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ABSTRACT

Four different parameterizations of the nonlinear energy transfer S, in a surface wave spectrum are invsti}gated.
Two parameterizations are based on a relatively small number of parameters and are useful primarily for
application in parametrical or hybrid wave models. In the first parameterization, shape-distortion parameters
are introduced to relate the distributions S,y for different values of the peak-enhancement parameter 7. The
second parameterization is based on an EOF expansion of a set of S, computed for a number of different
spectral distributions. The remaining two parameterizations represent operator forms that contain the same
number of free parameters as used 10 describe the wave spectrum. Such parameterizations with a matched
number of input and output parameters are required for numerical stability in high-resolution discrete spectral
models. A cubic, fourth-order diffusion-operator expression derived by a local-interaction expansion is found
to be useful for understanding many of the properties of S, but is regarded as too inaccurate in detail for
application in most wave models. The best results are achieved with a discrete-interaction operator parameter-
ization, in which a single interaction configuration, together with its mirror image (representing a two-dimensional
continuum of interactions with respect to a variable reference wavenumber scale and direction) is used to

simulate the net effect of the full five-dimensional interaction continuum.
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1. Introduction

A traditional difficulty of numerical wave models
has been the adequate representation of the source
function S,; describing the nonlinear energy transfer.
Since the time needed to compute the exact source
function expression greatly exceeds the practical limits
set by an operational wave model, some form of pa-
rameterization is needed. In the original approach used
by Barnett (1968) and Ewing (1971) the nonlinear
transfer for any given spectrum was simply replaced
by the transfer computed for an equivalently scaled
reference spectrum of prescribed (Pierson-Moskowitz)
shape. After the important role of the nonlinear transfer
in controlling the shape and rate of evolution of a wind-
sea spectrum was more clearly recognized (Mitsuyasu,
1968, 1969; Hasselmann et al., 1973), it became ap-
parent that more general parameterizations were
needed which allowed for the influence of the spectral
shape on the strength and distribution of the nonlinear
transfer. Present second-generation wave models
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therefore normally include some form of shape sensi-
tivity in the parameterization schemes for S,,.
Nevertheless, a recent intercomparison study of wave
models (Sea Wave Modeling Project—SWAMP; cf.
The SWAMP Group, 1985) revealed that all present
second-generation models exhibit similar, basic defi-
cencies in their treatment of the nonlinear transfer.
These may be attributed to two factors: first, the pa-
rameterization schemes used in present second gen-
eration models contain too few degrees of freedom to
reproduce adequately the nonlinear transfer for an ar-
bitrary spectral shape; and second, the dependence of
the nonlinear transfer on spectral shape has simply not
been sufficiently well explored through exact compu-
tations for the wide variety of wind-sea and mixed
wind-sea/swell spectra which may be encountered in
strongly varying wind fields, or in decaying wind sit-
uations in which the wind-sea is transformed into swell.
The first shortcoming is not just a question of the
fidelity of the parameterization. More seriously, it leads
to numerical instabilities in high-resolution, discrete
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spectral models (cf. The SWAMP Group, 1985). This
is overcome in practice by reducing the effective num-
ber of degrees of freedom used in the description of
the spectrum to match the number of degrees of free-
dom used in the parameterization of the nonlinear
transfer. However, this in effect reduces a discrete
spectral model to a hybrid model. The solution to this
difficulty is clearly to develop alternative, operator par-
ameterizations of the nonlinear transfer in which the
nonlinear source functions contain the same number
of degrees of freedom as the spectrum itself.

To overcome the second deficiency, extensive com-
putations of the exact nonlinear transfer expression are
required for a wide variety of spectra. This has now
become feasible through the development of a more
efficient computation technique, described in Part I of
this paper (Hasselmann and Hasselmann, 1985, re-
ferred to in the following as I), which exploits the sym-
metry of the wave-wave interactions. The ability to
perform fast computations of the exact nonlinear
transfer expression has a further important advantage
in the present context. It is found in practice that pa-
rameterizations can be tested reliably only by actually
incorporating them in a wave model and verifying that
the wave growth simulated by the model agrees in
standard test cases with the growth curves obtained
with the same model using exact computations of the
nonlinear transfer. Such integrations require repeated
exact nonlinear transfer computations using an efficient
integration technique.

We investigate various alternative parameterization
methods. The simplest approach is a straightforward
extension of the technique originally used by Barnett
(1968) and Ewing (1971). The exact nonlinear transfer
is first computed for a selected class of spectra char-
acterized by relatively few spectral-shape parameters.
In the wave model, the nonlinear transfer for a given
spectrum is then simply replaced by the stored, pre-
viously computed exact transfer for an appropriate
member of the selected spectral class whose shape most
resembles the given model spectrum (the dependence
on the spectral scale parameters is determined by the-
ory). Two such parameterizations are developed (Sec-
tions 2 and 3). These parameterizations are useful for
summarizing the general properties of the exact non-
linear transfer expression, but incorporate only a small
number of degrees of freedom. They therefore cannot
be reliably applied for spectral distributions that fall
outside the limited family of spectra spanned by the
chosen parameter space. They are nevertheless appro-
priate for hybrid models in which the spectral shape is
restricted a priori in the model. However, if applied in
high-resolution discrete spectral models, they not only
do injustice to the basic flexibility of the spectral de-
scription, but actually lead to the aforementioned in-
stabilities.

