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Abstract. Recent research on emergent constraints (ECs) has delivered promising results in narrowing down
uncertainty in climate predictions. The method utilizes a measurable variable (predictor) from the recent histor-
ical past to obtain a constrained estimate of change in an entity of interest (predictand) at a potential future CO2
concentration (forcing) from multi-model projections. This procedure first critically depends on an accurate es-
timation of the predictor from observations and models and second on a robust relationship between inter-model
variations in the predictor–predictand space. Here, we investigate issues related to these two themes in a car-
bon cycle case study using observed vegetation greening sensitivity to CO2 forcing as a predictor of change in
photosynthesis (gross primary productivity, GPP) for a doubling of preindustrial CO2 concentration. Greening
sensitivity is defined as changes in the annual maximum of green leaf area index (LAImax) per unit CO2 forcing
realized through its radiative and fertilization effects. We first address the question of how to realistically charac-
terize the predictor of a large area (e.g., greening sensitivity in the northern high-latitude region) from pixel-level
data. This requires an investigation into uncertainties in the observational data source and an evaluation of the
spatial and temporal variability in the predictor in both the data and model simulations. Second, the predictor–
predictand relationship across the model ensemble depends on a strong coupling between the two variables,
i.e., simultaneous changes in GPP and LAImax. This coupling depends in a complex manner on the magnitude
(level), time rate of application (scenarios), and effects (radiative and/or fertilization) of CO2 forcing. We in-
vestigate how each one of these three aspects of forcing can affect the EC estimate of the predictand (1GPP).
Our results show that uncertainties in the EC method primarily originate from a lack of predictor comparability
between observations and models, the observational data source, and temporal variability of the predictor. The
disagreement between models on the mechanistic behavior of the system under intensifying forcing limits the
EC applicability. The discussed limitations and sources of uncertainty in the EC method go beyond carbon cycle
research and are generally applicable in Earth system sciences.

1 Introduction

Earth system models (ESMs) are powerful tools to predict
responses to a variety of forcings such as an increasing atmo-
spheric concentration of greenhouse gases and other agents
of radiative forcing (Klein and Hall, 2015). Still, long-term
ESM projections of climate change have substantial uncer-
tainties. This can be due to poorly understood processes
in some cases and to missing or simplified representations

called parameterizations in others (Flato et al., 2013; Klein
and Hall, 2015; Knutti et al., 2017). Certain important pro-
cesses, especially in the atmosphere, happen at spatial scales
finer than can possibly be represented in current ESMs. Con-
sequently, various phenomena in the system ranging from lo-
cal extreme precipitation events to large-scale climate modes
can be poorly simulated (Flato et al., 2013). Errors propagate
and can be amplified through feedbacks among interacting
components in the Earth system, resulting in biases whose
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origins can be difficult to identify (Flato et al., 2013). Fur-
thermore, an inherent component of the Earth climatic sys-
tem, its internal natural variability, is complicated to repre-
sent and simulate in models (Flato et al., 2013; Klein and
Hall, 2015).

Model intercomparison projects explore these uncertain-
ties by coordinating a wide range of simulation setups focus-
ing on internal variability, boundary conditions, and param-
eterizations (Taylor et al., 2012; Flato et al., 2013; Eyring
et al., 2016; Knutti et al., 2017). Models developed at vari-
ous institutions are driven with the same forcing information
(e.g., historical forcing) or with identical idealized boundary
conditions. However, each modeling group decides which of
the processes to consider and implement in their ESM. The
conventional approach of handling these multi-model ensem-
bles is to use unweighted ensemble averages (Knutti, 2010;
Knutti et al., 2017). This assumes that the models are inde-
pendent of one another and equally good at simulating the
climate system (Flato et al., 2013; Knutti et al., 2017). The
large spread between model projections suggests that this as-
sumption is not valid. Therefore, alternate methods have been
developed to extract results more accurate than multi-model
averages (e.g., model weighting scheme based on perfor-
mance and interdependence; Knutti et al., 2017). The concept
of emergent constraints arises in this context, namely as a
method to reduce uncertainty in ESM projections relying on
historical simulations and observations (Hall and Qu, 2006;
Boé et al., 2009; Cox et al., 2013; Klein and Hall, 2015; Cox
et al., 2018).

