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Abstract 
High resolution information of climatic conditions is essential to many application in 
environmental sciences. Here we present the CHELSA data of downscaled temperature and 
precipitation estimates ERA interim climatic reanalysis to a high resolution of 30 arc sec. The 
algorithm for temperature is based on a statistical downscaling of atmospheric temperature. 
The precipitation algorithm incorporates orographic predictors such as wind fields, valley 
exposition, and boundary layer height, with a subsequent bias correction. The resulting data 
consist of a monthly temperature and precipitation climatology for the years 1979-2013. We 
present a comparison of data derived from the CHELSA algorithm with two other high 
resolution gridded products with overlapping temporal resolution (Tropical Rain Measuring 
Mission (TRMM) for precipitation, Moderate Resolution Imaging Spectroradiometer (MODIS) 
for temperature) and station data from the Global Historical Climate Network (GHCN). We 
show that the climatological data from CHELSA has a similar accuracy to other products for 
temperature, but that the predictions of orographic precipitation patterns are both better and 
at a high spatial resolution. 
 

Background & Summary 
 
High resolution climate data are essential to many applications in environmental sciences. 
While many studies in these fields are conducted at a resolutions of ~1km2, state of the art 
climate reanalyses often only represent climatic variations at spatial resolutions of 0.5° - 1° 
(ca. 25 – 100 km at the equator) at a global scale. The gap between these spatial scales is often 
regionally bridged using satellite data1–3, via statistical downscaling4–7, or interpolation 
methods8, but climatologies based on statistical downscaling are not currently available on a 
global scale due to numerous methodological challenges9. While interpolated datasets are 
available8, they often fail to accurately predict certain factors such as precipitation in highly 
variable terrain10. To achieve a finer resolution, interpolation and regression techniques either 
use data from local climate observations such as the Global Historical Climate Network 
(GHCN)11,12 and combine them with atmospheric predictors from gridded climate reanalyses 
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from the Global Precipitation Climatology Center (GPCC)13,14, Climate Research Unit (CRU)15,16, 
National Center for Atmospheric Research/National Center for Atmospheric Research 
(NCEP/NCAR)17, and the European Centre for Medium-Range Weather Forecast (ECMWF) 
climatic reanalysis interim (ERA-Interim)18. 
 
Different interpolation techniques such as linear or inverse distance interpolations and geo-
statistical kriging approaches have been used to delineate spatial high-resolution climatic 
information from local observations. These approaches allow for the inclusion of additional 
statistical parameters such as the standard error of an estimated value for assessing the 
statistical precision of spatial estimates19,20. However, although interpolation approaches such 
as the universal (regression) kriging21 allow the integration of controlling land-surface 
parameters such as elevation, slope or aspect, satisfactory results still require a more or less 
regular distribution of input data and a proper representation of topo-climatic settings10. This 
is confounded by the very biased distribution of weather stations, which are mostly found in 
more accessible environments. This leads to a poor representation of climatic variability in 
mountainous regions or areas with intact lowland rainforest, such as the Amazon or Congo 
basin, leading to a poor representation of these areas in global climate surfaces8,10.  
 
Statistical downscaling, on the other hand, exploits the observed relationship between large-
scale circulation models (GCM) and local weather stations or tries to find transfer functions 
between them6,7,22. Using multivariate statistical analyses (e.g. product-moment or canonical 
correlation analyses) it is possible to identify sets of large-scale GCM variables and obtain 
empirical functions (e.g. regression equations) which can predict the local weather variations 
at the spatial scale of interest. Such statistical downscaling approaches are, however, also 
heavily dependent on the data distribution and generally function better in areas with high 
data density10. Especially on a global scale, statistical downscaling becomes problematic23, as 
the spatial distribution of weather stations changes through time. While measurements for a 
given predictor might be available in a certain month, they might be absent in another, leading 
to a generally high heterogeneity of the underlying climate records when time series of 
precipitation need to be calculated. While this does not affect static predictors such as 
elevation, slope, or aspect, statistical downscaling becomes especially problematic when 
highly dynamic predictors such as wind fields need to be integrated.  
 
This general heterogeneity in the temporal and spatial distribution of such dynamic factors 
can lead to spurious correlations in specific months or specific regions, which can severely 
influence the parameters of a regression model. When specific predictors, such as windward 
or leeward sites of a mountain22,24 change over the course of the year, the location of the 
climatic records does not change in accordance. Therefore, regression-based downscaling 
might, for example, detect a significant negative relationship between a station in the 
windward site of a mountain during one month, and a positive one in another, although 
atmospheric physics would always predict a positive relationship. Due to this problem, 
statistical downscaling and interpolation methods have often been applied to single regions25, 
while a global model is lacking. 
 
