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Abstract
The long term variability and its predictability of the monthly mean oceanic surface net freshwater fluxes
is compared in a set of retrospective predictions. All are using the same model setup, and only differ in
the implemented ocean initialisation method and ensemble generation method. The basic aim is to deduce
the differences between the initialization/ensemble generation methods in view of the uncertainty of the
verifying observational data sets. The analysis will give an approximation of the uncertainties of the net
freshwater fluxes, which up to now appear to be one of the most uncertain products in observational data
and model outputs. All ensemble generation methods are implemented into the MPI-ESM earth system
model in the framework of the ongoing MiKlip project (www.fona-miklip.de). Hindcast experiments are
initialised annually between 2000–2004, and from each start year 8 ensemble members are run for 10 years
forward. Four different ensemble generation methods are compared: (i) a method based on the Anomaly
Transform method in which the initial oceanic perturbations represent orthogonal and balanced anomaly
structures in space and time and between the variables taken from a control run, (ii) one-day-lagged ocean
states from the MPI-ESM-LR Baseline 1 system, (iii) one-day-lagged ocean and atmospheric states with
preceding full-field nudging to re-analysis in the atmospheric and anomaly nudging in the oceanic component
of the system – the Baseline MPI-ESM-LR system, (iv) an Ensemble Kalman Filter (EnKF) implemented
into oceanic part of MPI-ESM, assimilating monthly subsurface oceanic temperature and salinity using the
Parallel Data Assimilation Framework and full-field nudging in the atmosphere. The hindcasts are evaluated
probabilistically using freshwater flux data set from NCEP-R2. On the global scale the physically motivated
methods (i) and (iv) provide probabilistic hindcasts to some extent higher correlation and reliability than the
lagged initialization methods (ii)/(iii) despite the large uncertainties in the verifying observations and in the
simulations. We suggest similar approaches for further evaluations of other variables of decadal hindcasts
systems.

Keywords: surface freshwater flux forecast, mean climate state statistics, probabilistic evaluation, ensemble
generation methods

1 Introduction

Via their variability and the associated redistribution of
energy and water, the large scale air-sea fluxes play an
important role in climate variability on inter-annual to
decadal timescales (Zaucker et al., 1994). The evapo-
ration of water modifies the energy budget of the Earth
and affects the climate (Trenberth and Guillemot,
1998). Additionally, the freshwater input by precipita-
tion into the ocean at the ocean convective sites can alter
the strength of the overturning circulation (Broecker,
1994) and redistribute the energy within the Earth cli-
mate system. Knowledge of the future variability of the
oceanic surface freshwater fluxes is essential for an in-
dependent assessment of global climate variability and
change.
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Many studies concentrate on comparison of differ-
ently obtained freshwater products on annual, inter-
annual and decadal timescales (e.g., Béranger et al.,
1999; Adler et al., 2001; Stammer et al., 2004; Josey
and Marsh, 2005; Romanova et al., 2010; Vinogra-
dova and Ponte, 2013; Giglio and Roemmich, 2014;
Iwasaki et al., 2014). The freshwater flux is a composite
quantity, calculated from the difference of the precipita-
tion (P) and evaporation or evapotranspiration (E). Each
individual error in the two components contributes to the
total error of the difference P − E which could therefore
be quite large. The errors depend on the methods used
for producing the individual variable field. In-situ and
satellite measurement errors are often systematic and the
gridded fields show unbalanced conditions. Usually on a
global mean the total freshwater fluxes does not sum to
a small number. Differently from the in-situ/satellite es-
timates the atmospheric and ocean re-analyses provide
model outputs for the freshwater fluxes. This should in
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principle profit from conservation laws of the driving
models, but due to model errors through discretization
and parametrization the models of either atmosphere
and ocean develop themselves systematic errors in their
water and energy cycles. These errors are often com-
pensated by non realistic fluxes from the other compo-
nents e.g. the ocean provides infinite energy and water
sources to an atmospheric model if there is no coupled
model system. Partly, this can be fixed by the assimila-
tion procedure used in the re-analysis, which constrains
the model solution to the observed data and may provide
more realistic and potentially balanced fields. Although
most of the reanalyses systems assimilate very similar
observational data sets, they differ somewhat from each
other due to different assimilation techniques and dy-
namical model. As a result of the atmosphere-ocean dy-
namics, the net freshwater fluxes shifts the geographi-
cal locations of the source and sink zones. A correla-
tion analysis hardly shows coefficients greater than 0.7
or only 50 % of common variance when compared to in-
dependent data (Romanova et al., 2010).

