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A pre-requisite for the ‘‘optimal estimate’’ by the ensemble-based Kalman filter (EnKF) is the Gaussian

assumption for background and observation errors, which is often violated when the errors are multiplic-

ative, even for a linear system. This study first explores the challenge of the multiplicative noise to the

current EnKF schemes. Then, a Sigma Point Kalman Filter based Particle Filter (SPPF) is presented as an

alternative to solve the issues associated with multiplicative noise. The classic Lorenz ’63 model and a higher

dimensional Lorenz ’96 model are used as test beds for the data assimilation experiments. Performance of

the SPPF algorithm is compared against a standard EnKF as well as an advanced square-root Sigma-Point

Kalman Filters (SPKF). The results show that the SPPF outperforms the EnKF and the square-root SPKF in

the presence of multiplicative noise. The super ensemble structure of the SPPF makes it computationally

attractive compared to the standard Particle Filter (PF).
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1. Introduction

The Ensemble Kalman Filter (EnKF) data assimilation

method has attracted broad attention in the atmosphere

and ocean modelling community because of its simplicity as

well as its ease of implementation [e.g., Evensen, 2003; Zhang

and Snyder, 2007]. The major strengths of the EnKF include:

i) There is no need to calculate the tangent linear or adjoint

of forecast models, which is quite difficult for General

Circulation Models (GCMs). ii) The background error

covariance matrix is propagated in time via the full non-

linear model (no linear approximation). iii) It suits modern

parallel computing [Keppenne, 2000]. The issues related to

the standard EnKF, such as the ensemble member perturba-

tion, have become less important with the introduction of

Ensemble Square Root Kalman Filter (EnSRKF), Local

Ensemble Transform Kalman Filter (LETKF), Sigma-point

Kalman Filter (SPKF), and their variants [e.g., Anderson,

2001, 2002; Tippett et al., 2003; Hunt et al., 2007; Hamill,

2006; Ambadan and Tang, 2009].

Important assumptions involved in the above men-

tioned methods are: (i) the background (or process) and

observation (or measurement) noises are additive, and (ii)

associated probability density functions are Gaussian (under

those assumptions, the estimate will be ‘‘globally

optimal’’). However, those assumptions may not hold in

reality. For example, the probability density function of

daily or weekly averages of many atmospheric variables is

non-Gaussian, even though long-term averages tend to

follow Gaussian distribution. Recently, several studies have

also shown that persistent nonlinear circulation regimes in

the atmosphere and associated deviations from the

Gaussian probability distributions can be modeled with

multiplicative noise [Sura and Sardeshmukh, 2008;

Sardeshmukh and Sura, 2009; Sardeshmukh, 2010]. In this

case, the multiplicative noise corresponds to the state

dependent variations of stochastic feedback from unre-

solved system components [Sura et al., 2005]. Another

interesting example is the stochastic parameterization

method such as the stochastic kinetic energy backscatter

(SKEB) scheme used in many ensemble prediction systems

[Shutts, 2005; Shutts et al., 2008; Berner et al., 2008, 2009;
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Charron et al., 2010]. The SKEB schemes, which are

designed to account for the dissipations in the forecast

model, introduce perturbations, which are state-dependent

directly or indirectly. These perturbations introduce sto-

chasticity into the model, and are expected to increase the

spread of the forecast ensemble. In a broad sense, one may

consider these schemes as multiplicative noises models.

These stochastic schemes can create non-Gaussian statist-

ics, and may cause the forecast model to deviate from

Gaussianity. The representativeness errors due to the unre-

solved scales may also be considered as multiplicative noise

since they are state dependent and correlated in time

[Janjic and Cohn, 2006]. In general, the multiplicative

process noise is attributed to the internally evolving

dynamical and numerical errors and the observation or

measurement noise corresponds to external noise. If the

noise is multiplicative (state dependent) and the model is

nonlinear, both the internal and external noises play an

important role in the estimation statistics.

Non-Gaussianity and controlling noise have been recently

an extensive research topic in data assimilation community

[e.g., Peña et al., 2010]. Data assimilation methods based on

conditional mean estimate such as the iterated Kalman filter

[Jazwinsky, 1970; Cohn, 1997] have yielded limited success in

non-Gaussian scenarios. In variational assimilation methods

such as 4D-var, an asymmetric cost function might be useful

for assimilating non-Gaussian variables as shown by some

studies [Tsuyuki et al., 2003; Koizumi et al., 2005; Honda

et al., 2005]. Fletcher and Zupanski [2006a, 2006b, 2007] pro-

posed two different approaches to deal with non-Gaussian

variables in a 3D variational data assimilation framework.

The first approach uses a transform to make the log-normal

random variable into a normal random variable and the

second one uses the correct distribution for a collection of

normal and log-normal random variables through a hybrid

distribution which gives a different cost function to min-

imize. However, this approach may not be effective in all

cases as shown by Fletcher and Zupanski [2007]. Zupanski

[2005] developed the Maximum-Likelihood Ensemble Filter

(MLEF), a hybrid filter based on variational assimilation

method and the EnKF. The MLEF uses a nonlinear costfunc-

tion similar to the 3D-var and could be useful in some cases

where observations are log-normally distributed. Jardak et al.

