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Abstract Coupled models tend to underestimate Indian summer monsoon (ISM) rainfall over most of
the Indian subcontinent. Present study demonstrates that a part of dry bias is arising from the discrepancies
in Oceanic Initial Conditions (OICs). Two hindcast experiments are carried out using Climate Forecast System
(CFSv2) for summer monsoons of 2012–2014 in which two different OICs are utilized. With respect to first
experiment (CTRL), second experiment (AcSAL) differs by two aspects: usage of high-resolution atmospheric
forcing and assimilation of only ARGO observed temperature and salinity profiles for OICs. Assessment of
OICs indicates that the quality of OICs is enhanced due to assimilation of actual salinity profiles. Analysis
reveals that AcSAL experiment showed 10% reduction in the dry bias over the Indian land region during
the ISM compared to CTRL. This improvement is consistently apparent in each month and is highest for
June. The better representation of upper ocean thermal structure of tropical oceans at initial stage supports
realistic upper ocean stability and mixing. Which in fact reduced the dominant cold bias over the ocean,
feedback to air-sea interactions and land sea thermal contrast resulting better representation of monsoon
circulation and moisture transport. This reduced bias of tropospheric moisture and temperature over the
Indian land mass and also produced better tropospheric temperature gradient over land as well as ocean.
These feedback processes reduced the dry bias in the ISM rainfall. Study concludes that initializing the cou-
pled models with realistic OICs can reduce the underestimation of ISM rainfall prediction.

Plain Language Summary Seasonal forecast of summer monsoon is sensitive to the upper ocean
state mainly over the tropical ocean. This upper ocean state is constituted by the temperature and salinity
structure, errors in these fields can mislead the seasonal forecast. Present study demonstrated that apart
from actual temperature profile data, salinity profile observations based ocean reanalysis produced better
ocean state. This revised ocean reanalysis based ocean initial conditions are used for the hindcast of 2012
to 2014 summer monsoon and found improvement in the seasonal forecast. Prominent dry bias in seasonal
forecast of rainfall over the monsoon core region as well as over the all India is getting reduced more than
10 %, which is even higher than the variability of the summer monsoon. Detail analysis brought out that
improvement in the upper ocean heat content forecast supported realistic air sea interaction in the coupled
model and provided reasonable moisture to the atmosphere. This leads to better forecast of moisture trans-
port associated with the summer monsoon resulting reduction in the precipitation biases over the India as
well as neighboring oceanic regions. Overall the present study confirms that realistic ocean state in the ini-
tial condition is vital for accurate seasonal forecast of Indian summer monsoon.

1. Introduction

The dynamical seasonal prediction of Indian summer monsoon (ISM) is currently being pursued actively
using coupled models (Kim et al., 2012; Kumar et al., 2005; Pokhrel et al., 2016; Zhu & Shukla, 2013). The sea-
sonal predictions mostly rely on the slowly evolving boundary conditions such as sea surface temperature
(SST), soil moisture, Eurasian snow cover etc. (Charney & Shukla, 1981; Palmer & Anderson, 1994). In addition
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to that seasonal variability of ISM rainfall is largely controlled by the coupled ocean-atmosphere processes
such as El Ni~no Southern Oscillations (ENSO; Kumar et al., 1995; Pant & Parthasarathy, 1981; Rasmusson & Car-
penter, 1983; Sikka, 1980; Webster & Yang, 1992) and Indian Ocean Dipole (IOD, Ashok et al., 2001). Therefore,
India adopted National Centers for Environmental Prediction (NCEP) coupled dynamical prediction system, Cli-
mate Forecast System version 2 (CFSv2) for the seasonal forecast of ISM rainfall (http://www.tropmet.res.in/
monsoon/files/about_us.php). This coupled general circulation system includes atmosphere, ocean, and land
surface models. It displayed improvement in the seasonal forecast of air temperature and SST but no improve-
ment is reported for the precipitation over the land (e.g., Saha et al., 2014) with respect to previous version. As
far as the seasonal prediction of ISM rainfall is concerned CFSv2 displays dry rainfall bias over the Indian land
mass. Which could possibly be due to cold troposphere, low cloud fraction, and underestimation of high
clouds and cold SST (De et al., 2016; Hazra et al., 2015). Further they suggested the need of modification of
microphysical processes in the warm phase and mixed phase clouds for realistic representation of cloud and
precipitation in CFSv2. Apart from this, Goswami et al. (2014) reported that synoptic variance is lower than the
intraseasonal variance in CFSv2 especially over the Indian land mass leading to the underestimation of ISM
rainfall. They attributed this to the deficiency in the convective parameterization in CFSv2. Subsequently,
Ganai et al. (2015) reported that misrepresentation of diurnal cycle significantly contributes to the dry bias
and suggested that cloud parameterization with realistic deep convection could improve diurnal rainfall,
which in turn improves ISM rainfall. Bombardi et al. (2016) on the other hand suggested that inclusion of
deep convection in the heated condensation frame work as an additional criterion in the simplified Arakawa-
Schubert scheme improved the background state of convection and realistic frequency of deep convection.
This leads to the better representation of ISM rainfall over the central and north eastern India. In addition to
that the net surface radiation also improved, which is otherwise underestimated in CFSv2 compared to NASA/
GEWEX (Goswami et al., 2017). Narapusetty et al. (2015) found that CFSv2 based seasonal forecast of north-
ward migration of ITCZ is not accurate leading to the dry bias in the summer over the India. Chowdary et al.
(2015) and Pokhrel et al. (2012) have reported that the excess evaporation in the model misrepresents the
ocean-atmosphere interaction apart from radiative fluxes. These above discussed biases strongly suggest the
possibility of further improvement in the adopted CFSv2 for better seasonal prediction of ISM rainfall.

