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ABSTRACT

We aim to diagnose internal gravity waves emitted from balanced flow and investigate their role in the

downscale transfer of energy. We use an idealized numerical model to simulate a range of baroclinically

unstable flows to mimic dynamical regimes ranging from ageostrophic to quasigeostrophic flows. Wavelike

signals present in the simulated flows, seen for instance in the vertical velocity, can be related to gravity wave

activity identified by frequency and frequency–wavenumber spectra. To explicitly assign the energy contri-

butions to the balanced and unbalanced (gravity) modes, we perform linear and nonlinear modal de-

composition to decompose the full state variable into its balanced and unbalanced counterparts. The linear

decomposition shows a reasonable separation of the slow and fast modes but is no longer valid when applied

to a nonlinear system. To account for the nonlinearity in our system, we apply the normal mode initialization

technique proposed by Machenhauer in 1977. Further, we assess the strength of the gravity wave activity and

dissipation related to the decomposed modes for different dynamical regimes. We find that gravity wave

emission becomes increasingly stronger going from quasigeostrophic to ageostrophic regime. The kinetic

energy tied to the unbalanced mode scales close to Ro2 (or Ri21), with Ro and Ri being the Rossby and

Richardson numbers, respectively. Furthermore, internal gravity waves dissipate predominantly through

small-scale dissipation, which emphasizes their role in the downscale energy transfer.

1. Introduction

Internal gravity waves (IGWs) occur naturally in the

atmospheric and oceanic flows and influence the atmo-

sphere mainly by vertical momentum transport and the

ocean by density mixing. Despite their ubiquity and im-

portance in the geophysical flows and numerous observa-

tional and numerical studies, the emission and dissipation

of IGWs are not well understood. Consequently, the pa-

rameterization of IGWs remains a challenging task. This

difficulty is in part related to the short spatial and temporal

scales of IGWs, which render them hard to observe and

difficult to resolve, in part to the specification of their

sources, and to a certain extent to the difficulty of sepa-

rating IGW from other motions. The latter is the theme of

this paper, in which we diagnose IGWs emitted from bal-

anced flows for different dynamical regimes and investi-

gate their role in the downscale transfer of energy.

IGWs are forced mainly by orography, convection,

and jet/front systems in the atmosphere and winds and

tides in the ocean. Of these, the emission of IGWs from

geostrophically balanced flows, referred to as ‘‘sponta-

neous generation’’ (see Vanneste 2013, and references

therein), is of marked interest as it provides an avenue to

the internal mechanisms in the flow that lead to IGW

generation. IGWs generated spontaneously have been

discussed extensively in both oceanic and atmospheric

literature: in observations (e.g., Plougonven and Zhang

2014, their section 2), laboratory experiments (e.g.,Williams

et al. 2008), and several numerical simulations [dis-

cussed below; also see reviews by Vanneste (2013) and

Plougonven and Zhang (2014), and references therein].

Spontaneous generation (or emission) is also of special

interest for it allows for understanding the fundamental

nature of balanced flows, which dominate much of the

atmosphere and ocean.

The slow geostrophically balanced motions evolve

over long time scales, whereas the IGW correspond to

the fast unbalanced motions. The slowly varying nature
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of the balanced motion led to the concept of ‘‘slow mani-

fold’’ (Leith 1980; Lorenz 1980, 1986), which is defined as a

subspace of the phase space that is strictly ‘‘invariant’’ and

completely devoid of any IGW activity. However, the

routinely observed emission of unbalanced fast motion

(IGW) in geophysical flows questions the validity of

such amanifold. The existence of the slowmanifold—or

rather its nonexistence—has been discussed by several

authors (e.g., Lorenz and Krishnamurthy 1987; Lorenz

1992; Ford et al. 2000; Vanneste and Yavneh 2004),

which makes clear that an exactly invariant slow mani-

fold does not exist but rather manifolds with different

degrees of ‘‘invariance,’’ where the slow balanced and

fast unbalanced motions coexist but their degree of in-

teraction differs. Accordingly, such a manifold more

suitably came to be called a fuzzy manifold (Warn 1997)

or a slow quasi manifold (Ford et al. 2000). The non-

existence of an exactly invariant slow manifold implies

that immaterial of the initially balanced conditions the

slowly evolving balanced motion will always co-occur

with the fast motion, and hence ‘‘spontaneous gener-

ation of IGWs for geophysical flows is inevitable’’

(Vanneste 2013). An insight into this mechanism also

facilitates our understanding of the IGW emission from

balanced mesoscale flows (mesoscale eddies) in the

ocean, which has strong implications for the energy

budget of the ocean.

Mesoscale eddies, a consequence of baroclinic in-

stability, are ubiquitous in the ocean and are one of the

most energetic components of the ocean energy budget.

The eddies act as a reservoir of energy that enters the

ocean at large scales, but energy in the ocean is finally

dissipated at the viscous molecular scales via a down-

scale energy transfer. Balanced mesoscale flows are

known to lose their energy to large oceanic scales

through an upscale energy transfer (e.g., Charney 1971).

How the balanced mesoscale eddies lose their energy to

dissipative molecular scales is, however, unclear; this is

where the unbalanced motions such as IGWs come into

the picture. Studies suggest that balanced flows could

lose their energy to unbalanced motions, like IGWs,

through processes such as geostrophic adjustment,

spontaneous emission (or loss of balance),1 stimulated

loss of balance, topographic interaction, direct extrac-

tion, and gravity wave drag. Geostrophic adjustment

(e.g., Rossby 1938; Blumen 1972; Bartello 1995) differs

from previously discussed spontaneous emission in that

for the former process the flow is forced away from its

balanced state by an arbitrary initial condition and the

flow then adjusts to its balanced state (geostrophy) while

emitting unbalanced IGWs. Stimulated loss of balance

(e.g., Gertz and Straub 2009; Xie and Vanneste 2015)

(or stimulated emission) is different from loss of bal-

ance; it refers to the process by which externally forced

waves can further ‘‘stimulate’’ the emission of waves,

and this wave-mean interaction extracts energy from the

balanced flow, whereas (spontaneous) loss of balance

(e.g., Molemaker et al. 2005) is the process where the

flow itself can transfer its energy into unbalanced mo-

tions when its balance breaks down. Topographic in-

teraction (e.g., Dewar and Hogg 2010) requires that the

balanced flow interact with topography and in the pro-

cess emit unbalanced motions, whereas the energy

transfer in the presence of winds from mesoscales di-

rectly to IGWs has been referred to as direct extraction

and was discussed in the context of a wind-driven

channel flow by Barkan et al. (2017).2 Yet another

mechanism is the transfer of energy from balanced flow

to gravity waves by wave–mean-flow interaction re-

ferred to as gravity wave drag (cf. Bühler 2014; Eden and
Olbers 2017), which in general can also by directed from

the waves to the mean flow (i.e., in both directions). In

these ways the balanced motions could find an energy

pathway via unbalanced motions en route to viscous

dissipation, resulting in the downscale transfer of en-

ergy. The idea is further motivated by numerous atmo-

spheric and oceanic studies, and there seems to be a

general consensus on this notion; some of these studies

are briefly mentioned in the following passage. These

studies also indicate a transition from theoretical studies

where the mechanisms can be clearly identified to nu-

merical simulations with more complex and more realistic

flows, where identifying unambiguously a mechanism

becomes increasingly challenging.

The loss of balance in a baroclinically unstable flow

results in a transfer of energy from balanced mean flow

to unbalanced motions and eventually to dissipation

by means of a downscale energy transfer as shown by

Molemaker et al. (2005). A direct interior route to dissi-

pation by means of unbalanced motions in a Boussinesq

flow that can initiate downscale energy transfer has

been discussed in an idealized flow configuration by

1Note that spontaneous emission and loss of balance are dif-

ferent terms to represent essentially the same process [cf. Vanneste

(2013) for a discussion].

2 Note that direct extraction is similar to spontaneous emission

except that in the former IGWs are emitted from the balanced

flow by the action of winds, whereas the emission of IGWs by the

latter mechanism does not require any external stimulus. Also

note that direct extraction is different from stimulated loss of

balance (or stimulated emission) because an IGW field need not

be present for direct extraction. For a detailed discussion, see

Barkan et al. (2017).
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Molemaker et al. (2010). For a range of dynamical re-

gimes, downscale energy transfer from baroclinically

unstable flows in an idealized setting has been discussed

by Brüggemann and Eden (2015), and they emphasize

that an ageostrophic direct route to dissipation might be

of importance in the energy budget of the ocean. For a

realistic flow configuration, Capet et al. (2008b) find an

increase in the downscale energy flux related to the

ageostrophic dissipation route with an increased hori-

zontal resolution that can better resolve ageostrophic

dynamics. Another unbalanced route is the stimulated

loss of balance that can propel the downscale energy

transfer as shown by Gertz and Straub (2009) for an

unstratified thin-aspect-ratio fluid. Spontaneous gener-

ation of IGWs from idealized dipoles (e.g., Sugimoto

and Plougonven 2016) also suggest that the balanced

flows could dissipate via unbalanced IGWs during a

downscale energy transfer. An alternative perspective

that links IGWs and balanced mesoscale eddies are the

recent model-based estimates of small-scale dissipation

rates in the ocean, which fail to reproduce the obser-

vations without eddy forcing taken into account in a

parameterization of IGW, implying that eddy dissi-

pation is necessary for the IGW energy budget (Pollmann

et al. 2017).

