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ABSTRACT

The North Atlantic Oscillation (NAO) is the dominant mode of climate variability over the North Atlantic

basin and has a significant impact on seasonal climate and surface weather conditions. It is the result of

complex and nonlinear interactions between many spatiotemporal scales. Here, the authors study the sta-

tistical properties of two time series of the daily NAO index. Previous NAO modeling attempts only con-

sidered Gaussian noise, which can be inconsistent with the system complexity. Here, it is found that an

autoregressive model with non-Gaussian noise provides a better fit to the time series. This result holds also

when considering time series for the four seasons separately. The usefulness of the proposed model is eval-

uated by means of an investigation of its forecast skill.

1. Introduction

a. Background

The atmospheric circulation is highly complex and

involves a large number of variables and varies on awide

range of spatiotemporal scales. The large-scale flow

steers to a large extent the synoptic-scale and daily

weather systems. This large-scale flow can be described

by a relatively small number of persistent flow patterns

referred to as teleconnections (Wallace andGutzler 1981;

Barnston and Livezey 1987; Feldstein and Franzke 2017;

Hannachi et al. 2017), which have a significant influence

on medium- and longer-term weather and climate pre-

diction (e.g., Colucci andBaumhefner 1992). Examples of

such teleconnection patterns include the North Atlantic

Oscillation (NAO), the Pacific–North American (PNA)

pattern, and the Scandinavian (SCA) pattern, which

control substantial parts of the atmospheric circulation

over the northern Atlantic, North America, and Scandi-

navia, respectively (Feldstein and Franzke 2017).

A characteristic feature of the large-scale atmo-

spheric flow structure and the teleconnections is their

non-Gaussianity (e.g., Proistosescu et al. 2016; Sura and

Hannachi 2015;Hannachi 2010), and variousmechanisms

that could explain the non-Gaussian statistics of atmo-

spheric synoptic and low-frequency variability have been

proposed in the literature (e.g., Sura andHannachi 2015).

A proper understanding and modeling of this character-

istic feature is invaluable and has important conse-

quences, particularly in climate research, as weather and

climate risk assessment depends on extreme events,

which are reflected in the non-Gaussian behavior of

the large-scale atmospheric flow structure (Sura and

Hannachi 2015; Proistosescu et al. 2016; Franzke 2017).

As mentioned above, the NAO (Hurrell et al. 2003) is

one of the main Northern Hemispheric teleconnection

patterns and controlsmuch of the atmospheric variability,

including westerly winds, surface temperature, pre-

cipitation, and surface pressure, over the North Atlantic

basin, the eastern United States, and Europe. The NAO

represents the dominant mode of sea level pressure var-

iability over the North Atlantic Ocean and Europe andCorresponding author: Thomas Önskog, onskog@kth.se
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has a seesaw structure in atmospheric mass between the

two centers of action, namely, the Icelandic low and the

Azores high. The NAO has irregular behavior but is

known to have extended periods of positive and negative

phases (e.g., Jung et al. 2011; Hannachi and Stendel 2016)

associated with a wide range of time scales from days to

decades and longer (Woollings et al. 2015) manifesting

interaction with surface conditions including sea surface

temperature and sea ice (Stendel et al. 2016). The NAO

seems to have been known since the days of the

Scandinavian sailors, and from the mid-eighteenth

century Egede (1745) and Cranz (1765) noted that

surface air temperature at Greenland and Scandinavia

vary in opposite directions (Stephenson et al. 2003;

Pinto and Raible 2012; Feldstein and Franzke 2017).

The positive phase of the NAO yields stronger west-

erlies leading towetter andmilder conditions overEurope

and the Mediterranean region, whereas the opposite

phase is associated with dryer Mediterranean conditions

and harsh winters over Europe (Stendel et al. 2016;

Hannachi and Stendel 2016). The maps in Fig. 1 (top) il-

lustrate the spatial patterns of the positive and negative

NAO phases, respectively. The positive phase shows

strong low and high pressure systems leading in particular

to strongwesterlies orientedmore to the northeast toward

the British Isles and Scandinavia. This, in turn, induces

warm and wet weather conditions over those regions but

dry weather conditions over the Mediterranean region

and a reduced high pressure over Siberia. There is also an

impact on the ocean surface, where a correlation is ob-

served with a northward surface warm current over the

North Atlantic. The negative phase is characterized by

weaker westerlies, associated with weaker low and high

pressure systems, zonally oriented, which lead to wet

weather conditions over the Mediterranean region and

cold and dry weather over the northern latitudes (e.g.,

Scandinavia). The high pressure system over Iberia is

strengthened and the surface currents are weaker and

cooler than during the positive phase (Wanner et al. 2001).

Various interpretations of the NAO exist in the liter-

ature. Woollings et al. (2010b), for example, suggest that

the NAO can be interpreted in terms of two regimes,

namely, a high-latitude (or Greenland) blocking regime

and a zonal regime. They suggest, in particular, that

changes in the relative occurrence frequency and the

structure of the regimes contribute to the long-term (e.g.,

decadal) NAO trend over the European reanalysis period

from ERA-40 (Uppala et al. 2005). Those regime states

are strongly linked to Rossby wave breaking (Benedict

et al. 2004; Franzke et al. 2004; Woollings et al. 2008;

Franzke et al. 2011). Woollings et al. (2010a) and

Hannachi et al. (2012) linked the NAO to the (eddy-

driven) jet stream variability. TheNAOhas gone through

phase changes over the instrumental period in the last

200 years; see the discussion in Stendel et al. (2016).

b. Rationale

The aggregation of independent error increments,

properly scaled, is known to yield Gaussian statistics.

The climate system, however, is characterized by com-

plex nonlinear interactions across spatiotemporal scales,

marked by extreme events, and where the different

types of forcing, ranging from very small scale (e.g., ra-

diation) to large scale (e.g., orography), play an impor-

tant role. The interaction with these scales affects the

structure of the aggregated weather and climate distur-

bances. These processes altogether contribute to the

departure of the statistics from Gaussianity and can

generate heavy-tailed distributions characterized by

nonnegligible probability of extremes (Majda et al.