We accordingly consider two further parameteriza-
tions in which the nonlinear transfer is approximated
by general nonlinear operator expressions.
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In the first operator parameterization, the transfer
integral is represented in the local-interaction approx-
imation as a fourth-order, cubic diffusion operator
(Section 4). Although this operator captures most of
the basic features of the exact expressions and is useful
for understanding the role of the nonlinear transfer in
the spectral energy balance, it is not considered suffi-
ciently accurate for quantitative calculations in most
numerical wave models. In this respect the local-in-
teraction approximation is comparable with the alter-
native expansions for narrowly peaked spectra devel-
oped by Longuet-Higgins (1976), Fox (1976), and
Dungey and Hui (1979), which are also based on local-
interaction approximations. (The narrow-peak ap-
proximation is not considered as a candidate operator
parameterization here, however, as it contains too few
degrees of freedom to be applied in a discrete wave
model without spectral-shape constraints.)

An alternative nonlinear operator approximation is
therefore developed that extends over a broader wave-
number interaction range (Section 5). The parameter-
ization essentially mirrors the structure of the exact
integral, but restricts the interactions to a discrete sub-
set. Each wavenumber of the spectrum is allowed to
interact with other components of the spectrum -
through only a small number of basic interaction con-
figurations. In this manner the complete Boltzmann
interaction integral over the full Sd-interaction phase
space is reduced to a 2d-integral over a reference wave-
number, which defines the scale and orientation of the
discrete interaction quadruplets. This brings the com-
putation of the nonlinear source function to the same
dimensional level as the remaining source functions.
Experiments with a number of different interaction
configurations finally led to the choice of two mirror-
image quadruplets which yielded acceptable approxi-
mations to the exact transfer expression for a wide
variety of spectra and reproduced both the basic fetch-
limited spectral growth relations obtained with the ex-
act nonlinear transfer expression and the response to
a turning wind.

We regard this last parameterization as the most
suitable form for incorporation in discrete wave mod-
els. It can readily be upgraded by including additional
interaction configurations. However, as summarized
in the concluding Section 6, the alternative parame-
terizations considered in this paper also have various
merits: in illustrating the principal properties of the
nonlinear transfer, in interpreting the response of a
growing wind-sea spectrum to the driving source func-
tions, or for application in parametrical or hybrid wave
models containing fewer degrees of freedom than a fully
resolving discrete spectral model.

2. Parameterization of the nonlinear transfer in terms
of the peak-enhancement parameter vy

The principal dependence of the nonlinear transfer
S,; on the shape of a wind-sea spectrum can be de-
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scribed in terms of the peak-enhancement parameter
«. This is defined for a wind-sea spectrum as the ratio
of the level of the one-dimensional frequency spectrum
at the peak frequency to the value of the equivalent
Pierson-Moskowitz (PM) spectrum at the same peak
frequency, the PM spectrum being adjusted to the same
level at high frequencies (i.e., to the same value of Phil-
lips’ constant a).

The dependence of S,; on v explains the self-stabi-
lization of the spectral shape, the shift of the peak to
lower frequencies during the growth stage, and the en-
ergy transfer into the peak instead of the forward face
of the spectrum for a fully developed Pierson-Mos-
kowitz spectrum. (A summary of the principal prop-
erties of the nonlinear transfer is given in I, Section 3;
cf. also Hasselmann and Hasselmann, 1981, Part II,
Figs. 7~15. The transfer integral itself is discussed in I,
Section 2.)

One could readily extend the original shape-inde-
pendent parameterization of Barnett (1968) and Ewing
(1971) to include an additional dependence on +.
However, the following parameterization scheme was
found to be simpler. The nonlinear transfer functions
for all wind-sea spectra are related to a standard ref-
erence spectrum

B, 0) = E(N)S(S, @)

in which the one-dimensional spectrum is given by the
mean JONSWAP spectrum

2.1

E(f) = ag’Q@my Y~ exp{— > (f/fm)“}
_ 2
X exp{ln'y exp[— %]} (2.2)

with
¥ =133

a=0,=007 for f<f,
o=10,=009 for f>f, (2.3)

(cf. Hasselmann et al., 1973) and the spreading function
is of the Mitsuyasu-Hasselmann form

S(f; ¢) = K(p) cos™(¢/2) (2.4)
with }
p = 10°°(f1f,.P,
4.06 f -
_ { or f<f, 2.5)
-2.34 for f=f,.