Recent years have seen different approaches for
multi-year and decadal climate predictions (e.g., Keen-
lyside et al., 2008; Pohlmann et al., 2004; Smith et al.,
2007; Kruschke et al., 2015). Especially the details of
MiKlip decadal climate prediction system, the different
approaches for data assimilation and ensemble genera-
tion are discussed in depth in Marotzke et al., 2016.
One of the major issues in the prediction systems is the
method for construction of the disturbances applied in
the initial fields (Toth and Kalnay, 1993; Magnus-
son et al., 2008; Wei et al., 2008; Keller et al., 2010;
Du et al., 2012; Haughton et al., 2014; Romanova and
Hense, 2015). Its aim is to span the most probable range
of the models phase space trajectories. The success of
an ensemble generation scheme depends on the geo-
graphical location and space orientation of the initial
disturbances, which will develop on annual or decadal
time scales and will produce an adequate spread. Ro-
manova and Hense, 2015 investigated the effect of or-
thogonal rotation on the disturbances patterns, different
norms and re-scaling methods for generation of the dis-
turbances. They argued that the orthogonal conditions
and definition of the re-scaling factors are important
to produce plausible spread, in contrast to the selected
norm, which in their study was the total energy norm
and ocean heat content norm. Studies on Singular Vec-
tors (Molteni et al., 1996; Marini et al., 2016) and En-
semble Transform (Wei et al., 2008) as competitive en-
semble generation methods also point to advantages of
the orthogonal rotation of the perturbation patterns to
achieve more skillful forecast.

Predicted quantities, which are mainly studied and
analysed with respect to long term climate variability
related to the ocean are the sea surface temperature, the
Atlantic Meridional Overturning Circulation (AMOC),
and the Ocean Heat Content (Matei et al., 2012). More-
over, the assessment of ensemble generation methods
was mainly based on the evaluation of the predicted sea

surface temperature with inconclusive results up to now.
Additionally the uncertainties of the observational data
sets or reanalyses are not taken into account. In contrast
to previous attempts we concentrate in the following on
the evaluation of the air-sea freshwater flux (P-E) and
measure the predictability skill relative to NCEP R2 re-
analysis data (Kalnay et al., 1996). This special choice
is justified by a comparison with other available and
comparable data sets. We concentrate our analysis only
on one variable, since multivariate analysis could be
complicated. When turning to a family of variables the
multivariate character of verification has to be incorpo-
rated, taking into account the correlations among the
variables. The freshwater flux is a variable which deter-
mines the temporal change of state variables like salinity
in the ocean or water vapour concentration in the atmo-
sphere. By this property it provides orthogonal or other
information relative to the state variables. Additionally
the freshwater flux has a direct physical interpretation
in the sense that it is one of the coupling components
within the hydrological cycle between the atmosphere
and the ocean.

The paper is organized as follows: in the second
section the model, the ensemble generation schemes and
the hindcasts are described. The third section deals with
the evaluation scores and the analysis and discussion of
the results are given in the fourth section.

