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A B S T R A C T

In this dissertation I examine processes that cause Earth’s surface
warming to deviate from what we might expect. Using frameworks
that incorporate regional and global energy exchange, I scrutinise pre-
vious theories for why these deviations occur.

The first part of this thesis examines the 1998–2012 surface-warming
hiatus, in which the surface warmed more slowly than might be ex-
pected from examining model simulations or the long-term trend in
observations. The preferred explanation for the hiatus is that internal
variability in regional ocean heat uptake caused the surface warming
to slow. However, observational analyses disagree about the ocean
basin in which the definitive heat uptake occurred. Energy budgeting
for the ocean surface layer, over a 100-member historical ensemble of
simulations, reveals that variability in the top-of-atmosphere balance
could also have caused the hiatus. Although previous studies have at-
tributed the hiatus to fluctuations as large as 0.5 Wm−2, I show that
as little as 0.08 Wm−2 could be necessary. The sensitivity of these flux
deviations to the observational dataset and to energy budget choices
helps explain why previous studies conflict, and suggests that the
origin of the recent hiatus may never be identified.

The second part of this thesis examines how climate sensitivity in
model simulations grows with surface warming. The ‘pattern effect’
theory attributes this phenomenon to changing spatial patterns of
warming, but previous accounts of the pattern effect disagree. I pro-
pose a new framework to unite theories about how regional processes
affect climate sensitivity, and apply the framework to 1000-year sim-
ulations with a coupled climate model, exposed to abrupt CO2 in-
creases up to sixteen-times pre-industrial concentrations. Applying
the assumptions of previous studies to the model output leads to mis-
diagnosis of radiative forcing. Furthermore, the fact that past studies
find different critical regions for the pattern effect may result from
their assumptions and not divergent model behaviour. The pattern ef-
fect in the four simulations depends partly on the time elapsed since
the forcing increase, and not merely the surface temperature, suggest-
ing that current observations could underestimate climate sensitivity.

Both parts of this thesis represent areas of tension in climate science
between different perspectives and tools. Normative understandings
may presume the superiority of empirical measurement over model
simulation, or the superiority of the detailed regional perspective over
the general global perspective. However, the findings presented in
this thesis serve to highlight the pitfalls of restricting ourselves to one
tool or view in the endeavour to understand climate.
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Z U S A M M E N FA S S U N G

In dieser Dissertation untersuche ich, warum die tatsächliche Erwär-
mung der globalen Oberfläche von der zu erwartenden abweicht. An-
hand von Ansätzen, die sowohl den regionalen wie auch den globalen
Energieaustausch berücksichtigen, untersuche ich bisherige Erklärun-
gen für diese Unregelmäßigkeiten in der Erwärmung.

Der erste Teil der Dissertation untersucht den Hiatus der Oberflä-
chenerwärmung zwischen 1998 und 2012, ein Zeitraum, in dem die
Oberfläche sich langsamer erwärmte als durch die Berücksichtigung
von Modellsimulationen oder des beobachteten Langfristtrends zu
vermuten wäre. Die gängigste Erklärung des Hiatus geht davon aus,
dass die geringere Oberflächenerwärmung von der internen Variabi-
lität der regionalen Wärmeaufnahme des Ozeans verursacht wurde.
Jedoch stimmen Analysen der Beobachtungen über die ausschlagge-
bende Region des Ozeans nicht überein. Hier wird anhand eines Ener-
giehaushalts der oberflächennahen Ozeanschichten und eines Ensem-
bles von 100 gekoppelten Klimamodellsimulationen gezeigt, dass der
Hiatus ebenfalls durch die Variabilität der Energiebilanz am Ober-
rand der Atmosphäre hätte verursacht werden können. Obwohl frü-
here Studien dem Hiatus Fluktuationen bis zu 0.5 Wm−2 zugeschrie-
ben haben, zeige ich, dass bereits eine Abweichung von 0.08 Wm−2

einen Hiatus verursachen könnte. Die Sensibilität dieser Flussabwei-
chungen gegenüber dem benutzten Datensatz und den Annahmen
bezüglich des Energiehaushalts legt nahe, dass der Ursprung des Hia-
tus wohl niemals bestimmt werden kann.

Der zweite Teil der Ausarbeitung analysiert, wie die Klimasensi-
tivität von Modellsimulationen mit der Erderwärmung steigt. Die
Theorie des ‚Mustereffekts’ führt dieses Phänomen auf sich verän-
dernde räumliche Muster der Erwärmung zurück. Allerdings sind
sich bisherige Erklärungsansätze des Mustereffekts nicht einig. Ich
schlage einen neuen Theorierahmen vor, um verschiedene Erklärun-
gen für die Auswirkungen der regionalen Ebene auf die Klimasensi-
tivität miteinander in Einklang zu bringen. Der Theorierahmen wird
auf vier 1000-jährige Simulationen angewandt, die einem abrupten
Anstieg an CO2 Konzentration ausgesetzt werden, die bis zu 16-fach
den prä-industriellen Stand übersteigt. Wenn die Annahmen früherer
Studien auf die Modellergebnisse angewandt werden, kommt es zu
einer Fehleinschätzung des externen Antriebs. Ferner kann die Aus-
wahl unterschiedlicher Regionen, denen die Studien eine entscheiden-
de Rolle in der Änderung der Klimasensitivität beimessen, durch die
eigenen Annahmen und nicht durch abweichende Modellergebnisse
erklärt werden. Da der Mustereffekt in den vier Simulationen teilwei-
se vom Zeitraum seit Beginn des Antriebanstiegs und nicht nur von
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der Temperatur abhängig ist, könnten die Beobachtungen des heuti-
gen Klimas die Klimasensitivität unterschätzen.

Die beiden in der Dissertation untersuchten Aspekte stellen Be-
reiche der Klimawissenschaft dar, in welchen Unstimmigkeiten zwi-
schen verschiedenen Sichtweisen und Methoden bestehen. Ein nor-
matives Verständnis könnte die Überlegenheit empirischer Messun-
gen gegenüber Modellsimulationen annehmen oder die Überlegen-
heit der detailreichen regionalen Perspektive gegenüber der allgemei-
nen globalen. Gleichwohl unterstreichen die Ergebnisse dieser Arbeit,
wie irreführend es für unser Verständnis des Klimas sein kann, sich
auf eine Perspektive oder ein Werkzeug zu beschränken.
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1
C O N F L I C T I N G E X P E C TAT I O N S O F S U R FA C E
WA R M I N G

We have no right to measure these [Joule-Thomson] heating
and cooling effects on any scale of temperature, as we have
not yet formed a thermometric scale.

— William Thomson, "Heat", 1880; cited in Chang (2008)

1.1 introduction

This dissertation is about the surface temperature of the Earth and
its evolution under global warming. In particular, I consider pro-
cesses that change that evolution, bringing the surface temperature
away from the path we might expect. Surface temperature can deviate
from our expectations only temporarily, such as during the 1998–2012

surface-warming hiatus. But it can also deviate systematically, when
changing radiative feedbacks alter the very relationship between forc-
ing from CO2 emissions and the amount that the surface must warm
to compensate.

Our knowledge of surface temperature on Earth is shaped primar-
ily by two tools: observations and computational simulations of cli-
mate. These tools represent the culmination of centuries of hard-won
scientific advances. Consider the above quote from William Thomson,
perhaps better known as Lord Kelvin. Even in the mid- to late nine-
teenth century, when humankind’s influence on the Earth’s surface
was already under way, the theories of what temperature is and how
it should be measured were still not settled (Chang 2008). We have
since developed a vast observational network measuring temperature
on land, in the ocean and circling the planet in space. We now have
the computational power to simulate the temperature in past climates
and to make projections of how it might behave in the future.

Despite these formidable advances, we must remain conscious of
the shortcomings of our tools when we interpret their output. The ob-
servational network for surface temperature is full of gaps, especially
in critical areas where warming proceeds faster than average (Cowtan
and Way 2014). In the areas we do observe, there are biases related to
location and our methods of measurement (Karl et al. 2015; Williams Observations versus

simulationset al. 2012). Surface temperature can be simulated without these mea-
surement issues by climate models, but models systematically misrep-
resent observable large-scale features of climate (for example, Li and
Xie 2014; Mueller and Seneviratne 2014; Siongco et al. 2014; Wang et
al. 2014). Furthermore, these two tools are not as independent of each
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2 conflicting expectations of surface warming

other as we sometimes imagine: atmospheric models help fill gaps in
observational data (Dee et al. 2014), while many models are ‘tuned’
to match certain aspects of observed climate (Mauritsen et al. 2012).

However, it can be particularly fruitful for science when observa-
tions and models conflict. A conflict creates dissonance in trusted
assumptions. It creates a critical space in which we are forced to scru-
tinise the limits of our tools and, perhaps more importantly, our in-
terpretation of them.

In this dissertation I examine two such conflicts. The first con-
flict occurred when the observed surface temperature increased more
slowly over the period 1998–2012 than most models simulated. This
event has come to be known as the surface-warming hiatus. The un-The

surface-warming
hiatus

certainty created by the hiatus was exploited by those seeking to
spread doubt about the science of global warming, and placed climate
scientists in an uncomfortable position (Lewandowsky et al. 2015).
The hiatus is now attributed largely to internal variability and not to
any systematic conflict between models and observations. However,
the search for the origin of that internal variability is ongoing.

The second, ongoing conflict is the difference between simulated
and observed estimates of Earth’s climate sensitivity. Climate sensi-
tivity describes the long-term surface warming response to increases
in atmospheric CO2. It is therefore of critical importance for negotiat-
ing the appropriate response to climate change. Models and proxies
of past climate suggest that recent observations could underestimate
the climate sensitivity. Unlike the hiatus, where the observations rep-
resent the ‘true’ behaviour of the surface temperature, the superiorityA changing climate

sensitivity of observations or model simulations in determining climate sensitiv-
ity is more ambiguous. The models and proxies suggest that climate
sensitivity is not constant but could change in the future. Observa-
tions of the current climate would not be able to predict such be-
haviour.

In spaces of conflict between climate models and observations, our
interpretation of the outputs from these tools can be influenced by
our perspective. For example, we might choose to adopt a regional or
a global perspective. Global behaviour is simply the sum of regionalRegional versus

global perspectives behaviour, and yet the global perspective can provide simplicity and
oversight that the regional cannot. On the other hand, the regional
perspective can provide physical insights that are difficult to obtain
from the global perspective. Each perspective disposes us to favour
one particular explanation of the climate over others.

A regional perspective has been adopted by those searching for
drivers of the internal variability during the hiatus. The consensus
explanation is that surface warming was slowed by wind-driven mix-
ing in the Pacific Ocean. In Chapter 2, I will show how a return to the
global perspective affords insights into our interpretation of observa-



1.2 the surface-warming hiatus 3

tions of this period – and into internal variability more generally –
that the regional perspective has obscured.

The regional perspective informs recent research into climate sen-
sitivity, which breaks with the traditional global perspective by ex-
amining how spatial patterns of warming might influence global be-
haviour. But studies examining the regional warming patterns come
to different conclusions about their global effect. In Chapter 3, I de-
velop a framework to better understand studies that use the regional
perspective and their differing findings, and I suggest implications
for how we can position simulated and observed climate sensitivity
estimates in relation to one another.

In the final Chapter, I summarise my results and integrate my find-
ings into a wider scientific context. I consider how the movement be-
tween regional and global perspectives can shape our view of climate
phenomena. I also consider the nature of conflicts between observa-
tions and climate models, and reflect on what the conflicts in this
study can tell us about the ‘epistemic status’ of these tools.

First of all, however, I will explore the background of the two con-
flicts in more detail and derive the motivating research questions for
the work that follows.

1.2 the surface-warming hiatus

From around 1998 to 2012, the rise in global mean surface tempera-
ture appeared to stall (see Figure 1.1). The surface did not actually
stop warming, but the warming measured by global observations
of surface temperature slowed in comparison to long-term warming,
producing a gap of around –0.07 ºC per decade (Flato et al. 2013). The
gap between the observed surface-warming trend and the trend sim-
ulated by models was even larger. The multi-model ensemble mean
of the Coupled Model Intercomparison Project Phase 5 (CMIP5) sug-
gested surface warming 2.5 times faster than the observed warming,
a gap of –0.17 ºC per decade (Flato et al. 2013).

The climate science community came under fire from their detrac-
tors, who used the hiatus to question the science behind global warm-
ing (Lewandowsky et al. 2015). Some misplaced claims from climate
scientists exacerbated the confusion: in the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change (IPCC), a mislead-
ing figure intimated that surface warming would not slow down, but
instead accelerate (see Figure A.1). The perceived threat to the science
of global warming, and the open question of what had caused the
slowdown, led to a flood of publications about the hiatus.

Some scientists claimed we needn’t look further than the observa-
tions themselves. The recent warming had been underestimated due
to the methods by which some data products account for unobserved
regions (Cowtan and Way 2014) and by changes in the methods used
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Figure 1.1: The surface-warming hiatus. Anomalies in global mean surface temperature are shown,
relative to the period 1961–1990. The CMIP5 ensemble mean (of 36 models encompassing
114 realisations; Taylor et al. 2012) is shown in red; the observations according to HadCRUT4

(Morice et al. 2012) are shown in black, with thin lines representing the 95% confidence interval
for uncertainty in observations. The ‘surface-warming hiatus’ describes the period from 1998–
2012 when the warming trend appears to slow and diverge from the model mean, although
periods in which warming progresses faster or slower than the model mean occur multiple
times over the twentieth century (see Marotzke and Forster 2015).
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to observe sea surface temperatures (Karl et al. 2015). Whether these
bias corrections explain the gap between the 1998–2012 trend and the
long-term trend or not depends on how the long-term trend is de-
fined (Fyfe et al. 2016; cf Karl et al. 2015). However, the corrections
certainly cannot explain the larger gap between the models and ob-
servations (Fyfe et al. 2016).

Assuming a slowdown had occurred, other scientists suggested
that decreases in radiative forcing were the cause. These were forcing
decreases that had not been considered in CMIP5 models. A series
of small volcanic eruptions over the 2000s may have contributed be-
tween –0.1 and –0.2 W m−2 (Ridley et al. 2014; Solomon et al. 2011) to
forcing, almost enough to counteract the approximately 0.27 W m−2

per decade from increasing CO2 concentrations. The resulting impact
on surface temperature was claimed to be between 0.02 ºC (Haywood
et al. 2014) and 0.07ºC (Fyfe et al. 2013; Solomon et al. 2011), perhaps
enough to account for the deviation from the long-term trend, but not
the gap between models and observations. However, if one includes
the decreased irradiance from the solar-cycle minimum (Kopp and
Lean 2011), possibly around –0.1 W m−2 (Trenberth and Fasullo 2013),
and other small forcing adjustments, then even the gap between mod-
els and observations can be explained (Schmidt et al. 2014), or so it
was suggested.

One group tested this hypothesis. They performed 60 simulations
with a CMIP5 model, half with updated forcing and half with the
old forcing, and found that there was no distinguishable difference
in temperature trends over 1998–2012 (Thorne et al. 2015). Forcing
differences across CMIP5 models have relatively little influence on
the differences in their 15-year GMST trends; it takes longer, perhaps
up to 60 years, for forcing to cause systematic differences in GMST
trends amongst the models (Marotzke and Forster 2015). In any case,
despite their oversight of small volcanoes and the solar minimum, the
CMIP5 models actually did not systemically overestimate the forcing
in observations (Flato et al. 2013): some models did, but many didn’t.
So while a forced contribution cannot be excluded, it is not sufficient
to explain the hiatus. This suggests that internal variability had a
significant role to play (Flato et al. 2013; Guemas et al. 2013; Marotzke
and Forster 2015; Thorne et al. 2015).

Internal variability describes quasi-random fluctuations in the cli-
mate: unforced variations due to the chaotic nature of the system
that may channel into particular modes like the El Niño-Southern
Oscillation. In models, decadal internal variability is thought to be
responsible for fluctuations in the Earth’s energy budget of around
0.1 W m−2 and to account for trends in GMST as large as 0.3 ºC per
decade (Palmer and McNeall 2014). Because of internal variability’s
quasi-random nature, models are not expected to be able to capture
its influence during the hiatus, unless they are initialised from a re-
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cent climate state (Guemas et al. 2013). This would explain the gap be-
tween observations and the CMIP5 ensemble mean. Single ensemble
members or the observations represent just one realisation of climate
that can deviate on decadal timescales from the forced trend, but
taking the mean of many members cancels this variability. It would
not be the first time in the historical period that observed decadal
trends in GMST had wandered away from the CMIP5 ensemble mean
(Marotzke and Forster 2015).

A particular form of internal variability known as the Interdecadal
Pacific Oscillation (IPO) has become important to the hiatus narrative.
Whenever the IPO turns negative, sea surface temperatures of the
tropical Pacific become cooler-than-average for a decade or longer
(Power et al. 1999). The pattern associated with the IPO is thought
to have had a key role in producing the variability observed during
the hiatus (Dai et al. 2015; England et al. 2014; Kosaka and Xie 2013;
Meehl et al. 2011, 2013) and events similar to the hiatus in the past
(Maher et al. 2014). One study in particular showed how cooling in a
relatively small area of the Pacific, accounting for less than 10% of the
global surface, could influence the global evolution of GMST, bring-
ing it in line with observations (Kosaka and Xie 2013). A further study
suggested a plausible explanation for the Pacific cooling, linking it to
mixing caused by the exceptional winds observed over this region
during the hiatus (England et al. 2014). Discoveries of large heat up-
take in the Pacific (Liu et al. 2016; Nieves et al. 2015) appeared to
complete the physical picture, and helped form the consensus among
many scientists that the hiatus was caused by heat uptake in the Pa-
cific Ocean.

Whereas the arguments about forcing rely on a global perspec-
tive, the internal variability explanation has intuitively suggested a
regional perspective, because of the spatial signatures that modes like
the IPO imprint on the surface. But the regional perspective has not
clinched the internal variability debate at all. The focus on the Pacific
has sidelined other explanations, including the fact that cooling over
the Eurasian land mass was important (Cohen et al. 2012; Li et al.
2015). And while the Pacific variability argument stresses the role of
ocean heat uptake, there has been only minimal and tentative discus-
sion of the role that variability in energy entering the surface from
the top-of-atmosphere (TOA) might play (Smith et al. 2015; Zhou et al.
2016). In some cases the TOA variability has been explicitly dismissed
as too small to explain the hiatus (Brown et al. 2014; Trenberth and Fa-
sullo 2013). Even amongst those who subscribe to the explanation of
ocean heat uptake, the regional perspective has led to the discovery of
a bewildering array of ocean basins, each of which could individually
have caused the hiatus. The ocean basins that were declared responsi-
ble for the heat uptake include: the Pacific (England et al. 2014; Nieves
et al. 2015), the Indian Ocean (Lee et al. 2015), the Atlantic (Katsman



1.3 climate sensitivity and the pattern effect 7

et al. 2011), the Atlantic and the Southern Ocean (Chen and Tung
2014), and other different combinations of these basins (Drijfhout et
al. 2014; Guemas et al. 2013; Liu et al. 2016; Meehl et al. 2011, 2013).