[2010] give a comparison of the assimilation performances of

MLEF, EnKF and PF under additive noise and Gaussian

assumptions. Theoretically the MLEF method could be used

for assimilating non-Gaussian variables. However, its per-

formance may be different if the random variable cannot be

transformed to GRV and the corresponding noises are

multiplicative. The motivation of this work is to explore

the EnKF based methods in the presence of multiplicative

noise, and in particular, the effects of multiplicative noise on

them. A Sigma-point particle filter (SPPF) will be presented

and its applicability to multiplicative noise models and non-

Gaussian systems will be explored.

This paper is structured as follows: Section (2) gives a

general overview of parameter estimation using ensemble

based Kalman filters. Section (3) introduces the Sigma-Point

Particle Filter approach, while Section (4) describes experi-

mental and implementation details of the schemes in the

highly nonlinear Lorenz ’63 and Lorenz ’96 models. Section

(5) summarizes the conclusion.

2. Overview of EnKF Parameter Estimation

One of the main objectives of data assimilation is to tune the

parameters of a dynamical model by deterministically using

observations such that they can perform more accurate

simulations or predictions. Recursive parameter estimation

using EnKF has garnered modelers attention and made

considerable progress [Annan and Hargreaves, 2004; Annan,

2005; Annan et al., 2005a, 2005b; Hacker and Snyder, 2005;

Aksoy et al., 2005, 2006a, 2006b; Tong and Xue, 2008a,

2008b]. Annan [2005] and Annan and Hargreaves [2004]

estimated the parameters of various models using EnKF,

where they introduced a preconditioning procedure and

scaling to improve the error covariance matrix, which may

introduce additional computational burdens. Aksoy et al.

[2005, 2006a, 2006b] and Tong and Xue [2008a, 2008b]

used the EnSRKF formulation where they estimated the

model parameters from noisy observations. In their

approach, the Kalman gain term is replaced by a scaling

parameter in the state update equation, which acts as an

alternative to perturbing observations in the analysis step

of standard EnKF. However, there are reports that the

standard EnKF generates poor parameter estimates, espe-

cially for high nonlinear systems [e.g., Kivman, 2003].

Recently, Ambadan and Tang [2009] estimated the para-

meters of the Lorenz ’63 model using Sigma-point Kalman

filters (SPKF), which use deterministic sampling of

ensemble for calculating the error statistics [Julier et al.,

1995; Nørgåd Magnus et al., 2000; Ito and Xiong, 2000;

Lefebvre et al., 2002; Wan and Van Der Merve, 2000;

Haykin, 2001; Van der Merwe et al., 2004]. All the above

mentioned experiments were performed under the

assumption that the state and observation noises are

additive, and follow Gaussian distribution. In the following

sections, we will introduce a recently developed hybrid

particle filter data assimilation method, called Sigma-Point

Particle Filter (SPPF), which use existing SPKF technique

for resampling [Van der Merwe et al., 2000]. We will also

show that the SPPF scheme is more suitable in such

situations where multiplicative noise is inherent in the

model.

3. The Sigma-Point Particle Filter

In this section, we will briefly review the SPPF algorithm,

which will serve as a theoretical background for the experi-

ments presented in the later sections. The theory and

derivations presented in this section are mainly based on

2 Ambadan and Tang

JAMES Vol. 3 2011 www.agu.org/journals/ms/

www.agu.org/journals/ms/


the works by Doucet et al. [2000], Van der Merwe et al.

[2000], Haykin [2001], Arulampalam et al. [2002], Van der

Merwe and Wan [2001a, 2001b], Schon [2006], and Simon

[2006].

Consider a stochastic process defined by a nonlinear

differential equation of first order in time:

_hhk~f hkð Þzg hkð Þqk ð1Þ

where f :ð Þ and g :ð Þ are in general nonlinear functions of the

state hk , and qk is the random force. The random force is

generally considered as a zero-mean Gaussian process or

white noise. In the case of additive noise g :ð Þ is a constant

(e.g., 1.0), i.e., independent of the state hk , and the stochastic

process given by (1) is Markovian. (In recursive estimation,

the states evolve in time according to a Markov process. The

Markovian property implies that given the present state, the

future states are independent of the past states, which is one

of the primary properties of recursive Bayesian estimators

such as KF.) On the other hand, in the case of multiplicative

process noise, g :ð Þ is a linear or nonlinear function of hk ,

and the process is no longer Markovian.