The normalization factor is given by I(p) = 2@ Dz~!.
I'(p + 1)/TQ2p + 1) (Mitsuyasu et al., 1975; Hassel-
‘mann et al., 1980). '

For a wind-sea spectrum for which v # v, = 3.3,
the nonlinear transfer S,; is found to be distorted rel-
ative to the nonlinear transfer for the reference spec-
trum. The distortion can be expressed sufficiently ac-
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curately for a spectrum of the general form (2.2)
through a linear transformation of the frequency axis

(v — v) = B(v' — vp) (2.6)
and a scale factor A4 in the form .
Su(v', @) = ASpv, @). 2.7

Here S,(v, ), Siu(v', ¢) denote the nonlinear transfer
of the reference JONSWAP spectrum and the wind-
sea spectrum (with vy # 3.3), respectively, » = f/f,, is
the normalized frequency of the reference JONSWAP
spectrum, »' = f'/f’, the corresponding normalized
frequency of the wind-sea spectrum, and », (=1.01),
vo denote the zero-crossing transition frequencies be-
tween the low-frequency positive lobe and the negative
lobe of the one-dimensional transfer functions for the
reference spectrum and wind-sea spectrum, respectively
(cf. Fig. 1). The angular arguments in (2.7) are the same:
it was found that no distortion of the angular distri-
bution was required to achieve good agreement of the
two-dimensional distributions of S, for different -
values, provided the wind-sea and reference spectrum
had the same spreading functions.

The three free parameters vy, 4 and B of the trans-
formations obtained by best fitting the exact compu-
tation to the transformed reference case are plotted as
functions of v in Fig. 2. A comparison of the true (one-
dimensional) nonlinear transfer and the parameterized
transfer is shown in Fig. 3 for the y-values 1, 2, 5. The
agreement is reasonable, except in the second positive
lobe at high frequencies. The discrepancy at higher fre-
quencies could have been reduced by including a qua-
dratic term in the frequency transformation (2.6). This
was not done, however, as the precise form of the non-
linear source function at higher frequencies is irrelevant
for most hybrid-type wave models for which this pa-
rameterization is most useful.

The dependence of vy, 4 and B on « in Fig. 2 sum-
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FIG. 1. One-dimensional spectram and nonlinear transfer for a
JONSWAP spectrum with spreading function (4.4).
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F1G. 2. Dependence of the three coefficients determining
the transformations (4.6), (4.7) on v.

marizes rather concisely the principal effects of the
spectral shape on the nonlinear transfer (cf. I, Section
3): as v approaches the fully developed value 1, the
nonlinear transfer distribution shifts to higher fre-
quencies (increasing vp), the lobes become broader (de-
creasing B) and weaker (decreasing 4). Note the two-
order of magnitude decrease of the strength scale factor
A as vy decreases from 7 to 1.

A parameterization of S,; in terms of the single shape
parameter + is useful for modeling the transition of a
wind-sea spectrum from a fetch-limited to a fully de-
veloped spectrum under normal growth conditions in
which the spectrum has time to adjust locally to a quasi-
equilibrium form, i.e., for conditions appropriate for
a hybrid wave model. However, the parameterization
cannot be introduced without further restraints directly
into a fully resolving discrete spectral wave model, as
the mismatch in the large number of degrees of freedom
of the spectrum (typically several hundred) and the
single free parameter of the nonlinear transfer leads to
instabilities (cf. Section 4 and The SWAMP Group,
1985).

For application in a hybrid wave model, the form
(2.7) needs to be projected on to the parameter space
of the wave model. A more general parameterization
of S, in terms of the shape parameters suitable for use
in hybrid models is given by Hasselmann and Hassel-
mann (1981). In this method, the computed transfer
functions S, for different values of the five JONSWAP
parameters a, f,,, v, 0,4, 063 are projected directly on to
the JONSWAP parameter space, yielding rates of
change of the JONSWAP parameters as a function of
the parameters themselves. The results are approxi-
mated by a linear matrix relation.

3. Parameterization of S,; in terms of an EOF repre-
sentation

An alternative method of describing the results of
an ensemble of exact nonlinear transfer computations
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FIG. 3. Comparison of exact computations of one-dimensional S,
distributions for JONSWAP spectra with v =-1, 2 and 5 with param-
eterized form obtained by transforming from standard JONSWAP
spectrum (y = 3.3).
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is to represent the set of computed functions S,(f, ¢)
in a suitably chosen finite-dimensional function space.
The most efficient function space for this purpose is
the set of empirical orthogonal functions (EOFs) de-
termined by the computed S,; ensemble itself.