In Chapter 2, I will show how returning to the global perspective
helps explain these divergent results and allows for alternative expla-
nations. I consider the following research questions:

1. a) Why are there multiple and conflicting accounts that re-
gional ocean heat uptake caused the 1998–2012 hiatus? Motivating research

questions for
Chapter 2b) What can we learn from the hiatus about the origins of

decadal internal variability in global mean surface tem-
perature (GMST)?

Chapter 2 is modelled on work that I have recently published with
co-authors (Hedemann et al. 2017), but which has been re-structured
and adapted to fit the format of this dissertation.

When the GMST experienced its small deviation off-course, the to-
tal energy gained by the Earth due to global warming hardly changed.
Some studies therefore considered the Earth’s energy imbalance a
more robust measurement of global warming (Schuckmann et al. 2016;
Yan et al. 2016). While the energy imbalance may be more robust, the
surface temperature more tangibly influences our lives, and many
important climate variables for life on the surface scale linearly with
the GMST (Giorgetta et al. 2013; Huntingford and Cox 2000). In any
case, measuring global warming via the energy balance could present
difficulties in the future, since the simple relationship between the en-
ergy imbalance and surface temperature may eventually change. This
phenomenon is the topic I turn to next.

1.3 climate sensitivity and the pattern effect

For more than one hundred years, scientists have attempted to use the
Earth’s energy imbalance to estimate the change in temperature that
might result from increased CO2 concentrations (Arrhenius 1896). In
the 1960s, with the development of the first numerical models of ra-
diative convective equilibrium, it was proposed that the outgoing ra-
diation might not develop with the fourth-power of temperature, as
expected from the Stefan-Boltzmann Law. Instead, the makeup of the
atmosphere produces a relationship between the energy imbalance
and surface temperature that is near linear (Manabe and Wetherald
1967).

Using the roughly linear relationship between the global energy
imbalance and the global mean surface temperature, Gregory estab-
lished a regression method to predict the final state of equilibrium
warming after an abrupt doubling in atmospheric CO2 concentration
(Gregory et al. 2004). According to the method, one plots the global
imbalance in energy at the top of the Earth’s atmosphere (R) against
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the change in global mean surface temperature (T ) after an initial forc-
ing (F), and performs a linear regression to imply T at the horizontal
intercept, R = 0.

R = F+ λT , (1.1)

In this formulation, λ is less than zero and represents the global feed-
back parameter. If the initial forcing is equivalent to an abrupt dou-
bling of CO2, the implied equilibrium temperature is known as the
equilibrium climate sensitivity (ECS), which has become a powerful
yardstick for comparing the behaviour of global warming in different
models of climate.

Observations of the Earth’s imbalance and temperature during the
instrumental record suggest that a doubling of CO2 could lead to an
ECS of around 2 ºC (Otto et al. 2013). However, the uncertainties in the
temperature record and estimates of forcing mean that values of ECS
spanning 1.2–3.9 ºC are likely (Otto et al. 2013). Recent observational
studies continue to tweak the central observed value of 2 ºC, either by
accounting for volcanic activity (1.6 ºC; Lewis and Curry 2015) or by
adjusting for the efficacy of different types of forcing (2.6 ºC; Marvel
et al. 2015).

Continuing improvements in the accuracy of observations and their
interpretation are surely crucial for narrowing our estimates of ECS,
but our expectations must also be directed by evidence from climate
models, which can paint a very different picture. The multi-model
mean ECS for the CMIP5 models is higher than suggested by obser-
vations: 3.2 ºC with a range of 2.1–4.7 ºC (Flato et al. 2013). More
importantly, many of the CMIP5 models display a tendency for the
implied ECS to increase over time or with warming, with some attain-
ing an ECS of as much as 5–6 ºC (Andrews et al. 2015). The possibility
that the ECS is not constant, but can evolve, places the observational
estimates in a different light: narrowing the range of ECS that we can
observe currently would not necessarily be a strong constraint on fu-
ture warming estimates. Bloch-Johnson et al. (2015) considered the
effect of a changing ECS on observational estimates by including a
T2 term in Equation 1.1. While the lower range of the observational
estimates hardly changed, the probability that the true ECS fell into
the higher range increased drastically. Some question whether we can
trust this simulated behaviour (Lewis and Curry 2015), since a chang-
ing ECS might simply be an artefact of model physics and not relate
to the real world.

Reconstructions of the geological past suggest otherwise. During
the warm, early period of the Pliocene (5.3 to 2.8 Myr ago) the cli-
mate sensitivity could have been higher than 7 ºC according to one
study (Royer 2016), although there are large uncertainties inherent
in reconstructions of past climate (Huber and Caballero 2011). Ap-
proaches combining proxy data with model reconstructions suggest
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a much more modest range for the Pliocene (1.9–3.7ºC; Hargreaves
and Annan 2016). But, as shown in Figure 1.2, higher values for ECS
are thought to have been obtained 55 million years ago during the
Paleocene-Eocene Thermal Maximum (3.7–6.5 K; Shaffer et al. 2016).
Most proxy or modelling-based studies of the past agree that climate
sensitivity appears to increase in warmer climates (Caballero and Hu-
ber 2013; Hargreaves and Annan 2016; Royer 2016; Shaffer et al. 2016).

There are good physical reasons why the ECS might change in
warmer climates: it could be state-dependent. Radiative feedbacks,
which determine λ in Equation 1.1, are thought to change with cli-
mate state on different timescales (Rohling et al. 2012). In warmer
climates, feedback changes could be related to a combination of wa-
ter vapour and cloud feedbacks over the tropics (Caballero and Huber
2013; Hansen et al. 2005; Meraner et al. 2013; Popp et al. 2016; Shaf-
fer et al. 2016). Climate sensitivity could be higher in colder climates
too, due to changes in high-latitude albedo feedbacks (Kutzbach et al.
2013).

The changes in feedbacks need not only be state-dependent. Many
climate models produce noticeable changes in the implied climate
sensitivity within several decades of an abrupt increase in forcing
(Andrews et al. 2015; Block and Mauritsen 2013; Geoffroy et al. 2013b;
Gregory et al. 2004; Held et al. 2010; Rugenstein et al. 2016a; Se-
nior and Mitchell 2000; Williams et al. 2008). These relatively rapid
changes have led to the suggestion that the ECS is also time-dependent,
depending not necessarily on the GMST change but on the time
elapsed since the forcing has been applied (see Figure 1.2). However,
the modelling studies do not usually cover timescales longer than
several hundred years, or extreme states of climate, such as those
expected during the Paleocene-Eocene Thermal Maximum, so the is-
sues of state-dependence or time-dependence may be related to the
forcing strength and the timescale.

Whether state-dependent or time-dependent, the changing relation-
ship between energy imbalance and surface warming has posed a
problem for the global perspective described by Equation 1.1. There
have been several suggestions for how the changing relationship might
be accounted for. Williams et al. (2008) suggested an adjustment to the
forcing term (F) is required, since fast adjustments in cloud cover and
other climate properties occur in response to increased CO2 that are
not related to GMST change. But even after accounting for these rapid
changes, there are still apparent changes in feedbacks that occur with
warming (Block and Mauritsen 2013).

The idea of an ocean heat uptake efficacy or efficiency factor has
also been proposed, which multiplies the imbalance term R in Equa-
tion 1.1 and can change with time (Geoffroy et al. 2013b; Held et al.
2010; Watanabe et al. 2013; Winton et al. 2010). The factor is intended
to mimic the slow response timescale of deep ocean heat uptake to
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Figure 1.2: Estimates of equilibrium climate sensitivity (ECS) in proxies and observations. Esti-
mates of ECS over Earth’s history are shown with their uncertainties, including: the Paleaocene-
Eocene Thermal Maximum (red; Shaffer et al. 2016), the Pliocene (green; Hargreaves and An-
nan 2016), and the last glacial maximum (blue; Hargreaves et al. 2012). The grey dot represents
an estimate and uncertainty bars for the observational record (Mauritsen and Pincus 2017). The
black line represents a quadratic relationship between ECS and temperature, and is shown for
illustrative purposes only. Time-dependence could cause a temporary depression in the value
of ECS for a particular state of temperature. Figure provided courtesy of Thorsten Mauritsen.

forcing and its influence on the relationship between the imbalance
and surface temperature. Geoffroy et al. (2013b) justified the efficacy
concept by explaining that deep ocean heat uptake affects the spa-
tial pattern of warming at the surface, and therefore may eventually
excite different local feedbacks than the initial, faster response to forc-
ing. The concept of efficacy, although couched in a global formula-
tion, had already began the move towards accounting for regional
behaviour.

A proper adoption of the regional perspective was suggested by
Armour et al. (2013). Their study claimed that the changing non-
linear relationship between imbalance and warming can be explained
if we incorporate regional warming information. The spatial pattern
of warming controls apparent changes to the global feedback by dif-
ferently weighting regional feedbacks, which can be constant. Sev-
eral studies have questioned this proposition by demonstrating the
regional feedbacks do change (Block and Mauritsen 2013; Rose and
Rayborn 2016; Rose et al. 2014; Rugenstein et al. 2016a), although the
changes may still be connected to the warming pattern (Andrews et
al. 2015). The idea that the surface warming pattern drives changes
in the ECS has since been coined ‘the pattern effect’. However, this
single term belies the variety of definitions of the pattern effect and
how it works at a regional level.
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In Chapter 3, I consider the different formulations of the pattern
effect in previous studies. By introducing a new framework for un-
derstanding the regional perspective, I show how the varying results
of previous modelling studies may be attributed to their definition
of the pattern effect and not to divergent model behaviour alone. By
examining the pattern effect under multiple forcing strengths and on
the millennial timescale, I also return to the ideas of time-dependence
and state-dependence and suggest implications for how we might
position observed estimates of the ECS in relation to estimates from
model simulations and proxies. In Chapter 3, I ask:

2. a) How do differences between existing formulations of the
pattern effect influence the interpretation of changes to
equilibrium climate sensitivity (ECS)? Motivating research

questions for
Chapter 3b) How does a regional framework help us position simu-

lated estimates of ECS in relation to observed estimates?

Before we dive into the murky realms of future surface warming,
let us first explore how surface warming proceeds today. In the fol-
lowing chapter, the surface-warming hiatus provides an opportunity
to grapple with the contemporary relationship between the Earth’s
energy budget and its surface warming. The hiatus also helps us to
understand the tension between observations and model simulations
of climate, even for events that occur right before our eyes.





2
T H E S U B T L E O R I G I N S O F S U R FA C E - WA R M I N G
H I AT U S E S

2.1 summary

During the first decade of the 21st Century, the Earth’s surface warm-
ed more slowly than climate models simulated (Flato et al. 2013). This
surface-warming hiatus is attributed by some studies to model errors
in external forcing (Kopp and Lean 2011; Santer et al. 2014; Solomon
et al. 2011), while others point to heat rearrangements in the ocean
caused by internal variability (Balmaseda et al. 2013; Guemas et al.
2013; Katsman et al. 2011; Meehl et al. 2011, 2013; Watanabe et al.
2013), the timing of which cannot be predicted by the models (Flato
et al. 2013). However, observational analyses disagree about which
ocean region is responsible (Chen and Tung 2014; Drijfhout et al. 2014;
England et al. 2014; Lee et al. 2015; Liu et al. 2016; Nieves et al. 2015). I
show here that the hiatus could also have been caused by internal vari-
ability in the top-of-atmosphere energy imbalance. Energy budgeting
for the ocean surface layer over a 100-member historical ensemble re-
veals that hiatuses are caused by energy-flux deviations as small as
0.08 Wm−2, which can originate at the top of the atmosphere, in the
ocean, or both. Budgeting with existing observations cannot constrain
the origin of the recent hiatus, because the uncertainty in observations
dwarfs the small flux deviations that could cause a hiatus. The sen-
sitivity of these flux deviations to the observational dataset and to
energy budget choices helps explain why previous studies conflict,
and suggests that the origin of the recent hiatus may never be identi-
fied.

2.2 introduction

The surface temperature of the Earth warmed more slowly over the
period 1998–2012 than could be expected by examining either most
model projections or the long-term warming trend (Flato et al. 2013).
Even though some studies now attribute the deviation from the long-
term trend to observational biases (Cowtan and Way 2014; Karl et
al. 2015), the gap between observations and models persists. The ob-
served trend deviated by as much as –0.17 ºC per decade from the
CMIP5 ensemble mean projection (Flato et al. 2013) – a gap two to
four times the observed trend. The hiatus therefore continues to chal-
lenge climate science.

13
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Many studies propose that heat was drawn down from the sur-
face into deeper ocean layers by quasi-random decadal fluctuations
known as internal variability. The trouble with this proposition is that
most major ocean regions – the Pacific (England et al. 2014; Nieves et
al. 2015), the Indian Ocean (Lee et al. 2015), the Atlantic (Katsman et
al. 2011), the Atlantic and the Southern Ocean (Chen and Tung 2014),
and other combinations of basins (Drijfhout et al. 2014; Guemas et
al. 2013; Liu et al. 2016; Meehl et al. 2011, 2013) – have been named
individually responsible for the heat uptake.

Here I explain these conflicting results and point to alternative in-
terpretations. I develop a surface energy budget, which I apply to
hiatuses in a 100-member historical ensemble (‘the large ensemble’),
generated with the coupled climate model mpi-esm1 .1 (Giorgetta
et al. 2013). Using the surface energy budget, I quantify how much
deviation in energy flux occurs during a hiatus. For each hiatus in
the ensemble, I then determine its origin by quantifying energy con-
tributions to the surface from ocean heat exchange and from the TOA
radiative imbalance. Finally, I use the energy budget to compare in-
terpretations of the recent hiatus in existing observations (Balmaseda
et al. 2013; Levitus et al. 2012; Smith et al. 2015; Trenberth et al. 2014).

2.3 hiatuses in the large ensemble

The ‘large historical ensemble’ in this study was generated by the
Max Planck Institute Earth System Model version 1.1 (mpi-esm1 .1),
an incremental improvement of the coupled ocean-atmosphere gen-
eral circulation model submitted to CMIP5 in the LR configuration
(Giorgetta et al. 2013). The 100 ensemble members were generated
under CMIP5 historical forcing from 1850 until 2005, with extensions
to 2015 under the RCP4.5 scenario (Giorgetta et al. 2013).

The ensemble’s internal variability of 15-year global mean surface
temperature (GMST) trends (5–95% range of 0.30 ºC per decade) is
slightly larger than an estimate for the CMIP5 ensemble (5–95% range
of 0.26 ºC per decade; Marotzke and Forster 2015).
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Figure 2.1: Distribution of 15-year trends in GMST in the 100-member ensemble. The coupled climate model mpi-esm1 .1 is forced with CMIP5-prescribed
historical forcing from 1850 until 2005, and extended until 2015 with the RCP4.5 scenario. When the red line lies above the grey line, at least one ensemble
member is experiencing a hiatus, defined as a deviation of more than 0.17 ºC per decade below the ensemble mean. This deviation is the same as the gap
between the CMIP5 ensemble mean (black cross) and the observed (yellow cross) GMST trends for the period 1998–2012. Contours represent the number of
ensemble members in bins of 0.05 ºC per decade.
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GMST trends are first calculated from the slope of an ordinary least-
squares linear regression over a 15-year sliding window, to be con-
sistent with the hiatus as described in Flato et al. (2013). Ensemble
anomalies are then calculated at each time step (t) for each ensemble
member (n):

X
′
t,n = Xt,n −

1

100

100∑
n=1

Xt,n (2.1)

I define hiatuses in the large ensemble as any 15-year period where
the GMST trend deviates by at least –0.17 ºC per decade from the
ensemble mean. This definition is consistent with the gap between
models and observations over the period 1998–2012 (Figure 2.1), as
described in the IPCC Assessment Report 5 (Flato et al. 2013). Devi-
ations in each ensemble member from the large-ensemble mean rep-
resent internal variability, which can be cleanly separated from the
forced component (the ensemble mean) due to the ensemble’s un-
precedented size. There are hundreds of such hiatuses (364, or 2.4%
of all 15,200 trends) – subject to historical forcing but due entirely to
internal variability – distributed across all time periods in the ensem-
ble (Figure 2.1).

2.4 energy budgeting for the surface layer

The origin of each hiatus can be deduced from energy budgeting for
the ocean’s surface layer, which dominates the thermal capacity of the
Earth’s surface and therefore mediates the decadal GMST response
to flux perturbations. I consider two main flux components acting on
the ocean surface layer over decadal timescales: the TOA component
from above and the ocean component from below (Figure 2.2). The
TOA component is the top-of-atmosphere radiative flux imbalance
minus atmospheric heat uptake. The ocean component is the total
heat-content change below the ocean surface layer, defined at 100 m
depth. Both components are converted to ensemble anomalies (to iso-
late the internal variability component) from values filtered over a
15-year sliding window and warm the surface layer when positive.

The budget is constructed this way for two reasons. First, the cho-
sen boundary fluxes (Figure 2.2) close the surface energy budget and
correlate well with GMST trends. Second, the choice of 100 m for
the surface layer depth maximises the flux-divergence necessary for a
hiatus, and therefore represents the most conservative choice for our
analysis. Energy budgeting in a coupled climate model is less than
straightforward, and so the following subsections explain the details
of these budget choices.
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Figure 2.2: The surface energy budget in the large ensemble. Red colouring indi-
cates the global mean surface temperature (GMST) and the components
included in the surface-layer flux-divergence. The smaller flux compo-
nents in black are excluded because they do not improve budget closure
or the relationship with GMST trends. Numbers in brackets represent
the variability of each heat flux (Wm−2), given as the root-mean-square
of 15-year ensemble anomalies.

2.4.1 The flux-divergence combination

There are two criteria for determining the choice of fluxes that make
up the surface-layer energy budget:

1. The simplest closure of the energy budget, implying high cor-
relation and a near one-to-one relationship between the surface-
layer flux-divergence and total heat content changes within the
surface layer; and

2. A high correlation between the energy budget and GMST trends.

For the first criterion, I compare the surface-layer flux-divergence
with changes in surface-layer heat content over 15-year periods. For
this purpose, only the start and end states of each 15-year period are
relevant. However, the ordinary least-squares method, which is used
in this chapter and in the hiatus literature to diagnose temperature
trends (Flato et al. 2013; Hartmann et al. 2013) is problematic, because
it is influenced by the pathway from start- to end-states. Instead, an
alternative trend method is used for the budget closure: a difference
filter is calculated from the start- and end-years in the 15-year sliding
window, divided by the time difference of 14 years:

∆Xt =
1

14
(Xt+14 −Xt) (2.2)
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Figure 2.3: Regression of ocean surface-layer heat content with flux-divergence. a, Regression be-
tween ensemble anomalies in ocean surface-layer heat content and the flux-divergence chosen
in this study (combination 2 in b). b, Different energy-flux combinations are regressed against
changes in the ocean surface-layer heat content (including sea ice) to find the best closure of the
energy budget in the 100-member historical ensemble (mpi-esm1 .1). Combination 2 achieves
the expected one-to-one regression slope with ocean surface-layer heat content. All values are
first filtered with a 15-year sliding window by taking the heat-content difference between start-
and end-years, and then converted to ensemble anomalies.