2009; Sardeshmukh and Sura 2009; Sura and Hannachi

2015) and long-range dependence (Franzke et al. 2015).

It can be shown that the nonlinear interaction between

the slow, here the NAO-associated, circulation with the

fast synoptic-scale eddies lead to the emergence of de-

viations of the circulation statistics from Gaussianity

(Majda et al. 2009; Franzke et al. 2005; Sardeshmukh

and Sura 2009; Sura and Hannachi 2015). For instance,

Benedict et al. (2004), Franzke et al. (2004), and

Feldstein and Franzke (2006) have highlighted the im-

portance of the nonlinear interactions in the life cycle of

the NAO. It is these nonlinear processes, integral to the

NAO evolution, which also cause its extreme states,

which we will model using non-Gaussian statistics.

A large class of heavy-tailed distributions exist in the

literature, including the t-distribution and a-stable distri-

butions. The former, in particular, is akin to the familiar

normal distribution. The use of these distributions can

benefit our understanding in modeling weather and cli-

mate variables and can improve their predictability and

forecast skill. Here we propose a new statistical model for

the NAO that accounts also for its observed non-Gaussian

characteristics. Non-Gaussian models are widely used in

other areas of science (e.g., Franzke 2017; Graves et al.

2017). So far the non-Gaussian features of the NAO have

not received much attention, and here we will examine

their importance for the predictive skill of the NAO.

The predictability of theNAO is an important research

topic. For instance, the National Oceanic and Atmo-

spheric Administration (NOAA) Climate Prediction

Center now routinely forecasts the daily state of the most

important teleconnection patterns, including the NAO.1

1 See http://www.cpc.ncep.noaa.gov/products/precip/CWlink/

pna/nao_index_mrf.shtml.
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NOAA also performs probabilistic analog 8–14-day

forecasts based on the persistence of teleconnection

patterns (e.g., NAO).2 The predictability of the NAO has

been studied by Franzke andWoollings (2011). They find

that with respect to seasonal and longer time-scale pre-

dictability, the potential predictability is about 52%–57%

of the total interannual variance in winter and 29%–30%

in summer. The remainder is likely due to climate noise

(Franzke 2009) and, thus, is not predictable.

Furthermore, extreme states of the NAO have also

severe impacts. For instance, in 2010 the NAO exhibited

one of its most negative index states. This was accompa-

nied by one of the coldest winters in the United Kingdom

for over 100 years (Moore and Renfrew 2012). It is also

well known that the NAO affects the propensity of ex-

treme events to occur (e.g., Hannachi et al. 2017). Thus,

understanding and the ability to model extreme states of

the NAO index are important. Here we will show that the

NAO index has heavy tails, bywhichwemean that the tails

of the NAO decay more slowly than the tails of a corre-

sponding Gaussian distribution. Consequently, extreme

events are more likely than for a corresponding Gaussian

distribution. Hence, we will also examine which non-

Gaussian heavy-tailed distribution provides the best fit to

the data and the best predictive skill.

The objective of this article is to study the properties of

time series of the daily NAO index and to set up math-

ematical models for the NAO index based on these

observed properties. The main focus will lie on a station-

based time series derived from observations of sea level

pressure (Cropper et al. 2015), but a time series based on

empirical orthogonal functions (EOF) will be considered

as well. Because of the observed strong correlation be-

tween values of the NAO for consecutive days, we will

focus on autoregressive models. Such models have pre-

viously been used by Stephenson et al. (2000) to model

the interannual variation of the wintertime seasonal

means of the NAO. Stephenson et al. (2000) considered

four different stochastic models and compared these to

the actual time series bymeans of differentmeasures. The

best fit was foundwith an autoregressivemodel taking the

means of the 10 last winters into account (the integer 10

was apparently chosen ad hoc), suggesting significant

memory effects. We will evaluate the proposed autore-

gressive models for the NAO by investigating the re-

liability of forecasts made from the models.

The paper is organized as follows. Section 2 describes

the NAO data used and explores basic statistics of the

time series. Section 3 discusses the strategy for

autoregressive model fitting of the station-based NAO

time series along with a scaling analysis, whereas section

4 discusses the modeling strategy of the noise and im-

plications for forecasting. The dependence of the pre-

vious results on the season is discussed in section 5. In

section 6, a similar investigation is carried out on the

EOF-based time series. Conclusions and a discussion of

the results are provided in the last section.

2. Daily indices of the NAO

In this article, the main focus lies on a daily time series

of the North Atlantic Oscillation index published by

Cropper et al. (2015). The index is calculated from actual

sea level pressure (SLP) observations on Iceland and

the Azores, but reanalysis data have been used to fill in

the gaps (1888–1905, 1940–41, and 145 occasional days)

in the observations. This station-based data is freely

available,3 and we have chosen to include values between

1 January 1872 and 31 December 2014 in the present

study, resulting in 52230 data points. A visualization of

the time series can be found in Fig. 1 (bottom). This figure

shows a 3-yr running mean of the observed daily NAO

time series. It shows in particular, a clear signature of low-

frequency (i.e., decadal) climate variability. In the gen-

eration of the time series, the seasonality was removed by

applying a tension spline method where a daily annual

cycle (of mean SLP and the SLP standard deviation) was

interpolated from monthly values and forced so that the

average of the daily values of the curve for each month

was equal to themonthlymeans. For details regarding the

generation of the time series, we refer to the original

source (Cropper et al. 2015).

To emphasize the generality of our results, we have

also investigated the time series of daily indices for

the NAOprovided by the NOAA.4 This index is derived

by applying rotated principal component analysis

(Barnston and Livezey 1987) to monthly standardized

500-hPa geopotential height anomalies obtained from

the CDAS in the analysis region 208–908N. We have

chosen to include values between 1 January 1950 and

31 December 2014 in the present study, resulting in

23 741 data points. The analysis of this time series is

deferred to section 6.