2 Ensemble generation methods and
data

All hindcasts are performed using the MPI-ESM-LR
coupled model developed at Max Planck Institute for
Meteorology in Hamburg (Giorgetta et al., 2013). The
hindcasts analyzed in the current study differ in the en-
semble generation schemes. Anomaly Transform (Ro-
manova and Hense, 2015) provides re-scaled orthog-
onal perturbations under TE (Total Energy) norm. We
consider two types of lagged hindcasts: one is produced
by applying one-day-lagged perturbations only in the
ocean and the other uses synchronized perturbation in
the ocean and atmosphere (Baseline 1). The fourth hind-
cast is based on EnKF filter (Brune et al., 2015). All
hindcasts cover the same time period, using five start-
ing years, from 2000 until 2004, with 8 or 10 ensemble
members, each is run for 10 years forward.

2.1 Model and hindcasts

The MPI-ESM couples the following components: a) the
ECHAM6 atmospheric spectral model (Stevens et al.,
2013) at T63/L47 resolution corresponding to approx-
imately 1.87° horizontal resolution on 47 vertical lev-
els.; b) MPIOM ocean model (Jungclaus et al., 2013)
on a bipolar curvilinear GR15/L40 grid with approxi-
mately 1.5° horizontal resolution on 40 non-equidistant
vertical levels; c) the Sea-Ice component on the ocean
grid; and d) the JSBACH land surface model. The com-
ponents exchange energy, momentum, water and trace
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gases via the OASIS coupler. The MPI-ESM model was
used for CMIP5 inter-comparison project and is the core
of the MiKlip Prototype Prediction System for climate
forecast (Pohlmann et al., 2004; Mueller et al., 2012;
Marotzke et al., 2016).

Four ensemble generation methods are used to pro-
duce retrospective predictions. Except for the Ensemble
Kalman filter based hindcast experiment, the initialisa-
tion of the model with observations is the same as in
the Baseline 1 hindcasts as described in Mueller et al.,
2012 and Pohlmann et al., 2013.

• Anomaly transform (AT) as the first method is
based on orthogonalisation of the preliminary pre-
pared anomaly patterns for ten years from the op-
erational ocean re-analysis data ORAS4 (detailed
description in Keller et al., 2010; Romanova and
Hense, 2015). The temperature, salinity and zonal
and meridional velocities are used to calculate the ki-
netic and potential energy. An energy matrix is con-
structed such that it contains all the spatial and tem-
poral dimensions of the energy components. From
this data matrix the typical pattern modes are ex-
tracted by calculating the extended EOFs. The first
five modes with positive and negative sign are used to
derive the perturbations around the initialized state.
They are added to the fields of salinity, tempera-
ture and the horizontal velocities. Additional scal-
ing by constraining the patterns in amplitude to the
ocean re-analysis GECCO2 (Köhl, 2015) was nec-
essary to derive an appropriate perturbation ampli-
tude (for details see Romanova and Hense, 2015).
The hindcasts were performed starting from the ten
perturbed ocean initial conditions (five modes with
opposite amplitudes) with the atmosphere leaving
unperturbed. However only 8 were used for the
analysis to match the ensemble size of the Baseline 1
and the EnKF hindcasts.

• Baseline 1 is the hindcast produced from the MiKlip
Prediction system (Pohlmann et al., 2004; Muel-
ler et al., 2012). It has been comprehensively studied
and evaluated by the MiKlip community in Germany
(Kaspar et al., 2016). It uses a simplified ensemble
generation scheme, in which the ocean and the at-
mosphere perturbations are taken from eight sequent
days from 1st of January of each year from the assim-
ilation run. However, this scheme is thought to pro-
vide too small initial spread. Another problem that
might emerge in this case, is that the disturbances of
the atmosphere are strongly related on short weather
timescales.

• Equivalently to the Baseline 1, the Ocean Lagged
hindcast is performed using 10 lagged days from
1st of January. The difference to the Baseline 1 is
that the daily altered ocean states were applied to the
ocean initial conditions, and the atmospheric pertur-
bations were not taken into account. Such a choice of
the initial conditions show very similar spatial struc-

tures of the oceanic disturbances, which produce ini-
tial spread focused on a stationary ocean state.