Ensemble anomalies are then calculated in the usual way, as in Equa-
tion 2.1. Using a difference filter instead of the ordinary least-squares
method significantly improves the accuracy of the budget terms and
the ability to close the model’s energy budget.

Any energy budget in a coupled climate model must also account
for energy leakage. Leakage is energy created or destroyed by model
error, which includes energy lost in grid cells seen by the atmospheric
model component but not by the ocean model component; and, rain-
fall and river runoff entering the ocean, which both violate energy
conservation by adopting the temperature of the ocean without en-
ergy exchange (Mauritsen et al. 2012). mpi-esm1 .1 has improved en-
ergy conservation compared to its predecessor, mpi-esm, and both
have relatively small leakage compared to models in the CMIP5 en-
semble (Mauritsen et al. 2012). Energy leakage of 0.44 Wm−2 is first
estimated from 2000 years of the control run and then removed as a
constant from the surface-layer energy budget.

The selected flux-divergence combination is the sum of two com-
ponents: the TOA radiative imbalance minus atmospheric heat up-
take (trends in vertically integrated moist static energy); and trends in
ocean heat content below the ocean surface layer. This is the simplest
flux combination that matches the expected one-to-one relationship
between flux-divergence and change in surface-layer heat content
(combination 2 in Figure 2.3). The sum of the TOA component and
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Figure 2.4: Regression of global mean surface temperature (GMST) trends with flux-divergence.
a, Regression between ensemble anomalies in GMST trends and the flux-divergence chosen for
this study (combination 2 in b). Red dots indicate hiatuses. b, The regression between GMST
trends and ensemble anomalies in flux-divergence is shown for different flux combinations in
the 100-member historical ensemble (mpi-esm1 .1). Linear trends in heat content and GMST
are calculated over a 15-year sliding window and converted to ensemble anomalies .

ocean component highly correlates with heat-content changes within
the ocean surface layer (r2 = 0.97, slope=1.00). Other flux components
(Figure 2.2) are excluded because they are small, are connected with
known energy leakages, and because they do not improve budget
closure (Figure 2.3). The TOA imbalance and ocean heat uptake dom-
inate decadal internal variability in the global energy budget of other
CMIP5 models as well (Palmer and McNeall 2014).

Although the difference method provides more exact energy ac-
counting, the ordinary least-squares trending method is used for the
comparison between the energy budget and GMST trends. This choice
is necessary because the least-squares method corresponds to the def-
inition of the hiatus in the literature (Flato et al. 2013; Hartmann et
al. 2013), and using different time-filtering methods for each variable
in the correlation would introduce significant errors. Any terms ex-
pressed as heat content (Joules) are thus converted to trend anoma-
lies in the same way as GMST, and then converted to units of Wm−2

over the total surface area of the Earth. All energy fluxes that are al-
ready output from the model as Wm−2 are first time-integrated and
then treated the same as heat content. This step ensures the same
time-filtering for all aspects of the energy budget.

For the selected flux-divergence combination, the correlation with
GMST trends is high (r2=0.80; Figure 2.4). Removing the minor bud-
get terms that are related to phase changes (land-ice and sea-ice
changes) or including the heat flux from the soil does not improve
the relationship with GMST trends (Figure 2.4).
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2.4.2 The surface-layer depth

The ocean component represents heat uptake below the ocean sur-
face layer. Because budget closure is not influenced by the choice of
ocean surface layer depth, the choice of surface layer should meet the
second criterion for the energy budget: the heat content of the sur-
face layer must have a high correlation with changes in GMST. The
highest correlation would be achieved by defining the ocean surface
layer at the bottom boundary of the sixth model layer (62 m depth;
Figure 2.5).

However, I choose to define the ocean surface layer at 100 m (as in
Baker and Roe 2009; Brown et al. 2014; Geoffroy et al. 2013a), because
around this depth the flux-divergence anomaly for a hiatus reaches a
maximum (Figure 2.5) and is therefore the most conservative choice
for the following analysis. Choosing a surface depth beyond 100 m
further exceeds the globally averaged mixed layer, and so the corre-
lation between the energy budget and GMST trends sharply decays
(Figure 2.5).

Figure 2.5: Results from surface budgets determined by increasingly deeper

definitions of the ocean surface layer. For each depth, a linear re-
gression is performed for GMST trends against the surface-layer flux-
divergence (both as 15-year ensemble anomalies). Shown in black (top
axis) is the expected deviation in flux-divergence required to cause a hia-
tus, calculated from the regression slope. Shown in red (bottom axis) is
the correlation (r2) of each regression. The correlation rapidly deterio-
rates for definitions of the surface layer below 100 m.
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2.5 the energetic origins of hiatuses in the large en-
semble

2.5.1 How much flux-divergence causes a hiatus?

Using the energy budget I can determine the magnitude of flux anoma-
lies associated with each hiatus. From the slope of the regression be-
tween surface-layer flux-divergence and GMST trends, I find that the
expected flux-divergence anomaly for a hiatus (a –0.17 ºC per decade
anomaly) is merely –0.082 Wm−2. If all of this flux-divergence were
concentrated in the the ocean’s top 100 m, it would correspond to
an average cooling of only –0.10 ºC per decade, and indeed this is
what occurs in the model: the ocean surface layer cools on average
by only –0.10 ºC per decade during hiatuses. However, the effects of
that cooling are amplified at the land surface (Byrne and O’Gorman
2013). Hiatuses caused only by ocean heat uptake tend to cool the
land surface more effectively, which means they generally require
a lower flux-divergence anomaly than other hiatuses to achieve the
same cooling. Variation in the ratio of land to ocean surface-cooling
leads to variation around the expected flux-divergence anomaly: an
interval of –0.082 ±0.038 Wm−2 covers the 5–95% range for all hia-
tuses.

These results suggest that the total combined anomaly in TOA
fluxes and ocean heat uptake that caused the gap between obser-
vations and models during the hiatus could be on the order of 0.1
Wm−2. Defining hiatuses as equal to the observed 1998–2012 anomaly
from the long-term observed trend (an anomaly of 0.04–0.07 C per
decade) would reduce the threshold to just 0.02–0.03 Wm−2.

2.5.2 Which ocean regions can provide the flux-divergence?

Across the large ensemble, the 0.082 Wm−2 threshold in energy flux is
frequently exceeded by anomalous heat-content changes in all major
ocean basins1, especially in the Atlantic, Pacific and Southern Oceans
(Figure 2.6).

However, these heat-content changes are dominated by interbasin
heat exchange, which does not contribute to the surface-layer flux-
divergence. In each major basin, the variations in heat content below
the surface layer cannot predict trends in GMST (Figure 2.6), and
indeed would falsely predict many more hiatuses than actually occur.

Even the global ocean heat uptake below 100 m correlates poorly
with GMST trends (Figure 2.6), because the TOA component tends
to oppose the ocean component’s contribution to the energy budget
(see below, Figure 2.8). The flux-divergence anomaly, which has less

1 Ocean boundaries are identical to those used in CMIP5. See Jungclaus et al. (2013b).
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Figure 2.6: Heat fluxes and their predictive power for GMST trends. a, Fre-
quency with which each component exceeds the expected threshold for
a hiatus (–0.082 Wm−2). b, Correlation between global mean surface tem-
perature (GMST) trends and heat fluxes in the large ensemble (as 15-year
ensemble anomalies). In a and b, grey bars represent changes in ocean
heat content below the ocean surface layer (100 m) by basin, blue bars
represent the ocean and TOA components, and the red bar is the surface-
layer flux-divergence (TOA + ocean components).

than half the variability of either the TOA or ocean component alone,
is the only reliable predictor of GMST trends.

The role of the TOA and the ocean in each hiatus can be determined
by comparing their relative contributions to the flux-divergence anom-
aly, as in Figure 2.7. For hiatuses in the large historical ensemble, the
negative (cooling) anomaly is caused entirely by the TOA in 12% of
cases and entirely by the ocean in 24%. In the remainder (64%), the
negative anomaly is caused by the TOA and ocean acting together
(bottom left quadrant of Figure 2.8). TOA variability is therefore in-
volved in 76% of all hiatuses2.

2.6 the origin of the hiatus in observations

Applying a similar analysis to observations should reveal the ener-
getic origin of the gap between models and observations during the
recent hiatus. I convert two observation-based estimates of fluxes over
2000–2010 to anomalies by subtracting the mean energy budget of the
large ensemble for the same period (see Table 2.1 and Table 2.2). These
anomalies include both the effect of internal variability and any po-
tential effects of forcing differences between model and observations.
Choosing 2000–2010 means that we do not cover the full hiatus pe-
riod (1998–2012) and that the corresponding gap in GMST trend be-
tween models and observations is reduced, because the warming rate
increased after 2000 (Karl et al. 2015). However, this choice allows
us to construct temporally consistent energy budgets from multiple

2 There is no significant relationship between the origin of hiatuses and different peri-
ods in time. See Table B.1.
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Figure 2.7: Example illustrating the energetic origin of a hiatus. a, A hiatus is an observed negative
deviation from the expected global mean surface temperature trend, where the expectation
could be the long-term warming trend, or the warming simulated by climate models. The
deviation, or anomaly, is the observation minus the expectation. b, The trend in GMST is
determined by the surface-layer energy budget, which is dominated over decadal timescales
by energy fluxes from the top-of-atmosphere (TOA) radiation imbalance and ocean heat uptake
below the ocean surface layer. In a standard global warming scenario, the TOA contributes a
positive absolute (warming) flux to the surface, and ocean heat uptake contributes a negative
absolute (cooling) flux to the surface, which is the case for both the observation and expectation
in the example shown. The anomalies, which are much smaller than the absolute TOA and
ocean fluxes, reveal the energetic source of this hiatus: the Ocean anomaly is small and positive
(warming), whereas the TOA anomaly is larger and negative (cooling). Therefore, the shown
hiatus is caused only by variation in the TOA. The example fluxes are displayed in Wm−2

(right axis) and as contributions to the GMST trend in ºC per decade (left axis). To determine
the values in ºC per decade, the fluxes in Wm−2 are divided by the constant 0.48 Wm−2 /
(ºC decade−1), which represents the relationship between internal variability in surface-layer
flux-divergence and GMST trends in the large ensemble.
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sources and to take advantage of the improved quality of observa-
tions after 2000.

A third budget is based on the results of England et al. (2014), in
which the authors present a plausible mechanism for the hiatus. Al-
though their results are model-derived, the model is forced with ex-
treme winds that were observed during the hiatus.

2.6.1 Constructing observation-based budgets

The first observation-based budget uses a recent estimate of TOA
fluxes, which is based on the CERES satellite data-product, Argo
floats and AMIP simulations (Smith et al. 2015). The ocean compo-
nent uses the WOA dataset (Levitus et al. 2012): pentadal heat-content
values for 700–2000 m and yearly heat content values for the upper
700 m. A separate estimate for deep-ocean warming below 2000 m is
used (Purkey and Johnson 2010). From the total heat uptake, I sub-
tract the heat-content trend for the first 100 m in the WOA objective
analysis data (Levitus et al. 2012), calculated from in-situ temperature
with a constant density and specific heat of 4×10

6 Joules m−3 ºC−1.
For this first budget, the 1-sigma error bars for the TOA estimate

are taken from the same source as the estimate itself (Smith et al.
2015). The error bars for the WOA ocean heat-content trend are cal-
culated as plus or minus the standard error of the slope parameter,
assuming that the errors in heat content are auto-correlated and be-
have like an AR(1) process (Hartmann et al. 2013; Santer et al. 2008).
The auto-correlation coefficient for the errors is estimated from resid-
uals in heat-content data preceding the 2000s (1957–1999). A reduced
degrees-of-freedom is calculated from the auto-correlation coefficient
and scales the estimate of the standard error in heat content, which is
calculated directly from the error estimates provided with the WOA
data (not from the regression residuals).

The second observation-based budget uses ORAS4 ocean reanaly-
sis data. The total-depth heat uptake in the 2000s is taken from Bal-
maseda et al. (2013). The trend for the top 100 m is calculated from
the available ORAS4 potential temperature values with a constant
density and specific heat of 4×10

6 Joules m-3 ºC−1. The 1-sigma error
bars are taken directly from Balmaseda et al. (2013). For this second
budget, the corresponding TOA flux estimate and its error bars are
taken from Trenberth et al. (2014).

Both observation-based budgets are converted to anomalies by sub-
tracting the large ensemble mean energy budget for 2000–2010. The
large ensemble budget is first adjusted to account for ocean drift.
Although the ocean model component conserves energy internally,
‘drift’ occurs when the ocean is not at equilibrium, and absorbs or re-
leases heat due to adjustment processes that occur on multi-millennial
timescales. mpi-esm1 .1 has limited drift, because pre-industrial sim-
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budget total top below top ens . anomaly

2000m 2000m 100m mean

ORAS4 −0.84± 0.08 − − −0.02 −0.66 −0.16± 0.08

WOA −0.56± 0.15 −0.49± 0.09 −0.07± 0.06 −0.07 −0.66 +0.17± 0.15

Table 2.1: Observational estimates for the ocean component over 2000–2010 in

Wm
−2. The anomaly for the ocean component is calculated by subtract-

ing the top 100 m from the total, and then subtracting the corresponding
ensemble mean (over the period 2000–2010 in the large ensemble). The es-
timate for below 2000 m in the WOA estimate is taken from Purkey and
Johnson (2010) for the period 1990–2010. Uncertainties are shown as ± one
standard error.

budget total ensemble mean anomaly

ORAS4 +0.91± 0.1 +0.77 +0.14± 0.1

WOA +0.62± 0.28 +0.77 −0.15± 0.28

Table 2.2: Observational estimates for the TOA component over 2000–2010 in

Wm
−2. The anomaly for the TOA component is calculated from the total

observational estimate minus the corresponding ensemble mean (over the
period 2000–2010 in the large ensemble). Uncertainties are shown as ± one
standard error.

ulations are spun-up not from a climatology or an ocean-state esti-
mate, but from the control simulations of previous model versions
(Jungclaus et al. 2013a); the spin-up period therefore extends over
multiple millenia. Drift poses no issue for energy budgeting within
the large ensemble itself, because the process of taking ensemble
anomalies removes any such effects. But for the observation-based
budgets, drift could artificially weight the interpretation of the hiatus
origin toward the ocean or the TOA. To calculate the drift, a quadratic
function is first fitted to ocean heat content over the 2000-year control
run (as in Sen Gupta et al. 2013). Since each ensemble member starts
from a different point in the control run, the drift is estimated from
the rate-of-change in the quadratic that corresponds to each ensem-
ble member’s midpoint. The resulting ensemble-mean drift of 0.01

Wm−2 is removed from both the ocean component and the TOA com-
ponent in the two observation-based budgets.

For third budget, the values are taken from England et al. (2014),
where they are expressed as anomalies from their control experiment
for the heat-content change in the top 125m of ocean and the remain-
ing ocean depth. I convert these values to 15-year fluxes over the total
Earth surface to compare their values with the flux-divergence in the
large ensemble. I assume that the anomaly they cite for the ocean
below 125m represents the ocean component, and that the sum of
surface and deep-ocean components is equivalent to the TOA compo-
nent.



26 the subtle origins of surface-warming hiatuses

2.6.2 What the budgets imply

Although the two observation-based budgets do not cover the full
hiatus period, they do illustrate how observational uncertainty affects
interpretations of the hiatus. The CERES/WOA budget suggests that
the hiatus was caused purely by the reduced influx of energy at the
TOA (orange dot, Figure 2.8). The second budget, based on ocean
reanalysis data from ORAS4, suggests the hiatus was caused purely
by increased heat uptake in the ocean (green dot, Figure 2.8).

The anomalies diagnosed from England et al. (2014) likewise sug-
gest an ocean origin (purple dot, Figure 2.8), but their result lies well
outside the large ensemble. Since the authors force an ocean-only
model with reanalysis-based winds, there may be effects in coupled
models that the authors’ set-up does not reproduce, such as the am-
plification of hiatus cooling at the land surface. The lack of coupled
effects might necessitate a greater surface-layer flux-divergence dur-
ing hiatuses than in the large ensemble.

From this analysis of observational estimates, I am unable to ex-
clude the TOA anomaly as a possible cause of the recent hiatus. Refer-
encing the observations to an alternative energy budget (rather than
that of the large ensemble) could shift the absolute position of the
green and orange crosses in Figure 2.8. However, their relative dis-
tance from one another and the size of their error bars would not
change.

2.7 resolving conflicts in previous studies

Interpretations of the hiatus are not only sensitive to the observational
dataset, but also to the method of energy budgeting. The methods
used in previous studies may reveal why their results conflict. For
example, the hiatus has been explained as the result of heat being
transferred from the surface ocean to the layers immediately below it,
in the upper 300–350 m (Liu et al. 2016; Nieves et al. 2015). However,
an energy budget that only accounts for heat exchange between the
top 100 m and depths up to 300–350 m correlates poorly with GMST
trends in the large ensemble (r2=0.08, Figure 2.9). A poor correlation
also results when we exclude heat-content changes below the upper
700 m (r2=0.14, Figure 2.9; see Lee et al. 2015) and the upper 2000 m
of ocean (r2=0.36, Figure 2.9; see Chen and Tung 2014). Heat-content
changes up to as much as 4000 m may be important for decadal in-
ternal variability, despite claims to the contrary (Liu et al. 2016). Fur-
thermore, the pattern of surface-layer cooling overlying a warming
trend may be common during ocean hiatuses, but it also occurs in
around half of hiatuses caused purely by the TOA (Figure B.2). Dur-
ing these TOA hiatuses, the subsurface warming is caused by heat
transfer from deeper layers. Energy budgets that do not consider up-
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Figure 2.8: Hiatuses and their origins in models and observations. Contributions to hiatuses from
TOA and ocean components. Positive values indicate fluxes that warm the surface. Small red
dots represent hiatuses in the large ensemble and small grey dots represent all other trends;
the red dotted line is a flux-divergence of –0.082 Wm−2. Observational estimates and their
1-sigma error bars are compiled from multiple sources that rely either on CERES and WOA
data (large orange dot) or ORAS4 data, shown as anomalies from the large-ensemble mean
budget over the 2000s. The large purple dot represents results from an ocean model forced
with reanalysis-based winds as reported in England et al. (2014), converted to mean fluxes
over 15 years.
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take across the whole ocean depth may therefore misrepresent crucial
energy fluxes and misdiagnose the hiatus.