Several studies in the past have explored the impact of accurate surface and subsurface ocean states on the
dynamical seasonal predictions of El Ni~no and the Southern Oscillation (ENSO; Alves et al., 2004; Fischer et al.,
1997; Ji & Leetmaa, 1997, etc.). They argued that the impact of subsurface ocean data assimilation has the
potential to mitigate to some extent the impact of errors in wind-stress forcing and model errors, resulting in
an improved seasonal prediction in a coupled ocean atmosphere forecasting system. Yang et al. (2010)
reported improvement in the prediction of 2006 El Ni~no features and the spatial extent of the warm pool, while
using salinity observations for the preparation of OICs. Further study by Zhao et al. (2013) found that initializa-
tion of subsurface near and off equatorial salinity may be as important as the initialization of ocean tempera-
tures, for long range prediction. Zhao et al. (2014) also showed that better initial salinity field in the western
Pacific could improve prediction of the Nino3.4 SST index as well as subsurface temperatures in the Indian
Ocean. Improvements are brought about by fresh anomalies at the equator which increases stability, reduces
mixing, and shoals the thermocline which concentrates the wind impact of ENSO coupling. This effect is most
pronounced in June–August, helping to explain the improvement. Huang et al. (2008) showed that inclusion of
actual Argo salinity profiles in National Centers for Environmental Prediction (NCEP) Global Ocean Data Assimi-
lation System (GODAS) reduced biases (errors) of zonal current in the tropical Indian Ocean by 5–10 (2–5) cm
s21. Deshpande et al. (2017) reported that variability of zonal current in the equatorial Indian Ocean, alters ISM
by modulating the monsoon Hadley circulation. Balmaseda and Anderson (2009) also reported that Argo has a
larger effect in the Indian Ocean. Kakatkar et al. (2017) highlights the importance of maintaining observing sys-
tems such as ARGO for accurate monsoon forecast. Fousiya et al. (2015) also showed that assimilation of actual
salinity profiles in GODAS brings the Bay of Bengal (BoB) to a more realistic state and captures BoB barrier layer
variability (e.g., Agarwal et al., 2012; Thompson et al., 2006). Formation of barrier layer in fact influences the air-
sea interaction ranging from synoptic to intraseasonal scale systems over the region which are contributing sig-
nificantly to the ISM rainfall (Goswami et al., 2003; Mooley & Shukla 1989). Hence, it is mandatory that the OICs
for the coupled models be as realistic as possible for a skillful seasonal prediction of ISM.

Historically, lack of salinity observations, particularly subsurface, has eluded proper representation of salinity
in ocean analyses. Recently operational centers around the world have improved salinity representation in
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their respective ocean analyses. One way to do that is by using synthetic salinity profiles generated for each
temperature profile using local T-S climatology. This is better than using climatological salinity which under-
estimates salinity variability in some basins. The other way to get accurate realistic upper ocean state for
seasonal prediction of ISM is to assimilate surface and subsurface observations of ocean temperature and
salinity from Argo (Array of real time geostrophic oceanography, Argo Science Team, 2001) with appropriate
assessment while keeping in mind that methodology adopted for data assimilation impacts the accuracy of
OICs (Kalnay, 2002). Above discussions motivated us to carry out the present study where two different ini-
tial state of ocean are used as OICs in CFSv2, first initial state is based on the traditional ocean reanalysis
NCEP-GODAS and the second initial state is produced using high-resolution forcing and assimilating actual
salinity and temperature profiles from Argo i.e., Indian Institute of Tropical Meteorology GODAS (IITM-
GODAS). Thus, the coupled model experiments are initialized with differing OICs to study the impact of
OICs on hindcast of summer monsoon features, an unexplored area in the ISM forecasting system. Section 2
provides details about the data used, model and the experiments carried out in this study. In section 3,
results from experiments are discussed and section 4 derives main conclusion.