We first study the basic properties of the station-based

NAO index. We let fxigni51 denote the time series of

observed daily NAO index and let n denote the length of

the time series, (i.e., n 5 52230). The top-left panel in

2 See http://www.cpc.ncep.noaa.gov/products/predictions/814day/

analog.php.

3 See https://zenodo.org/record/9979#.V_9RG037X4i.
4 See http://www.cpc.ncep.noaa.gov/products/precip/CWlink/

pna/nao.shtml.
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Fig. 2 compares the distribution of the NAO index to a

normal distribution with the same mean and variance

(25.9 3 1025 and 1.614, respectively). The top-right

panel in Fig. 2 displays a quantile–quantile (Q–Q) plot of

the NAO index. The index distribution shows a couple of

characteristic departures from the best-fitted normal

distribution. Large positive values and small negative

values are slightly less common, whereas large negative

values and positive values on the order of one standard

deviation are slightly more common for the NAO data as

compared to the normal distribution.

We next turn to the autocovariance of the daily NAO

data. The bottom panels in Fig. 2 show the sample au-

tocorrelation function (ACF), which is defined as

FIG. 1. (top) Adapted from Wanner et al. (2001), shown are typical weather conditions under the positive and negative phases of the

NAO. The positive phase of the NAO is characterized by a strong pressure gradient between Iceland and the Azores, yielding stronger

westerlies and, in turn, leading to wetter and milder conditions over western and northern Europe and drier conditions over the Medi-

terranean region. The opposite phase is associated with a weaker pressure gradient and weaker westerlies following a more southward

trajectory, resulting in wetter conditions over theMediterranean region and harsh winters over northern Europe. (bottom)A 3-yr running

mean of the observed daily NAO index during the years 1872–2014.
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r̂(h)5
ĝ(h)

ĝ(0)
, where ĝ(h)5

1

n2 h
�
n2h

i51

(x
i1h

2 x)(x
i
2 x) ,

for different values of the time lag h. Here x denotes the

sample mean of the observations. Clearly, the indices of

consecutive days are strongly correlated. From the

bottom-right panel in Fig. 2, we also note two different

orders of decay of the sample ACF. For lags up to

10 days the decay of the sample ACF is significantly

faster than for lags on the order of 10 days or more. We

will return to this feature when discussing the mathe-

matical model in section 3b below.

3. Autoregressive models

The form of the sample ACF in Fig. 2 indicates that

the daily NAO data could be successfully modeled as an

autoregressive (AR) process. An autoregressive process

fXigni51 of order p, abbreviated AR(p), is defined as

X
i
5m1u

1
(X

i21
2m)1 . . . 1u

p
(X

i2p
2m)1 «

i
,

for i 2 fp1 1, . . . ,ng,

where p is a positive integer, u1, . . . , up are real pa-

rameters, and m is the expectation of fXig. Here

f«igni5p11 denotes white noise, that is, a sequence of

uncorrelated random variables with mean zero and

standard deviation s. There are several ways to de-

termine the optimal choice of order p, and we will

investigate a few such methods in the following sec-

tions. When p has been chosen, the parameters

u 5 (u1, . . . , up) of the model can be estimated by

solving the Yule–Walker equations, which is a linear

system of equations given by

Ĝ
p
(û

1
, . . . , û

p
)0 5 ĝ

p
,

where ĝp5 [ĝp(1), . . . , ĝp(p)]
0 and Ĝp is the matrix

Ĝp 5 [ĝp(i2 j)]pi,j51 (Brockwell and Davis 1991). As-

ymptotically, the parameters û5 û1, . . . , ûp obtained

from the Yule–Walker equations approximately satisfy

û 2 N(u, ŝ2Ĝ21
p /n), implying that for the NAO time

series the error in the parameters is on the order of 1024,

which is insignificant.

a. Partial autocorrelation function

A standard way to determine the optimal value of p

for an AR(p) process designed to model a given time

series is by means of the sample partial autocorrelation

function (PACF), which is defined as

FIG. 2. (top left) The probability density function of the dailyNAO index (blue) and normal

distributions with the samemean and variance (red). (top right)AQ–Qplot of the dailyNAO

index compared to a normal sample. (top left) The sample ACF for the daily NAO index in

(bottom left) standard scale and (bottom right) logarithmic scale. The 95% confidence

bounds for the ACF are on the order of 1.96n21/2 5 8.6 3 1023.
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â(h)5

�
1, for h5 0,

f̂
hh
, for h$ 1,

where f̂hh is the last component of the vector Ĝ21
h ĝh. It

can be shown that â(h) is the correlation between xi1h5
Pi,h(xi1h) and xi 5 Pi,h(xi), with Pi,h(x) denoting the

projection of x onto the space spanned by xi11, . . . ,

xi1h21 (Brockwell and Davis 1991). This means that the

sample PACF with lag h can be interpreted as the au-

tocorrelation between xi1h and xi that cannot be ac-

counted for by autocorrelations with lags 1, . . . , h 2 1.

For AR(p) processes, the sample PACF at lags greater

than p is approximately N(0, 1/n) distributed, so it is

natural to choose the integer p as the largest lag for which

the modulus of the sample PACF exceeds the statistical

error, which should approximately fall within the bounds

61.96/n1/2. Figure 3 shows the sample PACF and its sta-

tistical error as a function of p. Themodulus of the sample

PACF is strictly decreasing with p, and it is clear that the

optimal choice of p based on the PACF is p 5 3.

b. Parameter values

Solving the Yule–Walker equations for an AR(3)

process using the sample ACF of the daily NAO index

as input, the estimated values of the parameters are

û5 (0:9626,20:2042, 0:0534Þ,

where the error, as mentioned above, is on the order of

1024. Figure 4 shows a comparison of the sampleACF of

the daily NAO index and of an AR(3) process with the

above parameter values. As seen, the AR(3) process

provides a very close fit for lags up to 10 days, but for lags

on the order of weeks or more, the sample ACF of the

NAO is larger than for the model. For lags on the order

of months, the difference is up to one order of magni-

tude. This indicates that there is intraseasonal variability

or variability on even longer time scales in the NAO that

the AR(3) process is unable to capture. This ‘‘shoulder

feature’’ of the sample ACF of the NAO is well known

in the literature. Keeley et al. (2009) found that it was

mostly due to interannual variability. Franzke and

Woollings (2011) found evidence that up to 50% of the

winter NAO variability can be explained as arising from

climate noise. However, other climate processes might

contribute to this shoulder feature and increase the

predictive skill of the NAO such as the stratospheric

vortex (Scaife et al. 2016) or the Madden–Julian oscil-

lation (Lin et al. 2009). Note, however, as indicated in

Fig. 4, that the departure of the sampleACF from that of

the AR(3) model is not clearly significant.