For the purpose of presentation, the standard state space

equations for an L dimensional model are given by,

hk~f hk{1,qk{1ð Þ ð2Þ

yk~h hk,rkð Þ ð3Þ

Here hk is the state vector at time k, f :ð Þ is the forecast

model, yk is the observed state, h :ð Þ is the observation

function, and qk and rk are the zero-mean random noises

corresponding to the background and observations respect-

ively. Given the imperfection of model states and observa-

tions, the recursive Bayesian estimation of the state space

model given by equations (2) and (3) is actually the Kalman

Filter (KF), Extended Kalman Filter (EKF), EnKF, SPKF etc.,

under Gaussian assumption. Appendix A summarizes the

least square formulation of Kalman gain, which is the core

of the SPKF approach. A pre-requisite for KF is the Gaussian

distribution of background and observation errors, under

which the KF provides the globally optimal estimate for

state-space equations. The Gaussian assumption reflects the

fact that the KF is designed based on the minimization of the

analysis error variance (i.e., the trace of error covariance),

which ignores the higher order moments. For a non-

Gaussian system, the solution by KF may not be optimal,

and it could be even erroneous. In his seminal paper,

Kalman [1960] confined the filter to linear systems and

linear measurement functions. In fact, it has been shown

that the standard Kalman gain used in KF, EKF and EnKF is

the special case of equation (A19) when the measurement

function is linear or locally linearized, and the noise is

additive [Ambadan and Tang, 2009]. The EnKF and

SPKF algorithms use the same optimality criterion in their

algorithms. In the following sections, we will show that the

EnKF and the SPKF failed to estimate the model parameters

accurately in the presence of multiplicative noise and

underlying non-Gaussian probability distribution, and in

such case the SPPF assimilation scheme is found to be more

accurate.

The basic idea behind the particle filter is to represent the

underlying probability distribution by a set of samples

known as particles, and associated weights. Van Leeuwen

[2009] provided a clear overview of generic particle filters

and of their role in geophysical estimation problems. In a

broad sense the particles are similar to the ensembles in the

EnKF. In a particle filter the probability density function is

fully propagated in time whereas in the Kalman filter only

the first and second moments are propagated in time. The

probability density is approximated using an empirical

function given by,

p hkjy1:kð Þ&
XM
m~1

~qq
mð Þ

k d hk{h
mð Þ

k

� �
,

XM
m~1

~qq
mð Þ

k ~1, ~qq
mð Þ

k §0, V m

ð4Þ

where h
mð Þ

k ; m~1, . . . , M are the independent and ident-

ically distributed (i.i.d.) particles, at time step k, with

corresponding weights ~qq
mð Þ

k , and d :ð Þ is the Dirac-delta

function. Here m represents the particle index. Practically,

it is almost impossible to get i.i.d. samples at any time k

from the posterior density function (4), but this limitation

can be circumvented by using importance sampling from a

proposal distribution. The choice of the proposal distribution

is one of the most important factors in importance sampling

schemes. Several strategies for choosing proposal distribution

have been proposed in the literature. The most popular

schemes include the Sampling Importance Re-sampling

(SIR), the Residual sampling, and the minimum variance

sampling. For further details and references, see Gordon

et al. [1993], Kitagawa [1996], Isard and Blake [1998], Liu

and Chen [1998], Doucet et al. [2000], Doucet et al. [2001],

Haykin [2001], Arulampalam et al. [2002], and Schon

[2006].

The SPPF, first introduced by Van der Merwe et al.

[2000], has wide applications in robotics, and artificial

intelligence. Van der Merwe et al. [2000] suggested that

significant improvement on the particle resampling can be

accomplished by using a Kalman filter for the proposal

distribution. By using more advanced Kalman filters such

as the square-root EnKF, or the SPKFs one can generate a

better proposal distribution for the particle filter thereby

propagating the statistics more accurately. The family of

SPKF algorithms includes the Sigma-Point Unscented

Kalman Filter (SP-UKF) [Julier et al., 1995; Wan and

Van Der Merve, 2000], Sigma-Point Central Difference

Kalman Filter (SP-CDKF) [Nørgåd Magnus et al., 2000;
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Ito and Xiong, 2000] and their square root versions

[Haykin, 2001; Van der Merwe and Wan, 2001a, 2001b].

Julier et al. [1995] has shown that for the nonlinear model

given by (2), the number of sigma-points needed to

compute precisely the mean and covariance of the model

state at time k is 2L+1, where L is the number of degrees of

freedom. The selection scheme for the sigma-points for SP-

UKF is based on the scaled unscented transformation, and

that for the SP-CDKF is based on the sterling’s interpolation

formula [Press et al., 1992; Ito and Xiong, 2000; Nørgåd

Magnus et al., 2000]. In our experiments we have used the

square-root SP-CDKF for generating the proposal distri-

bution because of its well known numerical stability [Van

der Merwe, 2004].

In SP-CDKF the analytical derivatives in EKF are replaced

by numerically evaluated central divided differences. For

implementing the SP-CDKF, augmented state vectors are

constructed by concatenating the original model state, and

the background and observation error vectors. The aug-

mented sigma-point state vectors are calculated using the

following selection scheme:

Xk,0~�hhk w
mð Þ

0 ~
d2{L

d2
ð5Þ

Xz
k,i~

�hhkz

ffiffiffiffiffiffiffiffiffiffiffi
d2Phk

q� �
i

i ~ 1, . . . ,L

w
mð Þ

i ~
1

2d2
i ~ 1, . . . ,2L

ð6Þ

X{
k,i~

�hhk{

ffiffiffiffiffiffiffiffiffiffiffi
d2Phk

q� �
i

i ~ Lz1ð Þ, . . . ,2L

w
c1ð Þ

i ~
1

4d2
i ~ 1, . . . ,2L

ð7Þ

w
c2ð Þ

i ~
d2{1

4d4 i ~ 1, . . . ,2L ð8Þ

where d is the central difference step size, and w
mð Þ

i is the

weighting term corresponding to the ith sigma-point for

computing the mean, and w
cð Þ

i that for the covariance. The

sigma-points are then propagated through the forecast

model, and the approximated mean, covariance and cross-

covariance for the calculation of Kalman gain are computed

as follows:

ĥh{
k &

X2L

i~0

w
mð Þ

i Xh
k,i ð9Þ

ŷy{
k &

X2L

i~0

w
mð Þ

i Yh
k,i ð10Þ

P{
hk
&

XL

i~1

w
c1ð Þ

i Xh
k,i{Xh

k,Lzi

� �2

zw
c2ð Þ

i Xh
k,izXh

k,Lzi{2Xh
k,0

� �2
� �

ð11Þ

P{
~yyk
&

XL

i~1

w
c1ð Þ

i Yh
k,i{Yh

k,Lzi

� �2

zw
c2ð Þ

i Yh
k,izYh

k,Lzi{2Yh
k,0

� �2
� �

ð12Þ

Phk
~yyk
&
XL

i~0

w
mð Þ

i Xhk

k,i{ĥh{
k

� �
Yk,i{ŷy{

k

� �T

ð13Þ

Equations (9)–(13) form the core part for generating the

proposal distribution (Sigma-point particles) for SPPF.

The SP-CDKF generated proposal distribution in SPPF

may be Gaussian approximate. However, it has been shown

that as long as the Kalman filter generated distribution

overlaps with the proposal distribution, this approximation

results in a better particle filter implementation [Van der

Merwe et al., 2004]. One of the advantages of using the SP-

CDKF for generating the proposal distribution is that it

uses only one ‘‘control parameter’’ (d) compared to three

in SP-UKF. The SPPF algorithm is summarized as follows

(here we repeat the SPPF algorithm derived by Van der

Merwe [2004]):

I. Initialization: k 5 0

For i 5 1 … N draw particles hi
0 from the prior p (h0)

II. For time k 5 1, 2…

1. Importance sampling step:

1. For i 5 1 … N:

(a) Update the prior distribution for each particle

with the SPKF

(i) Calculate the sigma points for the par-

ticle, Xk,i~ Xk,0 Xz
k,j X{

k,j

h i
where Xk,0; Xz

k,j and X{
k,j are the sigma

point vectors given by

Xk,0 ~ hk ð14Þ

Xz
k,j ~ �hhkz

ffiffiffiffiffiffiffiffiffiffiffi
d2Phk

q� �
i

ð15Þ

X{
k,j ~�hhk{

ffiffiffiffiffiffiffiffiffiffiffi
d2Phk

q� �
i

ð16Þ
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(ii) Propagate sigma points in time (forecast

step of SPKF):

X
f
k ~ f Xk{1, X

q
k{1

	 

ð17Þ

ĥh{
k ~ w mð Þ

XM
m~1

X
f
k,m ð18Þ

P{
hk

~
XL

i~1

w
c1ð Þ

i X
f
k,i{X

f
k,Lzi

� �2

z

�

w
c2ð Þ

i X
f
k,izX

f
k,Lzi{2X

f
k,0

� �2
�ð19Þ

(iii) Measurement update (analysis step of

SPKF):

Y
f
k ~ h X

f
k, Xr

k

� �
ð20Þ

ŷy{
k ~ w mð Þ

XM
m~1

Y
f
k,m ð21Þ

P{
~yyk

~
XL

i~1

w
c1ð Þ

i Y
f
k,i{Y

f
k,Lzi

� �2

z

�

w
c2ð Þ

i Y
f
k,izY

f
k,Lzi{2Y

f
k,0

� �2
�

Phk
~yyk

~
XL

i~0

w
mð Þ

i X
f
k,i{ĥh{

k

� �
Yk,i{ŷy{

k

� �T

Kk ~ Phk
~yyk

P{1
~yyk

ð24Þ

ĥhk,i ~ ĥh{
k zKk(yk{ŷy{

k ) ð25Þ

Pĥhk ,i ~ P{
hk

{KkP~yyk
KT

k ð26Þ

(b) Sample Xk,i * N ĥhk,i; Pĥhk ,i

� �
(SPKF analysis

distribution

(b) For i 5 1 … N; evaluate the important weights,

and normalize the weights:

wk,i ~ wk{1,i

likelihoodk,i | priork,i

proposalk,i

ð27Þ

~ wk{1,i
p ykjhk,ið Þ p hk,ijhk{1,ið Þ

p hk,ijy1:k,i

	 
 ð28Þ

~wwk,i ~
wk,iPN

j~0

wk,i

ð29Þ

2. Resample the particles using the above weights (by

multiplying with important weights)

3. Approximate the posterior distribution; and the

estimate

ĥhk &
1

N

XN

i~1

ĥhk,i ð30Þ

A more detailed interpretation and derivation of the above

expression is given by Van der Merwe [2004].