2. Data and Methodology

Gridded rainfall data sets from the India Meteorological Department (IMD, Pai et al., 2014) and Global Pre-
cipitation Climatology Project v2.2, (GPCP, Adler et al., 2003) are used to evaluate model rainfall during sum-
mer of 2012–2014. European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis Interim
(ERA, Dee et al., 2011) fields of winds, moisture, and air temperature are used for comparing corresponding
model fields. Objectively analyzed air-sea fluxes (OAflux, Yu & Weller, 2007) are used for evaluating evapora-
tion rate. Hadley centre observations data set (EN4.1.1, Good et al., 2013) and Hadley centre Sea Ice and Sea
Surface Temperature data set (HadISST, Rayner et al., 2003) are used for evaluating sea water temperature.
Hybrid coordinate ocean model (HYCOM, Cummings, 2005; Cummings & Smedstad, 2013) daily analysis
(GLBu0.08/expt_91.1) is used to compare OICs. The system used for generating HYCOM analysis is the Navy
Coupled Ocean Data Assimilation. The assimilation scheme is 3DVar. It assimilates observations of SST, sea-
ice concentration, and sea surface height from satellites and in situ observations of temperature, salinity,
and ocean currents from ships, buoys, XBTs, and Argo. All of these data sets have been regridded wherever
necessary to a common lower resolution of 18 3 18. The monsoon core region (MCR, 188N–288N 658E–888E),
which is a region representative of both the variability and strength of ISM rainfall (Rajeevan et al., 2010)
the region covering all land points of India, which quantifies the total rainfall received during ISM (Partha-
sarathy et al., 1995) are selected for detailed analysis. According to IMD, in 2012, ISM rainfall was 93% of
long period average, however for 2013 it was 106% and for 2014 it was 88%. In 2012, June and July received
very scantly rain (72% and 87%, respectively) and August and September received better rainfall (101% and
112%, respectively). In case of 2013, above normal rainfall received in June and July and below normal in
August and September. In case of 2014, all the 4 months received below normal rainfall with June receiving
deficient rain, resulting 2014 summer monsoon deficient. Overall all the above 3 years cover the extremes
of the ISM rainfall with wide spread in their evolution.

2.1. Model and Experiment Details
The NCEP CFSv2 (Saha et al., 2014, details therein) is a fully coupled atmosphere-ocean-land-surface-sea-ice
dynamical model developed by NCEP. The atmospheric model in CFSv2, is Global Forecast System, which is
configured at T126 horizontal resolution. The ocean model is Geophysical Fluid Dynamics Laboratory
(GFDL) Modular Ocean Model (MOM) version 4p0d (Griffies et al., 2004). For the first experiment (CTRL)
atmospheric initial conditions as well as OICs for CFSv2 are from NCEP climate prediction system reanalysis
(NCEP-CFSR, Saha et al., 2010), available publicly at National Operational Model Archive and Distribution
System data server. The NCEP generates OICs using state-of-the-art NCEP-GODAS (Behringer, 2007; Beh-
ringer & Xue, 2004; details therein). The ocean model in NCEP-GODAS is MOM3. The model has a horizontal
resolution of 1/48 in the North-South direction within 108 of the equator and it gradually increases to 1/28

pole ward of 308. The NCEP-GODAS is forced by the momentum flux, heat flux, and fresh water flux from
the NCEP atmospheric reanalysis 2 (NCEPR2, Behringer & Xue, 2004). The NCEP-GODAS assimilates tempera-
ture profiles and synthetic salinity profiles using 3DVAR scheme. NCEP-GODAS assimilates temperature pro-
files from expendable bathythermographs (XBTs), in situ moorings and from Argo. Synthetic salinity profiles
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are derived for each temperature profiles using local T-S climatology based on the annual mean fields of
temperature and salinity.

The forecast system is initialized in May month to produce 9 month-lead forecasts for 2012, 2013, and 2014.
There are 10 atmospheric initial conditions (10 ensemble member forecasts) partitioned into two segments.
The first set uses five atmospheric initial states of the 1st, 2nd, 3rd, 4th, and 5th of May and uses the same
pentad ocean initial condition centered on the 3rd of the same month. The second set uses the five atmo-
spheric initial states of the 6th, 7th, 8th, 9th, and 10th of May and the same pentad ocean initial condition
centered on the 8th of May. For the analysis, we have utilized ensemble mean forecasts obtained by averag-
ing the above 10 ensemble members (Srinivas et al., 2017). NCEP-GODAS OICs are used in the CTRL experi-
ment. However, in the second experiment (hereafter, AcSAL), same methodology is followed to produce
hindcast, and the only difference being IITM-GODAS OICs are used. The atmospheric initial conditions for
both the coupled model experiments (CTRL and AcSAL) are identical.