Despite numerous observational and numerical studies

on IGW emission from balanced motions, the exact

mechanism behind this process remains poorly under-

stood, and a puzzling part is the identification of IGWs.

The complication related to the identification of the

IGW signals is in part associated with the coupling of the

balanced motions and IGWs. The extent of this cou-

pling can be estimated by Rossby number Ro (or an

equivalent geostrophic Richardson number Ri), which

is a measure of the time scale separation between the

slow balanced and fast unbalanced IGWmotions. This

coupling is weak for a regime with Ro � 1, equivalent

of a Ri � 1, such that the fast and slow motions are

‘‘well separated’’; on the contrary, for a finite Ro,

equivalent to Ri 5 O(1) or smaller, the fast and slow

motions interact more strongly and the separation of

these processes is not well defined (Vanneste 2013;

Zeitlin 2008). The coupling between these motions

adds to the intricacy of separation and detection of

IGW signals from the balanced flow field. The em-

phasis of this paper is on the diagnosis of gravity wave

signals.

The traditional approach to identify IGWs, or more

generally unbalanced motions, is to use the fast fields

such as the horizontal velocity divergence, the vertical

component of the vorticity to determine the IGWs (e.g.,

Plougonven et al. 2005; Plougonven and Snyder 2007),

or a spatial filtering to obtain small-scale vertical

velocity as the signature of the IGWs (e.g., Sugimoto

and Plougonven 2016). As another way, the full field of

interest could be separated into horizontally non-

divergent and vertically irrotational components (e.g.,

Molemaker et al. 2005) or simply put into rotational and

divergent parts (Molemaker et al. 2010; Brüggemann

and Eden 2015), which give the balanced and un-

balanced contributions, respectively. Another technique

to obtain IGW signals is from the quasigeostrophic

omega equation, which gives the quasigeostrophic

vertical velocity whose difference with the full vertical

velocity yields the unbalanced IGW contribution (e.g.,

Danioux et al. 2012; Nagai et al. 2015). Although these

methods work well in identifying IGWs owing to the

waves’ distinct spatial characteristics, the methods

have the restraint that the unbalanced part interpreted

as the IGW could still contain a notable amount of the

balanced part, which hampers a concise interpretation

of the signals.

A conceptually different approach is the linear modal

decomposition, similar to projection onto the balanced

manifold, which separates the slow balanced and fast

IGW modes by decomposing the full field. Such a de-

composition has been implemented for a linear system,

for example, by Molemaker et al. (2010) and Borchert

et al. (2014). The method applied by Borchert et al.

(2014) has been applied recently to spontaneous emis-

sion of IGWs in an atmospheric configuration by Hien

et al. (2018). However, the linear decomposition is no

longer valid when applied to a nonlinear system, and

thus an extension of this method to a nonlinear frame-

work is desirable. This issue is addressed by a nonlinear

normal mode initialization technique (NLNMI) de-

veloped independently by Machenhauer (1977) and

Baer and Tribbia (1977), which allows for adjustments

to the initial conditions in order to minimize the ten-

dency of the system to generate fast motions. Relating

these initialization procedures to quasigeostrophic bal-

ance, Leith (1980) derived decomposed modes for

the hydrostatic Boussinesq equations, which was later

generalized to the nonhydrostatic set of equations by

Bartello (1995). More recently, the nonlinear initializa-

tion scheme of Baer and Tribbia (1977) was applied by

Kafiabad and Bartello (2016) for balanced rotating dy-

namics to identify the energy cascades for differently

initialized balanced regimes and by Kafiabad and

Bartello (2017) to identify the mechanism and scales

of spontaneous imbalance in a rotating stratified tur-

bulence system. A decomposition based on normal

mode inversion (similar to NLNMI) is discussed by

McIntyre and Norton (2000) (see section 5). Another

set of decomposition tools is based on the concept of

balanced models to diagnose IGWs using the potential
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vorticity equation. Such examples include an iterative

decomposition tool for stratified, rotating flows known

as the optimal potential vorticity (OPV) approach of

Dritschel and Viúdez (2003), which has been applied to

diagnose IGW packets spontaneously emitted from a

balanced dipole by Viúdez (2008), and the renormal-

ization group method to study spontaneous emission

theoretically by Yasuda et al. (2015a,b). In this paper,

we apply the nonlinear initialization procedure of

Machenhauer (1977) with an aim to diagnose IGWs by

decomposing the full field into its balanced and un-

balanced counterparts, for a range of dynamical regimes

from ageostrophic to quasigeostrophic.

The present work is also motivated by the previous

work of Brüggemann and Eden (2015), who discussed

spectral energy fluxes for a range of dynamical regimes

ranging from ageostrophic (small Ri) to quasigeo-

strophic (larger Ri). From global maps of Ri obtained

from an eddy-permitting realistic global ocean model,

Brüggemann and Eden (2015) show (in their Figs. 7a

and 7b) that low values of Ri occur at the surface, in the

Southern Ocean, in western boundary currents, and at

the equator. Most other regions have large Ri values,

indicating quasigeostrophic conditions. Also, the sub-

mesoscale flows, which are dominant in the upper

ocean, are characterized by Ri 5 O(1) and Ro 5 O(1)

[see, e.g., reviews by Thomas et al. (2008) and Capet

et al. (2008a)]. The regimes with smaller Ri show strong

energy flux toward large wavenumbers, that is, a larger

downscale transfer of energy (although there is also still

an inverse energy transfer for the smaller wavenumber

range). We use a very similar model setup as Brüggemann

and Eden (2015), and by diagnosing gravity waves we also

aim to answer the questionwhether this ageostrophic route

toward dissipation is generated by gravity wave emission

during ageostrophic baroclinic instability.

To weave together the numerous threads sketched

up above, we use a simple model of baroclinic instability

to simulate flows representing low to high Ri regimes

from ageostrophic to quasigeostrophic (section 2).

This allows us to study the evolution of the flows in-

dividually and evaluate the characteristics of the un-

balanced motions without interference from other

processes as is the case in a more complex flow config-

urations. To characterize the waves we first explore

them in the Fourier space (section 3). We then apply

Machenhauer’s nonlinear initialization technique to the

model data to obtain balanced and unbalanced modes

and analyze gravity wave activity for different flow re-

gimes (section 4). Further, we estimate the energy dis-

sipation related to balanced and unbalanced modes for

different dynamical regimes under study (section 5).

Thereafter, a discussion of the results is presented

(section 6). Finally, we summarize the results and the

key conclusions (section 7).

2. Baroclinic instability in different dynamical
regimes

a. Numerical model

Baroclinic instability in our setup is represented in

an idealized channel configuration resembling the

classical Eady model (Eady 1949) of baroclinic in-

stability: flow on an f plane with a prescribed stratifica-

tion and a vertically sheared background zonal flow,

under Boussinesq and hydrostatic approximations. Our

model configuration differs from the Eady model by

using a free surface and a meridional buoyancy gradient

that is expressed as a sine function with an amplitude

of M2
0. The latter allows us to apply double-periodic

boundaries to exclude lateral boundary instabilities. The

presence of boundaries itself can lead to IGW genera-

tion [e.g., Borchert et al. (2014) and laboratory experi-

ments by Williams et al. (2008)], and we suppress it with

double-periodic boundaries since we focus on studying

IGW emission from balanced flows. Note that the sur-

face condition for the momentum balance is that of no

stress (i.e., du/dz5 0). In its initial state, the model has a

background flow in thermal wind balance with a con-

stant stratification N2
0 and a meridional buoyancy gra-

dient that makes the flow baroclinically unstable. An

example of the initial state temperature of the setup is

shown in Fig. 1a. Temperature is the only active tracer

in our setup, and hence temperature and buoyancy are

equivalent. The model is forced with a restoring of the

zonal mean flow and zonal mean buoyancy toward the

initial state; there is no additional surface forcing and no

bottom friction. The numerical code for the model is

identical to the one in Eden (2016).

We simulate baroclinic instability for a range of

dynamical regimes characterized by the geostrophic

Richardson numberRi, which is defined here as the ratio

of the vertical density stratification and vertical shear of

the horizontal velocity. The quantities Ri, N0, and M0

are related as follows:

Ri5
N2

0f
2

M4
0

, (1)

where f is the Coriolis parameter. The Ri sets the initial

buoyancy restoring in the model, and hence the flow dy-

namics ranging fromweakly stratified ageostrophic regime

[Ri5 O(1)] to strongly stratified quasigeostrophic regime

(Ri � 1), as described in Brüggemann and Eden (2015).