The two key parts of a method based on emergent con-
straint (EC) are a linear relationship arising from the col-
lective behavior of a multi-model ensemble and an observa-
tional estimate for imposing the said constraint (Fig. 1). The
linear relationship is a physically (or physiologically) based
correlation between inter-model variations in an observable
entity of the contemporary climate system (predictor) and a
projected variable (predictand) that is difficult to observe or
not observable at all. Combining the emergent linear rela-
tionship with observations of the predictor sets a constraint
on the predictand (Cox et al., 2013; Flato et al., 2013; Klein
and Hall, 2015; Knutti et al., 2017). Many such ECs have
been identified and reported, as briefly summarized below.

Hall and Qu (2006) proposed a constraint on projections
of snow albedo the feedback based on the correlation be-
tween large inter-model variations in feedback strength of the
current seasonal cycle. The EC was first established for the
CMIP3 ensemble and confirmed for phase five of the Cou-
pled Model Intercomparison Project (CMIP5; Flato et al.,
2013; Qu and Hall, 2014). Several EC studies followed with
the goal of reducing uncertainty in projections of the cloud
feedback under global warming, as reviewed by Klein and
Hall (2015). It is thought that erroneous representation of
low-cloud feedback in ESMs essentially contributes to the
large uncertainty in equilibrium climate sensitivity (ECS;
1.5 to 5 K), i.e., warming for a doubling of preindustrial

Figure 1. Schematic depiction of the emergent constraint (EC)
method and factors affecting the uncertainty of the constrained es-
timate. The predictor (x axis) is change in the annual maximum of
green leaf area index (LAImax) due to unit forcing (CO2 increase
and associated climatic changes) during a representative historical
period. It is termed greening sensitivity in this study. The predictand
(y axis) is projected change in gross primary productivity (GPP) in
response to rising CO2 concentration (e.g., for a doubling of the
preindustrial level). Both the predictor and predictand refer to large
area values: in this case, the entire northern high latitudes (NHLs).
Inter-model variations (each symbol represents a model) in match-
ing pairs of predictors and predictands result in a linear relationship
between the two (green band); i.e., the ratio (predictand / predictor)
is approximately constant across the model ensemble. The slope
depends on forcing attributes (gray shading), such as its level (CO2
concentration; Sect. 3.4), time rate of application (scenarios such
as various RCPs; Sect. 3.4), and different effects (i.e., fertiliza-
tion, radiative forcing; Sect. 3.5). The observed sensitivity (vertical
yellow bar) is used to find the constrained estimate of the predic-
tand (i.e., change in GPP). The ability to accurately estimate the
predictor depends on the source of observational data (Sect. 3.1)
and its spatial (Sect. 3.2) and temporal variability (Sect. 3.3). Ob-
served (yellow bar) and modeled predictor values (x coordinate of
symbols) must be obtained from matching time periods, i.e., at the
same level of historical forcing, to ensure comparability (Sect. 3.3
and 3.4). All these factors, together with the goodness of fit of inter-
model variations (width of green shading), finally define the un-
certainty of the derived constrained estimate (blue horizontal bar
with black solid lines depicting the upper and lower bound of un-
certainty).

atmospheric CO2 concentration (2×CO2; Sherwood et al.,
2014; Klein and Hall, 2015). Recently, Cox et al. (2018) pre-
sented a different approach to constrain ECS based on its
relationship to the variability of global temperatures during
the recent historical warming period. They reported a con-
strained ECS estimate of 2.8 K for 2×CO2 (66 % confidence
limits of 2.2–3.4 K).

The concept of EC also found its way into the field of car-
bon cycle projections. A series of studies analyzed the ex-