The data assimilation system in IITM-GODAS (Sreenivas et al., 2015), assimilates only quality controlled Argo
observed salinity and temperature profiles. This is done to exclude the influence of associated synthetic
salinity profiles which may in some locations exceed Argo salinity profiles (Huang et al., 2008). Apart from
this during the study period number of Argos in the global ocean was consistently more than 3,500. The
ocean model used for IITM-GODAS is quasi-global configuration of MOM4. The model domain extends from
758S to 658N and has a resolution of 18 by 18 enhanced to 1/38 in the north-south direction within 108 of the
equator. The model has 40 vertical levels with a 10 m resolution in the upper 200 m. The model includes an
explicit free surface, the Gent-McWilliams isoneutral mixing scheme, and the KPP vertical mixing scheme.
Here, the ocean model MOM4 is forced by National Centre for Medium Range Weather Forecasting
(NCMRWF) atmospheric forcing with 0.258 3 0.258 resolution and updated every 6 h (Rajagopal et al., 2012)
which is based on Unified Model Based Analysis System. However, the NCEP-GODAS ocean analysis is
forced by NCEP-R2 T62 resolution daily averaged surface forcing (Kanamitsu et al., 2002). Hence in IITM-
GODAS spatial and temporal resolution of forcing is higher than NCEP-GODAS. High-resolution forcing to
the ocean models supports better representation of mesoscale eddies, tropical instability waves and spatial
gradients of SST. In IITM-GODAS, the model is run in 5 day increments and then 5 day averages of tempera-
ture and salinity are used to estimate the error variances for the next 5 day increment with an assimilation
window of 10 days. Thus, IITM-GODAS produced ocean reanalysis at every pentad for the period of 2012–
2014. The annual mean values of the UNESCO River runoff (V€or€osmarty et al., 1996) have been used for
freshwater forcing. Rahaman et al. (2016) carried out extensive study with different sensitivity experiments
with the GODAS system. They reported that the assimilation of actual salinity profiles and high-resolution
atmospheric forcing from NCMRWF-based GODAS simulation could produce better vertical structure of
temperature and salinity, and also captures the important features such as equatorial currents, seasonal,
and interannual variability, IOD, sub surface temperature inversion, sea level evolution over the tropical
Indian Ocean more realistically compared to the NCEP GODAS. In data assimilation systems based on
GODAS, the system assimilates synthetic salinity profiles calculated from the available temperature profiles
at that grid point. By excluding temperature profiles from all sources other than Argo, we prevent assimila-
tion of synthetic salinity profiles and their impact on the quality of OICs.

3. Result and Discussion

3.1. Assessment of Ocean Initial Conditions
In this section NCEP-GODAS and IITM-GODAS produced OICs of 3 May and 8 May of 2012–2014 are assessed
with respect to HYCOM global analysis (Cummings, 2005). Comparison of NCEP-GODAS with HYCOM upper
ocean temperature (averaged up to 125 m) (Figure 1a, for 8 May 2014) shows that NCEP-GODAS has cold
bias over the tropics, stronger cold bias is seen over the eastern Pacific, equatorial Indian Ocean, along the
western coast of Africa, and equatorial Atlantic Ocean. IITM-GODAS initial conditions display large reduction
in bias over the tropics except over the Atlantic Ocean (Figure 1b). Major reduction in biases is also seen in
the eastern Pacific and around the equatorial Indian Ocean (Figure 1b). Temperature over these two oceanic
areas is critical for the ISM performance (Ashok et al., 2001; Kumar et al., 1995). The intensity of cold bias in
NCEP-GODAS is more evident in Figure 1c. Statistical analysis (Table 1) shows that root mean square error
(RMSE) in the upper ocean temperature (averaged up to 125 m) in IITM-GODAS (NCEP-GODAS) is 2.788C
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(2.988C) over the global tropics. Upper ocean displays reduced cold bias over the equatorial and western
Indian Ocean between 108S and 108N in IITM-GODAS compared to NCEP-GODAS (Figure 1c) (difference of
about 2–38C for 2012 and 2013, figures not shown). Significant reduction in cold bias is also seen in the
northern seas off maritime continent in IITM-GODAS. Thus, over the global tropics IITM-GODAS OICs have
realistic heat content in the upper ocean with noticeable improvement compared to NCEP-GODAS OICs.
This realistic heat content is a major differentiator as far as the present experiments are concerned. This sup-
ports the fact that actual salinity profile assimilation with high-resolution atmospheric forcing improves the
upper ocean thermal state in the ocean reanalysis. Sreenivas et al. (2015) carried out detailed validation of
IITM-GODAS with the independent buoy observations for the period of 2005–2014. They reported that
actual salinity profile assimilation improved the interannual variability of ocean state over the BoB, extent of
warm pool, salinity, mixed layer, isothermal, and thermocline depth. Rahaman et al. (2016) and Karmakar
et al. (2017) also reported that actual salinity assimilation based ocean reanalysis represents accurate Indian
Ocean state.