To overcome the problem of heterogeneous spatial and temporal distribution of station data, 
and the problems encountered with spatial interpolation and regression approaches, we use 
a mechanistical downscaling algorithm for temperature and precipitation data provided from 
the ERA-Interim reanalysis18 in combination with gauge derived products from the GPCC13 and 
the GHCN11,12 datasets. Applying this algorithm to a monthly dataset ranging from Jan. 1979 
to Dec. 2013, we created a dataset with high spatial and temporal accuracy in topographic 
complex terrain globally, which might prove valuable in varied scientific applications that rely 
on high resolution climatic data.  



3 
 

 

Methods 
 
Calculation of monthly temperature and precipitation values 
 
ERA-Interim (developed at the European Centre for Medium-Range Weather Forecast, 
ECMWF), simulates 6-hourly large-scale atmospheric fields for 60 pressure levels between 
1000 and 1 hPa globally with a horizontal resolution of 0.75 lat/long (T255)18,26,27. Since the 
ERA-Interim reanalysis combines modelling results with ground and radiosonde observations 
as well as remote sensing data using a data assimilation system, the free-atmospheric and 
surface fields can be considered as the best approximation of the current largescale 
atmospheric situation for every time step. Several studies reveal that ERA-Interim adequately 
captures the variability of relevant free-air meteorological parameters, even over complex 
terrain28–30.  
 
Temperature 
 
Spatial variations of temperature is to a large degree determined by the vertical state of the 
troposphere and thus, if not affected by inversion layers, decrease with altitude31,32. The long 
term mean hypsometric temperature gradient covered in the ERA interim data accurately 
reflects the vertical distribution of moist- or dry-adiabatic lapse rates24. Typical temperature 
laps rates are in the order of −0.4 to −0.8 K/100 m with a characteristic seasonality. The 
corresponding temperature distribution pattern33 is therefore closely related to the surface 
elevation22.  
 
For our downscaling approach, we used the monthly means of daily means for temperature. 
Temperature lapse rates were calculated from the ERA Interim for pressure levels from 1000 
hPa to 300 hPa, using linear regression for each grid ERA Interim cell and then reduced to sea 
level. Sea level was then interpolated between grid cells, and then projected back on the 
elevational surface of the DEM using the formula: 
 
𝑡𝑒𝑙𝑒𝑣 = Γ𝑑 ∗ 𝑒𝑙𝑒𝑣 + 𝑡0          (1) 
 
where telev equal the Temperature at a given elevation, Γd equals the lapse rate, elev equals 
elevation at CHELSA resolution from GMTED201034, and t0 equals the interpolated 
temperature at sea level. 
 
Although temperature lapse rates are relatively linear, inversion layers or slight deviations in 
the linearity of the observed lapse rate can cause some over- or underestimation of t0 when 
the lapse rate is approximated from 1000 hPa to 300 hPa pressure levels especially in flat 
terrain. To correct for the possible deviations in temperatures from the mean, we used: 
 
𝑡𝑒𝑙𝑒𝑣_𝑐𝑜𝑟 = 𝑡𝑒𝑙𝑒𝑣 + 𝑡𝑒𝑟𝑎 − 𝑡𝑒𝑙𝑒𝑣̅̅ ̅̅ ̅̅         (2) 
 
where telev_cor is the corrected temperature, tera is the mean daily temperature at ERA-Interim 
resolution, and 𝑡𝑒𝑙𝑒𝑣̅̅ ̅̅ ̅̅  being the mean telev at ERA-Interim resolution. 
 
Precipitation 
 
Globally, elevation is one of the main topo-climatic drivers of vertical precipitation 
gradients22,35–40. In the convective regimes of the tropics, precipitation amounts commonly 
increase up to the condensation level at about 1000-1500 m above the ground surface while 
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the exponentially decreasing air moisture content in the mid- to upper troposphere results in 
a corresponding drying above the condensation level of tropical convection cluster systems 
(non linear precipitation lapse rates). Likewise, negative lapse rates typically occur in the 
extreme dry polar climates. At mid latitudes and in the subtropics, the frequent or even 
prevalent high reaching advection of moisture bearing air leads to increasing precipitation 
amounts of high mountain ranges such as the Alps41 (linear precipitation lapse rates42). The 
reduced precipitation amounts at lower settings are firstly due to the transpiration of rain 
drops when falling through non-saturated, lower-air levels. Secondly, the vertical precipitation 
gradient in high mountain ranges is often strengthened owing to the diurnal formation of 
autochthonous upslope breezes, which intensify cloud and precipitation formation in upper 
slope positions whilst the subsiding branch of these autochthonous local circulation systems 
along the valley axis leads to cloud dissolution and a corresponding reduction of precipitation 
rates in the valley bottoms. We approximated such orographic precipitation effects and took 
them into account in the CHELSA precipitation algorithm (Figure 1) as explained below. 
 