Earth Syst. Dynam., 10, 501–523, 2019 www.earth-syst-dynam.net/10/501/2019/



A. J. Winkler et al.: Investigating the applicability of emergent constraints 503

tent to which interannual atmospheric CO2 variability can
serve as a predictor of the long-term temperature sensitivity
of terrestrial tropical carbon storage. Cox et al. (2013) and
Wenzel et al. (2014) reported an emergent linear relationship,
although with different slopes for CMIP3 and CMIP5 en-
sembles, resulting in slightly divergent constrained estimates
(CMIP3: −53± 17 Pg C K−1, CMIP5: −44± 14 Pg C K−1).
Wang et al. (2014), however, were unable to detect a similar
relationship between the proposed predictor and predictand.
Recently, Lian et al. (2018) presented an EC estimate of the
global ratio of transpiration to total terrestrial evapotranspira-
tion (T/ET), which is substantially higher (0.62±0.06) than
the unconstrained value (0.41±0.11). For the marine tropical
carbon cycle, Kwiatkowski et al. (2017) identified an emer-
gent relationship between the long-term sensitivity of trop-
ical ocean net primary production (NPP) to rising sea sur-
face temperature (SST) in the equatorial zone and the inter-
annual sensitivity of NPP to El Niño–Southern Oscillation-
driven SST anomalies. Tropical NPP is projected to decrease
by 3± 1 % for a 1 K increase in equatorial SST according to
the observational constraint.

Similar results were reported for modeled extratropical ter-
restrial carbon fixation in a 2×CO2 world. Plant productiv-
ity is expected to increase due to the fertilizing and radiative
effects of a rising atmospheric CO2 concentration. Wenzel
et al. (2016) focused on constraining the CO2 fertilization
effect on plant productivity in the northern high latitudes
(60–90◦ N, NHLs) and the entire extratropical area in the
Northern Hemisphere (30–90◦ N) using the seasonal ampli-
tude of long-term CO2 measurements at different latitudes.
They presented a linear relationship between the sensitivity
of CO2 amplitude to a rising atmospheric CO2 concentration
and the relative increase in zonally averaged gross primary
production (GPP) for 2×CO2. The observed CO2 amplitude
sensitivities at respective stations provide a constraint on the
increase in GPP due to the CO2 fertilization effect, namely
37 %± 9 % and 32 %± 9 % for 2×CO2 in the NHL and ex-
tratropical region, respectively.

Focusing on the NHLs, Winkler et al. (2019) investigated
how both effects of CO2 enhance plant productivity while
assessing the feasibility of vegetation greenness changes as
a constraint. Enhanced GPP due to the physiological effect
and ensuing climate warming is indirectly evident in large-
scale increases in summertime green leaf area (Myneni et al.,
1997a; Zhu et al., 2016). Historical CMIP5 simulations show
that the maximum annual leaf area index (LAImax, leaf area
per ground area) increases linearly with both CO2 concentra-
tion and temperature in NHLs. In all ESMs, these changes
in LAImax strongly correlate with changes in GPP arising
from the combined radiative and physiological effects of
CO2 enrichment. Thus, the large variation in modeled histor-
ical LAImax responses to the effects of CO2 linearly maps to
variation in 1GPP at 2×CO2 in the CMIP5 ensemble. This
linear relationship in inter-model variations enables the us-
age of the observed long-term change in LAImax as an EC on

1GPP at 2×CO2 in NHLs (3.4±0.2 Pg C yr−1 for 2×CO2;
Winkler et al., 2019).

The robustness of these EC estimates is debated, mainly
because the EC approach is susceptible to methodological
inconsistencies. For example, Cox et al. (2013), Wang et al.
(2014), and Wenzel et al. (2015) investigated constraining fu-
ture terrestrial tropical carbon storage using the same set of
models and data. However, they arrived at different EC es-
timates and divergent conclusions. Some reasons for failure
and the essential criteria of the EC approach were described
previously (Bracegirdle and Stephenson, 2012b; Klein and
Hall, 2015), but this list is far from complete. To account for
this gap in the literature, a detailed investigation and descrip-
tion of the EC method in terms of its potential sources of
uncertainty and the range of applicability are needed.

Here, we revisit the study of Winkler et al. (2019) and
elaborate on key issues concerning the robustness of the
EC method. Uncertainty of the constrained estimate depends
on (a) the observed predictor and (b) modeled relationship,
aside from the goodness of fit of the latter (green shading in
Fig. 1). As for (a), the source of observations is an obvious
first line of inquiry (Sect. 3.1). The spatial aggregation of
data and model simulations introduces uncertainties, as the
EC method is applied on large areal values of the predictor
and predictand. This is the subject of Sect. 3.2. The observed
and modeled predictors are from the historical period. The
representativeness, duration, and match between data and
models all introduce an uncertainty related to variations in
the temporal domain – these are explored in Sect. 3.3. The
yellow shading in Fig. 1 represents the total uncertainty on
the observed predictor from these three fronts. Regarding (b),
the modeled linear relation varies (gray shading in Fig. 1)
depending on three attributes of the forcing, i.e., the CO2
concentration change along with its magnitude, rate, and ef-
fect (Sect. 3.4 and 3.5). Lessons learned from analyses along
these lines are presented in the Conclusion.