3.2. Assessment of Precipitation in Hindcast Experiments
This section describes the differences in the ISM features in the two coupled model experiments and dis-
cusses the associated processes. Monthly and seasonal mean rainfall over MCR and Indian land mass are
shown in Figures 2a–2c and 2d–2f, respectively, from CTRL, AcSAL, GPCP, and IMD for the year 2012, 2013,
and 2014. Both the experiments capture the seasonal evolution of rainfall over the Indian land mass as well
as over the MCR. This analysis further reveals that both CTRL and AcSAL mostly underestimate the seasonal
mean ISM rainfall, as well as monthly mean rainfall. It is important to note that the dry bias in AcSAL is less
compared to CTRL. Further the reduction in bias in AcSAL is consistently apparent in each month as well as
the season as a whole. Ramu et al. (2016) reported that cold bias in SST and tropospheric temperature leads
to weaker meridional temperature gradient in CFSv2, resulting weaker low level monsoon circulation. Which
negatively feeds back to tropical easterly jet and vertical wind shear. The under estimation of vertical wind
shear of monsoon circulation leads to slow northward propagation of ISO in CFSv2 (Goswami et al., 2014). It
is also found that due to weaker monsoon circulation moisture transport to the Indian land mass is underes-
timated resulting dry bias over Indian land mass in CTRL. The maximum negative bias of rainfall is seen dur-
ing July and August (by greater than 2 mm d21); however, during June and September it is less than 2 mm

d21. Quantitative analysis shows reduction of dry bias in AcSAL by
10% (Table 2), and the highest reduction in bias is reported for June.
On the other hand, 2014 season displays highest improvement (Table
2) consistent with the improvement in OICs (Figure 1).

Figure 3 displays the spatial distribution of rainfall biases for CTRL and
AcSAL over the Indian land mass with respect to IMD observed rainfall
and also the difference between the two experiments for the years

Figure 1. Spatial distribution of upper ocean (up to 125 m) temperature biases (8C) with respect to the HYCOM ocean
analysis in ocean initial condition produced by (a) NCEP-GODAS, (b) IITM-GODAS, and (c) their differences for 8 May 2014.

Table 1
Percentage Improvement in Precipitation Over MCR and All India (AI)

% Improvement 2012 2013 2014

MCR 5.8% 12.7% 19.1%
AI 9.6% 7.3% 15.4%
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2012, 2013, and 2014. CTRL displays strong negative bias 24 to 26 mm d21 over the central India, western
India, some part of eastern India, and along the Western Ghats and displayed weaker positive bias (1–2 mm
d21) over the peninsular India, north India, and some part of eastern India (Figures 3a–3c). Among the 3
years 2013, an excess monsoon year (106%) displays strongest negative bias. In AcSAL, the spatial distribu-
tion of bias pattern is similar to CTRL but the strength of the negative bias over the central and western
India is reduced by greater than 1 mm d21 (Figures 3d–3f). Overall noticeable reduction (� 2–3 mm d21) in
negative bias of rainfall is seen over the MCR when IITM OICs are used (Figures 3g–3i). Table 3 further con-
firms that error in precipitation prediction is reduced over MCR as well as over AI in AcSAL. It is important to
note that on an average the seasonal mean rainfall over the MCR is about 7–8 mm d21. Thus, the improve-
ment in the land sea thermal contrast in AcSAL due to improvement in the OICs in the Indian Ocean by rep-
resenting the realistic upper ocean stability and stratification. It is important to note that CTRL
underestimates upper ocean stability over the Indian Ocean (Parekh et al., 2016). This realistic upper Ocean
stability is leading to proper representation of upper ocean mixing favoring better upper ocean tempera-

ture forecast, which may be consequently supporting better air-sea
interaction, monsoon circulation, and moisture transport compared to
CTRL. This in turn improving the spatial and temporal pattern of rain-
fall over the Indian land mass. Which might have further feedback to
tropospheric temperature, troposphere circulation, and the propaga-
tion of monsoon is positively feeding back to the reduction of rainfall
biases over the northern and north western land mass of India.

3.3. Assessment of Moisture Fields in Hindcast Experiments
Above discussed improvements in the rainfall estimates in AcSAL with
respect to CTRL led us to explore the associated variables. First, we

Table 2
RMSE of Ocean Initial Conditions of SST (C) With Respect to HYCOM Ocean
Analysis

Domain/ RMSE (�C) IITM-GODAS NCEP-GODAS

IO (258S:258N, 40:1108E) 2.76 2.99
PO (258S:258N, 120:2808E) 2.49 2.63
Global 1.97 1.99
Global Tropics (258S:258N) 2.78 2.99