Wind effect correction 
 
Orographic precipitation patterns43, caused by the uplift of moist air currents at the windward 
side of a mountain range and the intimately related rain shadow effect at leeward settings 
induced by the blockage of moisture-bearing air, are most common effects influencing small 
scale precipitation patterns41,43–46. Based on the assumption that the windward impact on the 
precipitation intensity depends on the prevailing wind direction at any given elevation of an 
orographic barrier, we used a wind index22,24 to account for the expected higher precipitation 
at the windward sites of an orographic barrier.  
 
We used u-wind and v-wind components at the 10 m level of ERA-Interim as underlying wind 
components. These two wind components were interpolated to the CHELSA grid resolution 
using a B-spline interpolation. As the calculation of a windward leeward index (hereafter: wind 
effect) requires a projected coordinate system, both wind components were projected to a 
world Mercator projection and then combined to a directional grid. The wind effect H with 
windward component HW and the leeward component HL were then calculated using: 
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∑

1

𝑑WH𝑖
𝑡𝑎𝑛−1𝑛

𝑖=1 (
𝑑WZ𝑖
𝑑WH𝑖

)

∑
1

𝑑LH𝑖

𝑛
𝑖=1

+ 
∑

1

𝑑LH𝑖
𝑡𝑎𝑛−1𝑛

𝑖=1 (
𝑑LZ𝑖
𝑑LH𝑖

)

∑
1

𝑑LH𝑖

𝑛
𝑖=1

       (3) 

 

𝐻L =
∑

1

𝑑WH𝑖
𝑡𝑎𝑛−1𝑛

𝑖=1 (
𝑑LZ𝑖

𝑑WH𝑖
)

∑
1

𝑑LH𝑖

𝑛
𝑖=1

         (4) 

 
where dWHi and dLHi refer to the horizontal distances in windward and leeward direction and 
dWZi and dLZi are the corresponding vertical distances compared with the considered raster cell. 
The second summand in equation 3 accounts for the leeward impact of previously traversed 
mountain chains. The logarithmized horizontal distances in equation 4 lead to a longer-
distance impact of leeward rain shadow. The final wind-effect parameter, which is assumed 
to be related to the interaction of the large-scale wind field and the local-scale precipitation 
characteristics, is calculated as H = HL × HW and generally takes values between 0.7 for leeward 
and 1.3 for windward positions22. Equation (3) and equation (4) were applied to each grid cell 
at the CHELSA resolution in a world Mercator projection.  
 
Valley exposition correction 
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Although the wind effect algorithm can distinguish between the windward and leeward sites 
of an orographic barrier, it cannot distinguish extremely isolated valleys in high mountain 
areas. Such dry valleys are situated in areas where the wet air masses that are lifted at a 
mesoscale, flow over an orographic barrier and are prevented from flowing into deep valleys. 
To account for these effects, we used a variant of Eq. [3] and Eq. [4] with a linear search 
distance of 300 km in steps of 5° from 0° to 355° circular for each grid cell. The calculated 
leeward index was then scaled towards higher altitudes using: 
 

𝐸 = 𝐻𝐿

𝑒𝑙𝑒𝑣

𝑐           (5) 

 
which rescales the strength of the exposition index relative to elevation (elev) from 
GMTED2010, given higher isolated valley higher isolations than lower ones. The correction 
constant c was set to 9000 m to include all possible elevations of the DEM. 
 
Boundary layer correction: 
 
Orographic precipitation effects are less pronounced just above the surface, as well as in the 
free atmosphere above the planetary boundary layer25,47,48. The highest impact is considered 
just at the boundary layer height (as indicator for the condensation level) where most of the 
cloud water content is located. While former studies used single ERA pressure levels, known 
to represent the main wind field patterns in a specific area24, the pressure level representing 
the prevailing wind directions at the boundary layer is usually not known a priory on a global 
basis. We therefore used the boundary layer height B as indicator of the pressure level that 
has the highest contribution to the wind effect. The boundary layer height has been 
interpolated using a B-spline interpolation to the CHELSA resolution.  To recreated the typically 
nonlinear observed precipitation lapse rates49,50 with terrain elevation, the wind effect grid H 
containing the windward (HW) and leeward (HL) index values was then proportionally 
distributed within an ERA grid cell the grid containing the boundary layer height B using: 
 

