
establishment in JSBACH and can only lead to mortality. In-
cluding a sapling state could therefore increase tree cover in
frequently burned areas while decreasing tree cover (as de-
scribed above) in areas that are too dry to provide fuel for
frequent burning.

For Australia underestimation of burned area for both fire
models is strong (Fig. 4). In a previous evaluation where
the model was forced with observed climate and vegetation
cover was prescribed (in contrast to the dynamic vegetation
cover and climate modelled by the MPI-ESM) JSBACH-
SPITFIRE showed better results for Australia (Hantson et al.,
2015). An improved response of vegetation cover dynamics
to precipitation will reduce the underestimation of burned
area as in SPITFIRE tree cover and burned area are closely
related (Lasslop et al., 2016). Part of the better performance
in the previous study might also be due to the use of observed
climate forcing.

The rank correlation between precipitation and tree cover
is higher for the observations compared to the model out-
puts (Table 1). One reason might be the lower maximum tree
cover for low precipitation in the observations, which limits
the range of tree cover values in these regions. In JSBACH-
standard the correlation between tree cover and precipita-
tion is stronger than in JSBACH-SPITFIRE. In the JSBACH-
standard model, fire is only driven by meteorological vari-
ables and vegetation properties (which also largely follow
climatic gradients). JSBACH-SPITFIRE, however, also uses
population density and lightning data sets as input, which
are potentially inconsistent with the meteorological forcing
derived from the MPI-ESM output. Lightning strikes are
strongly related to precipitation (Romps et al., 2014). This
decoupling between climate and ignition might cause the
lower correlation for JSBACH-SPITFIRE compared to the
JSBACH-standard simulation. For instance, in the north-east

Amazon region precipitation of the MPI-ESM is too low,
leading to a decrease in tree cover in regions with closed
canopy with the JSBACH-standard fire model. The very low
ignitions in JSBACH-SPITFIRE in that region contribute to
a low fire occurrence compared to JSBACH-standard and as
a consequence of higher tree cover (Fig. 1). Lightning can
be computed within climate models (Krause et al., 2014) and
using these lightning data sets based on the model and not on
observations would ensure consistency between meteorolog-
ical forcing and the ignitions used in the fire model (Felsberg
et al., 2018).

The suggested processes are known to be important for
vegetation distribution and it seems plausible that they can
help to improve the vegetation distribution. How exactly
these plausible modifications would change the patterns of
tree cover, fire and their relation to climate likely strongly
depends on the exact parameterisation and needs to be tested
with stepwise model development and factorial simulations.

4.2 Difference between continents

We find differences in the climate–vegetation–fire relation-
ships between continents in the satellite products as well
as in the model simulations with JSBACH-SPITFIRE and
the JSBACH standard model. Differences in the climate–
vegetation–fire relationships have been described based on
site-level data sets (Lehmann et al., 2014). They find that the
response of tree basal area to growth conditions (climate and
nutrients) and disturbances differs between continents. The
study suggests that the one-climate–one-vegetation paradigm
which is an underpinning of many global vegetation models
cannot lead to vegetation patterns that differ between conti-
nents under the same climatic conditions, as the patterns de-
pend on past environmental conditions and evolution. Evo-
lution is not accounted for in common vegetation models.
In simulations with changing climatic forcing, however, the
vegetation is a function of previous environmental conditions
and adapts to changes in climate with constant PFT-specific
timescales. Additionally the human dimension is more and
more often included in DGVMs, primarily by including an-
thropogenic land cover change. Moreover, in recent global
fire models population density is a commonly used driver for
human ignition and suppression of fire (Hantson et al., 2016).