• EnKF hindcasts are based on 8 member weakly cou-
pled assimilation with EnKF assimilation of monthly
temperature and salinity observations for the ocean
(Brune et al., 2015) and the nudging scheme of
MiKlip Baseline 1 (Pohlmann et al., 2013) for the
atmosphere. For the ocean, we complement the sub-
surface observations of temperature and salinity from
EN4 (Good et al., 2013) with sea surface tempera-
tures from HadISST (Rayner et al., 2003), for the at-
mospheric nudging we use ERA40 and ERA Interim
re-analysis data (Uppala et al., 2005; Dee et al.,
2011). The assimilation runs from 1958 to 2014, the
hindcast ensemble is initialized every year on Jan-
uary 1st by using the assimilation ensemble last up-
dated on December 31st the year before. In the EnKF
initialized hindcast the disturbances are applied si-
multaneously in atmosphere and ocean. All hind-
casts are analysed for different lead years using eight
member ensemble.

2.2 Data

In contrast to usual evaluation approaches, where as ba-
sic analysis variables near surface temperature or free
atmosphere parameters like geopotential height are cho-
sen, we will use the freshwater flux P−E which couples
the atmospheric branch of the hydrological cycle to the
oceanic one. The aim is to perform an evaluation which
is process based. This will enable us to draw conclusions
about the hindcasts with respect to the hydrological cy-
cle.

The NCEP R2 atmospheric re-analysis is used for
the evaluation of the four different hindcast ensembles.
NCEP R2 is an atmospheric re-analysis produced by
NOAA National Centers for Environmental Predictions
(Kanamitsu et al., 2002). It is the second version of
their first NCEP R1 re-analysis (Kalnay et al., 1996)
starting from the beginning of the major satellite era.
The model is an atmospheric spectral model on a Gaus-
sian grid with resolution T62 (209 km) with 28 verti-
cal sigma levels. The R2 re-analysis release uses ob-
served precipitation forcing which was not included in
NCEP R1.

The NCEP R2 re-analysis product covers the same
time period starting in the year 2000 until 2011. The
global mean for that time period are 0.02 mm/day for
NCEP R2. Prior to evaluation of the global mean, clima-
tological seasonal cycle and decadal linear trends were
removed. Fig. 1a,b,c shows the grid pointwise estima-
tion of correlation coefficients to the atmospheric re-
analysis MERRA (GEOS-5 from NASA/GMAO, Wong
et al., 2011), to the ocenaic re-analysis GECCO2 (Köhl,
2015), and to the coupled data assimilation product from
GFDL (Zhang et al., 2007; Chang et al., 2013). The
two atmospheric reanalyses, NCEP R2 and MERRA, are
closest to each other, having an avarage correlation coef-
ficient larger than 0.6. The other two data sets GECCO2
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(a)

(b)

(c)

Figure 1: The correlation paterns of NCEP R2 with a) MERRA at-
mospheric re-analysis, b) GECCO2 ocean re-analysis and c) GFDL
coupled re-analysis. Prior, the product mean, the climatological sea-
sonal cycle and the linear trend were removed.

and GFDL clearly depart from this with average correla-
tions relative to NCEP R2 of 0.4 and even less. Also the
correlations between GECCO2 and GFDL are low, indi-
cating that these data sets probably contain other source
of uncertainty compared to NCEP R2 and MERRA. Ad-
ditionally NCEP R2 was explicitly produced with the
background to provide a better estimate of the energy
and water cycle (Kanamitsu et al., 2002). Therefore we
will use NCEP R2 as the basic data set estimating the
freshwater fluxes in the observed system.

3 Evaluation of the hindcasts

The quality of the different ensemble hindcasts is as-
sessed on unbiased monthly means of the air-sea fresh-
water flux P − E.