𝐻𝑊𝐵 =
𝐻𝑊

1−(
|𝑑|−𝑑𝑚𝑎𝑥

𝑓
)
         (6) 

 

𝐻𝐿𝐵 =
𝐻𝐿

1−(
|𝑑|−𝑑𝑚𝑎𝑥

𝑓
)
         (7) 

 
with: 
 
𝑑 = 𝑎𝑙𝑡 − 𝐵          (8) 
 
and with d being the distance between a grid cell and the boundary layer height and dmax being 
the maximum distance between the boundary layer height and all grid cell at the CHELSA 
resolution within an respective ERA grid cell, and f being a constant of 9000 m. 
 
with: 
 
𝐵 = 𝐵𝐸𝑅𝐴 + 𝑒𝑙𝑒𝑣𝐸𝑅𝐴 + 𝑓        (9) 
 
B being the height of the monthly means of daily mean boundary layer from ERA-Interim, 
elevERA being the elevation of the ERA interim grid cell, and f being a constant of 500 m which 
takes into account that the level of highest precipitation is not necessarily at the lower bound 
of the boundary layer, but slightly higher47,48.  
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Precipitation data from ERA-Interim 
 
For accumulated parameters (total precipitation), we used the monthly means of daily 
forecast accumulations of total precipitation initialized at the synoptic hours 0:00 and 12:00. 
To calculate monthly precipitation sums, we added the synoptic monthly means at time 0:00, 
step 12 and time 12, step 12 and multiplied it by the number of days in in the respective 
month. 
 
Bias correction of ERA-Interim data using GPCC and GHCN data 
 
Model-generated estimates of the surface precipitation are extracted from short range 
forecasts, which vary with forecast length. This drift in the short-range forecasts can be a 
problem for users of monthly and climatic means51. One very common approach is to calculate 
the difference between baseline precipitation from the GCM and the observed precipitation 
and apply this ‘factor of change’ to historical observed time series to generate a synthetic time 
series52–54. We therefore performed three steps of bias correction. 
 
Monthly bias correction 
 
We applied the monthly bias correction before the downscaling of the precipitation data on 
the ERA-interim precipitation values directly54. For this end, we used the monthly values of the 
gridded GPCC dataset13 to calculate the monthly bias Rm caused by the spin up – spin down of 
the forecast algorithm51 for each month from Jan. 1979 – Dec. 2013 using: 
 

𝑅𝑚 =
𝑝𝐺𝑃𝐶𝐶

𝑝𝐸𝑅𝐴
          (10) 

 
We only used grid cells with climatic stations present for Rm. The spin up – spin down effect of 
ERA-Interim is spatially not independent, with a larger bias over high elevation terrain, or 
specific land forms such as tropical rainforests51. Based on this observation, we assumed that 
grid cells without stations share a similar bias as their neighbouring stations. To achieve a gap-
free grid surface, we therefore interpolated the gaps in the Rm grid using a multilevel B-spline 
interpolation with 14 error levels. The gap-free bias correction surface Rm was then multiplied 
with the ERA-Interim precipitation to archive the bias corrected monthly precipitation sums 
pm: 
 
𝑝𝑚 = 𝑝𝐸𝑅𝐴 × 𝑅𝑚         (11) 
 
Monthly precipitation including orographic effects 
 
To achieve the distribution of monthly precipitation sums p including orographic effects, we 
proportionally distributed the monthly bias corrected precipitation grids at the ERA resolution 
pm onto the boundary layer corrected wind effect surface H using: 
 

𝑝 = 𝑝𝑚 ∗
𝐻

�̅�
           (12) 

 
where �̅� is the mean wind effect at ERA resolution. 
 
Mean annual precipitation sums 
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We calculated the mean annual precipitation sums as the mean annual sum of precipitation 
in the years 1979-2013. As slight errors in the precipitation sums can, however, accumulate 
over time, we applied two additional bias correction steps which accounts for biases at a small 
spatial scale and at a large spatial scale. Additional errors can be accumulated as the locations 
of the grid cell do not fully reflect the climatic dynamics of the underlying complex terrain55, 
as well as the location of the climatic stations. 
 