Figure 2. Monthly and seasonal mean precipitation (mm d21) over (a–c) MCR and (d–f) All-India for 2012, 2013, and 2014,
respectively.
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assess the atmospheric moisture content and its vertical distribution over the Indian land region and adjoin-
ing seas. This is an obvious choice since during monsoon moisture is advected from ocean toward land. Fig-
ures 4a–4c display vertical profile of specific humidity bias in the CTRL and AcSAL with respect to ERA
specific humidity profiles and their differences over MCR during 2012, 2013, and 2014 ISM. In all the cases,
both experiments display drier troposphere compared to ERA. However, in case of AcSAL the dry bias is less
than that of CTRL for all the 3 years. In the lower troposphere the reduction in the dry bias is about 0.5–
0.75 g kg21. This reduction in bias is maximum (minimum) during 2014 (2013). The improvement is almost
constant up to mid troposphere and gradually decreasing above it. Similar analysis of moisture profile is car-
ried out for the Arabian Sea (AS) and BoB. Figures 4d–4f display the vertical profile of specific humidity bias
in the CTRL and AcSAL with respect to ERA and their differences for the AS during 2012, 2013, and 2014
ISM. Over AS the systematic bias in specific humidity is reduced throughout the column in AcSAL; more
reduction in specific humidity bias is found from 925 to 600 hPa. So, it is clear that seasonal mean bias in
specific humidity is reduced by about 20% in the lower troposphere due to more realistic ocean initial state
and the improvement in the associated air-sea interaction in the model. However, improvement in the
moisture distribution over the BoB is relatively meager. Earlier studies have shown that AS evaporation and

Table 3
Root Mean Square Error (mm d21) in Precipitation Prediction of Two Experiments

2012 2013 2014

RMSE (mm d21) AcSAL CTRL AcSAL CTRL AcSAL CTRL

MCR 3.7 4.1 4.3 4.8 2.7 3.3
AI 4.5 4.7 4.8 5.3 3.8 4.1

Figure 3. Spatial distribution of seasonal (JJAS) mean precipitation bias (mm d21) in (a–c) CTRL and (d–f) AcSAL with respect to IMD observations for 2012, 2013,
and 2014. Also shown is the difference between the two experiments (g–i, AcSAL-CTRL).
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moisture transport from the south Indian Ocean are the main mois-
ture sources of ISM rainfall (Levine & Turner, 2012; Pisharoty, 1965;
Saha & Bavadekar, 1973). Recently, Pathak et al. (2017) also reported
that during the monsoon more than 70% moisture to the Indian land
mass is supplied mostly from the southern Indian Ocean, AS, and BoB.
This moisture transport is mostly done by the lower tropospheric
monsoon circulation which is south easterly (south westerly) south
(north) of the equator. These winds are forced by the land sea thermal
contrast, which is more realistic in AcSAL than CTRL due to reduction
in cold SST bias in the southern Indian Ocean (Figure 1c). Further, the
reduction in SST cold bias supported better air-sea exchange through
evaporation and rectifies the moisture production in the surrounding
ocean. This improvement in evaporation is higher in the AS than BoB,
which could be due to lesser mean evaporation over the BoB com-
pared to AS (Shenoi et al., 2002), and low evaporation bias over BoB
than AS (e.g., Pokhrel et al., 2012). This is responsible for the meager
improvement in the vertical distribution of moisture over the BoB
(though meager) in AcSAL compared to AS.

Given the improvements in moisture profiles over the AS and MCR, it is
now interesting to confirm the improvement in the moisture transport
over the study region. Figure 5 shows vectors representing bias in inte-
grated moisture transport (kg m21 s21) and integrated moisture (kg
m22). Large negative bias in CTRL is reported over the central India,
over South Africa, western Pacific and western Indian Ocean (along the
monsoon winds), and weak positive bias is reported over the rest of the
study area (Figures 5a–5c). The moisture transport in CTRL displays
south westward and westward bias over the AS, central India, and BoB.
Over Africa westward bias in transport is dominating, however in the
equatorial Indian Ocean and south of it, eastward transport bias is dom-
inating in CTRL. These discrepancies in moisture transport reduces
moisture supply to the Indian region and hence do not feed the atmo-
sphere over the Indian region. The integrated moisture shows more
realistic values in AcSAL (Figures 5d–5f) as compared to CTRL. In AcSAL
(Figures 5d–5f) the spatial distribution of dry bias remains almost the
same as in CTRL, however the magnitude of bias is reduced significantly
mainly over the AS (Figures 5g–5i), south east Africa, India, and mari-
time continent. Overall AcSAL hindcast shows better moisture transport
associated with the monsoon circulation. Figures 8g–8i display the sea-
sonal as well as monthly biases of integrated moisture over the Indian
Ocean. Seasonal mean bias is mostly negative and it is reduced by
more than 0.2–0.5 kg m22 during the 2012 and 2013 ISM, however it is
greater than 2.0 kg m22 during the 2014 ISM. Month wise analysis sup-
ports that highest reduction in bias is during September in all the years.