3.1 Mean climate state statistics

Standard Deviation

The variability of the four hindcasts, measured through
standard deviation around their ensemble means (Fig. 2b,
c,d,e) is suppressed in the North and equatorial Atlantic
for the different lead times. However, the variability of
the freshwater fluxes increases after a forecast lead time
of five years for all retrospective forecasts. The largest
increases in the order of half of the mean amplitude,
are found particularly in the Indian Ocean. With respect
to the different ensemble generation schemes, the EnKF
filter hindcast exhibit the strongest increases in variabil-
ity with the hindcast lead times.

Cumulative frequency analysis

The cumulative distribution function (CDF) is the esti-
mated probability that a realization of either the fore-
cast Xhind or observation Xobs is less equal than a fixed
threshold x. If as thresholds the realization values them-
selves are taken, the CDF D(x) can be simply obtained
by ranking the full data set in ascending order.

Dhind(x) = Prob(Xhind ≤ x)

Dobs(x) = Prob(Xobs ≤ x)
(3.1)

The D(x) functions for the 8 ensemble members of
the hindcasts and the NCEP R2 re-analysis data for dif-
ferent lead years are calculated from all grid point val-
ues over the verification period after removal of over-
all mean, the annual cycle and the linear trend. The co-
herence between the predictions and the observations
(shown in Fig. 3 for EnKF hindcast) is different for the
different lead years. The CDF from the NCEP R2 stays
within the ensemble spread for the investigated time in-
tervals.

To obtain a quantitative measure of the differences
and of the quality of the hindcast toward the re-analysis
for different lead years the square root of the integrated
squared distance ΔI of the CDF’s (Thorarinsdottir
et al., 2013) is calculated

ΔI =

√∑
x

(Dhind(x) − Dobs(x))2. (3.2)

Defined in this way, the score shows in one number
the departure of the ensemble from the NCEP R2 data
(Fig. 4). When ΔI is close to zero the hindcasts and
observations share an identical CDF or are calibrated.
However in the present case the results from the score
emphasizes more on the quality of the assimilation data
set than the quality of the hindcast. The score can not
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(a)

(b)

(c)

(d)

(e)

Figure 2: The spatial pattern of the standard deviation around the mean (a) of the four re-analysis products GFDL, NCEP R2, GECCO2
and MERRA and the MPIESM historical runs; and for lead year 1 and lead year 5 (b) AT, (c) Ocean lagged, (d) Baseline 1, and (e) EnKF
hindcasts. The unit is mm/day.
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(a) (b)

(c) (d)

Lorem ipsum

Figure 3: Cumulative frequency distribution function for the 8 members of the EnKF hindcast (probability estimates) for the lead year 1, 3,
5 and 6 (black curves) and the NCEP R2 re-analysis. The lead years and the reanalyses data cover the same time window.

Figure 4: Integrated squared difference of each ensemble member
of the EnKF, Baseline 1, Ocean lagged and AT hindcasts cumulative
frequency distribution and the NCEP R2 re-analysis data.

give clear sign for a predominance of a certain ensemble
generation scheme. However, it shows at which lead
time the prediction fits at best the re-analysis data set.
This score is more useful to estimate the forecasted
deviations from different data sets.

Table 1: Percentage of grid points with correlation to NCEP R2
greater than 0.3.

Lead year 1 Lead year 5 Lead year 2 to 5

AT 1.81 2.58 5.40
Lagged Ocean 2.13 2.63 4.75
Baseline 1 2.37 2.33 4.97
EnKF 4.51 2.50 3.54

3.2 Probabilistic evaluation

Correlation analysis

The spatial distribution of the correlation coefficients
significant at the 5 % level between the monthly aver-
ages of the ensemble means of the hindcasts and the
NCEP R2 are shown in Fig. 5 and Fig. 6. The percent-
ages of grid points with coefficients larger than 0.3 are
listed in Table 1.