Figure 2.9: Energy budgets that only consider upper-level ocean heat content

fail to predict GMST variability. Each data point represents the results
of a regression between global mean surface temperature (GMST) trends
and the surface-layer energy budget – consisting of the TOA component
and ocean heat uptake below 100 m – in the 100-member historical en-
semble (mpi-esm1 .1). Heat-content changes below the indicated depth
are excluded from the budget. For example, the data points for 700 m
show the regression for a budget comprising TOA fluxes and ocean heat
uptake between 100–700 m (r2 = 0.14). Red dots (bottom axis) represent
the correlation (r2) of each regression. Black dots (top axis) represent the
expected flux-divergence for a 0.17 º C per decade hiatus, as determined
from the slope of each regression.

The hiatus may also be misdiagnosed by misrepresenting the sur-
face layer in energy budgeting. For example, the surface layer has
been defined at 300 m ocean depth or more (Balmaseda et al. 2013;
Chen and Tung 2014; Katsman et al. 2011; Meehl et al. 2011, 2013;
Watanabe et al. 2013). I perform energy budgeting in the large en-
semble with a surface layer that extends to 300 m instead of 100

m and find that the flux-divergence correlates comparatively poorly
with GMST trends (r2=0.33 for 300 m, Figure 2.5).

2.8 the true hiatus dilemma

I conclude that the TOA may have been a source of significant inter-
nal variability during the hiatus. This conclusion is not an artefact
of model-generated TOA variability (Stephens et al. 2015) – the large
ensemble produces TOA variability that is similar to that in the ob-
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servational record (Figure 2.10). Rather, this conclusion is based on
a simple yet robust principle, namely that the Earth’s surface layer
has a small heat capacity. The surface temperature can therefore be
influenced by small variations in the large yet mutually compensat-
ing fluxes that make up this layer’s energy budget. Comparing the
small variability in the TOA imbalance with the total TOA imbalance
under global warming, as other studies have done (Brown et al. 2014;
Trenberth and Fasullo 2013), obscures the significance of these small
variations for the hiatus.

Other observational studies associate the hiatus with heat-flux anoma-
lies that range from 0.21 Wm−2 (Trenberth and Fasullo 2013) to 0.50

Wm−2 (Drijfhout et al. 2014). But when I perform energy budget-
ing for the surface layer in the large ensemble, I find that anoma-
lies closer to 0.08 Wm−2 can account for hiatuses as large as 0.17

ºC per decade, and 0.02–0.03 Wm−2 for a hiatus equal to the 1998–
2012 anomaly from the observed long-term trend. Because the flux-
divergence anomaly is so small, ascribing the origin of the recent hia-
tus to the TOA or ocean requires that each of their contributions to the
anomaly are known with considerable accuracy. However, the uncer-
tainty in TOA imbalance from satellite measurements is two orders of
magnitude larger (∼ 8 Wm−2; Loeb et al. 2009) than the anomaly I cal-
culate. Satellite data are commonly anchored with ocean heat-content
measurements, but the uncertainty range in TOA imbalance during
the 2000s still remains around 0.56 Wm−2 (Smith et al. 2015), and
even for the most recent estimate based on improved ocean observa-
tions over 2005–2015, the range is 0.2 Wm−2 (Johnson et al. 2016).

This is the true dilemma at the heart of the hiatus debate: the vari-
ability in ocean heat content alone has no power to explain the hia-
tus, and the measure that can – the surface-layer flux-divergence –
is dwarfed by observational uncertainty. While there are attempts to
fill the gaps in observations with ocean reanalyses like ORAS4, the
resulting data are of questionable integrity during the hiatus (Nieves
et al. 2015; Smith et al. 2015) and, as I show, disagree with the bud-
get based on CERES and WOA. Even if these disagreements could be
reconciled, the process of anchoring satellite observations with ocean
heat uptake makes the contributions from TOA and ocean difficult to
disentangle, because their absolute difference is unknown. Therefore,
unless the uncertainty of observational estimates can be considerably
reduced, the true origin of the recent hiatus may never be determined.
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Figure 2.10: Variability in top-of-atmosphere (TOA) fluxes in observations, reconstructions and

mpi-esm1 .1. a, Variability in observations and the model for the period March 2000 – May
2015. Dotted lines are single values calculated from observations (CERES EBAF-TOA Ed2.8;
Loeb et al. 2009). b, Variability in reconstructions and the model for the longer period January
1985 – February 2013. Dotted lines are single values calculated from flux reconstructions
(Allan et al. 2014). In a and b, bars represent the frequency distribution (in bins of 0.0133

Wm−2) of values calculated for each of the 100 historical ensemble members over the relevant
period. Variability is calculated from all sources as the root-mean-square in monthly means,
after the mean annual cycle for the period is removed.



3
H O W T H E PAT T E R N E F F E C T C H A N G E S C L I M AT E
S E N S I T I V I T Y

3.1 summary

The climate sensitivity in model simulations has been shown to in-
crease over time due to the changing spatial pattern of warming (An-
drews et al. 2015; Armour et al. 2013; Rose et al. 2014; Rugenstein et
al. 2016a). However, many studies reach different conclusions about
which processes and which regions are the most critical for increasing
climate sensitivity. Here, I present a framework that can account for
different definitions of the ‘pattern effect’. The framework is applied
to four 1000-year simulations with a coupled climate model, subjected
to abrupt CO2 increases up to sixteen-times the pre-industrial concen-
trations. I show that the differing results in previous studies might be
a result of their assumptions, not divergent model behaviour. The as-
sumptions made in some studies further lead to a misdiagnosis of
the radiative forcing in the four simulations. The fact that the pattern
effect depends partially on the time since the forcing increase, and
not on the surface temperature alone, supports the view that current
observational estimates might underestimate climate sensitivity.

3.2 introduction

In many climate models exposed to abrupt increases in CO2 concen-
trations, the relationship between surface warming and the global en-
ergy imbalance changes over time (Andrews et al. 2015; Armour et al.
2013; Bloch-Johnson et al. 2015; Block and Mauritsen 2013; Geoffroy
et al. 2013b; Gregory et al. 2004; Jonko et al. 2012; Li et al. 2013; Mer-
aner et al. 2013; Rose et al. 2014; Rugenstein et al. 2016a; Senior and
Mitchell 2000; Winton et al. 2010). This behaviour in models could
mean that the Earth’s equilibrium climate sensitivity (ECS) – the long-
term warming resulting from a CO2 doubling – will change, so that
future warming will overshoot estimates based on current observa-
tions (Armour 2017).

Some studies explain that changing climate sensitivity in models
is caused by changing spatial patterns of warming (Andrews et al.
2015; Armour et al. 2013; Rose et al. 2014; Rugenstein et al. 2016a).
This concept has been called the ‘pattern effect’ (Stevens et al. 2016),
although exactly how the pattern effect works is a matter of debate.
In this Chapter, I address the differing explanations of the pattern
effect. I propose a framework for assessing regional contributions to

31
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a changing climate sensitivity and attempt to reconcile the findings
in previous studies.

Previous studies differ not only in their explanation of how the pat-
tern effect works, but also the critical regions in which it is most ac-
tive. Senior and Mitchell (2000) point to changes in regional radiative
feedbacks caused by changing cloud properties, particularly over the
Southern Ocean. These changes in regional feedback are suspected to
be connected to spatial warming patterns induced by extra-tropical
ocean heat uptake (Rose et al. 2014; Rugenstein et al. 2016a; Senior
and Mitchell 2000). Armour et al. (2013) find that the extra-tropics in
general are critical for the pattern effect, but their explanation favours
the role of changing temperature patterns, not regional feedbacks. Yet
another explanation is offered by Block and Mauritsen (2013), who
find, contrary to Senior and Mitchell (2000), that Southern Ocean feed-
backs actually work against increasing climate sensitivity. The global
increase in climate sensitivity is instead driven by changes in multi-
ple feedbacks, with strong contributions from the tropics (Block and
Mauritsen 2013). A review of CMIP5 models (Andrews et al. 2015)
also argues that the tropics dominate the increase in climate sensitiv-
ity, but the authors implicate changes in cloud feedbacks. We might
expect different model set-ups to favour different mechanisms for a
changing climate sensitivity, but this diversity of explanations is less
than satisfying.

However, these studies do not always mean the same thing when
they diagnose regional influences. What if part of the differences be-
tween studies arise because of how they define the pattern effect?
Armour et al. (2013) focussed only on the changing warming pat-
tern when replicating the changing climate sensitivity in their cou-
pled model: they assumed that regional feedbacks were constant. In
this formulation of the pattern effect, the warming pattern changes
over time, and weights the regional feedbacks to different extents.
Even though regional feedbacks are constant, their changing weight-
ing leads to time-dependence in the global feedback parameter.

However, other studies provide evidence that regional feedbacks
do change (Andrews et al. 2015; Block and Mauritsen 2013; Meraner
et al. 2013; Rose and Rayborn 2016; Rose et al. 2014; Rugenstein et
al. 2016a; Senior and Mitchell 2000). In this case, the changing global
feedback parameter arises not only from weighting by the warming
pattern, but also from the regional changes that the pattern excites
in the radiative properties of the atmospheric column. This second
explanation does not necessarily exclude the theory of Armour et
al. (2013), but provides for the additional effect of changing regional
feedbacks.

There is a third possible explanation, in which changes to the global
feedback parameter are exclusively the result of changing regional
feedbacks, and the warming pattern is assumed to be constant in time.
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No study I am aware of has explicitly considered this view, but Senior
and Mitchell (2000) use a similar approach because they point to re-
gional changes in cloud properties with respect to the regional warm-
ing (see their Figure 2), but neglect how regional warming weights
these changes at the global level.

Here I propose a framework that can encompass all the formula-
tions of the pattern effect. I isolate the effect of a changing warming
pattern by assuming constant regional feedbacks, as in Armour et al.
(2013), and call this the ‘temperature component’. I also isolate the
effect of changing regional feedbacks by assuming a constant warm-
ing pattern and call this the ‘feedback component’. By allowing both
the warming pattern and the feedbacks to change, I consider the full
’combined effect’. For each formulation of the pattern effect, I attempt
to reconstruct the relationship between the energy imbalance and
surface warming simulated by MPI-ESM1.2, subjected to abrupt in-
creases in atmospheric CO2 concentrations. In doing so, I ask which
formulation best represents the pattern effect in MPI-ESM1.2, and
whether the different assumptions in previous studies can lead to
different results with the same set of model output.

As in previous studies, I dissect the regional contributions to the
pattern effect from clouds, water vapour, temperature and albedo.
But instead of the commonly-used radiative kernel method, I use di-
agnostics based on the partial radiative perturbation (PRP) method
(Colman and McAvaney 1997; Meraner et al. 2013; Wetherald and
Manabe 1988), which allow me to cleanly separate fast adjustments
(Williams et al. 2008) from true changes to radiative feedbacks in each
region. The PRP method is also more accurate than radiative kernels
when analysing a large perturbation in climate state (Block and Mau-
ritsen 2013; Jonko et al. 2012) caused by strong radiative forcing.

The pattern effect has thus far been investigated under forcing
strengths of two times and four times CO2, and mostly out to time
periods of several hundred years. Some studies have reviewed the
millenial timescale under a single forcing strength (Andrews et al.
2015; Rugenstein et al. 2016b). Here I consider a larger range of forc-
ing strengths – two, four, eight and sixteen times the pre-industrial
CO2 levels – and integrate each simulation out to 1000 years. This
allows me to examine the pattern effect over multiple timescales and
how its evolution might depend on the forcing strength. Better un-
derstanding the pattern effect’s time- or state-dependent evolution
will influence how we interpret observations of climate sensitivity in
decades to come, and how we position the observed estimates in re-
lation to simulated estimates of climate sensitivity.



34 how the pattern effect changes climate sensitivity

3.3 model integrations and diagnostics

Four model runs using the Max Planck Institute Earth System Model
version 1.2 (mpi-esm1 .2) were integrated out to 1000 years. Each run
was started from a pre-industrial control state, but atmospheric CO2
concentrations were abruptly increased, to either 2x, 4x, 8x or 16x the
pre-industrial concentration of 284.7 ppm.

The effective radiative forcing is determined from four experiments
with the atmospheric component of mpi-esm1 .2, echam6 .3, where
the sea surface temperature (SST) is held fixed but the CO2 concentra-
tions are increased to match each of the coupled runs (Myhre et al.
2013). The small amount of land warming in these runs is corrected
for in the forcing estimate, as suggested in Hansen et al. (2005).

The contributions of individual feedback types are separated using
PRP diagnostics (Colman and McAvaney 1997; Meraner et al. 2013;
Wetherald and Manabe 1988), into contributions from temperature
(lapse-rate plus Planck), water vapour, clouds and albedo feedbacks.
Instantaneous snapshots of model variables are read out every 10

hours over the 1000 year run to complete the PRP calculations, and
compared with a pre-industrial control run, integrated over 300-years
with the diagnostics switched on. The PRP method allows separation
of the initial adjustment (Williams et al. 2008) from the true radiative
feedbacks, and provides more accurate estimates of feedbacks than
the commonly used radiative kernel technique, which has inaccura-
cies associated with the need to linearise otherwise state-dependent
kernels (Block and Mauritsen 2013). This is particularly important for
runs with strong forcing examined in this chapter.

The error of the PRP method can be estimated by summing up
all the radiative contributions, include those from atmospheric CO2,
and comparing this with the actual change in the TOA imbalance.
The error in the PRP diagnostic reaches a maximum at the end of the
16xCO2 integration of 0.29 Wm−2 in longwave and –0.05 Wm−2 in
shortwave radiation. This represents 1.6% and 0.3% of the total forc-
ing respectively. In contrast, similar estimates for the kernal method
suggest almost 50% error for forcings, under forcing of only 8xCO2
(Jonko et al. 2012).

3.4 estimating the global feedback parameter

A temperature increase at the Earth’s surface implies an increase in
the energy radiated to space. This allows the Earth to return to a new
state of radiative balance after an increase in external forcing (F). The
total warming required to reach the new equilibrium can be deter-
mined from the initial warming response if the relationship between
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the top-of-atmosphere (TOA) energy imbalance (R) and warming (T)
is linear:

R = F+ λT , (3.1)

This sign convention implies that λ < 0 if the global feedbacks sta-
bilise the surface temperature. To obtain the ECS, we can set F =

F2×CO2 and R = 0:

ECS =
F2×CO2
−λeff

(3.2)

The effective climate feedback parameter, λeff, is a constant that de-
scribes the relationship between initial forcing and final equilibrium
warming (Teq),

λeff =
−F

Teq
, (3.3)

and Equation 3.2 is a special case where the forcing is equivalent to a
single doubling of CO2.

Since the pattern effect causes a break-down in the assumption of
a constant λ, we can write the feedback parameter not as a constant
but as a function of surface warming, which is analogous to the differ-
ential climate feedback parameter suggested by Gregory et al. (2004).

R = F+

∫
λ(T)dT (3.4)

λ(T) =
dR

dT
(3.5)

I include overbars to represent the global spatial mean, since we need
to distinguish it from the regional level in the sections that follow.
λ(T) represents the instantaneous gradient of the line in a Gregory
analysis (Gregory et al. 2004; see Figure 3.1 for an example). Now the
global feedback parameter and thus climate sensitivity can change
with the state of warming, but what if the changes are, in fact, time-
dependent?

One method for diagnosing a changing λ uses two linear fits: one
in the initial two decades of warming, and one for the remainder of
the response to forcing (Andrews et al. 2015; Block and Mauritsen
2013). This allows for changes to λ that may be connected to a ‘fast’
and ‘slow’ response to forcing (Geoffroy et al. 2013a; Held et al. 2010).
The disadvantage of this method is that only a step-change in λ can
be inferred. Bloch-Johnson et al. (2015) introduce a quadratic term
proportional to T2 into Equation 3.1, which allows a continuous evo-
lution of λ but restricts this evolution to temperature-dependence.
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I want to allow for the possibility of both types of changes in λ:
those related to fast and slow timescales, and those related to tem-
perature. I use a hybrid of both methods: I estimate λ(T) by fitting a
quadratic spline with a single node at 25 years to R(T). This allows
two quadratic functions to be fit to the data, one before 25 years and
one after. At the node, the quadratic functions and their first deriva-
tive are continuous.

R =

a1T
2
+ b1T + c1 T 6 Tt=25

a2T
2
+ b2T + c2 T > Tt=25

(3.6)

The fit over each run is shown in Figure 3.1. For the first dou-
bling of CO2, the equilibrium climate sensitivity is estimated to be
2.8 ºC. However, the climate sensitivity implied by each subsequent
doubling increases, until a total of almost 10 ºC difference between
8xCO2 and 16xCO2 is reached. The slope of the line in Figure 3.1,
λ(T), increases as the surface warms, and this is particularly appar-
ent for higher forcings. We will return to the evolution of λ(T) for
each forcing strength in Section 3.8. But first of all, let us develop a
framework for what causes changes in λ(T) at the regional level.

3.5 isolating the components of the pattern effect

Changes in λ(T) might occur due to the influence of changing warm-
ing patterns or changing regional feedbacks, or a combination of both.
To isolate each effect, we first write the global TOA imbalance as
the spatial average of the imbalance in each region. The regional im-
balance is assumed to be a function of regional temperature change,
Ri(Ti), and the regional temperature change is assumed to evolve as
a function of the global mean surface temperature change, Ti(T). Ex-
panding Equation 3.5 to include these assumptions gives:

λ(T) =
d

dT

(
Ri(Ti(T))

)
=
dRi
dTi

dTi

dT
. (3.7)

Each region is represented by the subscript i. To allow for state-
dependence of the warming pattern and regional feedbacks, I assume
a quadratic relationship for Ri(Ti) and Ti(T):

Ri(Ti) = β2i T
2
i +β1i Ti +β0i (3.8)

Ti(T) = ρ2i T
2
+ ρ1i T + ρ0i (3.9)

Each β and ρ is a constant. Since quadratic splines are fitted to the
data, the constants change at the node point (t = 25 years), but this
does not affect the analysis.



3.5 isolating the components of the pattern effect 37

5 10 15 20

Global mean surface temperature change [ ◦ C]

5

10

15

G
lo
b
a
l 
im

b
a
la
n
ce
 [
W
m

−2
] 

2.8 ◦ C 6.46 ◦ C 11.8 ◦ C 22.0 ◦ C

2xCO2

4xCO2

8xCO2

16xCO2

Figure 3.1: The non-linear relationship between energy imbalance and surface warming in abrupt

forcing experiments. Top-of-atmosphere radiation imbalance plotted against global mean sur-
face temperature change, for abrupt forcing simulations of one or multiple CO2 concentration
doublings integrated out to 1000 years. Grey lines represent quadratic spline fits with a single
node at 25 years (grey dots). Coloured bars indicate the equilibrium warming estimated by
extending the slope of the line out to the horizontal axis, using the slope diagnosed at year
1000. In a linear forcing-feedback framework with constant climate sensitivity, all coloured bars
should be equal in length.
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The parameter β2i determines the changes in regional feedbacks.
The parameter ρ2i determines the changes in the warming pattern.
By setting β2i = ρ2i = 0 everywhere, we assume constant regional
feedbacks and a constant spatial warming pattern, which returns to
the linearity assumption, denoted here with the asterisk:

R∗i (Ti) ≡ Ri,β2=0 = β1i Ti +β0i (3.10)

T∗i (T) ≡ Ti,ρ2=0 = ρ1i T + ρ0i (3.11)

Linear approximations for both Ri and Ti give R∗ ≡ R∗i (T∗i ) and the
following expression for λ∗, from Equation 3.7:

λ∗ ≡ λβ2,ρ2=0 = β1i ρ1i (3.12)

The linear approximation λ∗ is therefore a constant equal to the spa-
tial mean of constant regional feedbacks weighted by the warming
pattern. I now derive expressions for the temperature and feedback
components, by allowing either the warming pattern or the regional
feedbacks to evolve as a function of T .