A desirable feature of an autoregressive process

modeling a time series is that the autoregressive terms

explain all dependence in the data and that no long-

range dependence can be found in the time series f«ig of
the remaining noise. In the following two subsections,

we will investigate this by two other methods.

c. Aggregated variance

A means to assess if a time series displays long-range

dependence is to investigate the sample means of subsets

zn5 fx1, . . . , xng of the time series for different values of

n. If the entries of the time series are independent, it

follows from the law of large numbers that the vari-

ance of zn is s
2/n. If the entries are dependent, but only

for small time lags, this relation should hold as well,

at least for large n. In the presence of long-range

FIG. 3. Sample PACF as a function of p for the daily NAO index.

The size of the statistical error is indicated by the red lines.

FIG. 4. Sample ACF of the daily NAO index (blue) compared to

the sample ACF of an AR(3) process forced with nonstandardized

t-distributed noise. For the AR(3) process, the median (red 3
symbols) and 5%–95% range (red dashed line) of 1000 realizations

is displayed.
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dependence, however, we expect the variance to decay

more slowly with n. The left panel in Fig. 5 shows the

sample variance of the NAO time series and of the noise

in the AR(3) process as a function of sample size. As

expected, the short-range dependence of theNAOmakes

the variance of the sample means considerably higher

than s2/n. For the AR(3) process, on the other hand, the

variance is very close to s2/n, but for sample sizes of 20

and larger the variance diverges from s2/n indicating

long-range dependence in the noise in the AR(3) model.

d. Detrended fluctuation analysis

Long-range dependence of a time series can also be

quantified using detrended fluctuation analysis (DFA)

(Peng et al. 1994; Taqqu et al. 1995; Bunde et al. 2014;

Ludescher et al. 2016). DFA is constructed to detect if the

time series is self-affine, in which case it can be rescaled

to a self-similar function by a suitable affine trans-

formation, and self-affine time series have dependencies

across all time scales. DFA essentially relies on computing

the cumulative sum of the data. To be more precise, we

first calculate the cumulative sums

z
j
5 �

j

i51

(x
i
2 x) ,

where fxig is the original time series and x is its sample

mean. The time series fzjg is then divided into ns non-

overlapping segments of lengths s and local least squares

straight lines are fit to the cumulative sum on all seg-

ments. Subtracting the least squares fits from the cu-

mulative sums, we obtain the detrended series fzdj g. The
root-mean-square deviation of fzdj g, known as the fluc-

tuation, is then calculated as

F(s)5

(
1

n
s
s
�
ns

k51
�
s

j51

[zd(k21)s1j]
2

)
.

The variation of F(s) versus time-scale s reflects the

scaling behavior of the time series. If F(s) ; sH, then H

FIG. 5. (left) The sample variance as a function of the sample size for the time series of the daily NAO index

(blue) and for the noise in the AR(p) processes modeling the time series (the green line corresponds to p 5 1 and

the black line to p 5 3). The variances are normalized by division by the sample standard deviation of the entire

time series and the reference line (red) is n21 (red). (right) The fluctuation function F(s) as a function of s for the

time series of the daily NAO index (blue) and for the noise in the AR(p) processes modeling the time series (the

green line corresponds to p 5 1 and the black line to p 5 3). The reference line (red) equals F(s) 5 s1/2.
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is a generalization of the Hurst exponent. A Hurst ex-

ponent in the interval 1/2 , H , 1 corresponds to a

process with positive autocorrelation over large time

scales, whereas H 5 1/2 corresponds to a no-memory

process. An AR(p) process modeling a time series ex-

plains the long-range dependency of the time series if

the Hurst exponent of the remaining noise is close to 1/2.

DFA has been successfully applied to time series origi-

nating from a number of different fields, including at-

mospheric science and hydrology (Kantelhardt et al.

2006; Mandelbrot and Wallis 1968; Maraun et al. 2004;

Rust 2007; Hannachi 2014). To give an example, DFA

was applied toNorthern Ireland daily precipitation data,

which was shown to be consistent with a short-memory

process (Hannachi 2014). The right panel in Fig. 5 dis-

plays the fluctuation F(s) as a function of time-scale s for

the NAO index and for the noise in AR(p) processes

modeling the index for a number of choices of p. As

seen, the original data display clear dependences,

whereas the noise in the AR(p) processes for any p $ 1

shows very little long-range dependence. The Hurst

exponents for p $ 1 all lie in the interval [0.49, 0.54],

implying that there is no obvious self-affinity in the re-

maining noise. This suggests that the AR(p) process

already effectively captures all memory effects that can

be detected by means of DFA. But it can also imply that

the long-range dependence observed in the sampleACF

cannot be captured byDFA, and further analysis may be

needed to shed more light on this.

e. Forecasts

In section 3a, we determined the optimal value of p for

an AR(p) process modeling the NAO from the PACF,

but the optimal p can also be determined by examining

forecasts from the models for different values of p.