We have used this technique to parameterize S, in
terms of two shape parameters, the peak-enhancement
factor vy and a directional spread parameter s defined
as the rms angular width of the spectrum,

s=1a77 = | [ [ A oo - &)dedw/e]m (3.1)

where ¢ = arctan(sing/cosy) denotes the (spectrally
averaged) mean propagation direction.
The dependence of S,; on v and s was inferred from
a set of 18 exact computations for various JONSWAP
type spectral distributions with vy values varying from
1 to 7 and a number of different spreading functions
(cf. Hasselmann and Hasselmann, 1981).
The ensemble of computed functions Sg(f, ¢), «
=1,- - - 18, were normalized through the energy ¢ and
[ in accordance with the scaling relation I, (3.3) and
then expanded in terms of the mean source function
_ 1 18
Sp = T El S
and the set of EOF functions H%; describing the vari-
ability of the ensemble relative to the mean,

5
Sa=S8u+ X C*HE
g=1

a=1,---18.

3.2)

The expansion was terminated after the fifth EOF, as
the higher EOFs could not be distinguished from noise
in accordance with the criteria of Preisendorfer and
Barnett (1977). .

The ensemble of expansion coefficients C*? was used
to infer the dependence of the coeflicients on the shape
parameters v and s, which was represented by a poly-
nomial fit in the range 1 <y < 3.3 and 0444 < s
< 0.699.

The source function for an arbitrary spectrum was
thus finally expressed in the form

a €3fm8 _ 5
Su(v, @) = = [Su(v, @) + 2 Cy, )Hi(v, @)].
B=1
(3.3)

In an operational model, the five functions H?, and
coefficients C? are stored in memory, and Eq. (3.3)
then provides a simple and computationally rapid es-
timate of .S,;. The technique.has been applied in the
model DNS by Allender et al. (1985).

A comparison of the parametrical approximations
and exact computations of S,(f, ¢) are shown for a
Pierson-Moskowitz spectrum (y = 1) and JONSWAP
spectrum (v = 3.3) and different types of spreading

Brought to you by MAX-PLANCK-INSTITUTE FOR METEOROLOGY | Unauthenticated | Downloaded 05/06/21 03:28 PM UTC

JOURNAL OF PHYSICAL OCEANOGRAPHY !

VOLUME 15

:‘ 3 T T T T T T T T T T T
£
e - 8 e = Oo I
w
= 24 .
B
[14
o
w o, |
w 4
» 9=130°
= L e
<
[
- 0
14
-2 4
s EXACT CALCULATION
- === EOF
| PARAMETERI(ZATION |
-4 1 L L 1 : 1 I L 1 # i
0.2 0.3 0.4
FREQ [cps])
x1076
fonlit} T T T T T T T T T T T
< | J
—
34 J
o
= | i
@ , 4 ]
/4 | 4
w
L
o 'T 7
-4 | ]
<<
& o9

EXACT
CALCULATION

- 1 L L L 1 ! L L | ! 1
S T T

0.4
FREQ [cps]

FIG. 4. Comparison of exact computations of the two-dimensional
functions S,; with the parameterized form derived from an EOF ex-
pansion. Case (a) (cos’8 spreading function) represents a member of
the ensemble of cases used to construct the EOFs (thus the agreement
is necessarily good), while case (b) corresponds to a spreading function
of the form (4.4) which was not a member of the ensemble. The one-
dimensional spectra are JONSWAP spectra in both cases.

functions in Fig. 4. The estimation of S,; for the PM
spectrum of Fig. 4a is excellent, as expected since this
case (JONSWAP spectrum with a cos’e spreading
function) was one of the 18 used in the construction
of (3.3). The second comparison, Fig. 4b, however,
represents a test of (3.3) for a 2d-spectrum with a
spreading function of the form (2.4), which was not in
the original set of 18.
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4. Diffusion operator (local interaction) approximation

Both parameterization techniques described in the
previous two sections are limited to a relatively re-
stricted class of spectra which can be characterized by
one or two shape parameters. The methods can clearly
be extended to more parameters. However, it appears
questionable whether this is a profitable route to pursue,
for the methods also suffer from a more basic short-
coming: as pointed out above, they lead generally to
instabilities when applied in discrete wave models in
which the spectral representations contain more degrees
of freedom than used in the parameterization of the
nonlinear transfer. This is a consequence of the role
played by the nonlinear transfer in establishing a bal-
.ance between the different distributions of the input
and dissipation source functions. The balance involves
a delicate adjustment of the spectral shape and the as-
sociated nonlinear transfer (cf. Komen et al., 1984),
which cannot be achieved if the parameterization of
S, has too few degrees of freedom to generate the re-
quired spectral form. The unavoidable residual im-
balance of the net source function leads to unstable
growth of the spectrum in those degrees of freedom
which cannot be compensated by the parameterized
nonlinear transfer.