3.5.1 The temperature component

If the spatial warming pattern evolves with T but regional feedbacks
are static, we can set β2i = 0 everywhere, and estimate the regional
feedbacks (β1i) from a linear regression between regional TOA and
regional temperature in each region. This represents the pattern ef-
fect as described in Armour et al. (2013), which I call the ‘temper-
ature component’. The imbalances becomes RT ≡ R∗i (Ti), and from
Equation 3.7 the expression for λT is:

λT ≡ λβ2=0 = 2β1i ρ2i T + λ
∗ (3.13)

Note that λT is the combination of the linear component, λ∗, and
a temperature-dependent term, which is determined by the warm-
ing pattern’s change with temperature (ρ2i) weighted by the regional
feedback strength (β1i).

3.5.2 The feedback component

Assume that the pattern effect is caused only by changes to regional
feedbacks. For this case the warming pattern is constant, which sets
ρ2i = 0 everywhere. The regional warming rates with respect to the
global mean (ρ1) are estimated by linear regression over the entire
run. This formulation, the ‘feedback component’, gives RF ≡ Ri(T

∗
i )

and the expression for λF is:

λF ≡ λρ2=0 = 2β2i ρ21i T + 2β2i ρ1i ρ0i + λ
∗ (3.14)
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λF contains the linear approximation λ∗ as well. The temperature-
dependent term is determined by how regional feedbacks change
with temperature (β2i), weighted by the regional warming rate squared
(ρ21i).

3.5.3 The combined pattern effect

The combined pattern effect takes into account the temperature-depen-
dent changes in both regional feedbacks and the spatial warming pat-
tern (RC ≡ Ri(Ti)). The global feedback parameter for the combined
pattern effect, λC, becomes:

λC = 4β2i ρ
2
2i T

3
+ 6β2i ρ2i ρ1i T

2
+

4β2i ρ2i ρ0i + 2β2i ρ
2
1i + 2β1i ρ2i T+

2β2i ρ1i ρ0i + λ
∗

(3.15)

λC includes the linear approximation λ∗, the temperature-dependent
terms in λT and λF, as well as higher-order terms in T . Errors in the re-
gression model become amplified through these higher-order terms,
but if we are willing to neglect them, we can estimate λC more par-
simoniously by expressing the regional top-of-atmosphere imbalance
as a function of global mean surface temperature, Ri(T). Assuming a
quadratic relationship:

Ri(T) = γ2i T
2
+ γ1i T + γ0i, (3.16)

the expression for λC becomes

λC =
d

dT

(
Ri(T)

)
= 2γ2i T + γ1i. (3.17)

The constant γ2 approximates the combined effects of a changing
warming pattern and changing regional feedbacks.

To diagnose regional feedbacks, some studies regress the regional
TOA imbalance against regional temperature (Rose and Rayborn 2016;
Rose et al. 2014), as per the formulation in Equation 3.8 whereas oth-
ers regress the regional TOA imbalance against the global mean sur-
face temperature (Andrews et al. 2015; Block and Mauritsen 2013;
Rugenstein et al. 2016a), as per Equation 3.16. This leads to a nomen-
clature problem of which the reader should be aware (Feldl and Roe
2013). Although the result of both methods is called the ‘regional feed-
back’, the first method returns regional feedbacks as we define them
in this study (β2,β1), whereas the second method diagnoses the re-
gional contribution to the combined pattern effect (γ2,γ1), which im-
plicitly includes the effects of both regional feedbacks and the warm-
ing pattern.
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Figure 3.2: A two-region example of the pattern effect. a, The relationship be-
tween the regional top-of-atmosphere radiation imbalance and regional
surface warming. b, The relationship between regional surface warming
and the global mean surface warming. Grey lines represent linear approx-
imations of the true relationships, which are based on splines selected for
illustrative purposes only.
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Figure 3.3: Components of the pattern effect in the two-region example. a,
The global top-of-atmosphere imbalance against surface warming. b, The
evolution of λ(T) with surface warming. Shown are the true values (‘com-
bined’); reconstructions for the ‘feedback’ and ‘temperature’ components
of the pattern effect; and a linear approximation, based on the assump-
tion of a constant warming pattern and constant regional feedbacks.
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3.6 a simple two-region example

Before applying the framework developed in the preceeding section
to the full model output, it is helpful to consider a simple two-region
example.

Figure 3.2 shows Ri(Ti) and Ti(T) for each of two regions with
equal area. The regions are based on a quadratic spline fit to data
defined by 30ºN–90ºN (Region A) and 30ºS–90ºS (Region B) in the
2xCO2 run; the global mean is defined as the average of the two
regions. Exclusion of the tropics makes the example non-physical, but
it is useful for illustrative purposes, because it helps highlight the
non-linear warming rates in the extra-tropics (Armour et al. 2013).

For each region the grey lines represent the linear approximations,
R∗i or T∗i , which assume no change in the warming pattern or the
regional feedbacks. Using only these linear approximations to recon-
struct the global imbalance and the global feedback parameter, we get
the constant λ∗ and a corresponding linear estimate of the change in
imbalance, R∗, as shown in Figure 3.3. The temperature component
is the combination of the linear approximation in Figure 3.2a and
coloured splines in Figure 3.2b. Conversely, the feedback component
is the combination of coloured splines in Figure 3.2a and the linear
approximation in Figure 3.2b.

In this simple two-region example, the temperature component has
little explanatory power for the combined pattern effect. In Figure 3.3,
the temperature component is almost identical to the linear approx-
imation, despite the visible non-linearity in regional warming rates
(see Figure 3.2b). Changing regional feedbacks, which are indicated
by the non-linear relationship between regional TOA imbalance and
regional temperature (Figure 3.2a), largely determine the changes to
λ(T): compare the dark blue dashed line and the yellow line in Fig-
ure 3.3b.

Examining the different expressions for λ(T) can help us under-
stand why. Both temperature and feedback components share the lin-
ear part, λ∗, which defines the first-order response to forcing. This is
why the estimates of R in Figure 3.3a are relatively similar. What sets
the temperature and feedback components apart are the temperature-
dependent terms in λ(T). For the temperature component this term is
dλT
dT

= 2β1i ρ2i. In the two-region example the expression becomes:

dλT

dT
= β1A ρ2A +β1B ρ2B = (β1A −β1B) ρ2A

= 2β ′1 ρ2,
(3.18)

where the anomaly of Region A’s regional feedback from the mean
regional feedback is β ′1 ≡ β1A −β1i, and we write ρ2 = ρ2A = −ρ2B
since the spatial mean of all regional temperature change must be
equal to the global temperature change, implying ρ2i = 0.
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For the feedback component, the temperature-dependent term is
dλF
dT

= 2β2i ρ
2
1i , which in the two-region example becomes

dλF

dT
= ρ21A β2A + ρ21B β2B

= (1+ ρ ′21 )(β2A +β2B) + 2ρ
′
1(β2A −β2B)

(3.19)

The deviation of Region A’s regional warming rate from unity is de-
fined by:

ρ ′1 ≡ ρ1A − ρ1i = ρ1A − 1.

In each of Equation 3.18 and Equation 3.19 there are two groups of
terms. The first group, β ′1 or ρ ′1, represents the difference in slope be-
tween the linear approximations in each region. This group multiplies
a second group of terms, ρ2 or β2, which represents the non-linear
behaviour in each relationship respectively – a changing warming
pattern or changing regional feedbacks.

These formulations help explain why the temperature component
is less effective at influencing changes λ(T) at the global level than the
feedback component. For either component, the role of the second
group of constants is clear: if these are zero, there can be no changes
to λ(T) and the linear approximation λ∗ holds. The behaviour of the
first group of constants is, however, different for each component.

For the temperature component, a non-zero dλ
dT

requires that the
regional feedbacks are different in magnitude so that β ′1 is not zero.
In this particular two-region example, the temperature component is
small because there is only a small difference in slope between the
grey lines in Figure 3.2a, and so β ′1 is small.

For the feedback component, there are fewer constraints: when the
difference between regional warming rates is zero (ρ ′1 = 0), changes
to λ(T) occur:

dλF

dT
= β2A +β2B.

On the other hand, when the difference between regional warming
rates ρ ′1 is large, dλF

dT
is still non-zero. For example, if ρ1A = 0 then

ρ ′1 = 2 and
dλF

dT
= 4β2B.

The only cases in which dλF
dT

can be zero are if the β2 terms are all zero
or when the feedback changes cancel each other: β2A = −β2B and
ρ ′1 = 0. Since there are fewer constraints on the feedback component,
we can expect more cases in which it influences changes in λ(T) than
does the temperature component.

The disadvantage of using the two-region model is that non-linearities
in Ti(T) within each region are disguised by area-averaging and in-
terpreted as non-linearities in Ri(Ti). In other words, the feedback
component is favoured if large regions are chosen that can support
changing warming patterns internally. I now turn to the full model
output, and increase the spatial resolution of the framework.
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Figure 3.4: Components of the pattern effect misrepresent the initial response to forcing.
Coloured lines reconstruct the global relationship between top-of-atmosphere radiation and
surface warming from zonal values, according to: the feedback component, which estimates
feedbacks with a spline fit but assumes a constant warming pattern; the temperature compo-
nent, which estimates warming rates with a spline fit but assumes constant feedbacks; and, the
combined effect, which estimates both feedbacks and warming patterns with spline fits. Large
coloured dots on the vertical axis represent effective radiative forcing estimated from fixed-SST
experiments. Grey dots represent coupled model output, as in Figure 3.1.

3.7 reconstructing the energy imbalance

In this section I reconstruct the global TOA imbalance shown in Fig-
ure 3.1 by using the assumptions for the temperature and feedback
components of the pattern effect. For the combined effect, I use Equa-
tion 3.16. I use zonal means of TOA imbalance and surface warming
at each model latitude to perform the necessary spline or linear fits
for the relationships Ri(Ti) and Ti(T). I choose zonal means because
further reducing the area of each region increases the noise due to
internal variability and introduces error into the results. And, since
regional feedbacks and differences in warming rate are by far most
varied in the meridional direction (Armour et al. 2013), further in-
creasing the resolution beyond the zonal regions adds only limited
descriptive information. The results are shown in Figure 3.4.

Both temperature and feedback components of the pattern effect
approximate the long-term response well. The good fit in this period
is achieved for two reasons. Firstly, since the temperature component,
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the feedback component, and the combined pattern effect all contain
the linear approximation λ∗, their first-order approximations of R(T)
are similar. This was also the case in the two-region example.

Secondly, the regressions are weighted toward the long-term re-
sponse. Each regression implies a relationship in temperature space
but is constrained by the degrees of freedom related to time-based
model output. The regressions are weighted toward the long-term
response, because the model spends considerably more time there
(Stevens et al. 2013). This is the case in most studies that analyse cli-
mate sensitivity with regression methods, and some weight the long-
term response even more strongly by averaging the data in time (see,
for example Armour et al. 2013).

Despite representing the long-term response well, both tempera-
ture and feedback components misrepresent the initial decades. If
we were to extend either component back to the vertical axis in Fig-
ure 3.4, using the gradient diagnosed for the first year (λ(Tt=1)), we
would severely misdiagnose the external forcing that we estimated
from fixed-SST experiments (large coloured dots in Figure 3.4). The
temperature component underestimates the forcing, and the feedback
component overestimates it. The combined pattern effect, however,
can capture the initial non-linear behaviour and can better estimate
the external forcing diagnosed from fixed-SST experiments.

The varying estimates of forcing imply different interpretations of
climate feedbacks diagnosed from the Gregory method – the effective
climate feedback parameter, λeff. In Figure 3.5 I calculate λeff for the
temperature and feedback components, and for the combined pattern
effect, by extrapolating each curve in Figure 3.4 out to the intersection
with the horizontal and vertical axes. To make the extrapolation, I use
the initial and final diagnosed gradients (λ(Tt=1) and λ(Tt=1000)).
The extrapolation provides estimates of the initial forcing (F) and
equilibrium warming (Teq) in Equation 3.3. I compare the results with
a best-estimate based on external forcing, diagnosed from fixed-SST
experiments, and equilibrium warming estimated from the combined
effect, as shown by the coloured bars in Figure 3.1 and Figure 3.4.

Misrepresenting the initial period has serious implications for λeff.
The feedback component overestimates the forcing, and so also over-
estimates the magnitude of λeff. The temperature component under-
estimates the forcing, and so underestimates the magnitude of λeff.
The combined effect shows similar results to the best estimate (‘SST’
in Figure 3.5), at least for 8xCO2 and 16xCO2. In 2xCO2 and 4xCO2,
there are larger differences in λeff between the fixed-SST and the
combined method, because of small discrepancies in the forcing esti-
mate. For small initial forcings, λeff is very sensitive to errors in the
forcing because the errors are concentrated over a smaller total range
of warming.
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The differential global feedback parameter λ(T) avoids carrying
these forcing errors across all timescales, because the differential form
is not effected by the definition of forcing, only the relationship be-
tween TOA imbalance and warming. λ(T) further allows us to un-
derstand how the pattern effect evolves over different timescales and
surface temperatures, which is what I turn to next.

3.8 the changing global feedback parameter

The evolution of λ = λ(T) for each forcing strength is shown in Fig-
ure 3.6, with corresponding estimates from the temperature and feed-
back components. Across all temperatures and forcings, the temper-
ature component predicts almost no change to the global feedback
parameter. As in the two-region example, the non-linear feedbacks
provide the changes. The combined interaction between temperature
and feedback components is needed to reconstruct λ(T) in the initial
period.

The reason why the temperature and feedback components individ-
ually fail to represent the initial behaviour of λ(T) can be appreciated
at the regional level. From the perspective of the temperature com-
ponent, rapid changes in the warming pattern suggest that the extra-
tropics dominate the pattern effect in all runs (compare Figure 3.7g
and Figure 3.7h). However, the temperature component estimates con-
stant feedbacks by a linear regression that favours the long-term re-
sponse. The assumed feedbacks therefore approximately match the
values shown in Figure 3.7f, in which the Northern and Southern
extra-tropics have similar feedbacks. This is equivalent to a small β ′1
in the two region model (Equation 3.18), and accordingly a negligible
dλ
dT

for the temperature component.
From the perspective of the feedback component, the most drastic

changes in the initial response occur over the Southern Ocean. The
regional feedbacks there rapidly change from strongly negative val-
ues (as much as –18 Wm−2 ºC−1 for the 2xCO2 scenario) to more
moderate negative values (compare Figure 3.7d and Figure 3.7e). The
feedback component assumes a constant warming pattern biased to-
ward the long-term response, and neglects that warming rates near
the beginning of the run are near zero over the Southern Ocean (Fig-
ure 3.7g). Therefore, the feedback component inflates the value of
ρ1i for a region in which β2i is very large. According to the two-
region example and Equation 3.19, this overestimates dλ

dT
. The South-

ern Ocean’s true contribution to changes in λ(T) is more modest, as
can be seen by comparing the change between Figure 3.7a and Fig-
ure 3.7b and between Figure 3.7d and Figure 3.7e for this region.

The initial changes over the Southern Ocean are indicative of an
intimate link between warming patterns and feedback changes. The
PRP diagnostics show that the increasing regional feedbacks are a re-



48 how the pattern effect changes climate sensitivity

0 1 2 3
0

−1

−2

−3

2xCO2a:

0 2 4 6
0

−1

−2

−3

4xCO2b:

0 2 4 6 8 10
0

−1

−2

−3

8xCO2c:

0 5 10 15
0

−1

−2

−3

16xCO2d:

Feedback

Temperature

Combined

Global mean surface temperature change [ ◦ C]

λ
 [
W
m

−2
◦ C

−1
]
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Figure 3.8: Individual radiative feedbacks in 16xCO2. The regional influence of individual radiative
feedbacks is calculated using partial-radiative-feedback diagnostics (Methods), only for the
16xCO2 scenario. Feedbacks are then calculated in the same way as the total feedbacks: the
regression between the regional contribution to the radiative imbalance at the top of the atmo-
sphere against regional surface temperature. Local feedbacks are shown for year 5 (a), 25 (b)
and 1000 (c).

sult of temperature and cloud feedbacks (compare Figure 3.8a and
Figure 3.8b). The regional delay in warming, caused by ocean heat
uptake, allows the surface warming to temporarily decouple from
warming in the troposphere (Figure 3.9), resulting in a strong lapse
rate feedback. The tropospheric warming might also induce a shift
from ice to liquid clouds (Ceppi et al. 2016; Choi et al. 2014; McCoy
et al. 2015; Tan et al. 2016) or changes to atmospheric stability that in-
fluence cloud cover (Kay et al. 2014), which would both lead to more
positive feedbacks. These feedback changes are therefore inseparable
from the changes to regional warming patterns over the Southern
Ocean.

When we consider the combined pattern effect, we see contribu-
tions to an increasing λ(T) from almost all latitudes, but especially
in the tropics (compare Figure 3.7d and Figure 3.7e). Partial radia-
tive perturbation diagnostics for the 16xCO2 scenario show that the
changes over the tropics are mostly due to increases in cloud, with
some water vapour contribution (compare Figure 3.8a and Figure 3.8b).
A rising tropopause is perhaps responsible (Meraner et al. 2013).

In the long-term response, the changes in λ(T) respective to warm-
ing are less pronounced than in the initial response (Figure 3.6). In
2xCO2 and 4xCO2, the modest changes in λ are not particularly well
represented by either component. But for 8xCO2 and 16xCO2, where
the signal is stronger, the regional feedback component represents the
total combined pattern effect well (Figure 3.6).

At the regional level, we see that changes in regional feedback
during the long-term response are strongly dependent on forcing
strength. The meridional structure of the pattern effect is strikingly
similar across all forcing strengths by year 25 (Figure 3.7b), but in the
long-term response the structures diverge. In 2xCO2 and 4xCO2, the
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 ºC

Figure 3.9: Initial rapid warming in the upper troposphere causes negative

feedbacks over the Southern Ocean. The spatial average of atmo-
spheric temperature change is shown for 50-65

◦S during the initial re-
sponse to 16xCO2 forcing. Each year is chosen so that the increase be-
tween years at the surface is approximately 1ºC. During the first decade,
the tropospheric temperature warms up to four times as fast as the sur-
face. By the second decade warming is almost uniform throughout the
troposphere.

structure is symmetrical about the equator (Figure 3.7c). In 16xCO2
the structure is anti-symmetrical, with strong positive feedbacks in
the Southern Hemisphere tropics (Figure 3.7c), due to temperature
and water vapour feedbacks (Figure 3.8c).