The Ri can be related to the Rossby number Ro by

assuming a thermal wind-sheared velocity and choosing
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the Rossby radius Lr as the length scale. The Ri is then

related to Ro in the following way:

Ri5
N2

0H
2

U2
0

5
L2

r f
2

U2
0

5Ro22 , (2)

where Lr 5 N0H/f is the Rossby radius of deformation,

H is the basin depth, andU0 is the mean velocity. In this

way, Ri controls the degree of balance of the flow. The

potential energy (PE) deposited into the model by the

restoring is lost to the kinetic energy (KE) pre-

dominantly by baroclinic instability, as in the Eady

model. At small scales, this energy is dissipated in the

model by lateral biharmonic Ah and vertical harmonic

friction Ay. Dissipation by biharmonic and harmonic

friction is controlled by a grid Ekman number Ek,

which is set to Ek5 0.1 for Ri5 3 and for Ri5 13, set to

Ek5 0.05 for Ri5 327, and set to Ek5 0.03 for Ri5 917.

At large scales, the energy is dissipated by linear re-

laxation (or drag) of the zonally averaged zonal flow to

zero; that is, we add a term lu(u2u*) to the momentum

equation (as in Brüggemann and Eden 2015), which acts

like a linear drag and where u denotes the zonally av-

eraged zonal velocity, and u*5 0 in our case. The time

scale of the linear velocity drag lu (i.e., time scales on

which this linear drag acts) and the relaxation time scale

lT on which the buoyancy restoring acts are set pro-

portional to the time scale of the fastest-growing mode

smax (see Table 1). For the model simulations with

Ri5 3, 13, and 327 we use lu5 0.75smax and lT5 2smax.

For Ri 5 917, we use lu 5 0.5smax and lT 5 1smax in

order to extract enough energy at the large scales to

prevent the accumulation of energy and crashing of the

model. The range of values for lu and lT are listed

in Table 1. Note that in our simulations we have used

lu 6¼ lT, but we have also tested the case where lu 5 lT
for different values, and this is discussed in section 6.

A small random initial perturbation provided in

temperature grows exponentially with time as the baro-

clinic instability sets in. For each stratification and shear,

there exists a particular perturbation of a certain spatial

scale that grows faster than perturbation of other scales.

This particular spatial scale is on the order of the de-

formation radius (Eady 1949; Stone 1966) and is re-

ferred to as the fastest-growing mode, which becomes

dominant over all the other perturbations and is there-

fore assumed to be the mode at which most of the PE is

converted to KE. The linear growth rate smax and the

corresponding wavenumber kmax of the fastest-growing

mode can be expressed for the primitive equations as

derived by Stone (1966):

k
max

’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri

11Ri

r ffiffiffi
5

2

r
L21

r , s
max

’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri

11Ri

r ffiffiffiffiffi
5

54

r
fffiffiffiffiffiffi
Ri

p .

(3)

For quasigeostrophic approximation (large Ri), the length

and time scales of this fastest-growing mode turn into

expressions as derived by Eady (1949):

k
max

’ 1:61L21
r , s

max
’ 0:31

fffiffiffiffiffiffi
Ri

p . (4)

Since our model is based on primitive equations, in our

simulations we use Stone’s formulation, and the model

domain allows for four wavelengths of the fastest-growing

FIG. 1. Temperature field shown at different instances of the model run for Ri 5 917 from the model setup.

(a) Temperature at the initial state (time5 0) of the model with zonal velocity contours on top (8 days later) shown

in black. (b) Temperature at the surface after about 100 days; notice the four wavelengths of the fastest-growing

mode. Note that the vertical axis in (a) is depth and in (b) the meridional extent.
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mode; that is, Lx 5 4 3 2p/kmax (e.g., see Fig. 1b). The

domain length is chosen to be equal in zonal and

meridional directions, and so Lx 5 Ly. In the model

setup the number of grid points in both horizontal

directions is nx 5 ny 5 240. Note, however, that the

actual horizontal resolution, which determines the

smallest resolved scales, depends on kmax and varies as

we vary Ri for different simulations. The horizontal

resolution is chosen as a fixed fraction of the de-

formation radius: Lx/nx5 43 2p/(1203 1:63 kmax)5
0:13Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(11Ri)/Ri

p
’ 0:13Lr. Thus, the horizontal res-

olution and consequently the domain length depends on

Lr, which changes with N (which in turn depends on Ri),

while H and f are taken as constant. On the contrary, a

fixed vertical depth of H 5 200m with nz 5 80 layers

provides a constant vertical resolution of 2.5m for all

simulations. The difference in domain sizes for different

Ri can be seen in Fig. 2 for Ri 5 3 and 917. Note, however,

that even though the domain size for Ri5 3 is bigger than

for Ri 5 917, the dynamics at play in these regimes relate

to the ageostrophic and quasigeostrophic oceanic motions,

respectively. The time step of the model depends on the

Courant–Friedrichs–Lewy (CFL) condition, mean flow,

and the horizontal resolution. The CFL number is set to

0.001, 0.001, 0.001 and 0.003 for Ri5 3, 13, 327, and 917,

respectively. An overview of the model parameters for

the model setup is presented in Table 1. We next discuss

the numerical simulations used in this work.

b. Numerical simulations

The numerical simulations can be used to investigate

different dynamical regimes depending upon the choice

of the parameter Ri: ageostrophic [Ri 5 O(1)] to qua-

sigeostrophic (Ri � 1). After about 45 days, all model

simulations are in a statistically stationary equilibrium

between the buoyancy forcing and the large- and small-

scale dissipation. We disregard the spinup period here

and consider the statistically stationary integrations

only. Snapshots of KE and buoyancy for our setup’s two

extreme Ri (3 and 917) from the statistically stationary

state are shown in Fig. 2. The differences between the

two extreme regimes are evident from the spatial scales

of the associated features in both buoyancy and KE,

where the ageostrophic regime with Ri 5 3 exhibits

small-scale features with filament-like structures and has

much higher KE than the quasigeostrophic regime with

Ri 5 917, which exhibits mesoscale eddy-like features

with large spatial scales. A small Ri represents a weakly

stratified but energetic flow referred to as an ageo-

strophic regime. Such a regime is characterized by a

largeRo (51/
ffiffiffiffiffiffi
Ri

p
) occurring in the ocean for instance in

themixed layer, near boundaries, or at the equator. Such

ageostrophicmotions are characterized by large velocity

scales and spatial scales that are smaller than the Rossby

radius of deformation with small-scale features such as

filaments (e.g., Thomas et al. 2008; Capet et al. 2008a).

On the other hand, a regime with a large Ri represents

a strongly stratified regime in the ocean such as in the

interior of the ocean. This regime exhibits a state of

quasigeostrophic balance and is characteristic of the

slowly varying mesoscale eddy field representing the

dynamics resulting from baroclinic instability. This

regime exhibits eddy-like features that have spatial

scales on the order of the Rossby radius of deformation.

TABLE 1. An overview of the model parameters for our model setup. A range of values in the third column indicate the values of the

respective parameter for Ri 5 3 and Ri 5 917 (left to right). A single value indicates the same value for all Ri.

Parameter Definition Value range

Number of grid points in (x, y, z) directions nx, ny, nz 240, 240, 80

Channel depth H 200m

Aspect ratio a 0.02

Coriolis frequency f 7 3 1025 s21

Brunt–Väisälä frequency N0 5 f/a 3.5 3 1023 s21

Meridional stratification M0 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fU0/H

p
4.9 3 1024 – 8.7 3 1025 s21

Mean flow U0 5N0H/
ffiffiffiffiffiffi
Ri

p
0.7–0.02m s21

Rossby radius of deformation Lr 5N0H/f 104m

Wavelength of the fastest-growing mode kmax 5
ffiffiffiffiffiffiffi
5/2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri/(11Ri)

p
L21

r (1.1–1.6) 3 1024 m21

Growth rate of the fastest-growing mode smax 5
ffiffiffiffiffiffiffiffiffi
5/54

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri/(11Ri)

p
f /

ffiffiffiffiffiffi
Ri

p
1.5 3 1025 – 6.7 3 1027 s21

Length of the domain Lx 5 43 2p/kmax 22–15 3 104m

Horizontal resolution dx 5 dy 5 Lx/nx 936.6–662.6m

Vertical resolution dz 5 H/nz 2.5m

Time step dt 5 dx(CFL/U0) 1.33–89.80 s

Biharmonic horizontal friction Ah 5 Ekfdx4 (7.6–5.7) 3 105m4 s21

Harmonic vertical friction Ay 5 Ekfdz2 1.1 3 1025 – 3.3 3 1027 m2 s21

Linear drag coefficient lu 6.2 3 1025 – 1.8 3 1027 s21

Restoring time scale lT 3.0 3 1025 – 6.7 3 1027 s21
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The features seen in Fig. 2 hence result from different

dynamics.