These factors are the most likely cause of significant reduction in rainfall biases. The primary source of mois-
ture is evaporation from the ocean surface, which is manifested by the latent heat flux. The magnitude of
evaporation rate in the CTRL is overestimated with respect to OA flux data over the entire study domain (fig-
ure not shown). The evaporation rate displays an average bias of more than 3 mm d21 over the AS and
1.5 mm d21 over the BoB. However, evaporation bias is lesser in AcSAL and notable reduction is reported
over the AS. This supports that surface moist processes are more realistic in AcSAL due to improved evapora-
tion from the ocean surface.

3.4. Assessment of Low Level Circulation and Tropospheric Temperature in Hindcast Experiments
Reversal of low level circulation over the Indian Ocean is considered as a mark of onset of monsoon and its
variation reflects the monsoon variability. In Figure 6, vector shows bias in low level wind (850 hPa) in CTRL

Figure 4. Seasonal (JJAS) mean bias in specific humidity (g kg21) over (a–c)
MCR and over (d–f) Arabian Sea with respect to ERA for 2012, 2013, and 2014.
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and AcSAL with respect ERA over the study region for years 2012, 2013, and 2014, respectively. This lower
troposphere winds transport moisture to the Indian land mass. Figures 6a–6c clearly indicate that the strong
westerly bias is reported south of 58N in the Indian Ocean and over the India land mass northerly and north
easterly biases are appeared, which is also true for the BoB. Narapusetty et al. (2015) also reported strong

Figure 5. Spatial distribution of seasonal (JJAS) mean bias of vertically integrated moisture (shaded, kg m22) and vertically integrated moisture transport (vector,
kg m21 s21) in (a–c) CTRL, (d–f) AcSAL with respect to ERA, and (g–i) their difference (AcSAL-CTRL) for 2012, 2013, and 2014.

Figure 6. Spatial distribution of seasonal (JJAS) mean bias of Troposphere Temperature (shaded, 8C) and 850 hPa wind biases (vector, m s21) in (a–c) CTRL, (d–f)
AcSAL with respect to ERA, and (g–i) their difference (AcSAL-CTRL) for 2012, 2013, and 2014.
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westerly bias in the western central equatorial IO during the summer in CTRL. However, biases over the AS,
BoB, and Indian land mass are reduced but the westerly bias south of the equator is increased in the AcSAL
(Figures 6d–6f), which is more clear in the difference (Figure 6g–6i). Hence overall low-level winds display
improvement over the Indian land mass and over the AS and BoB. Another important improvement is in
the tropospheric temperature (TT), which is underestimated in the CTRL (Figures 6a–6c, shaded), here TT is
estimated following Goswami and Xavier (2005, averaged between 700 and 200 hPa). Figures 6d–6f clearly
show that TT underestimation is reduced in the AcSAL, over the land region (the north-north west part of
study area) reduction in bias is higher than over the oceanic regions (Figures 6d–6f). This improvement
clearly supports (Figures 6g–6i) that not only TT representation is getting improved in the AcSAL but repre-
sentation of TT meridional gradient (difference of TT between a northern box [40–1008E, 5–358N] and a
southern box [40–1008E, 158S–58N]) is also getting improved by about 0.48C. Ramu et al. (2016) reported
that CFSv2 underestimates the meridional gradient by the 0.78C and cold bias is much stronger over north-
ern latitudes compared to southern latitudes. According to Goswami and Xavier (2005) and Xavier et al.
(2007), the strength of this meridional gradient determines the intensity of monsoon. Hence reduction in TT
bias and improvement in its meridional gradient positively feed back to the realistic representation of ISM
in the AcSAL, which is consistent with the reduction of dry bias over the Indian land mass in AcSAL.

3.5. Assessment of SST and Heat Content in Hindcast Experiments
Further to understand reduction in biases, we studied SST biases in these two experiments. Figure 7 dis-
plays the seasonal bias in SST from CTRL (Figures 7a–7c), AcSAL (Figures 7d–7f), and their differences
(AcSAL-CTRL, Figures 7g–7i). CTRL has colder SST in most of the Indian Ocean, north BoB, and along the
Indonesia coast. In case of AcSAL, the cold biases over the Indian Ocean is reduced mainly over south of
equator, western AS and BoB. It is important to note that the reduction in the cold bias of forecasted SST is
highest in 2014 than the rest of the 2 years (Figure 7g–7i). Above mentioned improvement support more
realistic air-sea interaction and supply of moisture through evaporation and the reduction in cold bias is
improving land sea thermal contrast feeding back to the circulation and improving moisture transport.
However, in 2012 and 2013 relative improvement in the cold bias is confined to some part of AS, BoB, and
south Indian Ocean only, hence consequent improvement in moisture distribution is less. More importantly,
the cold bias in the BoB is reduced, where most of the weather systems form during the monsoon season.
Figures 8a–8c display the seasonal mean as well as month wise SST bias over the Indian Ocean from CTRL
and AcSAL for the study period. The analysis reveals that seasonal mean SST bias is negative in both experi-
ments but reduced in AcSAL experiments by 0.3–0.48C. This indicates that SST underlying the low-level