Furthermore, the warming pattern does not significantly alter the
projection of these feedbacks changes onto the pattern effect (in Fig-
ure 3.7, compare panels c, f, and i). The warming pattern plays no
notable role in the long-term response, since the different forcings
present widely different feedback structures despite similar warming
patterns. The concept of the pattern effect therefore appears to lose
importance for the global feedback parameter over time, especially
for higher forcing strengths.

Instead, total warming drives the changes to feedbacks in the long-
term response. Figure 3.10 shows the evolution of global λ(T), as a
function of time (note the logarithmic axis), and as a function of sur-
face warming from year 25 onwards. Similarly sharp increases in λ(T)
occur in the initial two decades or so, despite the fact that the surface
warming is different in each run at this point and spans a difference of
around 7 ºC from 2xCO2 to 16xCO2. In the long-term response, how-
ever, the changes to λ appear to follow a relationship that increases
according to surface warming and not time.
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a b

Figure 3.10: The changing global feedback parameter with time and with surface warming. The
global feedback parameter, λ(T), is estimated from the derivative with respect to surface
warming of the spline fits in Figure 3.1. λ(T) is shown against time on a logarithmic axis (a),
where the axis starts at year 1.5, and against surface warming for years 25–1000 (b). Dotted
vertical lines in a mark years 25 and 1000. Values at year 1000 are marked with coloured dots
in b.

3.9 discussion

3.9.1 Reconciling interpretations of the pattern effect

My approach allows me to compare different interpretations of the
pattern effect, by isolating its regional temperature and feedback com-
ponents. I make use of only one climate model and so cannot provide
definitive explanations for processes occurring in others. However,
my approach does allow me to compare different methodological as-
sumptions made in other studies and how these assumptions influ-
ence the interpretation of the pattern effect. Depending on the version
of the pattern effect I choose, I can reproduce different results with
the same set of model output.

By isolating the temperature component, I make similar assump-
tions to Armour et al. (2013) and achieve similar results. The tem-
perature component suggests that the warming pattern more heavily
weights feedbacks in the extra-tropics over time (Armour et al. 2013).

By isolating the feedback component I find, as do Senior and Mitchell
(2000), significantly increasing regional feedbacks over the Southern
Ocean. The PRP diagnostics reveal strong increases over the Southern
Ocean in cloud and temperature feedbacks in mpi-esm1 .2, whereas
Senior and Mitchell’s model and method reveal only cloud influ-
ences. Nevertheless, both their study and the feedback component in
this study omit the regional combination of non-linear feedbacks and
warming rates, and both reach similar conclusions about the South-
ern Ocean’s contribution to the global change in feedback.

The combined effect suggests that tropical cloud feedbacks domi-
nate the change in climate feedback parameter in the initial response,
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a conclusion which a review of CMIP5 models also reaches using a
formulation that is equivalent to my combined effect (Andrews et al.
2015).

Not all of these interpretations are equally valid. The approach of
Armour et al. (2013) produces a near-constant global feedback param-
eter across all times and across all forcing strengths in mpi-esm1 .2.
Clearly, this version of the pattern effect cannot explain a time- or
state-dependent climate sensitivity in the simulations presented here.
In their study, Armour et al. (2013) show an excellent match between
the simulated global radiative balance and their reconstruction. But
because they use multi-decadal averaging, they mask discrepancies
in the critical initial response and favour the long-term response. As
I have shown here, I can reproduce the long-term response even if
I assume that the warming pattern does not change. In fact, all for-
mulations of the pattern effect can reproduce the long-term response
because they share the linear feedback assumption and are weighted
toward this period by the time-based nature of model output.

Furthermore, the framework that Armour et al. (2013) use shifts the
critical initial behaviour in mpi-esm1 .2 into the forcing term, and
therefore underestimates the global radiative feedback. Handling the
initial period in this way is not trivial because it implies a different
definition of forcing and prevents straightforward comparisons of cli-
mate sensitivity between models and observations.

Finally, misrepresenting the initial behaviour can also lead to spuri-
ous changes in regional feedbacks. The strong Southern Ocean feed-
backs suggested by Senior and Mitchell (2000) appear in mpi-esm1 .2
if I neglect the slow warming rate in the initial period. But by consid-
ering the combined pattern effect I find, as do Block and Mauritsen
(2013), a very different explanation for the initial response over the
Southern Ocean: this region actually inhibits the increase in the global
feedback parameter.

3.9.2 Time- and state-dependence of climate feedbacks

Changing feedbacks are often described as “time-dependent” (An-
drews et al. 2015; Li et al. 2013; Senior and Mitchell 2000) or “state-
dependent” (Bloch-Johnson et al. 2015; Stevens et al. 2016). There is no
clear distinction between these two terms, since a change in feedbacks
with the climate state must also necessarily be a change over time.
The distinction, however, is not purely academic. Evidence from past
climate states suggests that the equilibrium climate sensitivity was
slightly higher than today during the last glacial maximum and the
Pliocene (Hargreaves and Annan 2016; Hargreaves et al. 2012), and
reached extreme values during the Eocene (Shaffer et al. 2016; Zachos
et al. 2003). If climate feedbacks are systematically time-dependent,
then the current observational estimates of climate sensitivity could
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be temporarily suppressed and yield in the future to higher values.
However, if feedbacks are state-dependent, then the state of the cur-
rent climate may explain why we observe a lower sensitivity today
compared to past climates.

The framework I propose here attempts to account for both time-
dependent and state-dependent changes to climate feedbacks, by al-
lowing for state-dependence and two timescales of response: an initial
period of 25 years followed by a long-term response out to 1000 years
after the forcing increase. The assumptions I make about the separa-
tion of timescales (Andrews et al. 2015; Geoffroy et al. 2013b; Held
et al. 2010) and the addition of a quadratic temperature-dependence
term (Bloch-Johnson et al. 2015), are simply a hybrid of previous ap-
proaches used to study changing climate sensitivity. However, these
assumptions can influence the interpretation of climate sensitivity, es-
pecially at lower forcings where internal variability introduces un-
certainty into the regression method. For the 2xCO2 simulation, the
weaker signal-to-noise ratio makes a determination of the slope in
Figure 3.4 difficult.

However, the framework diagnoses similar initial behaviour of the
global feedback parameter in the first 100 years or so, even in runs
with stronger forcing and a higher signal-to-noise ratio. The overlap
is especially strong between 2xCO2, 4xCO2 and 8xCO2 (Figure 3.10).
If climate sensitivity were exclusively state-dependent, we would not
expect this behaviour, since the warming in the 8xCO2 simulation is
three times greater than that of 2xCO2 after 25 years. And consider-
ing that the warming in 16xCO2 is six times that of 2xCO2 at that
time, the differences in the global feedback parameter are remark-
ably small between the two runs. Rugenstein et al. (2016b) also find
time-dependent behaviour in their model simulations, but ascribe the
behaviour to changes in forcing. Since the surface warms consider-
ably in the initial response – more than half the total warming that is
reached after 1000 years occurs in the first 25 years – I find the con-
cept of time-dependent feedbacks more helpful than time-dependent
forcing. Whatever the interpretation, it appears that time-dependence
does play a role in this initial period, and state-dependence alone can-
not adequately describe the simulated behaviour.

In contrast, I find that the long-term response to warming depends
on the climate state. The development of the global feedback parame-
ter in the long-term response is clearly dependent on forcing strength
and the extent of surface warming (Figure 3.10). In the 2xCO2 simula-
tion, λ(T) appears to slightly decrease again with warming, as in Li et
al. (2013), but this could be an artefact of the low-frequency noise in
that run. The meridional structure of regional feedbacks in the tropics
also seems strongly dependent on forcing strength, but the warming
patterns do not appear to drastically alter the projection of these feed-
back structures onto the global level (Figure 3.7). This indicates that
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the pattern effect is perhaps a misnomer for the long-term response to
forcing, particularly under very strong forcing. Here the magnitude
of surface warming becomes more important for regional feedbacks
than the spatial pattern of that warming.

The fact that the pattern effect is strongest in the first two decades
and depends, at least partly, on time could have considerable impli-
cations for how we interpret historical observations of climate sensi-
tivity. Time-dependent forcing in the historical period can be recon-
structed from multiple smaller step-changes based on abrupt forc-
ing experiments (Good et al. 2011, 2013). If the behaviour in mpi-
esm1 .2 is comparable to Earth, then time-dependence could have
at least some influence on climate feedbacks not for two decades,
as in the simulations presented here, but for as long as forcing is
changing. This would imply that the equilibrium climate sensitivity
we infer from observations today will continue to grow over time
(Armour 2017). In that case, palaeoclimate proxies and model sim-
ulations would provide critical evidence for estimating the Earth’s
climate sensitivity, evidence that current observations could not nec-
essarily provide. A warmer future might await us than that which
observations of Earth currently lead us to expect.





4
C O N C L U S I O N S

I began this dissertation by asking four questions about the connec-
tion between regional and global perspectives of surface temperature
change. I wish to summarise the answers to these questions directly,
before proceeding to the final section, in which I integrate my results –
and the methods I have used to obtain them – into the wider scientific
context.

4.1 the surface-warming hiatus

In Chapter 2, I used 100 simulations of the historical period with
a single, coupled climate model to investigate events similar to the
1998–2012 hiatus. That is, I considered 15-year periods in which in-
ternal variability was strong enough to allow the GMST trend to de-
viate by at least –0.17 ºC per decade from the 100-member ensemble
mean. I compared different choices for the surface layer energy bud-
get, and explored how these choices could influence interpretation of
the hiatus. Using insights gained from the large model ensemble, I
attempted to diagnose the origin of the hiatus in two energy budgets
formed from observational products over the 2000s. In doing so, I
found the following answers to my research questions.

1. a) Why are there multiple and conflicting accounts that re-
gional ocean heat uptake caused the 1998–2012 hiatus?

• The methodologies in previous studies will produce false posi-
tives: they use energy budget formulations that are inconsistent
with changes in GMST and therefore misdiagnose the hiatus.

• Energy budgeting for decadal variability in GMST must derive
from a defensible concept of the global surface ocean. In mpi-
esm1 .1, defining the surface layer of the ocean as deeper than
100 m leads to a sharp decline in correlation between the energy
budget and GMST changes.

• By separating the global ocean heat uptake into regions, pre-
vious studies introduce spurious effects from horizontal heat
transports, which do not directly influence the surface layer or
GMST variability.

• By failing to account for internal variability in the TOA, previ-
ous accounts overlook an important source of energy fluctua-
tion for the surface layer.
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1. b) What can we learn from the hiatus about the origins of
decadal internal variability in global mean surface tem-
perature (GMST)?

• Deviations like the hiatus can be caused by variability in the
TOA imbalance, the subsurface ocean heat uptake, or both, even
when the absolute TOA imbalance is positive.

• An event like the hiatus requires an energy flux deviation so
small that current observations are unable to detect its origin.
Depending on the definition of the hiatus, the expected flux
deviation in the large ensemble varies between 0.02 and 0.08

Wm−2, whereas observational uncertainty in the absolute TOA
imbalance is closer to 8 Wm−2.

• As observational networks improve and data amass, we may be
able to detect the origins of these flux deviations. But the origin
of the 1998–2012 hiatus may never be discovered.

4.2 climate sensitivity and the pattern effect

In Chapter 3, I investigated changing global climate feedbacks in four
simulations over 1000 years, each with a different forcing strength as-
sociated with abrupt increases in CO2 concentrations. I introduced
a new framework for understanding regional contributions to global
feedback changes, and used this framework to reconcile different the-
ories about the pattern effect. I found the following answers to my
research questions.

2. a) How do differences between existing formulations of the
pattern effect influence the interpretation of changes to
equilibrium climate sensitivity (ECS)?

• For several decades after an abrupt forcing increase, both chang-
ing warming patterns and changing regional feedbacks are im-
portant for correctly simulating global feedback changes in mpi-
esm1 .2. Considering the warming pattern changes alone, such
as in the formulation of Armour et al. (2013), produces a near-
constant estimate of the global feedback parameter, although
this parameter is clearly not constant in the simulations.

• Formulations of the pattern effect that fail to account for initial
changes to both warming patterns and regional feedbacks mis-
diagnose the forcing and prevent direct comparison with other
estimates of ECS.

2. b) How does a regional framework help us position simu-
lated estimates of ECS in relation to observed estimates?
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• On longer timescales, the patterns of warming lose significance.
The changes to the ECS and global feedback parameter are
rather associated with the increase in GMST and not its spatial
pattern.

• Both time-dependence and state-dependence of ECS are use-
ful concepts. The pattern effect in mpi-esm1 .2 cannot be ex-
plained by state-dependence alone, but depends additionally
on the time since the forcing increase. On the other hand, the
long-term response to forcing is more clearly state-dependent.

• My results imply that the time-dependence of the pattern effect
could influence observed estimates of ECS for decades to come,
since forcing is currently increasing over time. If the results from
mpi-esm1 .2 are indicative of the Earth’s true behaviour, a more
reliable estimate of the current ECS could be better obtained
from proxies of past climate than recent observations, since the
latter are likely to be biased toward estimates that are too low.

4.3 knowledge conflicts and knowledge production

In the two subsections that follow, I integrate my main findings into
the broader scientific context. In the first subsection I examine how
the movement between regional and global perspectives can influence
the production of knowledge. Depending on the object of investiga-
tion, a regional perspective can sharpen our vision, but it can also
cause us to lose sight of the bigger picture.

In the second and final subsection, I return to the idea that I in-
troduced in the first chapter, that conflicts between observations and
climate models create critical spaces for knowledge production. Some-
times observations are interpreted as having a higher ‘epistemic sta-
tus’ than models because they directly access reality, whereas models
are abstract constructs. I make the case that climate modelling has
allowed me to advance knowledge in ways that observations could
not, and that observations and models are of equal epistemic value.

4.3.1 The forest or the trees?

When we move from the global to the regional perspective we are
usually searching for greater detail. We may assume that by discov-
ering where a phenomenon is located geographically, we are at least
closer to explaining its cause. Indeed, sometimes the regional perspec-
tive gives us the power we need to see details that are opaque at the
global level. But this is not always the case. The regional perspective
can also cause us to lose focus on processes that are best explained at
the global level. Sometimes, with a regional focus, we cannot see the
forest for the trees.
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The regional perspective has been used effectively in some hiatus
studies, such as in the Pacific cooling experiment by Kosaka and Xie
(2013). The authors were able to show how variability in the Pacific
might have teleconnections to variability over a much larger area of
the global. However, amongst studies that sought to establish the hia-
tus’s true energetic origin, the regional perspective has led to a wild
goose chase.

I showed in Chapter 2 how heat content changes into specific ocean
regions can account for decadal changes in GMST neither during the
hiatus nor more generally for surface temperature variability. The sub-
surface heat content in a particular region is not only altered by the
exchange with the surface ocean, it is also altered by stronger heat
fluxes in the horizontal direction. By only considering changes in re-
gional ocean heat content, we lose sight of what we are truly looking
for: the vertical heat exchange from surface to subsurface ocean.

Calculating the vertical heat exchange between surface and sub-
surface for any particular region may not even be feasible. Advective
heat transfer in any direction can only be reliably calculated when the
mass flux-divergence associated with the heat transfer is zero. Other-
wise, the residual mass can be attributed any arbitrary heat content,
depending on the temperature used to define zero. If we separate the
ocean both vertically and horizontally, we create surfaces with a resid-
ual mass flux and therefore an arbitrary heat flux. The vertical heat
flux can be inferred qualitatively using probabilistic methods (Zika et
al. 2013), or calculated directly at the global level, where the residual
mass fluxes cancel. In other words, for a definitive value of vertical
heat exchange between surface and subsurface ocean, we must take
the global perspective.

In Chapter 2, I returned to a simplified global perspective. This
allowed me to find answers to fundamental questions about GMST
variability that others had overlooked, such as how we should define
the surface energy budget. My results show that the hiatus studies
focussing on particular ocean regions have made budgeting choices –
such as their definition of the surface layer and the deep ocean – that
prevent them from correctly diagnosing the origins of hiatuses.

In the third chapter, the regional perspective is used very differ-
ently. In attempting to understand a changing climate sensitivity in
models, taking up the regional perspective has not hindered knowl-
edge gain but has instead contributed to it. Armour et al. (2013)
showed that state-dependent feedbacks at the global level could in
fact be the product of a regional weighting of spatially-varying local
feedbacks according to the spatial warming pattern. Other work uses
the regional perspective to expand upon Armour’s theory (Rose et al.
2014; Rugenstein et al. 2016a).

However, in adopting the regional perspective, different studies
have taken different approaches to determine what ‘regional’ means
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for feedbacks: some regress the TOA imbalance against regional sur-
face warming, and some against the GMST change. My results sug-
gest that at least some of the conflicts in previous findings might
simply be due to this variation in nomenclature. The framework I
introduce in Chapter 3 clarifies the differences in these regional ap-
proaches, so that we can use the same nomenclature for studying the
pattern effect.

Finally, I showed that the regional perspective might only be of
limited usefulness for describing changes to the global feedback and
climate sensitivity. In mpi-esm1 .2 the long-term changes to climate
sensitivity were not primarily related to the pattern of warming, but
instead to the GMST change. There are some changes in feedback,
such a rise in troposphere height, which spatial patterns in tempera-
ture cannot account for.

One might assume that switching from a global perspective to a re-
gional perspective, or vice versa, is simply a re-ordering of information
that should have no effect on the scientific outcome. This is not the
case in practice. As I have shown here, the regional perspective can
either sharpen our view, or lead us astray, depending on the object
of investigation. When we progress from the global to the regional,
we must do the scientific housekeeping necessary to make these two
perspectives consistent with one another.

4.3.2 Fairy-tale or fact?

‘A model is a work of fiction’, wrote Nancy Cartwright in her philo-
sophical treatise on the limits of science, How the Laws of Physics Lie
(Cartwright 1983). Whereas Cartwright raised important questions
about all kinds of models, including statistical models or physical
laws, Oreskes et al. (1994) direct their critique specifically toward nu-
merical simulations and the ability of simulations to access reality or
produce recommendations for policy. Whether we choose to define
‘models’ in broader terms, or specifically as numerical simulations,
the critiques from philosophers of science share commonalities. Mod-
els use assumptions and calibration data that can only account for
behaviour of systems in special circumstances. Models therefore can-
not be used to predict or explain complex systems that may evolve
in ways that violate the assumptions or that deviate from past be-
haviour used to calibrate the model. Models may therefore be useful
in a heuristic sense, but not for getting at ‘truth’ (Oreskes et al. 1994).