Given values of the NAO index up to time i2 1, the best

estimate of the index at time i based on anAR(p) model

would be

x
i
5m1 u

1
(x

i21
2 x)1 . . . 1 u

p
(x

i2p
2 x) ,

wherem is the samplemean of the time series and u1, . . . ,

up are the parameters of the process, which, as men-

tioned above, can be estimated by the Yule–Walker

equations. Iterating this procedure we can derive fore-

casts of the index m days into the future. Based on the

time series for the NAO, we have calculated the root-

mean-square of the difference between the forecasted

index m days ahead and the actual value of the index

that day. In these forecasts, as well as in the forecasts in

section 4c below, we have used the NAO data from the

years 1872–1989 as training data to estimate the pa-

rameters of the AR(p) process and the NAO data from

the years 1990–2014 as testing data to evaluate the

forecasts. We note that the difference in parameter es-

timates between different choices of time interval for

the training data is negligible.

It is clear from Table 1 that when p exceeds the op-

timal p 5 3 deduced from the PACF, the forecasts do

not improve by increasing p. Based only on the perfor-

mance of the forecasts, we could also settle with p5 2 or

even p 5 1. Moreover, the root-mean-square of the

predictions based on the AR(p) processes saturate at

the sample standard deviation of the testing data (sx 5
1.621), and the root-mean-square of the steady state

prediction saturates at 21/2sx. Note also that the AR(p)

processes are only useful for predicting the NAO index

during the coming week and not for dates further into

the future.

4. Noise distribution

Figure 2 showed that the distribution of the daily

NAO index was similar to a Gaussian distribution but

that it possessed certain non-Gaussian features. Un-

fortunately, one cannot directly apply standard tests of

normality to this distribution as such tests assume the

data points to be independent. However, applying the

Kolmogorov–Smirnov test to a subset of the NAO data

containing only every tenth entry (thereby reducing the

autocorrelation between two consecutive points to

around 10%), we get a p value of around 0.01, so the null

hypothesis of normality can be rejected at a low signif-

icance level. We will now investigate if the remaining

noise in an AR(p) process modeling the daily NAO

index is approximately Gaussian or if it more closely

resembles some non-Gaussian distribution. The analysis

below is based on an AR(3) process, but the results are

TABLE 1. Root-mean-square of the difference between the forecasted index m days ahead and the actual value of the index that day.

1 2 3 4 5 7 10 20

Steady state 0.958 1.389 1.624 1.774 1.884 2.029 2.156 2.239

AR(1) 0.915 1.258 1.411 1.490 1.539 1.587 1.614 1.623

AR(2) 0.905 1.256 1.409 1.489 1.539 1.589 1.616 1.625

AR(3) 0.903 1.253 1.406 1.486 1.536 1.585 1.614 1.624

AR(10) 0.903 1.253 1.406 1.486 1.535 1.585 1.613 1.623
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qualitatively the same for all choices of p. Figure 6

compares the distribution of the remaining noise and a

normal distribution with the same mean and variance

(29.0 3 1026 and 0.894, respectively). The noise distri-

bution has a higher frequency of values close to zero and

heavier tails than the normal distribution. These fea-

tures are typical for leptokurtic distributions, that is,

distributions with positive excess kurtosis. Recall that

the excess kurtosis of a distribution is defined as the

kurtosis of the distribution subtracted by the kurtosis

of a normal distribution, which is three. The excess

kurtosis of the noise distribution is 0.64 as compared

to 20.061 for the NAO index. Note also that the dif-

ference between the positive and negative tails that was

seen in the distribution of the NAO index cannot be

found for the noise distribution. In general, the noise

distribution is much more symmetric with a skewness of

0.055 compared to 20.245 for the original time series.

a. Leptokurtic distributions

We will next investigate if the noise distribution fits

better to some leptokurtic distribution. We consider a

broad class of leptokurtic distributions, namely, the

a-stable distribution, the nonstandardized t distribution,

and the generalized hyperbolic secant distribution. One

could also consider the noncentralized t distribution, but

as the noise distribution is very close to being symmetric,

the best fits of noncentralized and nonstandardized t

distributions are almost indistinguishable. We begin by

giving a short description of the leptokurtic distributions

considered here.

A random variable X is given by an a-stable distri-

bution with parameters a 2 (0. 2], b 2 [21, 1], g$ 0, and

d 2 R if

X5

8><
>:
gZ1 d , a 6¼ 1,

gZ1 d1b
2

p
g logg , a5 1,

where Z is a random variable with characteristic function

E(eiuZ)5

8>><
>>:
exp

D
2juja

h
12 ib tan

pa

2
(signu)

iE
, a 6¼ 1,

exp

�
2juj

�
11 ib

2

p
(signu) logjuj

��
, a5 1,

.

This form is only one out of several alternative pa-

rameterizations of a-stable distributions (Nolan 2016).

We note that the Gaussian and Cauchy distributions are

FIG. 6. (left) The probability density function of the noise in the AR(3) model (blue)

compared to a Gaussian density (red) with the samemean and variation as the noise. (center)

The P(jXj $ x) as a function of x for the same distributions. (right) A Q–Q plot of the noise

distribution compared to a normal sample.
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special cases of a-stable distributions with a 5 2 and

a5 1, b5 0, respectively. Note that, with the exception

of a5 2, the a-stable distributions are heavy tailed. The

decay of the tails is governed by the parameter a as

P(jXj. x); x2a ,

for a 2 (0, 2) and large x. As a consequence of this tail

behavior, the variance and the excess kurtosis are un-

defined for a-stable distributions with a 6¼ 2. The

a-stable distributions play an important role in gener-

alizations of the central limit theorem as the sum of a

number of random variables with symmetric distribu-

tions having power-law tails (heavy tails), decreasing as

jxj2a21, where a 2 (0, 2) (and therefore having infinite

variance as opposed to the case in the standard central

limit theorem), will tend to a stable distribution as the

number of summands grows. If the tails of the sum-

mands decrease as jxj2k with k $ 3, the sum converges

to a stable distribution with a 5 2 (i.e., a Gaussian dis-

tribution). The parameter d is a location parameter and

as the noise distribution for the NAO data is very close

to being centered at the origin; we have used

d 5 0 throughout the article.