Large scale bias correction 
 
A bias correction as applied for the monthly data would not work on the annual sums, as it 
would disregard the already included orographic wind effects at the finer resolution. The error 
also might change the modelled precipitation gradient in a specific area with differences in the 
maximum and minimum precipitation amounts (e.g. systematic error residuals of the spin up 
– spin down bias of the ERA-Interim forecast algorithm still present in the data). The applied 
B-spline interpolation of the monthly biases can also additionally create an error which might 
increase over time when precipitation sums are accumulated. We therefore opted for a bias 
correction of the maximum and minimum modelled precipitation values by the maximum and 
minimum precipitation values from the GPCC data. We therefore transferred the maximum 
and minimum values from both CHELSA and GPCC to a 1.5° x 1.5° grid and applied a bias 
correction on the gradient using: 
 

𝑝𝑐𝑜𝑟 = 𝑝min 𝐺𝑃𝐶𝐶 + (
𝑝max 𝐺𝑃𝐶𝐶−𝑝min 𝐺𝑃𝐶𝐶

𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛
− 𝑝𝑚𝑖𝑛)     (13) 

 
where pmin and pmax are the maximum mean and minimum mean modelled precipitation 
values, and pminGPCC and pmaxGPCC are the respective GPCC maximum mean and minimum mean 
values. As the GPCC data is based on climatic stations, the distribution of stations is not 
necessarily even within a 1.5° x 1.5° grid cell. If the GPCC values only represent valley stations 
for example, high precipitation sums are most likely to be underestimated by GPCC. We 
therefore only used the GPCC maximum and minimum values in the GPCC grid where a) 
stations were available, and b) the minimum values were smaller than the modelled values, 
and the maximum values were larger than the modelled values. 
 
Small scale bias correction 
 
Extreme values of precipitation at small spatial scales (e.g. single mountain tops) are often not 
caught by model algorithms, and are usually not reflected in the mean values at the ERA-
Interim, or GPCC resolutions especially in complex terrain 55. To include them, we used a small 
scale bias correction at the ERA-Interim resolution with data from climatic stations. For the 
GHCN station data we only used stations with full annual records in the years 1979-2013 and 
no obvious outliers or errors. The coordinates of the GHCN dataset are, however, of varying 
accuracy, and coordinates with only 1 decimal cannot accurately be placed within a specific 
grid cell at the CHELSA resolution. We therefore transferred the maximum and minimum 
annual precipitation sums recorded within an ERA-Interim grid cell for the modelled and 
observed precipitation values to the T255 grid. The selection for either GHCN maxima or 
minima compared to CHELSA maxima or minima was then done similarly to the large scale bias 
correction. The bias correction was performed using: 
 

𝑝𝑐𝑜𝑟2 = 𝑝min 𝐺𝐻𝐶𝑁 + (
𝑝max 𝐺𝐻𝐶𝑁−𝑝min 𝐺𝐻𝐶𝑁

𝑝𝑐𝑜𝑟 𝑚𝑎𝑥−𝑝𝑐𝑜𝑟 𝑚𝑖𝑛
− 𝑝𝑐𝑜𝑟 𝑚𝑖𝑛)     (14) 

 
Backward bias correction 
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To remove the bias responsible for the accumulated precipitation values from the monthly 
precipitation values pm, we applied a backward bias correction using: 
 

𝑝𝑚𝑐𝑜𝑟 = 𝑝𝑚 ×
∑ 𝑝𝑚

1979
2013

35

𝑝𝑐𝑜𝑟2
          (15) 

 
which removes the accumulated error from the monthly values and satisfies the condition that 
the sums of all month equals the corrected mean annual sums for 1979-2013 pcor2. 
 
Code availability 
 
The codes used to calculate the CHELSA climatology are written in C++ and are included in 
SAGA Version 2.2.7, free available at www.saga-gis.org under the GNU public license including 
the necessary source codes. Calculations where done in SAGA Version 2.2.7 on the “Science 
Cloud” cloud computing facility of the University of Zurich 
www.s3it.uzh.ch/infrastructure/sciencecloud/. 
 

Data Records 
 
The CHELSA data contains records for monthly mean temperature in °C and precipitation 
values in mm/year or mm/month, and derived annual mean values for the reference period 
1979-2013 in form of GeoTIFF files (Table 1). The files are freely available at www.chelsa-
climate.org as well as the World Data Center for Climate at DRKZ (WDCC).  
 

The file format is GeoTIFF. It can be opened in any GIS application including R. To open the 
files in R, we recommend the use of the function raster() from the raster package56. 
 
 

Technical Validation 
 
To validate the results of the CHELSA algorithm, we compare it with different datasets that are 
available at comparable spatial and temporal resolution. A statistical comparison with 
different datasets is, however, complicated by the fact that most temperature and 
precipitation datasets are parameterized using similar observational data, leading to generally 
high correlations between climatic reanalyses. 
 