4. Parameter Estimation Experiments With
Multiplicative Noise Models

In general the parameter estimation involves a nonlinear

mapping given by

Yk~N hk,Lð Þ ð31Þ

where the nonlinear map N :ð Þ may be the dynamical model

f :ð Þ or an empirical model such as a neural network,

parameterized by the vector L. (In general Yk refers to the

mapped vector (e.g., temperature) from the state vector hk ,

(e.g., radiance), and N is the nonlinear function which is the

mapping function (e.g., radiative transfer model).)

The state space model for the parameter estimation

problem can be written as,

Lk~Lk{1zq Lkð ÞWh
k ð32Þ

yk~f hk,Lkð Þzr ykð ÞW
y
k ð33Þ

where f :ð Þ is the nonlinear model, L is the parameter vector

which constitutes the dynamical parameters (or empirical

parameters in the case of empirical model), q :ð Þ and r :ð Þ
represent the multiplicative noise models corresponding to

the model states and observations, and Wh, and Wy are

random white noises corresponding to the respective noise

models. The state space model for the parameter estimation

is similar to the state estimation except for the fact that the

state (here states are parameters) time evolution is linear

(equation (32)) and the measurement function is nonlinear

(equation (33)). In this particular situation equation (32)

may be considered as a linear stochastic system with

multiplicative forcing. In the following subsection we will

use the Lorenz [1963, 1996] models as test beds for our

parameter estimation experiments. In all the experiments

the state observations are related to the model parameters

through the nonlinear dynamical model.

(19)

(22)

(23)
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4.1. Experiments With Lorenz ’63 Model

In the data assimilation community, the Lorenz [1963]

model has served as a test bed for examining the properties

of various data assimilation methods as the model shares

many common features with the atmospheric circulation

and the climate system in terms of variability and predict-

ability [Gauthier, 1992; Palmer, 1993; Miller et al., 1994;

Evensen, 1997]. The model can be used to simulate nearly-

regular oscillations or irregular chaotic variations by adjust-

ing the model parameters that control the non-linearity of

the system. In our experiments, we used a modified version

of the standard Lorenz [1963] model with additional noise

terms, given by

dx

dt
~s y{xð Þzq xð Þwx ð34Þ

dy

dt
~rx{y{xzzq yð Þwy ð35Þ

dz

dt
~xy{bzzq zð Þwz ð36Þ

where variables x, y, and z are related to the intensity of

convective motion and to the temperature gradients in the

horizontal and vertical directions, and the parameters s, r,

and b will be referred to as dynamical parameters. q :ð Þ
represents the state dependent (multiplicative) background

errors, and w is the Gaussian white noise. The true data are

created by integrating the model using the fourth-order

Runge-Kutta scheme [Press et al., 1992], with parameters s,

r, and b set to 10.0, 28.0, and 8/3 respectively, and initial

conditions set to 1.508870, –1.531271, and 25.46091 as by

Miller et al. [1994] and Evensen [1997].

To apply the assimilation algorithms, we discretize the

nonlinear Lorenz model (34)–(36) using the fourth-order

Runge-Kutta method and write it in the form of state space

equations given by (32) and (33), where hk represents the

system state vector (a column vector composed of x, y and

z), f :ð Þ is the Lorenz model and qk is the random (white)

process noise vector (column vector composed of qx, qy and

qz). The measurement function yk , required for the applica-

tion of the EnKF parameter estimation, is the nonlinear

model itself, connecting the state observations and model

parameters.

For all the experimental cases (involving multiplicative

noise) to be discussed, the observation data sets are gener-

ated by setting:

q hkð Þwh
k~Cmhkwh ð37Þ

where Cm is a constant, called the multiplicity factor, which

determines the strength of the state influence in the mul-

tiplicative noise. h is the system state vector, and wh is the

normally distributed white noise N (0,
ffiffiffi
2
p

). (In our study we

focus only on linear multiplicative noise model where Cm is

a constant. However in many real situations such as the

stochastic kinetic energy backscatter (SKEB) schemes, the

multiplicative noise models are nonlinear in general.) This

white noise distribution is similar to that in the additive

noise experiments of Miller et al. [1994] and Evensen [1997].

The observation interval is set to 25, i.e., the observations are

assimilated to the model at every 25 steps.

Two particular cases were studied. Case 1: the background

noise (or internal noise) is additive and the observation

noise (or external noise) is multiplicative. Case 2: both the

background and the observation noises are multiplicative.

We assume that the parameter r is uncertain. Our task is

to estimate the correct value of r from infrequent noisy

observations using a noisy model. In Case 1 the observations

are generated using the multiplicative noise model given by

equation (37), where the multiplicity factor Cm is set to 0.02.

Figure 1a shows the distribution of the variables X and Z,

and Figure 1b shows the distribution of the corresponding

additive and multiplicative noises used in the experiments.

It is clear from the probability plot that the observations

(Figure 1a) are non-Gaussian. The multiplicative noise

shown in Figure 1b also shows non-Gaussian features, and

is symmetric. However, the symmetric nature may not be

the case for real observations. In all our experiments, we set

the initial parameter to zero.