A random variable X is given by a nonstandardized t

distribution with parameters m 2 R, s . 0, and n . 0 if

X5 m1 sT, where T is a t-distributed random variable

with n degrees of freedom having probability density

function

f
T
(t)5

G
n1 1

2

� �
ffiffiffiffiffiffi
np

p
G

n

2

� � 11
t2

n

� �2v11/2

.

The tail decay of this distribution is given by

P(jXj. x); x2n ,

which is polynomial, but in general faster than for the

a-stable distributions as n can be any positive real

number whereas a is bounded from above by 2. The

excess kurtosis of the nonstandardized t distribution is

finite for n . 4 and coincides with that of the t distri-

bution and is hence given by 6/(n 2 4), for n . 4. The

nonstandardized t distribution arises in the following

way. Assume that the random variable X is normally

distributed with mean m but with unknown, inverse

gamma-distributed, variance. Integrating over the

gamma distribution, one obtains that X is non-

standardized t distributed. This characterization of the

nonstandardized t distribution makes it useful in

Bayesian inference, where the inverse gamma distribu-

tion is the conjugate prior of the normal distribution

with known mean.

A random variable X is given by a generalized hy-

perbolic secant distribution with parameters m 2 R, and

s . 0 if X 5 m 1 sW, where W has the probability

density function

f
W
(w)5

1

2
sech


pw
2

�
5

1

epw/2 1 e2pw/2.

The tail decay of this distribution is given by

P(jX j.x);e2px/2s ,

which is exponential, but still not as fast as for the nor-

mal distribution, for which P(jXj . x) ; e2x2/2s2
. The

excess kurtosis of the hyperbolic secant distribution is 2.

The hyperbolic secant distribution is less common in

applications (Ding 2014) but has been included here

owing to its tail behavior being somewhere in between

the nonstandardized t distributions and the Gaussian

distribution.

b. Fit of noise distribution

To determine the best choices of parameters u within

each class of distribution, we will use the maximum

likelihood method; that is, we maximize

logL(u; f«
i
gn
i5p11

)5 �
n

i5p11

log f («
i
j u) ,

where f«igni5p11 are the errors in the AR(3) process

modeling the daily NAO index. Table 2 shows the op-

timal parameter values for the normal distribution and

all three classes of leptokurtic distributions together

with their corresponding log likelihoods. As seen, the

TABLE 2. Optimal parameter values for the normal distribution

and all three classes of leptokurtic distributions together with their

corresponding log likelihoods.

Normal 268 256

m 0

s 0.894

Generalized hyperbolic secant 268 318

m 26.7 3 1023

s 0.936

Nonstandardized t 267 965

n 11.9

m 23.4 3 1023

s 0.816

a-stable 268 134

a 1.94

b 0.043

g 0.610
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nonstandardized t distribution gives the largest value of

the log-likelihood and hence the best fit.

Figure 7 displays the noise distribution and the best-

fitted distributions from each of the three classes of

leptokurtic distributions considered and the corre-

sponding Q–Q plots. As seen, the nonstandardized t

distribution provides the best overall fit. It is only for

values above the 1023 quantile that the distributions

differ significantly (the nonstandardized t distribution

underestimates the tail slightly). The sums of squares of

the residuals in the Q–Q plots with 1000 points are in

the interval [1.6, 6.1] for the Gaussian, hyperbolic se-

cant and a-stable distributions but around 0.3 for the

nonstandardized t distribution. Moreover, the mean,

variance, skewness, and excess kurtosis of the best-

fitted nonstandardized t distribution are 23.4 3 1023,

0.80, 0, and 0.76, respectively, which is quite close to the

sample values stated in the beginning of section 4.

We note, in this context, that the maximum likeli-

hood method can also be used to determine the

optimal value of p in the AR(p) models using for

example the Aikake information criterion (AIC) or

the Bayesian information criterion (BIC). According

to these criteria, one should choose the model that

maximizes

AIC5 2k2 2 logL̂ or BIC5k logn2 2 logL̂ ,

respectively, where k is the number of parameters in the

model, n is the length of the time series, and L̂ is the

maximal value of the likelihood function for the model.

Comparing logL̂ for noise from a nonstandardized t dis-

tribution for different vales of p, we observe that for p 5
1, 2, and 3 the values of logL̂ are 268743, 268044,

and 267965, respectively, whereas for p . 3 it increases

slowly with p until it saturates at approximately 267929

for p. 20. According to the AIC, the optimal value of

p is 21, whereas according to the BIC the optimal

value of p is 3, as was deduced also from the PACF.

The large disagreement in optimal p between the two

criteria reflects the fact that most of the ACF is ex-

plained by an AR(3) model (Fig. 4) but that there are

correlations on larger time scales as well. As the BIC

penalizes the number of parameters more strongly,

FIG. 7. (top left) The probability density function of the noise of an AR(3) process mod-

eling the daily NAO index (blue) compared to the best-fitted densities of three non-Gaussian

distributions, namely, the generalized hyperbolic secant distribution (green), the a-stable

distribution (red), and the nonstandardized t distribution (black). (top right) The P(jXj $ x)

as a function of x for the same distributions. (bottom) The Q–Q plots of samples from (left)

a generalized hyperbolic secant distribution, (center) an a-stable distribution, and (right)

a nonstandardized t distribution vs a sample of the noise in the AR(3) process modeling the

daily NAO data.
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the optimal model deduced by BIC neglects the cor-

relations on larger time scales.

c. Forecast of quantiles

Wewill next study forecasts of the probability that the

NAO index is below a certain quantilem days from now.

In contrast to the forecasts of the most likely value in

section 3e, the performance of these forecasts will de-

pend on the choice of noise distribution, and as the lep-

tokurtic distributions, in particular the nonstandardized t

distribution, provide a better fit of the noise distribu-

tions, we expect that the use of leptokurtic noise will

improve the quantile forecasts.