EnKF hindcast shows the greatest area, approxi-
mately two times larger compared to the other hindcasts,
with coefficient exceeding 0.3 for the lead year 1 and for
all data sets. For the lead year 5, the Ocean Lagged hind-
cast results in the largest area of significant correlation,
with coefficients over 0.3. A decrease of the correlation
with the lead years is found for the EnKF hindcast. This
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(a) (b)

(c) (d)

Figure 5: Spatial pattern of the correlation coefficients between NCEP R2 and ensemble mean of different hindcasts for the lead year 1 at
5 % significance level.

(a) (b)

(c) (d)

Figure 6: The same as in Fig. 5 but for the lead year 5.
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(a)

(b)

Lorem ipsum

Figure 7: Ensemble spread score calculated for the air-sea freshwater fluxes produced from EnKF, Baseline 1, Ocean lagged, and AT
hindcast for the lead 1 and 5. The NCEP R2 re-analysis is considered as the truth.

behavior of the EnKF hindcast is related to the strong
variability increase with the lead years which has been
shown in Fig. 2. However, for AT hindcast, an increase
of the correlation on the inter-annual to multi-annual
time-scales is found when going from lead year 1 to
lead year 5. The overall significant correlation increases
when averaging the lead years 2 to 5. The highest values
are in favour for the AT ensemble generation method
(Table 1).

Spread skill score

Another metric to assess the quality of the hindcast
relates the variability within the ensemble to the mean
square error. This tests if the observations are similar
to a single realisation of the ensemble relative to the
ensemble mean. The ratio of the global means of within-
ensemble variability to the mean square error between
the ensemble mean and the observation is called the
ensemble spread score (Keller et al., 2010).

ESpreadSkill =

√∑
t,k(Xt,k − Xt,ensmean)2√∑
t(Xt,obs − Xt,ensmean)2

(3.3)

with the sum taken over verification time interval (in-
dex t) and the number of ensemble realisations k. The
score takes a value of one, when the ensemble spread is
perfect. If the ESpreadSkill is less (larger) than 1 the spread
is under-(over)estimated.

The results of the ESS for lead years 1 and 5 are
shown in Fig. 7. Evident improvement of the score is
seen only for EnKF for the lead year 5. But similarly
as the CDF analysis, this score actually shows no large
difference between the hindcasts. Although EnKF hind-
casts show a behavior different than the other hindcast,
this still does not point to some advantage or disadvan-
tage of the selected method.

Reliability diagrams

Measuring the reliability or calibration of a forecast
means that cases with a specified predicted probability
of occurrence of an event occur with that frequency in
the corresponding observations: cases where the occur-
rence of an event is predicted to be unlikely should also
occur only rarely in the verifying observations and vice
verse. Here we consider as event the occurrence of a pos-
itive freshwater flux anomaly.

A graphical presentation is the reliability diagram
which maps the observed frequency of the event dur-
ing situation when a certain probability of the event P f
is predicted. A reliable forecast system is given if the
observed frequencies align along the diagonal meaning
that on average over the full data set the predicted proba-
bilities P f are identical to the observed frequencies con-
ditioned on the predicted probabilities.

Reliability of a forecast should be based on a large
sample size, which the hindcasts can not provide for
a single model grid point or area mean with 5 years
12 months data length. Instead geographical boxes
of 10° by 10° are considered which provides up to
60 000 events (or less, when the box includes land
points) in the data series.

Fig. 8 shows an example of the reliability diagrams
for the Tropical North Atlantic for all the hindcast and
for lead year 1 and 5. A histogram of predicted proba-
bilities P f is also included in the plot. If the curve of the
observed relative frequency lies below the diagonal line,
this indicates overforecasting (probabilities too high), if
the curve lies above the line indicate underforecasting
(probabilities too low). When the curve is exactly along
the diagonal line, the forecast system is called reliable.
Most of the diagrams on 10° by 10° sliding box exhibit
underforecasting (not shown). To obtain a single number
characterizing the reliability a linear regression of the
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Figure 8: Example reliability diagrams for a 10° 10° box over the Tropical North Atlantic for the leads 1 (upper panel) and 5 (lower panel)
for a) AT, b) Lagged Ocean, c) Baseline 1 and d) EnKF.