Snapshots of the vertical velocity corresponding to the

Ri in Fig. 2 are shown in Fig. 3. These suggest the exis-

tence of wavelike features for both ageostrophic and

quasigeostrophic regimes, similar to, for example, what

is described in Plougonven and Snyder (2007) and similar

to the features seen for horizontal maps of vertical velocity

in numerical simulations [e.g., Wu and Eckermann (2008),

Shutts and Vosper (2011) for global data, and Plougonven

et al. (2015) for a mesoscale case study]. These wavelike

features manifest themselves as wave trains, as can be

seen for instance in the vertical velocity for Ri 5 3 in

Fig. 3. Since the crests and troughs seen in the figure

FIG. 2. Snapshots of (a),(b) buoyancy and (c),(d) KE at a depth of 1.25m from the surface in the statistically

stationary state of the high-resolutionmodel simulations. The differences in the structure andmagnitude are clearly

evident between the dynamical regimes with (left) RI5 3 and (right) RI5 917, equivalent of an ageostrophic and

quasigeostrophic regime, respectively.

FIG. 3. Snapshots of vertical velocity at about 20-m depth, for Ri5 (a) 3 and (b) 917 from the statistically stationary

state of the model runs. Note that the color scales are different.
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above are akin to gravity wave activity, those signals are

accordingly interpreted by, for example, Plougonven

and Snyder (2007) as gravity waves generated by the

baroclinic instability process in the simulations. It is the

aim of this study to investigate if those signatures are

indeed gravity waves in a more qualitative manner or

vertical velocities associated with the balanced mode.

We proceed further to explore these wave signals in the

Fourier space.

3. Analysis in Fourier space

a. Frequency spectrum

The presence of wavelike features in the physical

space motivates us to delve further into Fourier space to

identify the characteristic properties of these wave sig-

nals. A frequency (v) spectrum of KE at 50-m depth for

different Ri is shown in Fig. 4. The spectra shown are

averages of eight3 chunks, each of 45-day period, of the

statistically stationary integrations of the model setup

and averages over the model domain. We show results

from only one depth, but frequency spectra calculated at

other depths give similar results. Most of the energy is

concentrated at the smallest frequencies, that is, the

spectrum is red, but a certain amount of energy is also

contained in superinertial frequencies with v . f in-

dicative of gravity waves, in particular for small Ri. The

percentage of the KE content above the inertial fre-

quency f is also indicated in the figure. It shows that the

relative energy level contained in the superinertial fre-

quencies is much higher for an ageostrophic regime

than it is for other dynamical regimes. This energy in

the superinertial frequencies could be associated with

gravity waves, which have frequencies higher than f. On

the other hand, the gravity waves can beDoppler shifted

by the mean flow such that the frequency analysis alone

does not provide a clear separation of the balanced and

gravity mode, for which a frequency and wavenumber

spectrum is better suited.

b. Energy in vertical modes

We begin with the vertical wavenumber and consider

the energy distribution in vertical modes. All model

variables are projected on vertical modes by trans-

formations in the vertical, that is, discrete sine trans-

formation of the vertical velocity w and buoyancy b,

and a discrete cosine transformation of the horizontal

velocity u, y and pressure p. The vertical eigenvalues m

forN5 constant are given bym5 np/H for the vertical

mode number n 5 0, 1, 2, 3, . . . . After decomposition

into the vertical modes we calculate KE, available po-

tential energy (APE), and total energy (TE) contained

in each mode. APE is defined here as P5 b02/(2N2
m),

where b0 5b2N2
m z gives the difference between the

local buoyancy b and the reference buoyancyN2
mz of the

time and global mean ofN2
m, which is the stratification of

the equilibrated flow.

The distribution of TE and KE as a fraction of TE in

the barotropic and first four baroclinic modes is shown

in Table 2 for different Ri, again using eight chunks of

statistically stationary integrations of the model setup.

The values shown in Table 2 are averaged in time and

horizontally. The breakdown of energy into vertical

modes shows that both KE and APE (the remaining

fraction of TE in Table 2) decrease in general with

higher vertical modes, although APE appears to share a

larger portion of TE for higher modes. For the first

baroclinic mode KE dominates APE for small Ri while

the reverse is true for large Ri, whereas for higher baro-

clinic modes APE dominates KE for all Ri.

Further, frequency and wavenumber spectra of KE in

different vertical modes (not shown) show distinct dif-

ferences between odd and even modes. TE is higher for

even modes than it is for the odd modes, whereas KE is

much higher for odd modes than even modes for all Ri.

This disparity between odd and even modes might be

related to the behavior of the fastest-growing mode in

the simulations. To test this we project the fastest-

growing mode f on the vertical eigenfunctions Fn (see

appendix A for a detailed derivation). The projection

can be written as f(z)5�‘
n21AnFn(z) and upon solving

FIG. 4. Frequency spectrum for KE for different Ri. The spec-

trum shown is an eight-chunk average and is shown at 50-m depth.

The vertical dashed gray line indicates the Coriolis frequency f, and

the numbers to its right indicate the percentage of energy con-

tained in the frequencies larger than f for each Ri. The values are

similar also at other depths (not shown).

3 In Fig. 5 the spectra shown or Ri 5 3 are averaged using

13 chunks.
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the coefficientAn takes the following form for baroclinic

modes:4

A
n
5

2d

H(11 n2p2d2/H2)
21ð Þn x1 1½ � . (5)

Here d5 f /Nk2
h, kh is the horizontal wavenumber, and

x is a function of d (for the full expression of x refer

to appendix A). Since the energy in vertical modes

depends on the coefficient An, and An in turn is pro-

portional to [(21)nx 1 1], this disparity between modes

might be inferred from Eq. (5) ( f, N, and H being con-

stant). The decisive factors in this expression are (21)n

and the 11 in the square brackets; the factor (21)n acts

as a switch and gives rise to the odd–even nonuniformity

in the modes. Note, however, that this projection is

performed for the Eady modes that might differ from

the ones in the model since the model is based on

primitive equations (section 2a). Although the model

background state is not the same as the Eady state, we

find a similar behavior in our simulations. That being so,

the projection explains that the energy distribution not

only tends to decrease with increasing vertical modes, it

also shows a distinct distribution between odd and even

modes. Further, we extend the analysis to the frequency

and horizontal wavenumber space, to better identify

gravity waves in the model simulations.

c. Frequency–wavenumber analysis

KE and APE in frequency–wavenumber (v–kh) space

are obtained from a three-dimensional Fourier trans-

form of the horizontal velocity in time and space (zonal

and meridional direction), for different vertical modes.

The zonal (k) and meridional (l) wavenumbers are

collapsed together to give the horizontal wavenumber

kh. Variance preserving v–kh spectra of KE [shown as

log10(vkh 3 KE)] for the first and second baroclinic

modes (n 5 1, 2) for Ri5 3 and Ri 5 917 are shown in

Fig. 5. The figure also shows the shallow water gravity

wave dispersion relation, which can be expressed as

v2 5 f 2 1 gHk2
h (barotropic mode) and v2 5 f 2 1 c2nk

2
h

(baroclinic modes), where g is acceleration due to

gravity and cn 5N/m. The dispersion relation mentioned

in the rest of the paper refers to this shallow water gravity

wave dispersion relation. As the wave’s frequency can be

influenced by the Doppler shift, we show v6U0kh in the

figure, where U0 is the mean flow (see Table 1). We as-

sume that the possible region for gravity wave lies ap-

proximately within the envelope of the Doppler-shifted

extrema. We henceforth call this guideline region the

gravity wave branch.

As is evident from Fig. 5, there is a substantial amount

of energy in the gravity wave branch for Ri5 3 for both

modes, while it is much smaller for Ri5 917 and outside

of the gravity wave branch. Instead, most of the energy

for Ri 5 917 is located at the wavelength of the fastest-

growing mode confirming that there is not much energy

related to gravity waves for a quasigeostrophic regime.

For an ageostrophic regime, on the contrary, the energy

in the gravity wave branch suggests that ageostrophic

dynamics resulting from baroclinic instability at small Ri

could generate a significant amount of gravity wave

energy. However, an v–kh spectrum is not enough to

confirm this statement because the energy of the bal-

anced mode could also be within the gravity wave

branch. Especially for Ri 5 3 in Fig. 5, the balanced

mode lies mostly within the gravity wave branch. The

coexistence of these processes makes it difficult to iso-

late the energy contributions from gravity waves or

unbalanced modes and the balanced mode. To treat this

difficulty and to clearly ascribe this energy to the gravity

waves, we employ a modal decomposition method to

decompose the full flow vector into these two modes,

elaborated in the next section.

4. Modal decomposition: Balanced mode and
unbalanced gravity modes

We use here a linear modal decomposition to di-

agnose the gravity wave oscillations in our simulations

TABLE 2. TE (m2 s22) and KE as a fraction of TE in the first five vertical modes for different regimes indicated by Ri. TE and KE are

averaged in time and horizontally after they are computed from vertically decomposed buoyancy and horizontal velocities.

Ri / 3 13 327 917

Vertical modes Y TE KE/TE TE KE/TE TE KE/TE TE KE/TE

0 819.53 1.00 159.02 1.00 29.56 1.00 13.24 1.00

1 18.52 0.76 2.46 0.68 0.18 0.22 0.06 0.11

2 64.10 0.03 10.23 0.02 4.71 0.0001 4.24 0.000 09

3 1.97 0.38 0.30 0.26 0.04 0.05 0.01 0.02

4 25.90 0.01 4.15 0.007 1.94 0.0005 1.74 0.000 03

4 For barotropic mode, the factor 2 vanishes in the RHS ex-

pression of An. See appendix A.
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and extend this decomposition by an NLNMI by

Machenhauer (1977), used in numerical weather pre-

diction to generate an appropriate balanced initial state.