These claims are not merely theoretical exchanges between philoso-
phers of science. Lewandowsky et al. (2015) have suggested that polit-
ical discourses aiming to discredit climate science have even served to
erode climate scientists’ trust in their very own modelling techniques.

It is therefore important to confront the arguments of Cartwright
and Oreskies et al., since the problems I have addressed in this disser-
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tation represent areas of conflict between models and observations. I
argue here that models and observations are of equal epistemic value;
both are crucial tools which assist in our pursuit of knowledge. In this
dissertation, I have shown that the relationship between the two tools
is not as straightforward as normative notions of models and obser-
vations might suggest.

In a strict sense, Cartwright and Oreskes et al. are correct: a climate
model is just an imagined world. After all, the results of Chapter 2 are
informed by simulating 100 alternate realities of how the Earth might
have behaved in the past, but did not; and the results of Chapter 3 rely
on four simulations of extreme climate change scenarios up to 1000

years into the future, of which we have no experience yet. We could
interpret these uncharitably as mere fictions. On such a view, other
forms of knowledge acquisition, such as observations, are superior
because they are more ‘in contact with the system’ (Morrison 2009).
They have a greater ability to access the truth – a higher ‘epistemic
status’ – because they provide us with knowledge taken directly from
reality and not mediated by theories, assumptions and reasoning that
may be flawed.

Yet observations are also just flawed attempts to access truth. Ob-
servations of surface temperature have only recently begun to fill the
gaps in key warming regions, such as at the poles and over Africa
(Cowtan and Way 2014). Where temperature is measured, it is done
inconsistently: over land using air temperature, but over the oceans
using the water temperature. Water temperature is sometimes mea-
sured with ship buoys, and sometimes with ship engine intake ther-
mometers, which both have different biases (Karl et al. 2015). We also
learned in Chapter 2 that some observational instruments have large
measurement uncertainties. The calibration error of the TOA imbal-
ance is around 8 Wm−2, an order of magnitude larger than the actual
imbalance.

If we want to get at the truth by perfect means then we will have to
throw out our imperfect observations along with our models and re-
duce our problems to simple, closed systems, finding answers of no
particular use to anybody. If we discard perfection and the pursuit
of idealised and unreachable truth, then we can generate knowledge
through a process Hasok Chang calls ‘epistemic iteration’. Chang the-
orises that science progresses in a ‘spiral of self-improvement’: we
respect prior standards, but do not expect those standards to explain
everything, which leaves space for progress (Chang 2008).

Once we accept science as an imperfect, iterative progression, we
can find infinitely more helpful ways of understanding our models
than as mere works of fiction. Clarke and Primo (2012) conceive of
models as similar to maps, asking not ‘is the map true or false?’, but
rather ‘how can it be useful to us?’. Morrison (2009) suggests that
computational simulations can attain the same epistemic status as
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laboratory experiments, and that the latter only appear to be superior
because of received notions of materiality.

I believe we can go one step further. In the course of researching
this dissertation, I have come to appreciate the power of models pre-
cisely because they allow us to imagine. I am not talking about fiction,
but rather an ‘informed imagining’, which I have repeatedly referred
to as ‘simulation’ in this dissertation. When we ‘simulate’ with cli-
mate models we ‘imagine’ states of the climate, but we restrict our
imagining with hard-won rules determined by the laws of motion,
thermodynamics, fluid dynamics, conservation of mass, how to dis-
cretise those laws, and so forth. The resulting work is therefore not
mere fiction but an informed and rule-bound (re)construction of how
things could have been, or could be.

Albert Einstein said: ‘Knowledge is limited. Imagination encircles
the world.’ (Viereck 1929). I object to this simplification, since knowl-
edge informs imagination and the two can overlap. But Einstein’s
words are an important reminder to value imagination or so-called
‘fictions’ in scientific practice for what they can achieve (Godfrey-Smith
2009). This applies to both models and observations, since there is
know-how and imagination in the use of each.

My small contribution to this epistemological debate lies in recog-
nising the way in which new knowledge has been generated by us-
ing simulations and observations in this dissertation. For example, in
Chapter 2, I was able to simulate how the surface temperature could
have behaved over 1998–2012 on 100 Earths, all under identical condi-
tions, except for internal variability created by the proverbial flap of
a butterfly’s wings. The simulations cannot reproduce precisely how
100 similar Earths would have behaved, but they don’t need to. The
knowledge won from imagining this internal variability helped me
gain insights about the surface energy balance that shed new light on
empirical observations. These insights even allowed me to question
claims made by observational studies, and to re-interpret the obser-
vational evidence as it stands.

In Chapter 3, I grappled with the pattern effect, which the cur-
rent observations can describe only in limited ways (Gregory and
Andrews 2016). I was able to simulate the ECS and explore its re-
gional dimension over 1000 years into the future and at much higher
temperatures than today, and compare behaviour across different po-
tential pathways of warming. All these simulations cannot tell us how
the Earth will actually behave in 1000 years’ time. But analysing the
simulations did help me to question the superiority of observations
over other evidence, such as palaeoclimate proxies, in estimating ECS.
Treating simulated evidence as questionable because it fails to repre-
sent the observed reality (Lewis and Curry 2015) hinders our ability
to imagine how warm our future might actually be.
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It might be typical to assume that Chang’s epistemic iteration goes
in one direction – observations reveal facts about the true system
that models misrepresent, so we improve the models. However, in
this dissertation the process of creating knowledge has not been so
linear. Simulations helped me to gain insights that either support a
reinterpreation of the observations, or at least place them in a con-
text of broader possibilities. We should always recognise the limits of
our tools and our interpretations of them; they will never give us cer-
tainty in understanding surface warming. But the limitations of our
scientific tools are emphasised repeatedly by climate change denial-
ists, who have a disproportionate ability to shape public opinion on
climate science. Let us therefore appreciate the contribution as well
as the limitations of our work. Neither observations nor models are
works of fiction, and nor are they perfect conduits of truth. They are
simply the most powerful tools we possess at present for navigating
and understanding the future of our changing climate.
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A P P E N D I X T O C H A P T E R 1

Figure A.1: FAQ3.1, IPCC Assessment Report 4. Figure reproduced completely and
without alteration from Trenberth et al. (2007). The figure’s original cap-
tion refers to the top panel and states: ‘Note that for shorter recent peri-
ods, the slope is greater, indicating accelerated warming’. In 2007, when
Assessment Report 4 was published, surface warming had in fact entered
the surface-warming hiatus.

67





B
A P P E N D I X T O C H A P T E R 2

b.1 data availability

The MPI-ESM1.1 model version was used to generate the large en-
semble and is available at

http://www.mpimet.mpg.de/en/science/models/mpi-esm.html.

Computer code used in post-processing of raw data has been de-
posited with the Max Planck Society:

http://pubman.mpdl.mpg.de/pubman/faces/viewItemFullPage.jsp?

itemId=escidoc:2353695.

Raw data from the large ensemble were generated at the Swiss Na-
tional Computing Centre (CSCS) and Deutsches Klimarechenzentrum
(DKRZ) facilities. Derived data have been deposited with the Max
Planck Society:

http://pubman.mpdl.mpg.de/pubman/faces/viewItemFullPage.jsp?

itemId=escidoc:2353695.

Figure 2.10 uses TOA flux reconstructions provided by R Allan (Allan
et al. 2014; http://www.met.reading.ac.uk/~sgs01cll/flux/) and
satellite observations provided by the NASA CERES project (Loeb et
al. 2009; http://ceres.larc.nasa.gov). For observational estimates
in Figure 2.8, I make use of data provided by the NOAA World
Ocean Atlas (Levitus et al. 2012; https://www.nodc.noaa.gov/OC5/
3M_HEAT_CONTENT/) and by the ECMWF Ocean Reanalysis System 4

(Balmaseda et al. 2013; http://icdc.zmaw.de/projekte/easy-init/
easy-init-ocean.html).

b.2 extended figures
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Figure B.1: Poor correlation between ensemble anomalies in GMST trends

and heat-content trends. Global mean surface temperature (GMST)
trends in the 100-member historical ensemble are regressed against heat
content trends below 100m in the Atlantic, Southern, Pacific and Indian
Oceans, and the ocean and TOA components. The ocean component is
the global ocean heat release to the layer above 100m. The TOA compo-
nent is the top-of-atmosphere net radiative fluxes minus changes in total
moist static energy in the atmosphere. Linear trends in heat content and
GMST are calculated over a 15-year sliding window and converted to
ensemble anomalies
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Figure B.2: Both TOA-only hiatuses and ocean-only hiatuses can present sub-
surface warming. Horizontally averaged ocean potential temperature
during two types of hiatus in the large ensemble. TOA-only hiatuses (red)
are hiatuses in which only the TOA provides a cooling contribution to
the surface layer; ocean-only hiatuses (blue) are hiatuses in which only
the ocean provides the cooling. The bold line shows the mean of each
hiatus type, the dotted lines are ±1 standard deviation. Linear trends in
potential temperature are calculated over a 15-year sliding window and
converted to ensemble anomalies.
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start-year toa-only ocean-only toa-and-ocean total

1850–1887 10 25 65 100

1888–1925 13 18 57 88

1926–1963 13 19 57 89

1964–2001 8 25 54 87

Total 44 87 233 364

Table B.1: Number of hiatuses sorted by origin and start-year in the 100-
member historical ensemble. Hiatuses are labelled ocean-only or TOA-
only when only the ocean or the TOA component is responsible for the
negative anomaly in the 15-year surface-layer flux-divergence. A TOA-and-
ocean hiatus is where both components contribute to the negative anomaly.
A Chi-square test of the contingency table yields no significant relation-
ship between periods in time (rows) and origin type (columns), with a
p-value of 0.73.
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c.1 data availability

The MPI-ESM1.2 model version was used to generate the four 1000-
year integrations on the Deutsches Klimarechenzentrum (DKRZ) fa-
cilities. The model version is available at:

http://www.mpimet.mpg.de/en/science/models/mpi-esm.html.

73

http://www.mpimet.mpg.de/en/science/models/mpi-esm.html




B I B L I O G R A P H Y

Allan, R. P. et al. (2014). “Changes in global net radiative imbalance
1985-2012.” Geophysical Research Letters 41.15, pp. 5588–5597. doi:
10.1002/2014GL060962.

Andrews, T., J. M. Gregory, and M. J. Webb (2015). “The dependence
of radiative forcing and feedback on evolving patterns of surface
temperature change in climate models.” Journal of Climate 28.4,
pp. 1630–1648. doi: 10.1175/JCLI-D-14-00545.1.

Armour, K. C. (2017). “Energy budget constraints on climate sensi-
tivity in light of inconstant climate feedbacks.” Nature Climate
Change 7.5, pp. 331–335. doi: 10.1038/nclimate3278.

Armour, K. C., C. M. Bitz, and G. H. Roe (2013). “Time-Varying
Climate Sensitivity from Regional Feedbacks.” Journal of Climate
26.13, pp. 4518–4534. doi: 10.1175/JCLI-D-12-00544.1.

Arrhenius, S. (1896). “On the Influence of Carbonic Acid in the Air
upon the Temperature of the Ground.” Philosophocal Magazine and
Journal of Science 41.251, pp. 237–276.

Baker, M. B. and G. H. Roe (2009). “The shape of things to come:
Why is climate change so predictable?” Journal of Climate 22.17,
pp. 4574–4589. doi: 10.1175/2009JCLI2647.1.

Balmaseda, M. A., K. E. Trenberth, and E. Källén (2013). “Distinctive
climate signals in reanalysis of global ocean heat content.” Geo-
physical Research Letters 40.9, pp. 1754–1759. doi: 10.1002/grl.
50382.

Bloch-Johnson, J., R. T. Pierrehumbert, and D. S. Abbot (2015). “Feed-
back temperature dependence determines the risk of high warm-
ing.” Geophysical Research Letters 42.12, pp. 4973–4980. doi: 10 .

1002/2015GL064240.
Block, K. and T. Mauritsen (2013). “Forcing and feedback in the MPI-

ESM-LR coupled model under abruptly quadrupled CO2.” Jour-
nal of Advances in Modeling Earth Systems 5.4, pp. 676–691. doi:
10.1002/jame.20041.

Brown, P. T., W. Li, L. Li, and Y. Ming (2014). “Top-of-atmosphere ra-
diative contribution to unforced decadal global temperature vari-
ability in climate models.” Geophysical Research Letters 41, pp. 5175–
5183. doi: 10.1002/2014GL060625.

Byrne, M. P. and P. O’Gorman (2013). “Land-ocean warming contrast
over a wide range of climates: Convective quasi-equilibrium the-
ory and idealized simulations.” Journal of Climate 26.12, pp. 4000–
4016. doi: 10.1175/JCLI-D-12-00262.1.

Caballero, R. and M. Huber (2013). “State-dependent climate sensitiv-
ity in past warm climates and its implications for future climate

75

https://doi.org/10.1002/2014GL060962
https://doi.org/10.1175/JCLI-D-14-00545.1
https://doi.org/10.1038/nclimate3278
https://doi.org/10.1175/JCLI-D-12-00544.1
https://doi.org/10.1175/2009JCLI2647.1
https://doi.org/10.1002/grl.50382
https://doi.org/10.1002/grl.50382
https://doi.org/10.1002/2015GL064240
https://doi.org/10.1002/2015GL064240
https://doi.org/10.1002/jame.20041
https://doi.org/10.1002/2014GL060625
https://doi.org/10.1175/JCLI-D-12-00262.1


76 Bibliography

projections.” Proceedings of the National Academy of Sciences of the
United States of America 110.35, pp. 14162–7. doi: 10.1073/pnas.
1303365110.

Cartwright, N. (1983). How the Laws of Physics Lie. Oxford: Clarendon
Press.

Ceppi, P., D. L. Hartmann, and M. J. Webb (2016). “Mechanisms of
the Negative Shortwave Cloud Feedback in Middle to High Lati-
tudes.” Journal of Climate 29.1, pp. 139–157. doi: 10.1175/JCLI-D-
15-0327.1.

Chang, H. (2008). Inventing Temperature: Measurement and Scientific
Progress. New York: Oxford University Press.

Chen, X. and K.-K. Tung (2014). “Varying planetary heat sink led
to global-warming slowdown and acceleration.” Science 345.6199,
pp. 897–903. doi: 10.1126/science.1254937.

Choi, Y.-S., C.-H. Ho, C.-E. Park, T. Storelvmo, and I. Tan (2014). “In-
fluence of cloud phase composition on climate feedbacks.” Jour-
nal of Geophysical Research: Atmospheres 119.7, pp. 3687–3700. doi:
10.1002/2013JD020582.

Clarke, K. A. and D. M. Primo (2012). A Model Discipline: Political Sci-
ence and the Logic of Representations. New York: Oxford University
Press.

Cohen, J. L., J. C. Furtado, M. Barlow, V. A. Alexeev, and J. E. Cherry
(2012). “Asymmetric seasonal temperature trends.” Geophysical
Research Letters 39.4, pp. 1–7. doi: 10.1029/2011GL050582.

Colman, R and B. J. McAvaney (1997). “A study of general circulation
model climate feedbacks determined from perturbed sea surface
temperature experiments.” Journal of Geophysical Research: Atmo-
spheres 102.D16, pp. 19383–19402. doi: 10.1029/97JD00206.

Cowtan, K. and R. G. Way (2014). “Coverage bias in the HadCRUT4

temperature series and its impact on recent temperature trends.”
Quarterly Journal of the Royal Meteorological Society 140.683, pp. 1935–
1944. doi: 10.1002/qj.2297.

Dai, A., J. C. Fyfe, S.-P. Xie, and X. Dai (2015). “Decadal modulation of
global surface temperature by internal climate variability.” Nature
Climate Change 5.6, pp. 555–559. doi: 10.1038/nclimate2605.

Dee, D. P. et al. (2014). “Toward a consistent reanalysis of the cli-
mate system.” Bulletin of the American Meteorological Society 95.8,
pp. 1235–1248. doi: 10.1175/BAMS-D-13-00043.1.

Drijfhout, S. S. et al. (2014). “Surface warming hiatus caused by in-
creased heat uptake across multiple ocean basins.” Geophysical
Research Letters 41.22, pp. 7868–7874. doi: 10.1002/2014GL061456.

England, M. H. et al. (2014). “Recent intensification of wind-driven
circulation in the Pacific and the ongoing warming hiatus.” Na-
ture Climate Change 4.3, pp. 222–227. doi: 10.1038/nclimate2106.

https://doi.org/10.1073/pnas.1303365110
https://doi.org/10.1073/pnas.1303365110
https://doi.org/10.1175/JCLI-D-15-0327.1
https://doi.org/10.1175/JCLI-D-15-0327.1
https://doi.org/10.1126/science.1254937
https://doi.org/10.1002/2013JD020582
https://doi.org/10.1029/2011GL050582
https://doi.org/10.1029/97JD00206
https://doi.org/10.1002/qj.2297
https://doi.org/10.1038/nclimate2605
https://doi.org/10.1175/BAMS-D-13-00043.1
https://doi.org/10.1002/2014GL061456
https://doi.org/10.1038/nclimate2106


Bibliography 77

Feldl, N. and G. H. Roe (2013). “Four perspectives on climate feed-
backs.” Geophysical Research Letters 40.15, pp. 4007–4011. doi: 10.
1002/grl.50711.

Flato, G. et al. (2013). “Evaluation of Climate Models.” Climate Change
2013: The Physical Science Basis. Ed. by T. Stocker et al. Cambridge,
United Kingdom: Cambridge University Press. Chap. 9, pp. 741–
866.

Fyfe, J. C., K. Von Salzen, J. N. S. Cole, N. P. Gillett, and J. P. Vernier
(2013). “Surface response to stratospheric aerosol changes in a
coupled atmosphere-ocean model.” Geophysical Research Letters
40.3, pp. 584–588. doi: 10.1002/grl.50156.

Fyfe, J. C. et al. (2016). “Making sense of the early-2000s warming
slowdown.” Nature Clim. Change 6.3, pp. 224–228. doi: 10.1038/
nclimate2938.

Geoffroy, O. et al. (2013a). “Transient climate response in a two-layer
energy-balance model. Part I: Analytical solution and parameter
calibration using CMIP5 AOGCM experiments.” Journal of Cli-
mate 26.6, pp. 1841–1857. doi: 10.1175/JCLI- D- 12- 00195.1.
arXiv: 0402594v3 [arXiv:cond-mat].

Geoffroy, O. et al. (2013b). “Transient climate response in a two-layer
energy-balance model. Part II: Representation of the efficacy of
deep-ocean heat uptake and validation for CMIP5 AOGCMs.”
Journal of Climate 26.6, pp. 1859–1876. doi: 10.1175/JCLI-D-12-
00196.1.

Giorgetta, M. A. et al. (2013). “Climate and carbon cycle changes from
1850 to 2100 in MPI-ESM simulations for the Coupled Model In-
tercomparison Project phase 5.” Journal of Advances in Modeling
Earth Systems 5.3, pp. 572–597. doi: 10.1002/jame.20038.