Large scale spatial comparison of precipitation patterns 
 
To compare our precipitation data with those of other products, we first compared the spatial 
patterns of our results with those of the Tropical Rainfall Measuring Mission (TRMM)2,3 
combined multisatellite product TRMM/TMPA (3B43)57 for the years 1998-2013. 
TRMM/TMPA (3B43)57 is one of the few products that is available on a monthly basis on a high 
resolution and therefore allows comparison of the accumulated precipitation sums for a given 
reference period captured by CHELSA. A comparison of the two products shows high 
correlations for the mean annual sums (r=0.95, slope=0.934). Differences in the mean annual 
sums can mainly be detected in coastal regions, where CHELSA usually has higher rain sums 
compared to TRMM, and on the continents where CHELSA usually has lower values than 
TRMM/TMPA (3B43)57 (Figure 2). An explanation for these differences might be that 
TRMM/TMPA (3B43)57 is not able to distinguish between windward and leeward sides of 
mountains below its 0.25° resolution and therefore under- or overestimates the rainfall 
amounts in these areas. This is especially visible on oceanic islands such as Hawai’i, where 
TRMM/TMPA (3B43)57 is not able to capture the high amounts of rainfall58 created by 

http://www.saga-gis.org/
http://www.s3it.uzh.ch/infrastructure/sciencecloud/
http://www.chelsa-climate.org/
http://www.chelsa-climate.org/
http://www.wdc-climate.de/
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orographic effects and shows a severe dry bias compared to CHELSA. In general, the deviations 
between TRMM/TMPA (3B43)57 and CHELSA are moderate, with only a few regions showing 
deviations above 500 mm/year in precipitation. For these regions, we would urge caution the 
use of the total annual sums of our model and suggest the use of multiple models from various 
sources. 
 
Small scale comparison of precipitation patterns  
 
We conducted a small scale comparison of the precipitation patterns with three different 
models in the topographically and climatically highly complex terrain of Bhutan (Figure 3). A 
comparison of the mean annual sums between TRMM/TMPA (3B43)57, Worldclim8, CHELSA, 
and the statistical downscaling approach of Böhner35 shows similar patterns between all 
models at the mesoscale. The differences at the microscale are, however, severe between 
CHELSA and Böhner35 compared to Worldclim8. There are only few climate stations in the 
region of Bhutan, which creates spurious correlations between elevation and precipitation in 
the ANUSPLIN algorithm of Worldclim. CHELSA and Böhner show a more consistent relation 
between the terrain features and the resulting precipitation patterns. A validation of these 
patterns is, however, complicated, as there are no independent climate stations available. Yet, 
a comparison with the patterns of cloud formations in this region59 shows similarities in the 
patterns where clouds form and where higher precipitation amounts are predicted by CHELSA 
and Böhner (Figure 3). Although the formation of clouds does not necessarily coincide with 
rainfall, there is generally a high correlation between the formation of clouds and the patterns 
of rainfall especially in topographically complex terrain60. We therefore assume that our model 
is able to capture the topographic heterogeneity of precipitation at the small spatial scale well. 
We caution, however, towards the modelled absolute amounts of rainfall, which might be still 
under- or overestimated in certain cases compared to other models (Figure 2). 
 
Temporal correlations of precipitation and temperature patterns with comparable datasets 
 
We conducted the temporal comparison of CHELSA precipitation with other data with 
TRMM/TMPA (3B43)57 on a monthly basis from 1998-2011 (Figure 4). For the region covered 
by TRMM/TMPA (3B43)57 ranging from 50°N to 50°S, correlations of the spatial distribution of 
precipitation are generally high (ranging from 0.80-0.90). There are also no systematic 
variations in the correlations (Figure 4) during the analysed time period, indicating that the 
CHELSA algorithm performs spatially as well as temporally well for precipitation. Although 
station data was used to calibrate the CHELSA algorithm as well TRMM/TMPA (3B43) 
algorithm, we include a comparison between the station data, CHELSA, and TRMM/TMPA 
(3B43). This is, however, solely done to compare the patterns generated by CHELSA and 
TRMM/TMPA (3B43) relative to each other. 
 