Figure 2a shows the parameter estimation results using

the EnKF scheme. The number of ensemble members used

in the experiments is 100. Similarly, Figure 2b shows the

results using the square-root SP-CDKF, which uses 2L+1

sigma-points for the estimation. As can be seen in Figure 2a

the EnKF scheme failed to estimate the parameter. On the

other hand the performance of the square-root SP-CDKF is

better but the parameter is still slightly overestimated as

shown in Figure 2b. It should be noted that the estimate

might be sensitive to the initial guess. In fact the perform-

ance of the SP-CDKF can be adjusted by tuning the central

difference parameter. However in all our trial experiments

the SP-CDKF either underestimates or overestimates the

true parameter even though it converges very fast compared

to other Kalman filter schemes.

We repeated the experiment with the SPPF scheme, which

is a hybrid Particle filter-Kalman filter. The results are

shown in Figure 2c, and they are remarkably better com-

pared to any of the Kalman filter based assimilation schemes

including the advanced square-root filters.

In Case 2, the situation is much more realistic and may

give rise to complex non-Gaussian distribution. Here we

focus only on the performances of the advanced square root

SP-CDKF and the SPPF since the role of generic EnKF

methods are in this case irrelevant. Figures 3a and 3b show

the results of the experiments, which are similar to Case 1

where the square root SP-CDKF overestimates/underesti-

mates the model parameter, and the SPPF scheme estimates

the parameter with better accuracy.

6 Ambadan and Tang
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To study the effect of the multiplicity factor on the SPPF

assimilation scheme, we have increased Cm from 0.02 to 0.2.

The results of the experiments are shown in Figure 3c. From

the figure it can be concluded that irrespective of the

strength of the multiplicative noise, the SPPF scheme was

able to estimate the parameter accurately. Table 1 gives the

Root Mean Squared Error (RMSE) values of all the above

experiments, which in general confirms the results from the

figures.

In summary, we have investigated the merits and de-merits

of different Kalman filter based ensemble data assimilation

schemes in a multiplicative model noise environment, using

the low-dimensional Lorenz ’63 model. Important features in

evaluating the performance of a data assimilation algorithm

are its robustness and computational expense as they can

become issues when it is applied to higher dimensional

models. In the following section we will further explore the

above mentioned schemes using the higher dimensional

Lorenz ’96 model.

4.2. Experiments With Lorenz ’96 Model

To explain the dynamics of weather at a fixed latitude,

Lorenz [1996] introduced a one dimensional atmosphere

Figure 1. (a) Observation distribution: gray - X, and black - variable Z. (b) Noise distributions for X: (left) additive noise, (right)
multiplicative noise; solid curves represent corresponding Gaussian fits.
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that shares similar error growth characteristics as full

Numerical Weather Prediction (NWP) models. In our

experiments, we used a modified version of the model

containing K variables X1, � � � , Xk , which may be thought

of as atmospheric variables in K sectors of a latitude circle,

governed by,

dXk

dt
~{Xk{1 Xk{2{Xkz1ð Þ{XkzFz q Xkð ÞwXk|fflfflfflfflffl{zfflfflfflfflffl} ð38Þ

where the constant F is called the forcing term. The last term

(under-bracketed expression) in equation (38) forms the

noise model, which is given by equation (37). By using cyclic

Figure 2. Lorenz ’63 model: (a) EnKF and (b) SR-CDKF, and (c) SPPF with 100 particles. True r - dashed line, estimated r - solid red line.
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boundary conditions, the definition of Xk is extended to all

values of k; i.e., Xk–K and Xk+K equal to Xk. It is assumed that

a unit time Dt~1 corresponds to 5 days.

The experimental setup is similar to that of Lorenz and

Emmanuel [1998], where K540 and the magnitude of the

forcing term is set to 8 for which the system is chaotic. The

system was integrated using fourth-order Runge-Kutta

scheme, with integration step Dt~0:05 (i.e., 6 hours). The

experiments were carried out with random initial condi-

tions, and the observations were generated by applying the

noise model to the true model. For different case studies the

strength of the multiplicative noise was controlled by setting

the multiplicity factor either to 0.02 (weak case) or 0.2

(strong case). Also the observation interval was set to 5, i.e.,

Figure 3. Lorenz ’63 model: (a) SR-CDKF and (b) SPPF using 100 particles. (c) SPPF with a higher multiplicity factor of 0.2. True r -
dashed line, estimated r - solid red line.
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the observed states are assimilated to the nonlinear model at

every 5 steps. A complete discussion of the Lorenz ’96 model

is give by Lorenz [1996], Lorenz and Emmanuel [1998], and

Lorenz [2005, 2006a, 2006b].

Here we focus on a case study where both the model and

measurement noises are multiplicative, which is similar to

the second case study using the Lorenz ’63 model described

in the previous subsection. In all experiments in this section,

we assume that observations of all the states are available,

and the forcing term F is uncertain. Initially we set the

forcing term F to zero, and our aim is to estimate the actual

forcing term F accurately from the observed state variables

so that we will be able to tune the dynamical model for a

more accurate prediction.