Figure 7. Spatial distribution of seasonal (JJAS) mean SST bias (8C) in (a–c) CTRL, (d–f) AcSAL with respect to HadISST, and (g–i) their difference (AcSAL-CTRL) for
2012, 2013, and 2014.
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monsoon circulation is more realistic in the AcSAL compared to CTRL. These results are consistent with
Saha et al. (2016), which reported that improper representation of Indian Ocean SST prediction limits the
predictability of ISM. Figures 8d–8f show seasonal mean as well as month wise upper ocean heat content
bias over the Indian Ocean from CTRL and AcSAL for the 3 year summer monsoon. Reduction in the upper
ocean heat content bias by 0.3–0.48C is clearly evident from this analysis. These findings support that the
assimilation of actual salinity profiles and high-resolution forcing lead to better upper ocean temperature
state in OICs. This OICs based hindcast display improvement in the evolution of SST and heat content
throughout the season. Which leads to realistic coupling processes and better air-sea interaction in the cou-
pled model, culminating with realistic moisture transport toward the land (Figure 8g–8h). These processes
enforce better tropospheric temperature and rainfall seasonal forecast in the AcSAL resulting in the dimin-
ishing of the prominent dry bias over the ISM region.

4. Summary and Conclusions

The main objective of the present study is to explore the impact of actual salinity profile data assimilation
on Indian Summer Monsoon (ISM) forecast/hindcast in the coupled model CFSv2. Two hindcast experiments
(CTRL and AcSAL) are carried out for the summer monsoons of 2012–2014, in which only the ocean initial
conditions (OICs) differ. In CTRL OICs are generated by NCEP-GODAS, in which temperature observations
from multiple sources such as XBTs, ships, satellites, Argo etc. along with synthetic salinity profiles are
assimilated. Whereas, in AcSAL experiment OICs are generated by IITM-GODAS, in which only Argo
observed temperature and actual salinity profiles are assimilated. IITM-GODAS is based on NCMWRF high-
resolution atmospheric forcing fields. However, NCEP-GODAS is based on NCEP-R2 atmospheric forcing
fields. The CFSv2 model physics, setup, and atmospheric initial conditions are same for both CTRL and
AcSAL experiments. These experiments are 10 members hindcast for 3 years (2012–2014) summer mon-
soon, initiated from May month and hindcast for the next 9 months. Major issues in CTRL are cold SST, dry
troposphere, cold tropospheric temperature, and underestimation of rainfall over the MCR with respect to
observations and reanalysis products. In AcSAL, seasonal mean and monthly analysis of rainfall for the MCR

Figure 8. Monthly and seasonal mean biases of (a–c) SST, (d–f) Heat Content, and (g–i) Integrated moisture over Indian
Ocean (158S:258N, 40:1008E) for 2012, 2013, and 2014.
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and all-India display about 10% reduction in dry bias compared to CTRL. Spatial distribution of rainfall for
summer season from AcSAL indicates reduction in the prominent dry bias over Indian land region and wet
bias over the oceanic region.

Detailed analysis reveals that actual salinity assimilation based OICs improved the upper ocean stability over
the tropical global ocean in general and to the BoB and south eastern AS in particular. Upper ocean stability is
nothing but the manifestation of vertical gradient of density (Fousiya et al., 2015, Karmakar et al., 2017), which
is also presented by the Brunt-Vaisala frequency. This proper representation of upper ocean stability is manda-
tory for the better simulation of upper ocean mixing, however synthetic salinity profile assimilation underesti-
mates the upper ocean stability (Huang et al., 2008) and allows excess upper ocean mixing in the model
resulting cold bias to the upper ocean temperature (Chowdary et al., 2016). However, in case of actual salinity
assimilation (AcSAL) better representation of stability improves representation of mixing which in turn reduces
cold biases in the temperature and reduces the underestimation of upper ocean heat content throughout the
season. This improvement reduces dominant cold SST bias of CFSv2 and produces better air-sea interaction,
and positively feedback to improved exchange of moisture through evaporation to the atmosphere. The
improvement in the SST distribution over the Indian Ocean leads to better monsoon circulation in the AcSAL
than CTRL. This improves moisture transport to the Indian land mass and reduces negative bias of moisture
over the AS and MCR, produces better diabatic heating and reduces tropospheric temperature bias. This
improvement in tropospheric temperature better represents the meridional gradient, positively feedback to
the vertical shear of horizontal winds, and supports more realistic monsoon features (Goswami et al., 2014).
These all improvements in AcSAL compared to CTRL result in the reduction of dry biases throughout the sea-
son and throughout the ISM region. Thus, it is recommended that high-resolution forcing and actual salinity
profile should be used to prepare the OICs for better seasonal prediction of ISM rainfall.
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