frequency curve is constructed and the angle between
the regression line and the diagonal is calculated with:

tan θ =
l1 − l2

1 + l1 ∗ l2
, (3.4)

where l1 = 1 and l2 are the slopes of the diagonal and the
linear fit. If θ is in the interval [−30°, 30°] we consider
the forecast reliable. If θ is lower than −60° or larger
than 60° the forecast is unreliable, when θ is between
−30° and −60° or between 30° and 60° reliability is
not well defined. The reliability for all the hindcast and
observations is calculated within a moving box of 10°
Lat by 10° Lon and θ is assigned to the central point
of that window and plotted at each point for the lead
years 1 and 5 (Fig. 9 and Fig. 10). The reliability of the
hindcast depends on the given verification data set and
reliable forecasts are shaded in green, yellow shading
indicates the not well defined cases, while red is an
indication of unreliability (Weisheimer and Palmer,
2014; Stolzenberger et al., 2015).

Fig. 9 and 10 do not show any obvious spatially co-
herent signal for reliability even more than the correla-
tion patterns in Fig. 5 and 6. This could be the result
of the rather large uncertainties in the re-analysis fresh-
water fluxes or of missing quality in the hindcasts. To
measure reliability on a global scale we evaluated the
global percentage of reliable (green areas) versus unreli-
able forecasts. These numbers are shown in Table 2 and
Table 3. At this global level of aggregation the evalu-
ation of the hindcasts at the global scale can be sum-
marized as follows: the globally aggregated reliability
related skill for the lead year 1 reaches 21 % for the
Ocean Lagged hindcast. If one compares the hindcasts

Table 2: Percentage reliable forecast for different ensemble gener-
ation experiments compared to different NCEP R2 re-analysis data
set.

Lead year 1 Lead year 5

AT 18.31 25.00
Lagged Ocean 21.17 19.13
Baseline 1 14.52 14.97
EnKF 17.06 15.43
Baseline 1 14.52 14.97

Table 3: Percentage un-reliable forecast for different ensemble gen-
eration experiments compared to NCEP R2 re-analysis data set.

Lead year 1 Lead year 5

AT 12.32 14.13
Lagged Ocean 12.65 15.39
Baseline 1 15.81 21.18
EnKF 6.13 15.32

produced with different ensemble generation schemes,
the AT ensemble generation method exhibits the largest
values (bold numbers in Table 2) for the lead year 5
to 25 %. Considering on the global scale the percentages
of the unreliable forecast (red areas in Fig. 9 and 10)
show again a consistent picture. The smallest values are
obtained from the hindcasts which use the EnKF filter
for defining the initial conditions, (Table 3). This means
that the two physically based ensemble generation meth-
ods provide a small but persistent signal on the global
scale.
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Figure 9: Horizontal assessment of reliability of the four hindcasts, lead 1, towards NCEP R2 re-analysis data. The green color shows
reliable diagram e.g. the frequency observation probability versus probability estimates lies in an angle of −30° to 30° with respect to
perfect prediction. The yellow color is undefined forecast and the red is unreliable forecast.

4 Discussion and conclusion

To test and assess the skill of the ensemble generation
method we performed two hindcast experiments and in-
vestigated another two ones. Each of the experiments
uses different schemes for creating the initial perturba-
tion patterns. The ensemble generation methods differ in
two main characteristics. One feature is that:

• two of the hindcasts (AT and Ocean Lagged) disturb
initial conditions only in the ocean, since the interan-
nual and decadal variability are a product of the long
term ocean dynamics

• the other two hindcasts perturb the atmosphere and
ocean simultaneously, accounting for synchronized
coupled error definitions (Baseline 1 and EnKF).