2 Data and methods

2.1 Remotely sensed leaf area index

We used the recently updated version (V1) of the leaf area
index dataset (LAI3g) developed by Zhu et al. (2013). It
was generated using an artificial neural network (ANN) and
the latest version (third generation) of the Global Inventory
Modeling and Mapping Studies group (GIMMS) Advanced
Very High Resolution Radiometer (AVHRR) normalized dif-
ference vegetation index (NDVI) data (NDVI3g). The lat-
ter have been corrected for sensor degradation, inter-sensor
differences, cloud cover, observational geometry effects due
to satellite drift, Rayleigh scattering, and stratospheric vol-
canic aerosols (Pinzon and Tucker, 2014). This dataset pro-
vides global and year-round LAI observations at 15 d (bi-
monthly) temporal resolution and 1/12◦ spatial resolution
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from July 1981 to December 2016. Currently, this is the only
available record of such length.

The quality of the previous version (V0) of the LAI3g
dataset was evaluated through direct comparisons with
ground measurements of LAI, indirectly with other satellite-
data-based LAI products, and also through statistical analy-
sis with climatic variables, such as temperature and precip-
itation variability (Zhu et al., 2013). The LAI3gV0 dataset
(and the related fraction of vegetation-absorbed photosyn-
thetically active radiation dataset) has been widely used in
various studies (Anav et al., 2013; Piao et al., 2014; Poulter
et al., 2014; Forkel et al., 2016; Zhu et al., 2016; Mao et al.,
2016; Mahowald et al., 2016; Keenan et al., 2016). The new
version, LAI3gV1, used in our study is an update of that ear-
lier version.

We also utilized a more reliable but shorter dataset
from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) aboard the NASA Terra satellite (Yan et al.,
2016a, b). These data are well calibrated, cloud-screened,
and corrected for atmospheric effects, especially tropo-
spheric aerosols. The sensor platform is regularly adjusted
to maintain a precise orbit. All algorithms, including the
LAI algorithm, are physics based, well tested, and currently
producing sixth-generation datasets. The dataset provides
global and year-round LAI observations at 16 d (bimonthly)
temporal resolution and 1/20◦ spatial resolution from 2000
to 2016.

Leaf area index is defined as the one-sided green leaf area
per unit ground area in broadleaf canopies and as one-half the
green needle surface area in needleleaf canopies in both ob-
servational and CMIP5 simulation datasets. It is expressed in
square meters and green leaf area per square meter of ground
area. Leaf area changes can be represented either by changes
in annual maximum LAI (LAImax; Cook and Pau, 2013), or
growing season average LAI. In this study, we use the former
because of its ease and unambiguity, as the latter requires
quantifying the start and end dates of the growing season,
something that is difficult to do accurately in NHLs (Park
et al., 2016) with the low-resolution model data. Further,
LAImax is less influenced by cloudiness and noise; accord-
ingly, it is most useful in investigations of long-term greening
and browning trends. The drawback of LAImax is the satura-
tion effect at high LAI values (Myneni et al., 2002). How-
ever, this is less of a problem in high-latitudinal ecosystems
that are less densely vegetated compared to tropical regions,
with LAImax values typically in the range of 2 to 3.

The bimonthly satellite datasets were merged to a monthly
temporal resolution by averaging the two composites in the
same month and bilinearly remapped to the resolution of the
applied reanalysis product (0.5◦× 0.5◦, CRU TS4.01).

2.2 Environmental driver variables

We use time series of temperature and CO2 to derive the
observed historical forcing (Sect. 2.4) and climatologies of

precipitation and temperature to calculate climatic regimes
(Fig. 2). Monthly averages of near-surface air temperature
and precipitation are from the latest version of the Cli-
matic Research Unit Time Series dataset (CRU TS4.01).
The global data are gridded to 0.5◦×0.5◦ resolution (Harris
et al., 2014). Global monthly means of atmospheric CO2 con-
centration are from the GLOBALVIEW-CO2 product (ob-
spack_co2_1_globalviewplus_v2.1_2016_09_02; for details
see https://doi.org/10.25925/20190520) provided by the Na-
tional Oceanic and Atmospheric Administration/Earth Sys-
tem Research Laboratory (NOAA/ESRL).