In existing wave models this problem is resolved by
restricting the form of the spectrum in the unstable

regimes. This effectively reduces a potentially fully re-

solving discrete spectral model to a hybrid-type model
(cf. The SWAMP Group, 1985). A more appropriate
solution to the problem is clearly to devise parameter-
izations based on the same number of degrees of free-
dom as used in the representation of the spectrum, i.e.,
to develop operator parameterizations.

Boltzmann integrals of the form of the nonlinear
transfer expression [I, Eq. (2.1)] are often approximated
by a differential-operator expression derived from a
local-interaction expansion. In the case of a wave field
scattered by a given external field, this yields the well-
known linear second-order Fokker-Planck diffusion
operator for small angle scattering. In the present case
of third-order interactions between components of the
same wave field, the local interaction expansion yields
a cubic, fourth-order diffusion operator of the general
form (cf. Hasselmann and Hasselmann, 1981)

d 3 on on
— = — . 2 - =
di" ” koK, (D i [” ok, 2ok, ak,,])
(4.1)
where the coefficients are given by
Dyjpyy = 2710 ff 00w + w; — w3 — wy)
X (kimk'n = kk)kik; — kikjddk” (4.2)
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with
k+K k- K
ki=——, kh=—7F—
2 2 4.3)
k+Kk k— K
o==5—, k=—5—.

For deep-water waves, Djj,,, ~ g*?k*"/* and the general
tensor form (4.1) can be reduced by applying conser-
vation and symmetry considerations to a form con-
taining only two scalar numerical coefficients C,, C;,

(g2 B
- e 'akikj%j +%’E‘Bﬁ
+ (2V2 aka;k 1;{1;)1)} 9
where
Aég“Wm(Maé%“_nga'gi)
D = g32n {kkf (n 5%%,‘(: - nb?]—:; ) S_IZ,)}

Details are given by Hasselmann and Hasselmann
(1981).

The local-interaction approximation is appropriate
if the principal interactions occur in the vicinity of the
central interaction point k; = k, = k3 = kg = k in
which all wavenumbers of the interacting quadruplet
are the same. It is found that the scattering coefficient
¢ does indeed have a maximum at this point (cf. Has-
selmann, 1963), and this region in interaction phase
space is furthermore strongly weighted through a sta-
tionarity in the argument of the frequency é-function.
The approximation is suggested also by the exact non-
linear transfer computations, which exhibit various
short-range features typical of a local diffusion-operator
expression {cf. I, Section 5).

A comparison of an optimally fitted diffusion-op-
erator expression of the specific form

f'_'f —_ 3/2{[ 62 az kk} 2772
(dt),,, 00192 3ok, T kK, 12 k
x [nz #n o on n | kyk,
Ok ok, ok, | k2

n on on
2 _ g2t 9 4.
X (” Ak, " ok ak,.)]} *-3)

with exact computations is given in Fig. 5a, b. Although
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FIG. 5. Comparison of the exact one-dimensional distributions S,;
with the local-interaction approximation for a Pierson-Moskowitz
spectrum (panel a) and a JONSWAP spectrum (panel b).

the diffusion operator clearly captures the qualitative
features of the exact expression fairly well, it was found
to be impossible to tune expressions of the form (4.4)
to reproduce the source functions S, for both growing
and fully developed wind seas quantitatively. In par-
ticular, the transfer rate for the Pierson-Moskowitz
spectrum is seen to be too low by a factor of two relative
to the JONSWAP case. Investigations of the contri-
"butions to the exact transfer integral from different re-
gions of the interaction phase space (I, Section 5) con-
firm that the diffusion operator does indeed provide a
good approximation to the contributions in the neigh-
bourhood of the central interaction point, but contri-
butions from more distant regions of the interaction
phase space cannot be neglected, particularly for the
less highly peaked Pierson-Moskowitz spectrum. In
fact, the principal contributions to the nonlinear trans-
fer come from intermediate wavenumber quadruplets
whose separations are probably slightly too large to be
adequately represented by a local interaction expan-
sion.

Experiments were also made with various simpler,
second-order, cubic diffusion operators, with results
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which were qualitatively similar to the fourth-order
expression, and exhibited the same limitations.

The narrow-peak approximations of Longuet-Hig-
gins (1976), Fox (1976) and Dungey and Hui (1979)
also consider interactions only in the neighborhood
of the central interaction point. The narrow-peak and
local-interaction approximations are nevertheless based
on different assumptions. In the diffusion-operator ap-
proximation it is assumed that the spectrum is smooth
and the scattering coefficient is strongly peaked,
whereas these requirements are interchanged for the
narrow-peak approximation. Both approximations,
however, apply the same expansions of the resonance
6-functions, which weight the central interaction region
by the singularity at the stationary center point. The
local-interaction approximation is more general 1n the
sense that it applies for arbitrary spectra, provided they
are not too extremely peaked, and for all regions of the
spectrum, including regions far removed from the peak.