Our model simulations show that global vegetation mod-
els can also have differences in climate–vegetation–fire rela-
tionships between continents. We separated the effect of land
use change by comparing the historical simulation to a sim-
ulation with pre-industrial land use. We find that land cover
change influences the differences in the modelled fire regime
between Africa and South America. Land cover change in-
fluences simulated fire occurrence as cropland areas are ex-
cluded from burning and pastures have a higher fuel bulk
density in the JSBACH-SPITFIRE model. A reduction in
burned area due to increases in croplands is well supported
by statistical analysis of satellite data for Africa (Andela and

www.biogeosciences.net/15/5969/2018/ Biogeosciences, 15, 5969–5989, 2018



5980 G. Lasslop et al.: Climate–vegetation–fire relationships in the tropics

van der Werf, 2014) and globally (Bistinas et al., 2014; An-
dela et al., 2017). The mechanism behind the reduction in
burned area due to croplands is, however, likely a fragmenta-
tion of the landscape, which is not explicitly accounted for in
the model. Local-scale understanding of these relationships
is increasing, for instance between fire and roads (Faivre
et al., 2014; Narayanaraj and Wimberly, 2012) or between
fire and land management (Morton et al., 2013; Brando et al.,
2014). However, a generalisation of an approach that would
be suitable for global models is still missing.

Vegetation in the MPI Earth system model including SPIT-
FIRE is not only a function of climate but also depends on
the history of previous vegetation due to the feedback be-
tween fire and vegetation (Lasslop et al., 2016). We did not
isolate the effect of the multi-stability in this study but ini-
tialised the model with the standard vegetation initialization
of the MPI-ESM for the year 1850. The SPITFIRE model
also takes into account differences in the fire regime through
spatially varying ignitions. In addition to the effect of land
use on the differences between continents, these spatial dif-
ferences in ignitions might be important and might explain
the smaller differences for the purely climate- and land-use-
driven JSBACH-standard model.

The comparison of the increase in maximum tree cover
with increasing precipitation shows that, although the model
shows some variability between continents, it misses a large
part of the observed variation. Finding the correct balance of
the many influencing factors, e.g. climate, fire, land use, evo-
lutionary differences, will remain a challenge for the future.

4.3 Limitations in the comparability between
observations and modelled variables

We use two remotely sensed tree cover products, which show
coherent patterns. Although these products are derived from
imagery with different spectral, temporal and spatial charac-
teristics (MODIS and Landsat), they cannot be considered
totally independent because both are derived using a simi-
lar classification and regression tree method as well as ref-
erence data. The observational tree cover data sets are lim-
ited to trees taller than 5 m and do not include shrubs. For
the model, however, we included shrubs and all trees. Pre-
viously differences in the threshold at which maximum tree
cover is reached were attributed to different precipitation data
sets and exclusion or inclusion of shrub cover (Devine et al.,
2017). Filtering modelled and observed tree cover based on
the presence of shrubs in the MODIS land cover product
leads to only small differences in the relationship between
tree cover and precipitation (Fig. A1). Excluding grid cells
where biomass indicates that the vegetation height is smaller
than 5 m according to the allometric relationship used in
SPITFIRE-JSBACH (Lasslop et al., 2014) did not lead to
substantially different relationships (Fig. A2). Our conclu-
sions are therefore not affected by the limitation of the data
sets when only observing trees taller than 5 m.

Compared to the satellite data sets, an African site-level
data set shows lower thresholds of precipitation for the ab-
sence of trees (ca. 100 mm year−1) and for reaching the high-
est tree cover values (> 650 mm year−1) (Sankaran et al.,
2005). For Africa the remote sensing data sets show an ab-
sence of tree cover for precipitation less than ca. 300 mm and
canopy closure for 1500 mm year−1 in the model resolution
(Fig. 4). However, the general absence of trees for very low
precipitation and increase in tree cover up to a certain thresh-
old are similar to the remote-sensing data sets.

The maximum value of a variable can decrease due to spa-
tial averaging. We tested this effect by not using the mean
when aggregating the satellite tree cover to the resolution
of the precipitation data set but instead using the maximum
value of the underlying 0.05◦ grid cells of tree cover. Canopy
closure can then be reached for all continents for mean
precipitation values around 500–1000 mm year−1 (Fig. A3),
which is more consistent with a published site-level data set
(Sankaran et al., 2005). This is consistent with the figures in
Hirota et al. (2011), where the MODIS tree cover is shown
in 1 km resolution. The scale at which maximum tree covers
are observed and the spatial scale of the model application
therefore needs to be consistent. Moreover, as the thresholds
found for the model are closer to the ones found for site-
level and high-resolution satellite data sets, the model perfor-
mance could improve if the spatial resolution of the model is
increased.