2.3 Earth system model simulations

We analyzed recent climate–carbon simulations of seven
ESMs participating in the fifth phase of the Coupled Model
Intercomparison Project, CMIP (Taylor et al., 2012). The
model-simulated data were obtained from the Earth System
Grid Federation, ESGF (https://esgf-data.dkrz.de/projects/
esgf-dkrz/, last access: 21 September 2018). Seven ESMs
provide output for the variables of interest (GPP, CO2, LAI,
and near-surface air temperature) for simulations titled es-
mHistorical, RCP4.5, RCP8.5, 1pctCO2, esmFixClim1, and
esmFdbk1. It is the same set of models analyzed in Wenzel
et al. (2016) and Winkler et al. (2019). The individual model
setups and components are illustrated in more detail in vari-
ous studies, such as Arora et al. (2013), Wenzel et al. (2014),
Mahowald et al. (2016), and Winkler et al. (2019).

The esmHistorical simulation spanned the period 1850
to 2005 and was driven by observed conditions such as solar
forcing, emissions or concentrations of short-lived species,
natural and anthropogenic aerosols or their precursors, land
use, and anthropogenic and volcanic influences on atmo-
spheric composition. The models are forced by prescribed
anthropogenic CO2 emissions rather than atmospheric CO2
concentrations.

Several Representative Concentration Pathways (RCPs)
have been formulated describing different trajectories of
greenhouse gas emissions, air pollutant production, and land
use changes for the 21st century. These scenarios have
been designed based on projections of human population
growth, technological advancement, and societal responses
(van Vuuren et al., 2011; Taylor et al., 2012). We analyzed
simulations forced with specified concentrations of a high
emissions scenario (RCP8.5) and a medium mitigation sce-
nario (RCP4.5) reaching a radiative forcing level of 8.5 and
4.5 W m−2 at the end of the century, respectively. These sim-
ulations were initialized with the final state at the end of the
historical runs and spanned the period 2006 to 2100.

The 1pctCO2 simulation is an idealized fully coupled
carbon–climate simulation initialized from a steady state of
the preindustrial control run and atmospheric CO2 concen-
tration prescribed to increase 1 % yr−1 until a quadrupling
of the preindustrial level. The simulations esmFixClim and
esmFdbk aim to disentangle the two carbon cycle feedbacks
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Figure 2. Bar charts showing regression slopes of LAImax against atmospheric CO2 concentration for broad vegetation classes (a) (Olson
et al., 2001; Fritz et al., 2015), latitudinal bands (b), and climate regimes (c). The class “Other” includes deserts, mangroves, barren and
urban land, snow and ice, and permanent wetlands. The climatic boundaries are defined as follows: cold: < 10 ◦C; warm: > 10 and < 25 ◦C;
hot: > 25 ◦C; dry: < 500 mm a−1; wet: > 500 and < 1000 mm a−1; humid: > 1000 mm a−1. Sensitivities evaluated from data from two
satellite-borne sensors are shown, AVHRR (1982–2016; Pinzon and Tucker, 2014) and MODIS (2000–2016; Yan et al., 2016a, b). Gray bars
indicate the standard error of the best linear fit.

in response to rising CO2 analogous to the 1pctCO2 setup.
In esmFixClim CO2-induced climate change is suppressed
(i.e., the radiation transfer model has a constant preindustrial
CO2 level), while the carbon cycle responds to increasing
CO2 concentration (vice versa for esmFdbk; Taylor et al.,
2012; Arora et al., 2013).

2.4 Estimation of greening sensitivities

We largely follow the methodology detailed in Winkler et al.
(2019). For both model and observational data, the two-
dimensional global fields of LAI and the driver variables
are cropped according to different classification schemes
(namely climatic regimes, latitudinal bands, and vegetation
classes; Olson et al., 2001; Fritz et al., 2015). The aggregated
values are area-weighted, averaged in space, and temporally
reduced to annual estimates dependent on the variable: an-
nual maximum LAI, annual average atmospheric CO2 con-
centration, and growing degree days (GDD0, yearly accu-
mulated temperature of days with near-surface air tempera-
ture > 0 ◦C).