Although not sufficiently accurate for use in most
wave models, the nonlinear diffusion-operator ap-
proximation is helpful for understanding the mecha-
nism by which the nonlinear transfer generates and
maintains the shape of the spectrum. Intuitively, one
would expect the nonlinear redistribution of energy to
smooth out the spectrum, rather than produce a sharp
spectral peak with a steep forward face. This is true
generally for linear diffusion operators. However, the
nonlinearity, together with the strong wavenumber de-
pendence, of the diffusion operator produces a strong
inhomogeneity of the diffusive energy (or action) flux,
which results in the generation of frontal-type structures
in wavenumber space. The fluxes are high in regions
of high energy and high wavenumbers, and low in re-
gions of low energy and low wavenumbers. Hence a
strong energy flux convergence occurs in the transition
region between the peak of the spectrum and the very
low-energy region at slightly lower wavenumbers. The
convergence causes the front on the forward face of
the spectrum to steepen, and to migrate towards lower
wavenumbers, as energy is continually fed into the front
from the high-energy, high-wavenumber side. The front
finally decays when it runs beyond the wavenumber
region in which the spectrum receives energy from the
wind, and the energy supply to the front is cut off.

5. The discrete interaction approximation

Since the interactions between closely neighboring
wavenumbers already reproduce the principal features
of the nonlinear transfer, it appears fruitful to explore
alternative parameterizations that bear some similarity
to the local-interaction approximation but are able to
overcome the shortcomings of this approach. To this
end we considered a nonlinear interaction operator
constructed by the superposition of a small number of
discrete-interaction configurations composed of
neighboring and finite-distance interaction combi-
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nations. After some experimentation it was found that
the exact nonlinear transfer could in fact be well sim-
ulated by just one mirror-image pair of intermediate-
range interaction configurations.

In each configuration, two wavenumbers were taken
as identical, k; = k, = k. The wavenumbers k; and k4
are of different magnitude and lie at an angle to the
wavenumber k, as required by the resonance condi-
tions. The second configuration is obtained from the
first by reflecting the wavenumbers k; and k, at the k-
axis (cf. Fig. 6). The scale and direction of the reference
wavenumber k are allowed to vary continuously in the
wavenumber plane.

The reduced nonlinear operator is computed by ap-
plying the same symmetrical interaction phase-space
integration method as used to compute the exact
transfer integral (cf. I). The interactions are summed
over the (discretized) k-plane and, for each k, over the
pair of discrete-interaction configurations. For each
interaction (“collision”) the changes in action (“particle
number”) for all four interacting wavenumbers are
stored in the appropriate bins of the two-dimensional
source-function array S, (f, ¢). The computation is
identical to the computation of the exact Boltzmann
integral except that the integration is taken over a 2d-
continuum and two discrete interactions instead of a
Sd-interaction phase space. As in the exact case, the
interactions conserve energy, morentum and action.

Satisfactory agreement with the exact computations
was obtained with the configuration

W =W = w (5.1
w3 = w(l + A) = w, (5.2)
ws=w(l = A= w_ (5.3)

with A = 0.25. From the resonance conditions the an-
gles 83, 0, of the wavenumbers ki(k, ) and k4(k_) relative
to k are found to be 6; = 11.5°, 8, = —33.6°.

FIG. 6. The two interaction configurations used in the discrete-
interaction approximation. Contour lines represent the possible end
points of the vectors k; and k4 for any interaction quadruplet in the
full interaction space (cf. Hasselmann, 1962).
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The appropriate discrete-interaction analogue to the
exact symmetrical interaction expressions [I, Egs. (2.1)-
(2.6)] is given by

on -2
6n+ — 1 Crg—Sf 19
on- 1

X [n¥(ny + n.) — 2nn, n_JAkAr (5.4)

where on, én.., é6n_ represent the increments in action
(“particle number”) occurring in the time Af at the
interacting wavenumbers k, k., , k_ due to the discrete
interactions (‘particle collision’) within the infinitesimal
interaction phase-space element Ak, and C' is a nu-
merical constant representing the strength of the in-
teraction.

In practice, Eq. (5.4) normally needs to be translated
into changes in the energy spectral densities F with
respect to frequency fand propagation direction ¢, and
for the interaction phase-space variables it is then sim-
ilarly more convenient to use fand ¢ rather than k. In
terms of these variables, one obtains for the increments
to the source functions S,,( f; ¢) at the three interacting
wavenumbers (frequencies and directions)

s AfAeg
5, A
nl
AfAp
6SH b=1 (1+3)-—2
88 AffA‘p
AfAp
l —_
(=% Af"Ap
- ( F F. FF,F.
X ~4,11 2| + + )_ + ]
e F ((1 NN TSN A TR Ot
(5.5)

where C is a modified numerical constant proportional
to C’" and Af, Af*, Af~ denote the discrete resolution
of the spectrum and source function at the frequencies
£, f, respectively. The increments AfA¢ in the nu-
merator refer here to the discrete-interaction phase—
space element, while the differentials in the denomi-
nator refer to the sizes of the “bins” in which the in-
cremental spectral changes induced by a “collision”
are stored. For simplicity, we have taken both angular
increments Ag to be the same, but have allowed for a
possible frequency dependence of Af, in which case
AfT# Af ™ # Af

Equation (5.5) is summed over all frequencies, di-
rections and interaction configurations to yield the net
source function S,,.