Estimation results are shown in Figures 4a and 4b

respectively. These results imply that the pure Kalman filter

based methods either underestimate or over-estimate the

parameter. It is due to the fact that pure Kalman filter based

optimal estimation methods rely only on the first two

moments, which are insufficient for estimating non-

Gaussian statistics. In all the cases described above the

SPPF scheme is very successful in estimating the parameters

with reasonable accuracy.

The results of experiments using a higher multiplicity

factor are shown in Figures 4c and 4d. The results once again

re-iterate the fact that pure Kalman filter methods fail in

non-Gaussian scenarios whereas the hybrid SPPF scheme

estimates the parameter accurately. However, the RMSE

values corresponding to the Lorenz ’96 model experiments

are relatively higher than those of the square-root SP-CDKF.

This is due to an initial fluctuation in SPPF estimate. The

RMSE values may get smaller for SPPF if one takes a longer

assimilation period, since the SP-CDKF converges to an

under-estimated value (almost constant) after a certain

assimilation steps.

5. Discussions and Conclusion

Over the last decade, the data assimilation community made

significant progresses towards the development and applica-

tion of ensemble based Kalman filter data assimilation

schemes. The EnKF and its derivatives have been widely

applied to various fields, in particular atmosphere and ocean

sciences. However, a preliminary limit imposed in carrying out

all the above mentioned Kalman filters is that the states,

observations and associated noise models should follow a

Gaussian distribution. On the other hand, the multiplicative

noise typically introduced in some systems may cause non-

Gaussianity, which is a major concern for the Kalman filter

based ensemble data assimilation, and has not been well

addressed in the literature. Recently, Anderson [2010] intro-

duced the Ranked Histogram Filter (RHF), which is a prom-

ising workaround to deal with non-Gaussian observation

space. Notwithstanding those improvements, the Kalman filter

based methods still lacks the ability to handle non-Gaussian

statistics. In such cases, hybrid methods may be more useful.

In this paper, we have explored the impacts of multiplic-

ative noise on ensemble based Kalman filter data assimila-

tion methods in the context of parameter estimation

problems. In parameter estimation in the presence of

multiplicative noise, the nonlinearity of the measurement

function also plays an important role. Our experiments

show that all ensemble based Kalman filters, including

EnKF, SPKF and square root SPKFs, either underestimate

or overestimate the parameter, sometimes even diverging

from the true value. The main reason for their poor

performance is the fact that the multiplicative noise causes

the system to deviate from Gaussianity. In such situations, it

is difficult to approximate the statistical moments in a

closed form, which is the necessary and sufficient condition

for global optimality of the EnKFs.

Further, we introduced the recently developed SPPF

scheme to the assimilation problem involving multiplicative

noise. In the SPPF scheme, the particles are resampled using

the SPKF scheme. Using a three-variable Lorenz ’63, and a

forty-variable Lorenz ’96 model, we explored the merits and

properties of SPPF. The results showed that the SPPF

scheme can estimate the model parameters with reasonable

accuracy and better than ensemble Kalman filters. The main

advantages of using the hybrid method are that the number

of particles is significantly reduced compared to the SIR

particle filter, and the method works well in a multiplicative

noise environment.

In our experiments, we assume that the dynamical para-

meters are stationary, and do not change with time. It is

Table 1. Parameter Estimation: Root Mean Squared Error

Observation Background Multiplicity
Assimilation Method Error Error Factor, Cm RMSE

EnKF (L63, Figure 2a) Multiplicative Additive 0.02 10.2340
SR-CDKF (L63, Figure 2b) Multiplicative Additive 0.02 4.5692
SPPF (L63, Figure 2c) Multiplicative Additive 0.02 3.4762
SR-CDKF (L63, Figure 3a) Multiplicative Multiplicative 0.02 3.5363
SPPF (L63, Figure 3b) Multiplicative Multiplicative 0.02 3.8475
SPPF (L63, Figure 3c) Multiplicative Multiplicative 0.2 2.6334
SR-CDKF (L96, Figure 4a) Multiplicative Multiplicative 0.02 1.4193
SPPF (L96, Figure 4b) Multiplicative Multiplicative 0.02 2.9593
SR-CDKF (L96, Figure 4c) Multiplicative Multiplicative 0.2 1.5403
SPPF (L96, Figure 4d) Multiplicative Multiplicative 0.2 3.0108
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Figure 4. Lorenz ’96 model: (a) SR-CDKF, (b) SPPF, and (c) SR-CDKF with a higher multiplicity factor of 0.2. (d) SPPF with a higher
multiplicity factor of 0.2. True F - dashed line, estimated F - solid red line.
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a common approach in parameter estimation using the

Kalman filters [Annan and Hargreaves, 2004; Annan, 2005;

Annan et al., 2005a, 2005b; Hacker and Snyder, 2005; Aksoy

et al., 2005, 2006a, 2006b; Tong and Xue, 2008a, 2008b].

Other researchers have noted that the time series defined

by equation (32) may not be stationary [Dee, 1995; Evensen

et al., 1998]. This lack of stationarity may add further

complexity into the estimation problem. Besides, it may

be possible that large differences in the initial parameter

value may place the system in qualitatively different regimes.