We use a standard linear regression model to derive the
historical greening sensitivities in models and observations
alike (for details see the Methods section entitled “Estima-
tion of historical LAImax sensitivity” in Winkler et al., 2019).
On the global scale, LAImax is assumed to be a linear func-
tion of atmospheric CO2 concentration. For the temperature-
limited high northern latitudes, we also have to account for

warming and include temperature as an additional driver. We
do this using GDD0. Through a principal component anal-
ysis (PCA) of CO2 and GDD0 we avoid redundancy from
colinearity between the two driver variables but retain their
underlying time trend and interannual variability (for details
see the Methods section entitled “Dimension reduction using
principal component analysis” in Winkler et al., 2019). In
particular, the PCA is performed on large-scale aggregated
values as well as on a pixel level to investigate spatial varia-
tions. We only retain the first principal component (denoted
ω), which explains a large fraction of the variance in models
and observations (for more details see Table 1 in the Sup-
plement in Winkler et al., 2019). Figure A1 depicts the tem-
poral development of CO2 and GDD0 as well as their prin-
cipal component ω for observations. For the NHLs, LAImax
is then formulated as a linear function of the proxy driver
time series ω (Winkler et al., 2019). The best-fit gradients
and associated standard errors of the linear regression model
represent the LAImax sensitivities, or greening sensitivities,
and their uncertainty estimates, respectively.

3 Results and discussion

There are two parts to the EC methodology (Fig. 1) – a statis-
tically robust relationship between modeled matching pairs
of predictor–predictand values and an observed value of the
predictor. The predictors are from a representative historical
period. The predictands are modeled changes in a variable
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of interest at another forcing state of the system (e.g., poten-
tial future). The projection of the observed predictor on the
modeled relation yields a constrained value of the predictand.
A causal basis has to buttress the predictor–predictand rela-
tionship or the EC method may be spurious. For example,
a meaningful coupling between concurrent changes in GPP
and LAImax with an increasing atmospheric CO2 concentra-
tion underpins our specific case study in the NHLs; i.e., some
of the enhanced GPP due to the rising CO2 concentration is
invested in additional green leaves by plants (Myneni et al.,
1997a; Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016;
Winkler et al., 2019). Figure 1 of the Supplement in Win-
kler et al. (2019) illustrates the specifics of the causal link
underlying this predictor–predictand relationship. This tight
coupling ensures an approximately constant ratio of predic-
tand to predictor across the models within the ensemble, thus
setting up the potential for deriving an EC estimate. Uncer-
tainty in the constrained estimate depends on the observed
predictor and modeled relationship, aside from the goodness
of fit of the latter (Fig. 1). These are detailed below.

3.1 Uncertainty in observed predictor due to data
source

We investigate observational uncertainty using LAI data
from two different sources, AVHRR (1/12◦) and MODIS
(1/20◦), and spatially aggregating these over broad vegeta-
tion classes, latitudinal bands, and climatic regimes. The ob-
served large-scale LAImax sensitivities to CO2 forcing are
always positive (greening) irrespective of the source data
and the method of aggregation (Fig. 2, Table 1). Overall,
MODIS-based estimates have higher uncertainty because of
the shorter length of the data record (17 years). The failure
to reliably estimate sensitivities in tropical forests (also in
the latitudinal band 30◦ S–30◦ N and in hot, wet, and hu-
mid climatic regimes; see Table 1 and Fig. 2) is due to the
saturation of optical remote sensing data over dense vegeta-
tion (LAImax > 5) and problems associated with high aerosol
content and ubiquitous cloudiness. In other regions, the es-
timated sensitivities are comparable across sensors and ag-
gregation schemes, in particular in the high-latitudinal band
(> 60◦ N–S; AVHRR: (3.4± 0.5)× 10−3, MODIS: (3.6±
0.9)× 10−3 m2 m−2 ppm−1 CO2). This aligns with previous
studies reporting a net increase in green leaf area across the
high latitudes during the observational period (Myneni et al.,
1997b; Zhu et al., 2016; Forkel et al., 2016).