This section presents an overview of the decomposition

methods (details appear in appendix B).

The hydrostatic and Boussinesq system of equations,

›
t
u1 u � =u52›

x
p1 f y, ›

t
y1 u � =y52›

y
p2 fu,

›
t
b1 u � =b52wN2 ,

(6)

complemented by the diagnostic relations ›zp 5 b and

= �u5 0, can be written for the state vector x containing

the relevant state variables as

›
t
x5 iL � x1N (x) , (7)

where L � x contains all the linear terms and the vector

N contains the nonlinear and forcing terms.

After decomposition into vertical modes and then a

Fourier transformation in x and y, the system in matrix

notation yields

~x5

~u

~y

~p

0
@

1
A, L5

0 2if 2k

if 0 2l

2kc2n 2lc2n 0

0
@

1
A , (8)

where a Fourier-transformed quantity is represented

by a tilde (;). The spectrum of thematrix L, which is the

set of eigenvalues of L, describes the characteristic fre-

quencies of the system and are given by v5v0 5 0 and

v5v6 56
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 1 c2nk

2
h

p
. Notice that v6 resembles the

shallow water dispersion relation for gravity waves with

cn.0 5N/m5NH/(np) and c0 5
ffiffiffiffiffiffiffi
gH

p
.

The corresponding right (q0,6) and left (p0,6) eigen-

vectors5 to the matrix L then give the state vector ~x in

Fourier space, which can be expressed as follows:

~x5 b q0 1 g1q1 1 g2q2 with

b5 p0 � ~x, g1 5 p1 � ~x, g2 5 p2 � ~x . (9)

FIG. 5. Variance-preserving frequency–wavenumber spectrum (log–log scale) for KE for the (top) first and (bottom) second baroclinic modes,

compared forRi5 (left) 3 and (right) 917. Each subplot is as follows: in the left panel, a solid gray curve showsv3KEas a function of frequencyv

averaged in wavenumber space; in the bottom panel, the dashed gray curve shows kh3 KE as a function of horizontal wavenumber kh averaged in

frequency space, and the dashed–dotted gray line indicateskmax, thewavenumber of the fastest-growingmode; in the center panel, the shading shows

vkh 3 KE as a function of v and kh, the solid black curve indicates the gravity wave dispersion relation, and lines with black circles indicate the

Doppler shifted dispersion relation. The gravitywave branch is enclosed by theDoppler-shifted extrema. The dashed black line in the left and center

panels represents the Coriolis frequency f. The spectra are calculated and averaged from eight chunks of 45-day length each from the model setup.

5 For a given matrix, a right eigenvector is a column vector

while a left eigenvector is a row vector. In the context of matrices,

the commonly used ‘‘eigenvector’’ is the right eigenvector.Herewe

use the two eigenvectors separately. See appendix B for details.
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This yields a projection of the state vector ~x on three

eigenmodes or normal modes: one balanced slow mode

and two unbalanced fast gravity wave modes corre-

sponding to the characteristic frequencies v0 and v6,

respectively. Henceforth, we call these modes as bal-

anced mode and unbalanced gravity modes (or simply

unbalanced modes). The left and right eigenvectors are

given explicitly in appendix B.

We define vectors ~xB and ~xG associated with the bal-

anced manifold and unbalanced manifold, respectively:

~x
B
5 b q0 5B � ~x, and (10)

~x
G
5 g1q1 1 g2q2 5G1 � ~x1G2 � ~x . (11)

Since the matrix L is Hermitian, the eigenvectors of

L are mutually orthogonal, and so are the balanced and

unbalanced modes and the associated linear manifolds.

As the manifolds B and G are mutually orthogonal,

they span the whole phase space, and therefore the

vector ~x can be written as a linear combination of

the two modes implying that ~x5 ~xB 1 ~xG holds true

(cf. Leith 1980; Theiss and Mohebalhojeh 2009). After

reverse transformation from ~x to x (i.e., ~xB to xB and ~xG
to xG) the energy contained in the balanced and un-

balanced gravity modes can be obtained. The L and G

commute (i.e., L5G) because they share the same set

of eigenvectors, and so any vector in the G manifold

can be written as a linear combination of eigenvec-

tors of L.

a. Linear modal decomposition

In the linear case [N 5 0 in Eq. (7)] any ~x can be

projected on the slow linear manifold. This part of ~x

(i.e., ~xB) becomes stationary,

›
t
~x
B
5 iL � ~x

B
5 ibv0q0 5 0, (12)

and only the fast modes will evolve in time according to

›
t
~x
G
5 iL � ~x

G
5 �

d56
igdvdqd . (13)

The balanced and the gravity modes are then con-

tained in ~xB and ~xG, respectively. We call the modes

resulting from the linear normal mode decomposition

of baroclinically unstable fully nonlinear model state the

linear balanced mode (BAL_LIN) and linear unbal-

anced modes (UNB_LIN).

b. Nonlinear modal decomposition

The linear modes refer to the linear system and using

them for the realistic nonlinear case does not provide a

consistent decomposition. To handle this discrepancy

we include in the decomposition the nonlinearity in the

system. For N 6¼ 0, the time evolution of the slow mode

is nonzero and its behavior becomes

›
t
~x
B
5N~ x

B

� � 6¼ 0, (14)

where xB is the inverse Fourier transform of ~xB
and N~ the Fourier transform of N . One approach

to separate the modes in the nonlinear case is to

choose a state that eliminates the fast modes such

that only the slow mode remains, whose difference

with the full vector then gives the isolated fast modes.

According to Machenhauer (1977), the time changes in

the fast modes (i.e.,G5�d56G
d) can be eliminated by a

nonlinear normal mode initialization technique re-

quiring that the time derivative of the fast modes is zero;

that is,

G � ›
t
~x5 0, (15)

which for Eq. (7) becomes

G � ›
t
~x5 iG � (L � ~x)1G � ~N (x)5 0/ (L �G) � (G � ~x)
5 iG � ~N (x)/G � ~x5 i(L �G)21 �G � ~N (x) .

(16)

Here the linear operator (L �G)21 �G5�d56(v
d)21Gs

operates in the gravity mode space only where the

eigenvalues are nonzero to avoid problems by singularities

for the inversion (L �G)21 as claimed by Leith (1980).

Equation (16) is a nonlinear condition on x, which is

proposed by Machenhauer (1977) to be solved itera-

tively until convergence is reached, which is usually the

case after a few steps. Starting with a linear slow mode

xB the iteration for the initialization technique is given

by the following:

~x
1
5 ~x

B
1 i(L �G)21 �G �N~(x

B
) , (17)

~x
2
5 ~x

B
1 i(L �G)21 �G �N~(x

1
) , (18)

. : : , and (19)

~x
k
5 ~x

B
1 i(L �G)21 �G �N~(x

k21
) . (20)

It was shown by Leith (1980) that the first iteration step

corresponds to the quasigeostrophic approximation.

Hence, we use only the first step in our analysis; further

iterations do not change the results much. The result of

the iteration can now be used to calculate the nonlinear

balanced mode; the difference of this balanced mode to

the actual state vector can be interpreted as the non-

linear gravity mode. We call the modes resulting from

the nonlinear decomposition as the nonlinear balanced
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mode (BAL_NONLIN) and nonlinear unbalanced

modes (UNB_NONLIN).

c. Decomposition results

As stated above, a nonlinear decomposition is more

suitable for a fully nonlinearmodel state of a baroclinically

unstable flow, such as our setup, so we first present an

example of the nonlinear decomposition in physical

space. Next we consider both the decompositions by

means of v–kh spectra and elaborate on the differences.

Note, however, that the nonlinear balanced and unbal-

anced modes do not show orthogonality, and thus the

spectra related to the nonlinear decomposed compo-

nents will not add up to the full component. Figure 6

shows snapshots of zonal velocity for Ri 5 327 for the

full velocity (FULL) and velocities from the nonlinear

balanced mode (BAL_NONLIN) and nonlinear un-

balanced modes (UNB_NONLIN) as an example of the

nonlinear decomposition. For the balanced mode more

large-scale features are present as in the full component,

whereas the unbalanced mode shows indeed more

small-scale features akin to gravity wave activity. Also,

note that the magnitudes of the full and balanced

components are one order higher than that of the un-

balanced component. This separation is a first in-

dication that the decomposition of the balanced and

unbalanced modes using the modal decomposition is

effective. To demonstrate this more quantitatively we

apply next a frequency–wavenumber analysis to the

decomposed fields.

The v–kh spectra (see Figs. 7, 8, and 9) are computed

similarly to the method described in section 3c and then

averaged for all depths for eight chunks of 45-day length

each. Recall from section 1 that the coupling between

balanced and unbalanced modes tends to be weaker for

the Ri � 1 regime such that the temporal scales of the

slow balanced and the fast unbalanced motions are well

separated. The opposite is true for small Ri where this

coupling is much stronger and the separation of the

modes gets more difficult. We tackle the less compli-

cated case first (for Ri� 1) before expounding on a case

with small Ri.