In fact, in such models, the original state has stable equili-

briums (or stable limit cycles) while the true state was

chaotic. We would imagine such cases would present a

special challenge to any state-of-the art data assimilation

technique.

Another interesting issue is the computational expense

of the SPPF algorithm. In a broad sense, one may consider

the SPPF scheme as a super-ensemble technique, where

each sample is estimated through a subset of sigma-points

and resampled accordingly. Compared to EnKFs and

SPKFs, the computational requirement of SPPF is larger.

However, the super-ensemble structure of the SPPF algo-

rithm is highly parallelizable, and in theory, one can

manage the computing time with the expense of more

computing resources (more processors). On the other

hand, the hybrid approach may help many researchers to

use the existing EnKF based assimilation packages such

as the Data Assimilation Research Test bed (DART)

[Anderson et al., 2009], which is optimized for many

GCMs. It has no doubt that much additional research is

required before applying the SPPF technique to highly

dimensional systems like the GCMs.

In conclusion, in this study we have demonstrated that

hybrid methods such as the SPPF can overcome the draw-

backs of pure Kalman filter based ensemble data assimila-

tion methods in the presence of multiplicative noise, and

associated deviations from Gaussianity. Issues related to

SPPF do not seem to impede their applications to high

complexity models.

Appendix A: Least Square Formulation of Kalman
Gain

The state update equation for the state space model (2)–(3)

is given by,

ĥhk~ĥh{
k zKk(yk{ŷy{

k ) ðA1Þ

where Kk is the Kalman gain. The superscript ‘‘–’’ represents

the prior states given by the following equations:

ĥh{
k ~E f(hk{1, qk{1)½ � ðA2Þ

ŷy{
k ~E h(h{

k , rk)
� 


ðA3Þ

where E :½ � represents the mathematical expectation or the

expected value.

In general, the estimation error is defined as,

~hhk~hk{ĥhk ðA4Þ

Similarly the error between the noisy observation yk and its

prediction ŷy{
k , is given by

~yyk~yk{ŷy{
k ðA5Þ

Substituting (A4) into the state update equation (A1), we

can rewrite the estimation error as

~hhk~hk{ĥh{
k {Kk(yk{ŷy{

k ) ðA6Þ

~~hh{
k {Kk

~yyk ðA7Þ

Here we made use of the fact that the estimator is unbiased:

E ~yyk

h i
~0 ðA8Þ

E ~hhk

h i
~0 ðA9Þ

Now, the state error covariance, Phk
and the cross covar-

iance, Phk
~yyk

between the state and observation error can be

rewritten in terms of equations (A4) and (A5) and are given

by

Phk
~E ~hhk

~hhT
k

h i
ðA10Þ

Phk
~yyk

~E ~hh{
k

~yyT
k

h i
ðA11Þ

Taking the outer products and expectation of (A7) produces

E ~hhk
~hhT

k

h i
~E ~hh{

k {Kk
~yyk

� �
~hh{

k {Kk
~yyk

� �T
� �

ðA12Þ

~E ~hh{
k

~hhT
k{

h i
{E ~hh{

k
~yyT

k{KT
k

h i
{

E Kk
~yyk

~hhT
k{

h i
zE Kk

~yyk
~yyT

k KT
k

h i ðA13Þ

Using equations (A10) and (A11), equation (A13) can be

rewritten as

Phk
~P{

hk
{Phk

~yyk
KT

k {KkP~yyk hk
zKkP~yyk

KT
k ðA14Þ

Our aim is to minimize the trace of Phk
for the unbiased

estimator, i.e.,

L
LKk

Tr Phk
ð Þð Þ~0 ðA15Þ
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We have

Tr Phk
ð Þ~ Tr P{

hk
{Phk

~yyk
KT

k {KkP~yyk hk
zKkP~yyk

KT
k

� �
ðA16Þ

~ Tr Kk{Phk
~yyk

P{1
~yyk

� �
P~yyk

Kk{Phk
~yyk

P{1
~yyk

� �T
� �

z

ðA17Þ

Tr P{
hk

{Phk
~yyk

P{1
~yyk

PT
hk

~yyk

� �
ðA18Þ

We want to choose Kk in order to minimize (A14). It can be

easily verified that the above expression (here we have used

the principle Tr(AB)5Tr(BA)) (A14) is minimum when

Kk~Phk
~yyk

P{1
~yyk

ðA19Þ

Here we have used the following identities,

L
LA

Tr ABAT
	 
	 


~2AB ðA20Þ

where B is symmetric, and

L
LA

Tr ACT
	 
	 


~
L

LA
Tr CTA
	 
	 


~C ðA21Þ

Substituting the expression for Kalman gain, given by

equation (A19) back into the expression for the error

covariance (A14), the covariance update equation is given

by

Phk
~P{

hk
{KkP~yyk

KT
k ðA22Þ

It has been shown that the standard Kalman gain used in KF,

EKF and EnKF is a special case of equation (A19) when the

measurement function is linear or locally linearized, and the

noise is additive [Ambadan and Tang, 2009].
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