We consider a situation where we are interested in the

probability that the NAO index switches between a

normal value [here quantified as the interval (m 2 s/2,

m 1 s/2) 5 (20.81, 0.81)] to an extreme value m days

later. The extreme values are quantified by quantiles

in Table 3.

Figures 8 and 9 show the probability that the daily

NAO index is below the a quantile m days later for

negative and positive NAO phases, respectively. As

seen, the AR(3) process with nonstandardized t-distributed

noise is better at predicting the probability of reaching

extreme negative states, but in general the difference

between different choices of noise distribution is lim-

ited. Moreover, the probability that the NAO index

predicted by the AR(3) processes lies below a certain

quantile saturates at a level that differs significantly

from the empirical probabilities. This reflects the fact

that the AR(3) process is unable to reproduce the

asymmetry of the NAO distribution.

A noteworthy property of the NAO index is that for

the positive states (see Fig. 9) the asymptotic probability

that the index is below a certain quantile is reached

within three to four days, but for the negative states (see

Fig. 8), it takes at least 10 days to reach the asymptotic

probabilities. This difference is indicative of the differ-

ent time scales that have been previously observed for

the NAO index (Woollings et al. 2010a,b). The fact that

the asymptotic probabilities are reached faster for the

positive NAO phases is in line with an observed shorter

FIG. 8. The plots show the probability that the daily NAO index starting in the interval [m2 s/2,m1 s/2] is below the a quantilem days

later. Here a take five different values (left)–(right) 0.001, 0.01, 0.05, 0.1, and 0.2, all corresponding to negative NAO indices. The blue

lines correspond to the observed index and the other lines to AR(3) processes with Gaussian noise (green), nonstandardized t-distributed

noise (black), and a-stable noise (red). The horizontal dashed line represents the asymptotic probabilities.

TABLE 3. Quantiles xa of the distribution of the NAO index during the years 1990–2014 for some choices of a.

Probability a 0.001 0.01 0.05 0.1 0.2 0.8 0.9 0.95 0.99 0.999

Quantile xa 25.15 23.89 22.74 22.06 21.28 1.49 2.10 2.61 3.50 4.53
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time scale for the positive NAO phases. The difference

between the positive and negative phases of the NAO

index cannot be captured by the AR(p) processes as

these assume the same autocorrelation for positive and

negative states and the resulting noise distribution is

close to being symmetric. In future work, we will address

this problem by considering state-dependent and non-

linear AR(p) processes.

FIG. 10. The (left) probability density functions and (right) sample ACF of the seasonal

daily NAO indices for spring (red), summer (green), autumn (cyan) and winter (purple). The

total time series is included for comparison (blue).

FIG. 9. As in Fig. 8, but for a values corresponding to positive NAO indices (left)–(right) 0.999, 0.99, 0.95, 0.9, and 0.8.
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5. Seasonal time series

To investigate whether the findings in the preceding

sections are independent of the season, the daily NAO

data has been divided into four seasonal time series:

spring (March–May), summer (June–August), autumn

(September–November), and winter (December–

February). We have carried out the same analysis as

above on these seasonal time series. To give an example of

the procedure, the sample ACF of each of the three first

seasons has been calculated as the mean of the sample

ACFs for all 143 instances of that season found in the data.

For the winter data, the sample ACF has been calculated

in a similar way, but as there are only 142 full winters in the

time series and as the lengths of the winters vary owing to

leap years, we have used a weighted mean of the sample

ACF for the 142 winters to calculate the winter sample

ACF. Figure 10 shows the probability density functions

and sample ACFs for the seasonal data. We see that the

winter data are more skewed and have longer memory

than the yearly data, whereas the other seasons have

shorter memory. This is in line with previous observations

of persistent NAO states during the winter season

(Woollings et al. 2010b; Franzke and Woollings 2011).

Studying the sample PACF of the seasonal time series

(Fig. 11) it is clear thatp5 3 is theoptimal choice for all four

seasons, just as it was for the total time series. Note,

however, that also in this respect the winter data stand out

as for this season the PACF values for lags 2 and 3 are only

slightly larger than the statistical error, whereas the values

of the PACF for lags 2 and 3 for the other three seasons are

considerably larger than the statistical error and also very

close to the values of the PACF for the total time series.

We determine the parameters of the AR(3) processes

modeling the seasonal data using the Yule–Walker equa-

tions. The resulting parameters are found in Table 4.

Figure 12 showsQ–Q plots of the noise in the seasonal time

series compared to a normal distribution and a non-

standardized t distribution. As can be seen the t distribution

provides a better fit. The sums of squares of the residuals in

the Q–Q plots with 1000 points are in the interval [1.3, 4.5]

for the Gaussian fits, but in the interval [0.11, 0.56] for the

nonstandardized t fits. The parameters of the fitted non-

standardized t distributions are given in Table 5.

FIG. 11. Sample PACF as a function of p for the seasonal daily NAO indices. The size of the

statistical error is indicated by the red lines.

TABLE 4. Parameter values of the AR(3) processes modeling the

seasonal data derived from the Yule–Walker equations.

u1 u2 u3

Spring 1.008 20.2186 0.0343

Summer 1.034 20.3365 0.0890

Autumn 0.9239 20.1902 0.0625

Winter 0.8834 20.0688 0.0279

Total 0.9626 20.2042 0.0534
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6. Analysis of EOF-based time series

We now perform some of the analyses carried out in

the preceding sections on the EOF-based NAO index

to investigate if there are any qualitative differences

between the properties of the two time series.

Figure 13 shows the probability density function of the

daily NAO index compared to a normal distribution

with the same mean and variance. Clearly, the EOF-

based NAO index displays the same non-Gaussian

features as the station-based NAO index. Considering

the sample PACF, its modulus does not decrease as

quickly as for the station-based NAO index and the

optimal choice of p for a fitted AR process is 5 instead

of 3. Fitting an AR(5) process to the EOF-based NAO

index, it reproduces the sample ACF very well for lags

up to 10 days, but, for lags exceeding two weeks, the

sample ACF is significantly larger than for the AR

model. We conclude that the long-range dependence

in the NAO is more clear for the EOF data than for

the station-based data. Finally, Fig. 13 also shows that

the resulting noise in the AR(5) model is closely ap-

proximated by a nonstandardized t distribution, just as

for the station-based data.