An v–kh spectra of KE for Ri 5 327 is shown in

Fig. 7 for modes obtained from the linear and nonlinear

decomposition. As the balanced modes correspond to

themotions with large temporal scales, inv–kh space the

energy associated with the balanced modes is expected

to lie toward low frequencies, away from the high fre-

quencies. The energy associated with the unbalanced

motions, on the other hand, is expected to lie in the re-

gion confined by the gravity wave branch, which is the

superinertial frequency range that allows for gravity

waves enveloped by the corresponding Doppler-shifted

dispersion relation. The expectation is fulfilled in the

case of balanced modes (BAL_LIN, BAL_NONLIN),

as seen from Figs. 7a,b, where most of the KE lies out-

side the gravity wave branch and toward small fre-

quencies and wavenumbers.

However, also for the unbalanced modes (UNB_LIN,

UNB_NONLIN) (Figs. 7c,d) most of the KE lies outside

the gravity wave branch against the expectation. How-

ever, KE in the gravity wave branch increases from the

linear unbalanced modes to the nonlinear unbalanced

modes (cf. Figs. 7c and 7d). The nonlinear decomposi-

tion in Fig. 7d indeed shows an increase of KE that sits

inside the gravity wave branch, as compared to the linear

FIG. 6. Snapshots of zonal velocity for Ri5 327 with its (left) full component (FULL) and modally decomposed components: (center)

balanced (BAL_NONLIN) and (right) unbalanced (UNB_NONLIN) modes using nonlinear decomposition. Note the difference in the

magnitudes between the unbalanced component and the full and balanced components.
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decomposition in Fig. 7c. Thus, the nonlinear decom-

position appears to be an improvement over the linear

one and a better-suited tool than a linear decomposition

to decompose the balanced and unbalanced flow com-

ponents. We find similar improvement for the other

model experiments (not shown, but listed in Table 3).

However, there is still energy outside the gravity wave

branch in Fig. 7d. This could be related to a misinter-

pretation of the gravity wave branch, since, as men-

tioned in section 3c, we use the mean flow prescribed

initially U0 (see Table 1) to calculate the Doppler shift.

This mean flow might not be well suited for an ‘‘effec-

tive’’ Doppler shift of the waves, which means that the

gravity wave branch would also change. On the other

hand, the residual unbalanced energy outside the gravity

wave branch could also be related to an (unknown) ar-

tifact of the nonlinear decomposition. A possibility for

such an artifact is that we use the eigenvectors q0,6 and

p0,6 of the analytical instead of the discrete system for

the method. We will explore this issue further in later

studies, and in this paper, we consider the results only

from the nonlinear decomposition since they show im-

provement with respect to our expectation.

Further, notice the difference of two orders in mag-

nitude between the balanced and unbalanced modes in

Fig. 7, stating that a significant amount of KE is con-

tained in the balanced mode for large Ri. The negligible

amount of KE in the gravity wave branch even for the

unbalanced modes signifies that the gravity wave emis-

sion is weak in a Ri � 1 regime. We now consider ex-

amples from other Ri.

Balanced (BAL_NONLIN) and unbalanced

(UNB_NONLIN)modes from the nonlinear decomposition

for the extremeRi (53) and an intermediate Ri (513) in

our simulations are shown in Fig. 8. For the balanced

modes (see Figs. 8a,c) for Ri 5 3 and Ri 5 13, most of

the KE lies outside the gravity wave branch, but some

KE is also within this branch. This is associated with the

strong coupling between the balanced and unbalanced

motions for small Ri, for which the time-scale separation

FIG. 7. Variance preserving frequency–wavenumber spectra of KE of the (a),(b) balanced and (c),(d) unbalanced

modes for Ri5 327 averaged over all depths. The spectra are calculated and averaged from eight chunks of 45-day

length each. The spectra in (a) and (c) are obtained from the linear decomposition (BAL_LIN, UNB_LIN) and the

ones in (b) and (d) from the nonlinear decomposition (BAL_NONLIN, UNB_NONLIN). In each subplot, the

color shading shows the respective KE as a function of v and kh, the dashed black line indicates the Coriolis

frequency f, the solid black curve indicates the gravity wave dispersion relation, and lines with black circles show the

Doppler-shifted dispersion relation. Note that the gravity wave branch is enclosed by the Doppler-shifted extrema.

Notice a magnitude difference of two orders between the balanced and unbalanced modes.
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of these modes is not well defined. In contrast, most of

the KE in the balanced mode for the aforementioned

Ri 5 327 clearly lies outside this branch. Also, the

balanced mode has much higher KE for Ri5 327 than

for smaller Ri.

This higher KE for the balanced component of Ri5
327 is not surprising, since as onemoves from ageostrophy

toward quasigeostrophy, one progresses toward a more

‘‘balanced’’ state, and not unexpectedly would one find

balancedmodes dominating the unbalanced modes. Put

in other words, it implies that a regime in a quasigeo-

strophic balance will emit weak unbalanced gravity

waves. In the context of modal decomposition, this

suggests that for a regime in a quasigeostrophic balance

the energy in unbalanced modes would be far less than

in an ageostrophic regime. This conjecture is supported

by Figs. 8b,d and Fig. 7d for the nonlinear unbalanced

modes. The figures clearly illustrate the negligibly small

KE in the gravity wave branch for the unbalanced

modes of Ri5 327 in contrast to Ri5 3 and 13, where a

significant amount of KE is concentrated within the

gravity wave branch. The energy in the gravity wave

branch for the unbalancedmodes becomes even smaller

for the higher Ri 5 917 (not shown). For the interme-

diate Ri 5 13, KE in the unbalanced mode is aligned

along the gravity wave dispersion relation.

Further we discuss an v–kh spectra for APE for the

linear and nonlinear decompositions, and as an example

we show the APE spectra for Ri5 13 in Fig. 9. The APE

spectra exhibit a distribution between balanced and

unbalanced modes similar to what is described before

for KE (Figs. 8b,c). In the balanced modes (BAL_LIN,

BAL_NONLIN) (Figs. 9a,b), most of the APE is pres-

ent at lower frequencies, whereas for the unbalanced

modes (UNB_LIN, UNB_NONLIN) APE tends to be

present at higher frequencies. However, there appears

to bemoreAPE in the nonlinear modes (BAL_NONLIN,

UNB_NONLIN) than in the linear modes (BAL_LIN,

UNB_LIN), and unbalanced modes show more APE

than the balanced modes.

The decomposition can now be used to quantify the

energy associated with the balanced and the un-

balanced modes. Table 3 shows the ratio of total KE

(and APE) associated with the unbalanced modes to the

total KE (and APE) associated with the balanced mode

for the linear and nonlinear decompositions (i.e., the ratio

FIG. 8. Variance-preserving frequency–wavenumber spectra of KE similar to Fig. 7 but for different Ri:

(top) 3 and (bottom) 13, from the nonlinear decomposition. (a),(c) The spectra for the nonlinear balanced

modes (BAL_NONLIN) and (b),(d) the ones for the nonlinear unbalanced modes (UNB_NONLIN) are shown.

The gravity wave branch is enclosed by the Doppler-shifted extrema. Note the difference in the color scales.
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UNB/BAL for KE and APE). For all Ri, the fraction of

KE (or APE) in the nonlinear unbalanced mode increases

as compared to the linear one. This reinforces the point

that the nonlinear decomposition is better suited as a de-

composition tool than the linear decomposition. Not only

on theoretical grounds but also in terms of the energy as-

sociated with the linear and nonlinear modes, the non-

linear decomposition is capable of better extracting wave

signals related to the nonlinear gravity wave field. Further,

in line with the results seen so far, the fraction of KE (and

APE) related to the unbalanced modes increases as Ri

decreases. In particular, for the nonlinear decomposition

the regime with Ri 5 3 shows a larger share of the un-

balancedKE (about 37%), whereas this fraction associated

with the nonlinear unbalanced modes reduces drasti-

cally to less than 2% for Ri5 917. The trend for APE is

similar: Ri 5 3 shows a larger share of the unbalanced

APE (about 37%), whereasRi5 917 shows less than 4%

of this fraction, for the nonlinear decomposition.

The energy contributions tied to the balanced and

unbalanced modes can be further utilized to understand

the variation of energy with the dimensionless numbers

that describe different flow regimes in our simulations.

For this, a power law is obtained from the KE and APE

of nonlinear unbalanced component that describes the

variation of IGW emission with Ri and Ro. Based on

the four simulations with different Ri, the decrease of

the KE tied to the unbalanced component scales close

toRi21.05 (orRo2.1). A similar scaling is seen for APE

for which the APE in the unbalanced component

shows a scaling of Ri21.3 (orRo2.6). This is illustrated in

Fig. 10 for the scaling of KE and APE in the nonlinear

FIG. 9. Variance-preserving frequency-wavenumber spectra of APE similar to Fig. 7 but for Ri5 13. (a),(b) The

balanced modes and (c),(d) the unbalanced modes. The spectra in (a) and (c) are obtained from the linear de-

composition (BAL_LIN, UNB_LIN), and the ones in (b) and (d) from the nonlinear decomposition (BAL_

NONLIN, UNB_NONLIN). The gravity wave branch is enclosed by the Doppler-shifted extrema. Notice that the

color scales differ for unbalanced and balanced modes.