Godfrey-Smith, P. (2009). “Models and fictions in science.” Philosophi-
cal Studies 143.1, pp. 101–116. doi: 10.1007/s11098-008-9313-2.

Good, P., J. M. Gregory, and J. A. Lowe (2011). “A step-response sim-
ple climate model to reconstruct and interpret AOGCM projec-
tions.” Geophysical Research Letters 38.1, n/a–n/a. doi: 10.1029/
2010GL045208.

Good, P., J. M. Gregory, J. A. Lowe, and T. Andrews (2013). “Abrupt
CO2 experiments as tools for predicting and understanding CMIP5

representative concentration pathway projections.” Climate Dy-
namics 40.3-4, pp. 1041–1053. doi: 10.1007/s00382- 012- 1410-
4.

Gregory, J. M. and T Andrews (2016). “Variation in climate sensitivity
and feedback parameters during the historical period.” Geophysi-
cal Research Letters 43.8, pp. 3911–3920. doi: 10.1002/2016GL068406.

Gregory, J. M. et al. (2004). “A new method for diagnosing radiative
forcing and climate sensitivity.” Geophysical Research Letters 31.3,
p. L03205. doi: 10.1029/2003GL018747.

https://doi.org/10.1002/grl.50711
https://doi.org/10.1002/grl.50711
https://doi.org/10.1002/grl.50156
https://doi.org/10.1038/nclimate2938
https://doi.org/10.1038/nclimate2938
https://doi.org/10.1175/JCLI-D-12-00195.1
http://arxiv.org/abs/0402594v3
https://doi.org/10.1175/JCLI-D-12-00196.1
https://doi.org/10.1175/JCLI-D-12-00196.1
https://doi.org/10.1002/jame.20038
https://doi.org/10.1007/s11098-008-9313-2
https://doi.org/10.1029/2010GL045208
https://doi.org/10.1029/2010GL045208
https://doi.org/10.1007/s00382-012-1410-4
https://doi.org/10.1007/s00382-012-1410-4
https://doi.org/10.1002/2016GL068406
https://doi.org/10.1029/2003GL018747


78 Bibliography

Guemas, V., F. J. Doblas-Reyes, I. Andreu-Burillo, and M. Asif (2013).
“Retrospective prediction of the global warming slowdown in the
past decade.” Nature Climate Change 3.4, pp. 1–5. doi: 10.1038/
nclimate1863.

Hansen, J. et al. (2005). “Efficacy of climate forcings.” Journal of Geo-
physical Research D: Atmospheres 110.18, pp. 1–45. doi: 10.1029/
2005JD005776.

Hargreaves, J. C. and J. D. Annan (2016). “Could the Pliocene con-
strain the equilibrium climate sensitivity?” Climate of the Past 12.8,
pp. 1591–1599. doi: 10.5194/cp-12-1591-2016.

Hargreaves, J. C., J. D. Annan, M. Yoshimori, and A. Abe-Ouchi (2012).
“Can the Last Glacial Maximum constrain climate sensitivity?”
Geophysical Research Letters 39.24, pp. 1–5. doi: 10.1029/2012GL053872.

Hartmann, D. J. et al. (2013). “Observations: Atmosphere and Surface
Supplementary Material.” Climate Change 2013: The Physical Sci-
ence Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change. Ed. by T. F.
Stocker et al., pp. 159–254. doi: 10.1017/CBO9781107415324.008.

Haywood, J. M., A. Jones, and G. S. Jones (2014). “The impact of
volcanic eruptions in the period 2000-2013 on global mean tem-
perature trends evaluated in the HadGEM2-ES climate model.”
Atmospheric Science Letters 15.2, pp. 92–96. doi: 10.1002/asl2.471.

Hedemann, C., T. Mauritsen, J. Jungclaus, and J. Marotzke (2017).
“The subtle origins of surface-warming hiatuses.” Nature Climate
Change 7.5, pp. 336–339. doi: 10.1038/nclimate3274.

Held, I. M. et al. (2010). “Probing the Fast and Slow Components
of Global Warming by Returning Abruptly to Preindustrial Forc-
ing.” Journal of Climate 23.9, pp. 2418–2427. doi: 10.1175/2009JCLI3466.
1.

Huber, M. and R. Caballero (2011). “The early Eocene equable climate
problem revisited.” Climate of the Past 7.2, pp. 603–633. doi: 10.
5194/cp-7-603-2011.

Huntingford, C. and P. M. Cox (2000). “An analogue model to derive
additional climate change scenarios from existing GCM simula-
tions.” Climate Dynamics 16.8, pp. 575–586. doi: 10.1007/s003820000067.

Johnson, G. C., J. M. Lyman, and N. G. Loeb (2016). “Improving es-
timates of Earth’s energy imbalance.” Nature Climate Change 6.7,
pp. 639–640. doi: 10.1038/nclimate3043.

Jonko, A. K., K. M. Shell, B. M. Sanderson, and G. Danabasoglu
(2012). “Climate Feedbacks in CCSM3 under Changing CO2 Forc-
ing. Part I: Adapting the Linear Radiative Kernel Technique to
Feedback Calculations for a Broad Range of Forcings.” Journal of
Climate 25.15, pp. 5260–5272. doi: 10.1175/JCLI-D-11-00524.1.

Jungclaus, J. H. et al. (2013a). “Characteristics of the ocean simu-
lations in the Max Planck Institute Ocean Model (MPIOM) the
ocean component of the MPI-Earth system model.” Journal of Ad-

https://doi.org/10.1038/nclimate1863
https://doi.org/10.1038/nclimate1863
https://doi.org/10.1029/2005JD005776
https://doi.org/10.1029/2005JD005776
https://doi.org/10.5194/cp-12-1591-2016
https://doi.org/10.1029/2012GL053872
https://doi.org/10.1017/CBO9781107415324.008
https://doi.org/10.1002/asl2.471
https://doi.org/10.1038/nclimate3274
https://doi.org/10.1175/2009JCLI3466.1
https://doi.org/10.1175/2009JCLI3466.1
https://doi.org/10.5194/cp-7-603-2011
https://doi.org/10.5194/cp-7-603-2011
https://doi.org/10.1007/s003820000067
https://doi.org/10.1038/nclimate3043
https://doi.org/10.1175/JCLI-D-11-00524.1


Bibliography 79

vances in Modeling Earth Systems 5.2, pp. 422–446. doi: 10.1002/
jame.20023.

Jungclaus, J. et al. (2013b). CMIP5 simulations of the Max Planck Insti-
tute for Meteorology (MPI-M) based on the MPI-ESM-LR model: The
decadal2000 experiment, served by ESGF. doi: 10.1594/WDCC/CMIP5.
MXEL00.

Karl, T. R. et al. (2015). “Possible artifacts of data biases in the re-
cent global surface warming hiatus.” Science 348.6242, pp. 1469–
72. doi: 10.1126/science.aaa5632.

Katsman, C. A. C., G. van Oldenborgh, and G. J. van Oldenborgh
(2011). “Tracing the upper ocean’s “missing heat”.” Geophysical
Research Letters 38.14, n/a–n/a. doi: 10.1029/2011GL048417.

Kay, J. E. et al. (2014). “Processes controlling Southern Ocean short-
wave climate feedbacks in CESM.” Geophysical Research Letters
41.2, pp. 616–622. doi: 10.1002/2013GL058315.

Kopp, G. and J. L. Lean (2011). “A new, lower value of total solar ir-
radiance: Evidence and climate significance.” Geophysical Research
Letters 38.1, pp. 1–7. doi: 10.1029/2010GL045777.

Kosaka, Y. and S.-P. Xie (2013). “Recent global-warming hiatus tied
to equatorial Pacific surface cooling.” Nature 501.7467, pp. 403–7.
doi: 10.1038/nature12534.

Kutzbach, J. E., F. He, S. J. Vavrus, and W. F. Ruddiman (2013). “The
dependence of equilibrium climate sensitivity on climate state:
Applications to studies of climates colder than present.” Geophys-
ical Research Letters 40.14, pp. 3721–3726. doi: 10.1002/grl.50724.

Lee, S.-K. et al. (2015). “Pacific origin of the abrupt increase in In-
dian Ocean heat content during the warming hiatus.” Nature Geo-
science 8.6, pp. 445–449. doi: 10.1038/ngeo2438.

Levitus, S. et al. (2012). “World ocean heat content and thermosteric
sea level change (0-2000 m), 1955-2010.” Geophysical Research Let-
ters 39.10. doi: 10.1029/2012GL051106.

Lewandowsky, S., N. Oreskes, J. S. Risbey, B. R. Newell, and M. Smith-
son (2015). “Seepage: Climate change denial and its effect on the
scientific community.” Global Environmental Change 33, pp. 1–13.
doi: 10.1016/j.gloenvcha.2015.02.013.

Lewis, N. and J. A. Curry (2015). “The implications for climate sensi-
tivity of AR5 forcing and heat uptake estimates.” Climate Dynam-
ics 45.3-4, pp. 1009–1023. doi: 10.1007/s00382-014-2342-y.

Li, C., J.-S. Storch, and J. Marotzke (2013). “Deep-ocean heat uptake
and equilibrium climate response.” Climate Dynamics 40.5-6, pp. 1071–
1086. doi: 10.1007/s00382-012-1350-z.

Li, C., B. Stevens, and J. Marotzke (2015). “Eurasian winter cooling
in the warming hiatus of 1998-2012.” Geophysical Research Letters
42.19, pp. 8131–8139. doi: 10.1002/2015GL065327.

Li, G. and S. P. Xie (2014). “Tropical biases in CMIP5 multimodel
ensemble: The excessive equatorial pacific cold tongue and dou-

https://doi.org/10.1002/jame.20023
https://doi.org/10.1002/jame.20023
https://doi.org/10.1594/WDCC/CMIP5.MXEL00
https://doi.org/10.1594/WDCC/CMIP5.MXEL00
https://doi.org/10.1126/science.aaa5632
https://doi.org/10.1029/2011GL048417
https://doi.org/10.1002/2013GL058315
https://doi.org/10.1029/2010GL045777
https://doi.org/10.1038/nature12534
https://doi.org/10.1002/grl.50724
https://doi.org/10.1038/ngeo2438
https://doi.org/10.1029/2012GL051106
https://doi.org/10.1016/j.gloenvcha.2015.02.013
https://doi.org/10.1007/s00382-014-2342-y
https://doi.org/10.1007/s00382-012-1350-z
https://doi.org/10.1002/2015GL065327


80 Bibliography

ble ITCZ problems.” Journal of Climate 27.4, pp. 1765–1780. doi:
10.1175/JCLI-D-13-00337.1.

Liu, W., S.-P. Xie, and J. Lu (2016). “Tracking ocean heat uptake during
the surface warming hiatus.” Nature Communications 7, p. 10926.
doi: 10.1038/ncomms10926.

Loeb, N. G. et al. (2009). “Toward optimal closure of the Earth’s top-
of-atmosphere radiation budget.” Journal of Climate 22.3, pp. 748–
766. doi: 10.1175/2008JCLI2637.1.

Maher, N., A. S. Gupta, and M. H. England (2014). “Drivers of decadal
hiatus periods in the 20th and 21st centuries.” Geophysical Research
Letters 41.16, pp. 5978–5986. doi: 10.1002/2014GL060527.

Manabe, S. and R. T. Wetherald (1967). Thermal Equilibrium of the Atmo-
sphere with a Given Distribution of Relative Humidity. doi: 10.1175/
1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

Marotzke, J. and P. M. Forster (2015). “Forcing, feedback and inter-
nal variability in global temperature trends.” Nature 517.7536,
pp. 565–570. doi: 10.1038/nature14117.

Marvel, K., G. A. Schmidt, R. L. Miller, and L. S. Nazarenko (2015).
“Implications for climate sensitivity from the response to indi-
vidual forcings.” Nature Climate Change 6.4, pp. 386–389. doi: 10.
1038/nclimate2888.

Mauritsen, T. and R. Pincus (2017). “Committed warming inferred
from observations.” Submitted.

Mauritsen, T. et al. (2012). “Tuning the climate of a global model.”
Journal of Advances in Modeling Earth Systems 4.M00A01. doi: 10.
1029/2012MS000154.

McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P.
Grosvenor (2015). “Mixed-phase cloud physics and Southern Ocean
cloud feedback in climate models.” Journal of Geophysical Research:
Atmospheres 120.18, pp. 9539–9554. doi: 10.1002/2015JD023603.

Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth
(2011). “Model-based evidence of deep-ocean heat uptake during
surface-temperature hiatus periods.” Nature Climate Change 1.7,
pp. 360–364. doi: 10.1038/nclimate1229.

Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, and K. E. Trenberth
(2013). “Externally Forced and Internally Generated Decadal Cli-
mate Variability Associated with the Interdecadal Pacific Oscilla-
tion.” Journal of Climate 26.18, pp. 7298–7310. doi: 10.1175/JCLI-
D-12-00548.1.

Meraner, K., T. Mauritsen, and A. Voigt (2013). “Robust increase in
equilibrium climate sensitivity under global warming.” Geophysi-
cal Research Letters 40.22, pp. 5944–5948. doi: 10.1002/2013GL058118.

Morice, C. P., J. J. Kennedy, N. a. Rayner, and P. D. Jones (2012).
“Quantifying uncertainties in global and regional temperature
change using an ensemble of observational estimates: The Had-

https://doi.org/10.1175/JCLI-D-13-00337.1
https://doi.org/10.1038/ncomms10926
https://doi.org/10.1175/2008JCLI2637.1
https://doi.org/10.1002/2014GL060527
https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2
https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2
https://doi.org/10.1038/nature14117
https://doi.org/10.1038/nclimate2888
https://doi.org/10.1038/nclimate2888
https://doi.org/10.1029/2012MS000154
https://doi.org/10.1029/2012MS000154
https://doi.org/10.1002/2015JD023603
https://doi.org/10.1038/nclimate1229
https://doi.org/10.1175/JCLI-D-12-00548.1
https://doi.org/10.1175/JCLI-D-12-00548.1
https://doi.org/10.1002/2013GL058118


Bibliography 81

CRUT4 data set.” Journal of Geophysical Research: Atmospheres 117.8,
pp. 1–22. doi: 10.1029/2011JD017187.

Morrison, M. (2009). “Models, measurement and computer simula-
tion: the changing face of experimentation.” Philosophical Studies
143.1, pp. 33–57. doi: 10.1007/s11098-008-9317-y.

Mueller, B. and S. I. Seneviratne (2014). “Systematic land climate and
evapotranspiration biases in CMIP5 simulations.” Geophysical Re-
search Letters 41.1, pp. 128–134. doi: 10.1002/2013GL058055.

Myhre, G. et al. (2013). “Anthropogenic and Natural Radiative Forc-
ing.” Climate Change 2013: The Physical Science Basis. Contribution
of Working Group I to the Fifth Assessment Report of the Intergovern-
mental Panel on Climate Change. Ed. by T. Stocker et al. Cambridge,
United Kingdom: Cambridge University Press, pp. 659–740. doi:
10.1017/CBO9781107415324.018. arXiv: arXiv:1011.1669v3.

Nieves, V., J. K. Willis, and W. C. Patzert (2015). “Recent hiatus caused
by decadal shift in Indo-Pacific heating.” Science 349.6247, pp. 532–
535. doi: 10.1126/science.aaa4521.

Oreskes, N., K. Shrader-Frechette, and K. Belitz (1994). “Verification,
Validation, and Confirmation of Numerical Models in the Earth
Sciences.” Science 263.February, pp. 641–646. doi: 10.1126/science.
263.5147.641.

Otto, A. et al. (2013). “Energy budget constraints on climate response.”
Nature Geoscience 6.6, pp. 415–416. doi: 10.1038/ngeo1836.

Palmer, M. D. and D. J. McNeall (2014). “Internal variability of Earth’s
energy budget simulated by CMIP5 climate models.” Environmen-
tal Research Letters 9.3, p. 034016. doi: 10.1088/1748-9326/9/3/
034016.

Popp, M., H. Schmidt, and J. Marotzke (2016). “Transition to a Moist
Greenhouse with CO2 and solar forcing.” Nature Communications
7, p. 10627. doi: 10.1038/ncomms10627.

Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta (1999).
“Inter-decadal modulation of the impact of ENSO on Australia.”
Climate Dynamics 15.5, pp. 319–324. doi: 10.1007/s003820050284.

Purkey, S. G. and G. C. Johnson (2010). “Warming of global abyssal
and deep Southern Ocean waters between the 1990s and 2000s:
Contributions to global heat and sea level rise budgets.” Journal
of Climate 23, pp. 6336–6351. doi: 10.1175/2010JCLI3682.1.

Ridley, D. A. et al. (2014). “Total volcanic stratospheric aerosol optical
depths and implications for global climate change.” Geophysical
Research Letters 41.22, pp. 7763–7769. doi: 10.1002/2014GL061541.

Rohling, E. et al. (2012). “Making sense of palaeoclimate sensitivity.”
Nature 491.V, pp. 0–9. doi: 10.1038/nature11574.

Rose, B. E. J. and L. Rayborn (2016). “The Effects of Ocean Heat Up-
take on Transient Climate Sensitivity.” Current Climate Change Re-
ports, pp. 1–12. doi: 10.1007/s40641-016-0048-4.

https://doi.org/10.1029/2011JD017187
https://doi.org/10.1007/s11098-008-9317-y
https://doi.org/10.1002/2013GL058055
https://doi.org/10.1017/ CBO9781107415324.018
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1126/science.aaa4521
https://doi.org/10.1126/science.263.5147.641
https://doi.org/10.1126/science.263.5147.641
https://doi.org/10.1038/ngeo1836
https://doi.org/10.1088/1748-9326/9/3/034016
https://doi.org/10.1088/1748-9326/9/3/034016
https://doi.org/10.1038/ncomms10627
https://doi.org/10.1007/s003820050284
https://doi.org/10.1175/2010JCLI3682.1
https://doi.org/10.1002/2014GL061541
https://doi.org/10.1038/nature11574
https://doi.org/10.1007/s40641-016-0048-4


82 Bibliography

Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B.
Koll (2014). “The dependence of transient climate sensitivity and
radiative feedbacks on the spatial pattern of ocean heat uptake.”
Geophysical Research Letters 41.3, pp. 1071–1078. doi: 10 . 1002 /

2013GL058955.
Royer, D. L. (2016). “Climate Sensitivity in the Geologic Past.” Annual

Review of Earth and Planetary Sciences 44.1, pp. 277–293. doi: 10.
1146/annurev-earth-100815-024150.

Rugenstein, M. A. A., K. Caldeira, and R. Knutti (2016a). “Depen-
dence of global radiative feedbacks on evolving patterns of sur-
face heat fluxes.” Geophysical Research Letters 43.18, pp. 9877–9885.
doi: 10.1002/2016GL070907.

Rugenstein, M. A. A., J. M. Gregory, N. Schaller, J. Sedláček, and
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