Tree cover seems to be a clearly defined variable but al-
ready varies between the two satellite data sets. The MODIS
tree cover data set defines a maximum tree cover of 80 %,
while the Landsat tree cover data set allows a cover of 100 %.
In the observations canopies that are not fully closed due to
low foliar biomass might be tracked as reduced tree cover.
In the model, however, tree cover and biomass are two rather
independent variables, meaning that tree cover can be high
in spite of a low biomass. Biomass data sets might there-
fore give additional valuable insights and pan-tropical data
sets are available (Saatchi et al., 2011; Baccini et al., 2012;
Avitabile et al., 2016).

The latest release of the GFED burned area and emissions
data sets includes an extension for small fires (Randerson
et al., 2012). However, these small fires are often related
to cropland fires or deforestation fires. Neither of these fire
types are modelled explicitly in our model approaches and
therefore could cause a mismatch that should not be inter-
preted as a model bias. Cropland fires are not expected to
strongly influence the vegetation cover, while deforestation
is prescribed as described in global models and therefore the
influence on vegetation cover is considered. Burned area data
sets are generally uncertain, mainly due to the limited spatial
and temporal resolution (Padilla et al., 2015). The difference
in global burned area between the data set including small
fires (Randerson et al., 2012) and the one not including small
fires is 25 %. Missed burned areas due to high cloud cover or
vegetation structure certainly also introduce spatial biases.
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How important such errors are for a comparison as presented
here is unknown.

By evaluating tree cover and fire for a given mean annual
precipitation we account for biases in the MPI-ESM forc-
ing of this parameter. Mean annual precipitation is a strong
driver of vegetation patterns, especially in the tropics; how-
ever other aspects of precipitation and other climatic param-
eters might be biased and influence our results. Many cli-
mate models have problems representing extremes (Sillmann
et al., 2013), length of dry periods and tend to generate a
permanent drizzle (DeAngelis et al., 2013; Gutowski et al.,
2003). Rainfall seasonality and number of dry days of the
MPI-ESM forcing compare well to the observational TMPA
data set (see Fig. B1), with a small underestimation of sea-
sonality and number of dry days of the MPI-ESM mainly
in regions with high rainfall. As we mostly focus on mis-
matches in regions with low rainfall, the mismatch between
observed and MPI-ESM seasonality of rainfall is not a con-
cern. Biases in climate parameters other than precipitation
could influence our results, such as temperature or radiation.
We therefore explored the correlation between tree cover bi-
ases and biases in the two climate parameters. The biases in
mean temperature and shortwave radiation, however, do not
explain any of the variability of tree cover biases; e.g. the cor-
relation is virtually zero and not significant on a 95 % signif-
icance level (R = 0.04, p value= 0.07945 for radiation and
R =−0.004, p value= 0.8842 for temperature). These two
parameters were identified previously to explain the impact
climate biases on the carbon cycle (Ahlström et al., 2017).

The interactions between climatic parameters are, how-
ever, difficult to disentangle, based on this simple analy-
sis and other approaches such as multivariate regression or
random forrest approaches (Forkel et al., 2017) might help
to gain further insights into the effects of specific climate
drivers.

5 Conclusions

This study combines two satellite data sets with model sim-
ulations using a simple and a complex fire algorithm to in-
vestigate relationships between fire, vegetation and climate.
Our analysis shows that the two satellite data sets are con-
sistent in terms of the relationship between tree cover, pre-
cipitation and fire occurrence, but the spatial scale needs to
be considered, as some statistical characteristics change with
the resolution.

Our analysis showed the strength of the multivariate
comparison in detecting model inconsistencies and guiding
model development. It goes beyond the insights gained by
standard spatial comparisons. For JSBACH, independently
of the fire model used, we find an overestimation of tree cover
for low precipitation where typical fire occurrence is low due
to limited fuel availability. The response of burned area to
precipitation was captured well for SPITFIRE, but the sim-

ple fire scheme showed an overestimation of burned area for
dry regions. This indicates that an improvement in the fire
model cannot improve the response of vegetation to climate
in dry regions but improved modelling of drought effects on
the vegetation dynamics can. Dry regions often show a strong
coupling between land and atmosphere (Koster et al., 2006);
such an improvement therefore also has high potential to im-
prove the performance of the coupled Earth system model.