TABLE 3. Ratios of KE and APE of the unbalanced component

to that of the balanced component (UNB/BAL) obtained from

linear and nonlinear decompositions, shown for different regimes

indicated by Ri. The numbers indicate percentages.

Ratio / KE (UNB/BAL) APE (UNB/BAL)

Ri Y Linear Nonlinear Linear Nonlinear

3 21.42 36.84 33.33 37.14

13 7.69 13.55 10.52 13.62

327 1.11 3.33 5.40 6.53

917 1.0 1.48 3.50 3.99
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unbalanced component with Ri. Also indicated are the

respective slopes computed from theKE andAPE in the

unbalanced component. Although our results are based

on an idealized representation of the oceanic flow field,

such that these power laws may be considered unreal-

istic, the results do give a first indication of the rela-

tionship between IGW emission and Ri (or Ro) and

provide estimates for the importance of this process in

the ocean.

5. Energy dissipation under different
dynamical regimes

The energy in the model setup is dissipated at small

scales by horizontal biharmonic friction and harmonic

vertical friction and at large scales by the zonal mean

drag. We use the modal decomposition results to assess

the differences in small- and large-scale dissipation as-

sociated with the velocities of the full model state and

the balanced and unbalanced modes.

The equation for KE obtained from the horizontal

momentum equation is written as

›
t
K52= � uK2= � up1wb0

2 u
h
� l

u
(u

h
)1 u

h
� F

u
, (21)

whereK5 u2
h/2 denotes the kinetic energy, u5 (u, y, w)

is the full, uh is the horizontal, and uh is the zonal mean

velocity. The dissipation terms, which are the last two

terms in the RHS of Eq. (21), extract KE from the flow.

Large-scale dissipation, which acts on the large scales, is

denoted by the term DL 5 uh � lu(uh), where lu is the

linear drag coefficient that extracts energy from the

mean flow and is related to the maximum growth rate as

lu5 0.75smax. Small-scale dissipation on the other hand

damps the smallest scales and is denoted byDS5 uh �Fu,

where Fu 5Ah=
4uh 1Ay›

2uh/›z
2 indicates the dissipa-

tion due to biharmonic and vertical friction, respectively

(for Ah and Ay, see Table 1).

The global mean values of KE dissipation are illus-

trated in Fig. 11 for all Ri for their full velocity component

(FULL) component and modally decomposed compo-

nents: BAL_NONLIN and UNB_NONLIN. The figure

illustrates the large-scale (DL) and small-scale (DS) dissi-

pation values, shown as a fraction of the total dissipation

(DS 1 DL) for the respective mode; note that DS 1
DL5 1. In addition, the dissipation values for the modes

from linear decomposition and contributions to DS by

biharmonic friction Db and vertical friction Dy are tabu-

lated in Table C1 of appendix C.

For small Ri, DS of the full component is larger than

the corresponding DL, while DS becomes smaller and

negligible for higher Ri, as seen from the figure. On the

other hand, DL dominates DS at larger Ri and becomes

smaller, but not negligible, for small Ri. The impact of

vertical friction Dy is in general much smaller than the

biharmonic frictionDb in all cases (Table C1, appendix C).

Further, weweigh the variations in the dissipation due to

the decomposed modes for different Ri. As mentioned

earlier, the unscaled dissipation rates related to the

balanced and unbalanced modes will not add up to the

dissipationof the full velocities [i.e.,DS(UNB_NONLIN)1
DS(BAL_NONLIN) 6¼ DS(FULL); also for DL] because

FIG. 10. Power laws for the KE andAPE related to the nonlinear

unbalanced component for different dynamical regimes indicated by

Ri. The gray dashed line with circles represents KE and the black

dotted line with stars indicates APE. The fitted slopes related to

KE and APE are shown in gray and black solid lines, respectively.

FIG. 11. Globally integrated values of KE dissipation for the

full and the nonlinear balanced and unbalanced components

(BAL_NONLIN, UNB_NONLIN) for all Ri. Dissipation contri-

bution to the total KE dissipation from small scales (DS) is shown

by the hatched region and from large scales (DL) by the black

shaded region. Note that DS 1 DL 5 1 for the respective mode.
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we disregard covariances between the decomposed

velocities here. Only for the total energy of the linear

decomposition, the covariances of the state vector

components x cancel.

The dissipation related to the nonlinear balanced

modes, BAL_NONLIN, has higher values for DL than

DS for all Ri except for Ri 5 3. For Ri 5 327 and Ri 5
917, most of the dissipation in BAL_NONLIN occurs at

large scales while it is almost negligible for small scales.

For Ri5 3, however, a significant amount of dissipation

still occurs at the small scales. For the nonlinear un-

balanced modes, UNB_NONLIN, DS is much larger

than DL for all Ri, with a maximum of DS for Ri 5 3,

while DL for UNB_NONLIN tends to become almost

negligible for small Ri. Specifically, for the nonlinear un-

balanced component UNB_NONLIN, more than 60% of

the dissipation occurs at small scales for all Ri; for Ri 5 3

and 13 the dissipation at small scales increases to more

than 90%. This directs to the inference that in the gravity

wave mode dissipation occurs predominantly at small

scales for all Ri.

The dissipation results for the decomposed modes

elucidate that regimes with larger Ri dissipate energy

preferably at large scales contrary to the small Ri re-

gimes, which dissipate energy predominantly at small

scales. This result is consistent with previous results, for

example, Brüggemann and Eden (2015), which predict

that in wavenumber space regimes with large and small

Ri show a dominant KE flux toward large scales and

small scales, respectively. In their study, the velocity

field was decomposed into its rotational and divergent

components, analogous to the balanced and unbalanced

gravity modes in our study. Brüggemann and Eden

(2015) showed that a downscale energy transfer is as-

sociated with a divergent flow field. However, a specific

connection to a process, such as IGWs, was not made.

We suggest based on our results that gravity waves could

be a potential participant in the downscale energy

transfer via the ageostrophic route.

6. Discussion

The primary aim of this study is to objectively identify

gravity wave activity in different dynamical regimes

characterized by different Ri. Although IGW emission is

studied in idealized stratified and rotating flow, the quan-

tification of the energy related to IGWs obtained by the

nonlinear decomposition of Machenhauer (1977) presents

a first estimate of the importance and variation of gravity

wave activity in different dynamical regimes in the ocean.

The KE and APE related to the unbalanced compo-

nent scales as ;Ro2 (or Ri21). This scaling is different

from the scaling suggested by the similar idealized study

of Brüggemann and Eden (2015), who found by a sub-

jective fit a scaling of ;Ro0.8 for the energy flux toward

small-scale dissipation. The results resonate with the

laboratory experiments of Williams et al. (2008), who

suggest a scaling of ;Ro2, but differs from more com-

plicated scalings suggested by other studies (e.g.,

Vanneste and Yavneh 2004). The disagreement of our

scaling to the one obtained by Brüggemann and Eden

(2015) is most likely related to the fact thatBrüggemannand

Eden (2015) do not explicitly assign the contribution of the

unbalanced component to the small-scale dissipation,

and thus their scaling represents the overall small-scale

dissipation. The ;Ro2 scaling found in our simulations

is related explicitly to the unbalanced component of the

flow and therefore to the IGW field.

The IGWs present in the flow may break by Kelvin–

Helmholtz (KH) instabilities and generate small-scale

turbulence. The onset of KH instabilities after frontoge-

netic collapse in a baroclinic unstable flow has been stud-

ied, for example, by Skyllingstad and Samelson (2012) and

Skyllingstad et al. (2017), who resolve KH instability by

using high resolution and a nonhydrostatic model with an

LES closure.We do not explicitly resolve KH instability in

our hydrostatic simulations but we can resolve gravity

wave emission, andwe argue that we can also resolve parts

of the nonlinear downscale energy transfer of the gravity

waves. In our simulations the energy is then dissipated at

the higher end of the resolved spectrum by the small-scale

dissipation (i.e., the biharmonic friction in our model).

This process is thought to mimic a further downscale

energy transfer of the waves up to that point where they

finally break by KH instabilities, but it is clear that in a

future study this process should also be included.

To shed some light on the role of the large-scale dis-

sipation, we have tested the sensitivity of the model re-

sults to the dissipation parameter. We set the velocity

drag lu and buoyancy restoring lT to equal values, that

is, lu 5 lT, and test for three different values: 0.75smax,

1smax, and 2smax. In all these cases, the spectra of KE

(not shown) related to the balanced and unbalanced

components are qualitatively similar to the spectra

shown in this paper (Figs. 7, 8, and 9) where lu 6¼ lT
(cf. section 2a). There is also not much change in the ratio

between the unbalanced and balanced energy and the

dissipation values for the linear and nonlinear modes. An

important difference that arises with changing lu and lT
is that the choice of lu and lT determines to some extent

the mean flow, which in turn determines the Doppler

shift of the shallow water gravity wave dispersion re-

lation. This affects the Doppler-shifted envelope that

determines the gravity wave branch where IGW ac-

tivity is most prominent. The sensitivity of lu and lT also

has been studied by Brüggemann and Eden (2014) for
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various combinations of lu and lT for a model configu-

ration similar to the present one. Their experiments

indicate that lT has a minor influence but lu influences

the eddy activity, which is strongest for a regime with

larger Ri.