We compared CHELSA temperature data to that of MODIS (MOD11C3)61 and GHCN Version 
311. Other high resolution products for temperature such as Worldclim do not have the same 
validation period as CHELSA. A comparison is therefore problematic due to the increase of 
global temperatures in the last decades62. PRISM25 is geographically restricted to the United 
States and therefore also not available for global comparisons. As climate station data from 
GHCN Version 3 is not directly used by the CHELSA algorithm for temperature, a comparison 
with station data is possible. As stations only provide limited information about the spatial 
patterns of temperature distribution, we additionally compared the CHELSA temperature 
patterns to those of MODIS (MOD11C3)61 (Figure 4). While MODIS (MOD11C3)61 is able to 
detect the spatial patterns of temperature comparably well at a small spatial scale, it suffers 
from several drawbacks such as the inability to detect temperatures in regions with high cloud 
cover. Coefficients of determination between MODIS (MOD11C3)61 and CHELSA temperatures 



10 
 

range from 0.95 to 0.99 globally, between GHCN Version 3 and CHELSA temperatures range 
0.96 to 099 globally, and between MODIS (MOD11C3) and GHCN Version 2 range from 0.83 – 
0.97. Both CHELSA and MODIS show systematically lower correlations during the northern 
summer months which might indicate erroneous temperature values in the GHCN dataset. 
The deviations might however also come from the overestimation of temperatures in the 
arctic by remote sensing data observed in as well in the MODIS63, and the ERA Interim data18. 
The high spatial correlation between CHELSA and MODIS (MOD11C3)61 shows that CHELSA is 
able to predict that spatial patterns of temperature distributions well, and additionally 
accurately predicts the observed values of temperature on a small scale.  

 
Usage Notes 
The dataset is in GEOtiff format. GEOtiff can be viewed using standard GIS software such as: 
SAGA GIS – (free) http://www.saga-gis.org/ 
ArcGIS - https://www.arcgis.com/ 
QGIS - (free) www.qgis.org 
DIVA – GIS - (free) http://www.diva-gis.org/ 
GRASS – GIS - (free) https://grass.osgeo.org/ 
 
All products of CHELSA are in a geographic coordinate system referenced to the WGS 84 
horizontal datum, with the horizontal coordinates expressed in decimal degrees. The CHELSA 
layer extents (minimum and maximum latitude and longitude) are a result of the coordinate 
system inherited from the 1-arc-second GMTED2010 data which itself inherited the grid 
extent from the 1-arc-second SRTM data. 
 
Note that because of the pixel center referencing of the input GMTED2010 data the full extent 
of each CHELSA grid as defined by the outside  edges of the pixels differs from an integer value 
of latitude or  longitude by 0.000138888888 degree (or 1/2 arc-second). Users of products 
based on the legacy GTOPO30 product should note that the coordinate referencing of CHELSA 
(and GMTED2010) and GTOPO30 are not the same. In GTOPO30, the integer lines of latitude 
and longitude fall directly on the edges of a 30-arc-second pixel. Thus, when overlaying CHELSA 
with products based on GTOPO30 a slight shift of 1/2 arc-second will be observed between 
the edges of corresponding 30-arc-second pixels. 
 
Resolution (decimal degrees):    0.0083333333 
West extent (minimum X-coordinate, longitude): -179.9959722222 
Southextent (minimum Y-coordinate, latitude):  -89.9959722222 
East extent (maximum X-coordinate, longitude):  180.05402633760002 
Northextent (maximum Y-coordinate, latitude):  89.98736039120003 
Rows:       21,599 
Columsn:      43,207 
 
Missing values are indicated with -99999 
 
Known issues of version 1.0 
– the grid extent contains rows larger than that of GMTED2010. This is due to cropping step 
during the algorithm which created 7 empty rows. This leads to the problem that the data 
cannot be read correctly into GrassGIS. The issue can be fixed by cropping the extent to rows 
43200, columns 22600 before loading. 
 
– areas between 179.284 E and 180 E as well -88.275 and -90 are missing in Version 1.0. This 
is due to a problem with the SAGA module which is used to transfer the ERA interim grids to 

http://www.saga-gis.org/
https://www.arcgis.com/
http://www.qgis.org/
http://www.diva-gis.org/
https://grass.osgeo.org/


11 
 

a -180 to 180 extent. The algorithm could not wrap around the dateline, leading to missing 
values. The issue will be addressed in the forthcoming versions. 
 
– Monthly precipitation Version 1.0 has no GHCN bias correction (only GPCC). The monthly 
values therefore represent the summation of the GPCC corrected values . For the monthly 
GHCN corrected values see Version 1.1. 
 