7. Summary and conclusions

In this article, we have studied the properties of time

series of the daily NAO index, in particular the station-

based time series published by Cropper et al. (2015). We

have found that the distributionof theNAOindexhas clear

non-Gaussian features and long-range dependence. An

autoregressive model with leptokurtic noise taking the

values of the index during the last three days into ac-

count [AR(3)] provides a goodmodel for the daily NAO

index on time scales up to two weeks. Among several

leptokurtic distributions considered in this article, the

best overall fit is provided by using nonstandardized

t-distributed noise in the AR(3) model.

FIG. 12. Q–Q plots of the distribution of the noise in the AR(3) process modeling the

seasonal daily NAO indices compared to samples from a normal distribution (blue) and

a nonstandardized t distribution (green). The numerical values in the legend of each

panel represent the sums of squares of the residuals in the Q–Q plots for the normal

distribution (blue) and for the nonstandardized t distribution (green).The red line is the

1:1 line.

TABLE 5. Optimal parameter values for the nonstandardized t

distribution for the noise in the AR(3) processes modeling the

seasonal data.

n m s

Spring 14.1 23.7 3 1023 0.792

Summer 8.6 22.4 3 1023 0.779

Autumn 13.1 22.6 3 1023 0.870

Winter 15.1 26.2 3 1023 0.811

Total 11.9 23.4 3 1023 0.816
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Most previous studies of the NAO assumed Gaussian

statistics. This assumption is inconsistent with the high

nonlinearity and complexity of the processes controlling

the climate system. Especially important are the non-

linear interactions between the slow circulation modes,

such as the NAO, and fast weather systems. These non-

linear interactions can lead to non-Gaussian behavior and

heavy tails (e.g., Majda et al. 2009; Franzke et al. 2005;

Franzke 2017; Sura and Hannachi 2015). Here, we show

that the NAO has nontrivial non-Gaussian statistics and

heavy tails. While systematic procedures predict a mul-

tiplicative noise model for the NAO (Majda et al. 2009),

here we used a simpler approach using a linear model

with additive leptokurtic noise. Our results show that the

NAO is a highly nonlinear phenomenon because of its

non-Gaussian behavior. However, we were able to

develop a linear model with non-Gaussian noise with

good predictive skill.Hence, ourmodel can be considered

to represent efficiently a weakly multiplicative noise

model for which the function of the state variable is

weakly dependent on the state variable. Thus, this weakly

multiplicative noise is efficiently represented in our

model by a leptokurtic distribution. In future research we

will attempt to also derive nonlinear models with explicit

multiplicative noise for the NAO and compare their

predictive skill with the additive model developed here.

Multiplicative noise processes are harder to estimate and

require long time series (Peavoy et al. 2015).

Rennert and Wallace (2009) show that the non-

Gaussian properties of the NAO might be the results

of cross-frequency coupling. They find that the coupling

of anomalies with periods.30 days with anomalies with

periods of 6–30 days are responsible for most of the

skewness of 500-hPa geopotential height. Since skew-

ness is an imprint of non-Gaussianity this mechanism

might also cause the here-revealed non-Gaussian char-

acteristics of the NAO.

Luxford and Woollings (2012) provide an alternative

explanation for the existence of non-Gaussianity in the

atmospheric circulation. They put forward a kinematic

argument in which fluctuating jets create deviations from

Gaussianity. For instance, geopotential height fields show

a distinct pattern of non-Gaussianity: poleward of the jet

stream there is positive skewness and equatorward of the

FIG. 13. The plots are based on the EOF based NAO index. (top left) The probability density

function of the daily NAO index (blue) and normal distributions with the samemean and variance

(red). (top right) The sample PACF as a function of p for the daily NAO index. The size of the

statistical error is indicated by the red lines. (bottom left) The sampleACFof the dailyNAO index

(blue) compared to the sampleACFof anAR(5) process forcedwithnonstandardized t-distributed

noise. For theAR(5) process, themedian (red3 symbols) and 5%–95%range (red dashed line) of

1000 realizations is displayed. (bottom right) A Q–Q plot of samples from a nonstandardized t

distribution vs a sample of the noise in the AR(5) process modeling the daily NAO data.
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jet stream there is negative skewness. They argue that the

non-Gaussian features are a result of a fluctuating jet

stream. Since the NAO is intimately linked with the jet

streams (Woollings et al. 2010a; Franzke et al. 2011) and

the North Atlantic jet stream is an eddy-driven jet stream

that is highly variable (e.g., Woollings et al. 2010a;

Franzke et al. 2011), this mechanism might also play a

role for the non-Gaussian features of the NAO index.

Considering time series for each of the four seasons

separately, we have also shown that the results are

qualitatively the same as for the entire time series in

the sense that an AR(3) model with nonstandardized

t-distributed noise provides the best fit to the time

series during all four seasons.

We have evaluated the proposed AR(3) model by in-

vestigating forecasts of the future distribution of the NAO

(considering both the expected value and quantiles) and

found that some, but not all, properties are well described

by the model. Features that the model is unable to repli-

cate include the long-range dependence on time scales on

the order of 20 days or more, the different time scales of

the positive and negative phases of the NAO, and the fact

that the negative tail of the NAO distributions is fatter

than the positive tail. Finding an autoregressivemodel that

includes these features as well is a work in progress.

Our study has focused on the short-time-scale pre-

dictive skill of the NAO on the order of a few days. It has

recently been shown that the NAO is also predictable on

much longer time scales on the order of months up to

more than one year (e.g., Domeisen et al. 2015; Dunstone

et al. 2016). This predictive skill partly arises from climate

modes such as ENSO and the stratospheric vortex. In our

future research we will also focus on this long-term be-

havior of the NAO. Skillful long-term predictions of the

NAO are important for many stakeholders.
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