A comparison of the approximate and exact transfer
source function for a JONSWAP spectrum is shown
in Fig. 7. The coefficient C in Eq. (5.5) was chosen as
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F1G. 7. Comparison of the exact one-dimensional distribution S,
with the discrete-interaction approximation for a JONSWAP spec-
trum.
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3 X 10. The distributions agree reasonably well, except
for the relatively strong negative lobe of the discrete
interaction approximation. However, this feature is less
important for a satisfactory reproduction of wave
growth than the correctly simulated form of the positive
lobe, which controls the rate at which the spectral peak
shifts towards lower frequenmes

Figure 8 shows a comparison of the fetch-hmlted
growth curves for some characteristic spectral param-
eters computed with a wave model using the exact
nonlinear transfer expression or, alternatively, the dis-
crete-interaction approximation. The corresponding
one-dimensional spectra are shown in Fig. 9. The effect
of the stronger negative lobe of the discrete-interaction
parameterization is evidenced by the 10-15% smaller
values of a. The somewhat smaller values of v for the
parameterized case seen in Fig. 8 (top right panel) are
also apparent in Fig. 9. However, the agreement of the
more important scale parameters, the energy E* and
peak frequency f ¥, is excellent. (An asterisk denotes
nondimensionalization of a variable through g and the
friction velocity us.)

The remaining source functions used in the model
integrations are taken from the study on growing and
fully developed wind fields by Komen et al. (1984).

The input source function is given by

URARLL T

T TTTTT T TT

N 0.8 4 AN
. —
Ll L2l lidl [ T . 1 0 M-y [ T J -
T T T T T T T T T
0.1 05 1 5 x107 01 05 1 5 x107
* »
x‘l()'3 X X
TTTIT T T TTTTTm T 1777 LURARLL T rrrrmr T TIT
1000 +
500+
200+
: 100
111y L1 A | ALil] L1l 1ot ]
T T 1 T U 7 T 1 i | 7
0.1 0.5 1 5 x 10 0.1 0.5 1 5 x 10
X* X*

EXACT CALCULATION

——~=—= DISCRETE INTERACTION APPROXIMATION

FIG. 8. Comparison of the fetch-growth curves for spectral parameters computed using the
exact form and the discrete-interaction approximation of S,,. All variables are made dimensionless

using #y and g.
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FI1G. 9. Comparison of the growth of fetch-limited one-dimensional spectra computed using
the discrete-interaction approximation (panel a) and the exact form of S,,; (panel b).

Silf, 8) = max[O., 02522

Pw

X (2‘% cosf — 1)-wF(ﬁ o)]

following Snyder et al. (1981), but with the replacement
of their wind-speed Us dependence by a similar de-
pendence on the friction velocity uy = Us/28.

The dissipation source function is given by

Sa(f; 0) = —1.6@(w/®)%62 - F(f, 0)
with

i

a=e-*g?

@=¢! fF(f, 60) - wdfdb

following Hasselmann’s (1974) general form for the
dissipation due to small-scale whitecapping processes.

In general, it was found that the most critical test of
a parameterization of S,; was its ability to reproduce
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the correct wave growth, rather than a superficial visual
agreement of transfer-function computations for in-
dividual spectra. This is borne out by a comparison
of the energy balance for the exact and discrete inter-
action cases at small fetch (Fig. 10) and near full de-
velopment (Fig. 11). The agreement of the spectra and
energy balance is closer than may have been anticipated
from Fig. 7. The explanation is that the spectrum ad-
justs slightly in shape to the slightly incorrect form of
the nonlinear transfer. If the tuning is then carried out
such that the growth curves are approximately correct
for the adjusted spectrum (rather than by trying to re-
produce the nonlinear transfer for a prescribed theo-
retical spectrum, as in Fig. 7), the resulting energy bal-
ance is also simulated rather accurately.

The principal motivation for retaining the general
operator character of the exact Boltzmann integral in
the parameterization of S,; was to be able to represent
the nonlinear transfer for arbitrary spectral distribu-
tions, in order to develop third-generation wave models
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FIG. 10. Spectral and energy balance of fetch-limited spectra at small fetch (x* ~ 6 X 10%)
computed using the discrete-interaction approximation (panels a, a’) and exact computation of

S (panels b, b').

based solely on the energy balance equation, free from
additional restraints regarding the spectral shape. It is
therefore important to note that the simulation of the
observed wave growth in Figs. 8 and 9, including the
continuous transition from a fetch-limited to a fully
developed wind-sea spectrum, was achieved without
any prior assumptions regarding the shape of the spec-
trum.