In addition to this, a simulation is performed where

the (zonally averaged) velocity is restored toward the

mean flow given by the initial conditions, which are in a

geostrophic balance. This was done since the restoring

toward vanishing flow might generate gravity waves by

forcing the mean flow out of balance, but this effect

appears to be very small. Brüggemann and Eden (2014)

also find no impact of the restoring toward vanishing

flow compared to the restoring toward mean flow. This

suggests that irrespective of the restoring to a back-

ground mean flow or vanishing flow, the internal gravity

waves are always spontaneously emitted by the balanced

component of the flow during baroclinic instability and

are at least not directly related to the restoring itself.

Further, we have attributed the IGW signals in the

simulations as emissions from balanced flows. However,

the unbalanced motions generated from balanced mo-

tions could form triads and can further generate un-

balanced motions. This process might also contribute to

IGW activity. Triad interactions between slow balanced

and fast unbalanced motions have been studied, for ex-

ample, by Bartello (1995), which suggest that in a slow–

fast–fast triad the slow mode can catalyze the flow of

energy from one fast mode to another. This slow–fast–fast

interaction also sweeps the balanced energy from the

slow mode downscale to the scales of dissipation

(Bartello 1995). This supports the notion of a downscale

energy transfer via an ageostrophic route suggested by,

for example, Brüggemann and Eden (2015).

7. Summary and conclusions

In this study, we diagnose internal gravity waves

(IGWs) emitted from an initially balanced flow using

the nonlinear initialization technique of Machenhauer

(1977). This is a novel approach to the oceanographic

problem of identifying IGW signals spontaneously

emitted from an initially balanced flow.

We use an idealized numerical setup that is bar-

oclinically unstable, and the choice of the Richardson

number Ri allows us to emulate different dynamical

regimes ranging from ageostrophic [Ri 5 O(1)] to

quasigeostrophic (Ri � 1) flows. We first diagnose

IGWs in frequency and wavenumber space and then

using linear and nonlinear modal decomposition. The

modal decomposition yields a balanced mode and two

unbalanced gravity modes, which we discuss in frequency–

wavenumber space. Based on the energy distribution

between the unbalanced and balanced flow components,

quantitative estimates are presented and a power law is

suggested, which relates spontaneously emitted IGWs to

Richardson (Ri) and Rossby (Ro) numbers. Further,

an assessment of the small-scale and large-scale dissi-

pation associated with the balanced and unbalanced

modes sheds light on the downscale transfer of energy.

The key results are as follows:

1) The nonlinear initialization technique ofMachenhauer

(1977) is efficient in decomposing the balanced mode

and unbalanced IGWmodes. Although this decompo-

sition tends to get difficult for Ri 5 O(1) or less, the

nonlinear decomposition is promising and an improve-

ment over the linear decomposition in the detection

of IGWs.

2) An ageostrophic regime (small Ri) shows much more

IGW activity than a quasigeostrophic regime (large

Ri). Therefore, spontaneous emission of IGWs from

the balanced flow occurs for all Ri but becomes

increasingly weaker with increasing Ri (or decreasing

Ro). Quantitative estimates based on our idealized

simulations suggest that the decrease of the kinetic

energy tied to the unbalanced component scales close

to Ri21.05 (or Ro2.1), whereas for available potential

energy this scaling turns out to be Ri21.3 (or Ro2.6).

3) IGWs dissipate predominantly through small-scale dis-

sipation for all Ri regime, thus acting as a downscale

route to dissipation for the balanced flow. The result

emphasizes the role IGWs play in the downscale energy

transfer leading to small-scale dissipation in the ocean.

It should be noted that the nonlinear decomposition

might be less efficient for Ri , O(1) since the interac-

tions between the balanced and unbalanced motions are

much stronger and the time-scale separation between

these motions is minimal, which renders it hard to sep-

arate one mode from the other. For a regime Ri,O(1),

other kinds of instabilities such as symmetric instability

and Kelvin–Helmhotlz instability become more prom-

inent, such that the detection of IGWs becomes even

more difficult. Nonetheless, for regimes that allow the

separation of fast and slow motions, the procedure

seems promising and can be applied to isolate gravity

wave modes from balanced modes for future studies.

This study brings evidence to the role of IGWs in the

downscale energy transfer in the ocean based on simu-

lations of baroclinic instability that mimic dynamical

regimes of the ocean in an idealized setting. This is

important for the energy dissipation of the ocean as well

as the dissipation of balanced mesoscale field in the

ocean. At the same time, this process also sheds light on

the generation of IGWs in the ocean, which is necessary

for the IGW energy budget. An important result is the
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power law of ;Ro2 for IGW emission in context of our

idealized simulations, which can potentially be utilized

to parameterize the spontaneous emission of IGWs.
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APPENDIX A

Eady Mode Projection on Vertical Modes

Thewave solution for the Eady case can be expressed as

f(z)5A cosh(z/d)1B sinh(z/d) , (A1)

where d5 f /Nk2
h (where k2

h 5 k2 1 l2) and A5
BH(U0 2 c)/(U0d) and B5 1 are constants evaluated

from the initial condition [for details of the Eady solu-

tion, see, e.g., Olbers et al. (2012)]. The phase speed c is

given as

c5
U

0

2
6

U
0
d

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

H2

4d2
2
H

d
coth

�
H

d

�s
. (A2)

Note that c becomes imaginary when the term under the

square root becomes negative.

The set of vertical eigenfunction Fn is expressed as

follows:

F
n
(z)5 cos

�np
H

�
z5 cosmz, and (A3)

m5
np

H
, n5 0, 1, 2, 3, . . . (A4)

The projection of the Eady mode on the vertical

modes then can be written as

f(z)5 �
‘

n51

A
n
F

n
(z) , (A5)

and the coefficient An can be estimated from

ð0
2H

A
n
F2
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ð0
2H

f(z)F
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(z) dz , (A6)
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A
n
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�
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�
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for n 5 0 (barotropic mode),

A
0
5

d

H(11m2d2)
[R(A) sinh(H/d)2 cosh(H/d)1 1],

(A9)

and for n 5 1, 2, 3, . . . (baroclinic modes)

A
n
5

2d

H(11m2d2)
f(21)n[R(A) sinh(H/d)

2 cosh(H/d)]1 1g . (A10)

APPENDIX B

Modal Decomposition

a. Eigenvectors

The three right (column) eigenvectors q6,0 to the

matrix L with L � q6,0 5v6,0q6,0 are given by

q6 5

(ifl2 kv)/ v2 2 f 2
� �

(2ifk2 lv)/ v2 2 f 2
� �

1

2
664

3
775, q0 5

2il/f

ik/f

1

0
B@

1
CA, (B1)

and the three left (row) eigenvectors p6,0 to the matrix L

with p6,0 � L5v6,0p6,0 are given by

p6 5
v2 2 f 2

2v2

(2ifl2 kv)c2m
v2 2 f 2

,
(ikf 2 lv)c2m

v2 2 f 2
, 1


 �
,

p0 5
f 2

(v6 )2
ilc2m/f, 2ikc2m/f , 1
� �

. (B2)

Note that it holds that

p6 � q6 5 p0 � q0 5 1,

p6 � q7 5 p7 � q6 5 p0 � q6 5 p6 � q0 5 0: (B3)

(For q6 and p6, read v as v6.)

b. Projection matrices

Mathematically, B and G are the projection matrices

B5 q0 � p0 and G6 5q6 � p6:
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B5q0 � p0 5
c2m
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0
@ l2 2kl 2ilf /c2m
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1
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G6 5q6 � p6 5
1

2(v6)2

8><
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h i
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with the properties

L5v0B1 �
d56

vdGd 5

0 2if 2k

if 0 2l

2kc2m 2lc2m 0

0
B@

1
CA (B6)

and

G6 �G6 5G6, G6 �G7 5 0

/ Ln 5 �
s56

(vs)nGs

/ f (L)5 �
s56

f (vs)Gs (B7)

for a general function f, but note that L is singular since

v0 5 0.

c. Operator i(L �G)
21 �G

The matrix i(L �G)21 �G introduced in section 4b is

given by

i(L �G)21 �G5
1

(v6)2

0 f 2ik

2f 0 2il

2ikc2m 2ilc2m 0

0
B@

1
CA. (B8)

APPENDIX C

Dissipation

Globally integrated values for KE dissipation at large

and small scales are shown as a fraction of the total

dissipation in Table C1. The dissipation values are

shown for different regimes indicated by Ri for their

FULL and modally decomposed components obtained

from the linear (BAL_LIN, UNB_LIN) and nonlinear

(BAL_NONLIN, UNB_NONLIN) decompositions.
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