The data is feely available under the Creative Commons Licence: CC BY. 
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Figures 

 
 
Figure 1. Workflow of the CHELSA algorithm for precipitation data. Resulting raster datasets 
(parallelograms) from each calculation step (arrows) are shown for each step of the algorithm. 
Predictor variables are indicated in yellow, raster datasets of the dependent variable 
(precipitation) are indicated in blue, and bias correction raster datasets are indicated in green. 
The monthly product from which the climatology is derived, is indicated in orange.  
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Figure 2. Comparison of patterns of mean annual precipitation sums over the years 1998-2013 
between TRMM (3B43) and CHELSA, and their respective differences on a global scale. CHELSA 
is generally drier over large land masses than TRMM and wetter along mountain ranges and 
coastal regions. An exception seems to be the Andes of Peru and Bolivia, and the high 
mountain regions of Papua New Guinea, where CHELSA shows lower amounts of precipitation.  
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Figure 3. Comparison of precipitation patterns in the complex terrain of Bhutan (country 
boundaries in black) between TRMM (3B43), Worldclim8, CHELSA, the statistical downscaling 
approach of Böhner35, the topography from GMTED2010, and the cloud cover climatology 
from Wilson & Jetz59. In this region, most precipitation falls during the SW-monsoon in the 
northern summer, when wet air masses from the SW are lifted at the south face of the 
Himalayas and dry until reaching the Tibetan high plateau. While the mesoscale patterns are 
in congruence between models, there are clear differences at the microscale. Worldclim 
predicts wet valleys and dry mountain faces, whereas CHELSA and Böhner35 predict dry valleys 
and wet windward exposed mountain faces due to the inclusion of orographic predictors. 
CHELSA and Böhner35 are also in closer congruence with the observed distribution of cloud in 
the area, which shows lower cloud cover in the isolated mountain valleys compared to the 
wind exposed mountain faces in the south.  
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Figure 4. Temporal comparison of the CHELSA algorithm with TRMM (3B43), GHCN Version 2 
(precipitation) and GHCN Version 3 (temperature), and MODIS (MOD11C3). Coefficients of 
determination give the global correlation between products for a specific month. CHELSA 
precipitations shows significantly higher correlations with GHCN (Wilcoxon Test: W=8370, 
P<0.001), and CHELSA temperatures show significantly higher correlations with GHCN 
(Wilcoxon Test: W=23254, P<0.001). Correlations between CHELSA and TRMM are generally 
high for precipitation (Mean R2=0.82), and high between CHELSA and MODIS for 
temperature (Mean R2=0.99). 
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Table 1. Data records of CHELSA version 1.0 deposited at the German Climate Computing Center. DOI 10.1594/WDCC/CHELSA_v1. 
 

CHELSA_prec_1_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean january precipitation version 1.0 

CHELSA_prec_10_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean october precipitation version 1.0 

CHELSA_prec_11_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean november precipitation version 1.0 

CHELSA_prec_12_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean december precipitation version 1.0 

CHELSA_prec_1979-2013_land_v1 Chelsa climatology 1979-2013 annual mean precipitation version 1.0 

CHELSA_prec_2_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean february precipitation version 1.0 

CHELSA_prec_3_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean march precipitation version 1.0 

CHELSA_prec_4_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean april precipitation version 1.0 

CHELSA_prec_5_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean may precipitation version 1.0 

CHELSA_prec_6_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean june precipitation version 1.0 

CHELSA_prec_7_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean july precipitation version 1.0 

CHELSA_prec_8_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean august precipitation version 1.0 

CHELSA_prec_9_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean september precipitation version 1.0 

CHELSA_temp_1_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean january 2m temperature version 1.0 

CHELSA_temp_10_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean october 2m temperature version 1.0 

CHELSA_temp_11_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean november 2m temperature version 1.0 

CHELSA_temp_12_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean december 2m temperature version 1.0 

CHELSA_temp_1979-2013_land_v1 Chelsa climatology 1979-2013 annual mean 2m temperature version 1.0 

CHELSA_temp_2_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean february 2m temperature version 1.0 

CHELSA_temp_3_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean march 2m temperature version 1.0 

CHELSA_temp_4_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean april 2m temperature version 1.0 

CHELSA_temp_5_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean may 2m temperature version 1.0 

CHELSA_temp_6_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean june 2m temperature version 1.0 

CHELSA_temp_7_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean july 2m temperature version 1.0 

CHELSA_temp_8_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean august 2m temperature version 1.0 

CHELSA_temp_9_1979-2013_v1 Chelsa climatology 1979-2013 monthly mean september 2m temperature version 1.0 

CHELSA_v1_readme CHELSA_v1_readme.pdf 
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