While fire occurrence and vegetation patterns are observed
well by remote sensing, the impact of fire on vegetation is
much less constrained by satellite observations limiting the
possibilities of evaluating that part of fire models. The mul-
tivariate comparison revealed a too-strong impact of fire on
tree cover for grid cells with very high fire occurrence, which
leads to too-low tree cover. To boost the tree cover in ex-
actly these regions with high fire occurrence, possible model
modifications are an adaptation of trees to fire, by increas-
ing bark thickness in response to high fire frequencies or a
stronger negative feedback between fire occurrence and fuel
load. This stronger feedback should then reduce fire intensity
and consequently fire mortality.

The complex fire model SPITFIRE improves the differ-
ence in fire regimes between the continents, especially Africa
and South America, compared to the simple fire model. The
intercontinental variation in the relationship between precip-
itation and maximum tree cover is much smaller for the mod-
els compared to the observations. Known variations in veg-
etation are not sufficiently understood to be represented in
models. However, our finding that models do show differ-
ences in the climate–fire–vegetation relationships between
continents shows that further exploration of why models
show differences can be helpful to better understand causes
for intercontinental differences.

Overall the multivariate model evaluation highlights the
potential for more targeted model improvements with re-
spect to the interactions between climate, vegetation and fire,
which are crucial for our understanding of future vegetation
and climate projections.

Code and data availability. The observational data sets are freely
available. The processed data and model output as displayed in this
publication and the processing scripts are available upon request to
publications@mpimet.mpg.de.
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Appendix A: Sensitivity of climate–vegetation–fire
relationships to remapping, presence of shrubs and
modelled tree height

Figure A1. Same as Fig. 4 but tree cover filtered for the presence of shrublands (using the MODIS open and closed shrubland classification).
This indicates a low sensitivity of the climate–vegetation–fire relationships to shrublands.
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Figure A2. Modelled tree cover (TC) versus precipitation (P ) (mm year−1). Modelled tree cover was filtered for vegetation height of trees
< 5 m using the modelled vegetation height. This value is given as the detection threshold for the satellite products. When filtering the model
output with this threshold the differences to the unfiltered data set are very small (compare with Fig. 4 panels for JSBACH-SPITFIRE).

Figure A3. Tree cover (TC) versus precipitation (P ) with colour-coded burned fraction (BF). Tree cover was here remapped from 0.05◦

resolution to 2◦ using the maximum value of the higher resolution instead of the mean.
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Appendix B: Evaluation of precipitation forcing

Additionally to the total amount of rainfall the seasonality
can play a role for vegetation or the length of dry periods.
We therefore assess whether the rainfall seasonality and the
number of dry days are reasonable in our climatic forcing
here. We use the TMPA 3B42 daily data set (Savtchenko
and Greenbelt, 2016) as a reference and define rainfall sea-
sonality as the number of days needed to reach 80 % of the
annual precipitation, and dry days as days with less rainfall
than 3 mm. A low number of days needed to reach the 80 %
rainfall indicates a strong seasonality, while a high number
of days indicates a low seasonality. The MPI-ESM does not
show a concerning underestimation of dry days or too-low
seasonality. There is a small underestimation, however, and
it is stronger in regions with high rainfall.

Figure B1. Relationship between annual precipitation and precipitation seasonality and number of dry days, respectively, for the ECHAM
simulation used as meteorological forcing for the JSBACH simulations used here and the TMPA 3B42 daily data set. Slope indicates the
slope of the regression line.
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Appendix C: Relationship between modelled burned
area and fire intensity

Figure C1. Relationship between annual burned area and fire line intensity. The expected decrease in fire line intensity for frequently burning
areas due to the feedback between fire and fuel load is not found in the simulation results and might indicate that the feedback between fire
occurrence, fuel load and fire intensity is too weak.
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