An independent test of the general applicability of
the discrete-interaction approximation is provided by
the response of a wind sea to a sudden, 90° shift in
wind direction (SWAMP, case 7, The SWAMP Group,
1985). The discrete-interaction approximation is seen
to reproduce the main features of the exact integration
rather well (Fig. 12).

A more extensive set of tests on the response of a
wind-sea spectrum to turning winds has been carried
out by Young et al. (1985). Good agreement between
the exact computations and the discrete-interaction
approximation was found also in these cases.

The discrete-interaction parameterization is cur-
rently being incorporated in a third-generation global
discrete spectral wave model in development in Ham-
burg, in collaboration with the Wave Modelling
(WAM) Group. The method can be readily upgraded
by including further discrete-interaction configurations.
It can be applied also to finite-depth water waves by
introducing a depth dependence into the coefficients
C of Eq. (5.5) and (if necessary) in the angles of the
interacting wave components kj, ky.

6. Conclusions

The principal motivation for developing new pa-
rameterizations of S,; is a basic shortcoming of the
parameterizations used in existing second-generation
wave models: the parameterizations are unable to re-
produce the observed form of a growing wind-sea spec-
trum if introduced without ad hoc constraints into a
fully resolving spectral model. The problem lies in the
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FIG. 11, As in Fig. 10 for nearly fully developed specta {(x* =~ 5 X 107).

approximate representation of S,; in terms of relatively
few freely adjustable parameters. This does not provide
the flexibility needed for the nonlinear transfer to be
able to adjust the spectrum to the shape required for
S,;to balance the input and dissipation source functions
in the quasi-equilibrium range of the spectrum, giving
rise to instabilities.

The problem is resolved in present discrete wave
models by effectively restricting the form of the wind-
sea spectrum. However, this eliminates the potential
advantage of a discrete wave model over a simpler
parametrical model in which the spectral shape is re-
stricted already in the basic formulation of the model.
Consequently, both discrete and parametrical second-
generation models suffer from the same basic difficul-
ties in modeling wind-sea spectra which do not conform
to the standard JONSWAP type quasi-equilibrium
distribution, as encountered, for example, in rapidly
changing wind fields or in slanting fetch situations. Both
classes of model are similarly unable to treat the wind
sea—swell transition regime, which is also characterized

by a wide variety of possible spectral distributions,
without introducing ad hoc empirical assumptions.

These limitations can be overcome only by intro-
ducing operator parameterizations of .S, that contain
the same number of degrees of freedom as used to de-
scribe the spectrum, and that can be applied to arbitrary
spectra. After considering other parameterizations, we
propose a discrete-interaction operator parameteriza-
tion that is structured in the same way as the exact
Boltzmann-integral expression but is based on only two
elementary interaction configurations. The discrete-
interaction parameterization has been tested and tuned
against a number of model integrations using the exact
form of S,;. It can readily be improved, if found de-
sirable through further experience, by inclusion of ad-
ditional interaction configurations.

Although less relevant for application in third-gen-
eration, discrete spectral models, the three other pa-
rameterizations considered in this paper also exhibited
certain useful features.

The simple distortion transformation, applied to the
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.FIG. 12. Comparison of the response of a two-dimensional wave spectrum to a sudden 90° change in wind direction at time , computed
using the exact form and the discrete-interaction approximation of S,;. At = t — f, and 4, is the time at which the peak frequency is just
_twice the fully developed peak frequency. The strength of the wind forcing remains constant (1, = 0.357 m s7h.

reference source function ST for a standard JON-
SWAP spectrum, provides a convenient description of
~ the modification of S,; occurring during the develop-
ment of a wind-sea spectrum. The plotted variations
of the transformation coefficients with v summarize
these changes concisely and can be used for calculating
the magnitude and form of the source function S, for
different stages of wave growth.

The parameterizations of S,; in terms of an EOF
expansion is of interest, as it has been incorporated in

an existing discrete spectral wave model (Allender et
al., 1985) and allows a moderate degree of adjustment
of the spectral shape near the peak and on the forward
face of the spectrum (although the quasi-equilibrium
range of the spectrum still has to be specified, as in
other second generation models).

The parameterization in terms of a cubic, fourth-
order diffusion operator, finally, has the advantage that
it is derived by a well defined expansion procedure for
small scattering angles, retains the principal features
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FIG. 12. (Continued)

of the complete expression and can be used to explain
certain basic properties of the nonlinear transfer, such
as the generation of a self-stabilizing, highly peaked
spectral shape with a frontal structure on the forward
face, which are difficult to deduce from the complete
Boltzmann integral or the discrete interaction approx-
imation.
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