The second feature is based on the annotation of the
phase space of the perturbations at the initial state of
the ensemble runs. One of the hindcast is based on ini-
tial perturbations using orthogonal anomaly fields of the
flow and the density fields while the other is based on
patterns spanning the multivariate probability density of
the initial state. The first are derived from physically
consistent anomalies generated by the internal ocean dy-
namics (AT) while the second are determined by the ob-
servations and the dynamics of the ocean model through
the EnKF approach. Both force each single realisation
in quite different ways than the lagged initial distur-
bances resulting from the very different pattern struc-
ture. The variable which is tested in this study is the air-
sea freshwater fluxes which knowledge is an important
parameter for the coupling of atmosphere and ocean.
With respect to the significance of the air-sea flux for
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Figure 10: The same as in Fig. 9 but for the lead year 5.

climate prediction, the task appears to be challenging
since the re-analysis data is uncertain on the exact ge-
ographical location of the occurrence of the variability
and its strength. In this study, we investigate the behav-
ior of the hindcasts using different evaluation scores. Al-
though not all of the scores can point to explicit domi-
nance of the skill of one or another ensemble genera-
tion method, we search for the most sensible ones, since
the differences between the ensemble generation meth-
ods are small. The validation of the hindcasts consid-
ers the interannual and multi-year variability and does
not account for the decadal linear trends and the sea-
sonal cycle. Validation of hindcasts on time scales larger
than years has currently been done without considering
uncertainties in the verifying re-analysis. The climate
prediction of freshwater fluxes, which collect the un-
certainties from the model limitations (parametrization
schemes) combined with the quasi observed freshwater
data sets, is not yet in a stage to provide answers about

decadal climate predictabitlity. In summary here, we can
list our findings as follows:

• Comparing the skill of the investigated hindcast with
respect to the disturbed system component, ocean
alone or ocean and atmosphere, we do not find any
significant effect when the atmosphere is perturbed.
This holds for the regional analysis as well as for
the global aggregations. It does not mean that the
initialization of the atmosphere with observations
is unimportant but that the uncertainty associated
with the atmospheric initial fields could probably be
ignored. The increase of the error growth rate with
the lead years is more due to the ocean dynamics than
due to the inherent atmospheric instabilities which
generate the uncertainties.

• The most successful forecast in terms of percent-
age of positive correlations larger than 0.3 between
re-analysis and hindcasts and spatial reliable esti-
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mates and smaller percentages of unreliable predic-
tions is in favour for the advanced ensemble gen-
eration methods Anomaly Transform and Ensemble
Kalman filtering. AT creates the largest error spread
at the beginning of the ensemble runs while EnKF
provides initial disturbances which are defined by
the error structure of the observations and the in-
ternal uncertainty of the dynamic model. Except for
the spatial disturbance orientation, an important role
also may play the norm on which the perturbation
patterns are created and the rescaling method for the
amplitudes (Romanova and Hense, 2015). But more
important both methods incorporate dynamical infor-
mation of uncertainty structures which might give a
hint on their slight advantages. The improvement of
both AT and EnKF versus the lagged initializations
(Ocean Lagged and Baseline 1) is found to be a fea-
ture when comparing to the NCEP R2 re-analysis of
the freshwater fluxes. But despite this advantage the
overall gain in skill is still small of about 5 %.

In conclusion, different verification methods not al-
ways give an explicit and one side answer to the ques-
tions concerning the skillfulness of the forecast or the
advantage of different ensemble generation methods
since either possess sensitivity in one or another aspect.
Other difficulties arise from the large uncertainties in the
observational data set. Our study does not show a huge
profit of one or another ensemble generation scheme on
interannual timescales. Similar results have been found
when comparing different ensemble generation methods
with other types of data like sea surface temperature.
But here the analysis often stopped at regional scales.
Having done an aggregation of skill measures to larger
scales e.g. global numbers for the freshwater fluxes, we
found that the above results give hints for the direction
of further research development, either in expanding the
initial error space phase based on physical modes or in
improving the evaluation methods by an explicit treat-
ment of different scales.
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