This analysis illustrates the applicability and limitations
of using observed greening sensitivities to CO2 forcing as a
constraint on photosynthetic production. For example, data
from both AVHRR and MODIS sensors provide a compara-
ble estimate of greening sensitivity in the colder high lati-
tudes (boreal forests and tundra vegetation classes; Winkler
et al., 2019). In the lower latitudes, however, the discrepan-
cies among the two sensors indicate a considerable observa-

Table 1. Coefficients of determination (R2) of LAImax sensitivity
to CO2 for different large-scale aggregated regions. Data are from
two optical remote sensors of different time length, AVHRR (1982–
2016) and MODIS (2000–2016). Asterisks denote nonsignificant
values: ∗∗ p > 0.1; ∗ p > 0.05.

Correlation coefficient R2 AVHRR MODIS

Biomes

Boreal forests 0.49 0.58
Temperate forests 0.47 0.81
Tropical forests 0.41 0.06∗∗

Grasslands 0.75 0.83
Croplands 0.75 0.8
Other 0.35 0.2∗

Latitudinal bands

> 60◦ N–S 0.51 0.61
30–60◦ N–S 0.67 0.83
30◦ S–30◦ N 0.65 0.26

Climate space

Cold dry 0.29 0.27
Cold wet 0.49 0.4
Cold humid 0.33 0.21∗

Warm dry 0.33 0.36
Warm wet 0.37 0.18∗

Warm humid 0.25 0.12∗∗

Hot dry 0.08∗ 0.08∗∗

Hot wet 0.15 0.00∗∗

Hot humid 0.13 0.01∗∗

tional uncertainty and thus no robust estimation of the ob-
served predictor is possible.

3.2 Uncertainty due to spatial aggregation

We focus further analyses on the NHL region (> 60◦ N;
Fig. 2b) for two reasons. First, the direct human impact
(i.e., land management) can be neglected in the high lati-
tudes, and thus we can assume that the observed changes
reflect the response of natural ecosystems. Second, the ob-
servational evidence of increased plant productivity in recent
decades is well established (e.g., Sect. 3.1; Keeling et al.,
1996; Myneni et al., 1997a; Graven et al., 2013; Forkel et al.,
2016; Wenzel et al., 2016) – an important requisite in defin-
ing a robust predictor.

In addition to the physiological effect of CO2, warming
also plays a key role in controlling plant productivity in NHL
temperature-limited ecosystems and thus vegetation green-
ness. To avoid redundancy from colinearity between CO2 and
GDD0, we reduce dimensionality by performing a principal
component analysis of the two driver variables (Sect. 2.4).
The resulting first principal component explains most of the
variance and retains the trend and year-to-year fluctuations
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in both CO2 and GDD0. Therefore, we obtain a proxy driver
(hereafter denoted ω) that represents the overall forcing sig-
nal causing observed vegetation greenness changes in NHLs
(Fig. A1). Accordingly, greening sensitivity for the entire
NHL area is derived as a response to ω, the combined forc-
ing signal of rising CO2 and warming. This procedure also
enables better comparability between observations and mod-
els because varying strengths of the physiological and ra-
diative effects of CO2 among models are taken into account
(Sect. 3.3–3.5).

The vegetated landscape in the NHL region is heteroge-
neous, with boreal forests in the south, vast tundra grasslands
to the north, and shrublands in between. The species within
each of these broad vegetation classes respond differently to
changes in key environmental factors. Even within a species,
such responses might vary due to different boundary condi-
tions, such as topography, soil fertility, and micrometeoro-
logical conditions. How this fine-scale variation in greening
sensitivity impacts the aggregated value is assessed below.

The distribution of greening sensitivities from all NHL
pixels is slightly skewed towards the positive (blue his-
togram). The mean value of this distribution (blue dashed
line) is comparable to the sensitivity estimate derived from
the spatially averaged NHL time series (dashed yellow line;
Fig. 3). Based on the Mann–Kendall test (p > 0.1), over half
of the pixels (54 %) show positive statistically significant
trends (greening), while about 10 % show browning trends
(possibly due to disturbances; Goetz et al., 2005). The distri-
bution of these statistically significant sensitivities (red his-
togram) therefore has two modes, a weak browning and a
dominant greening mode, resulting in a substantially higher
mean value (red dashed line) in comparison to the spatially
averaged estimate (dashed yellow line; Fig. 3). Thus, by
taking into account the remaining 36 % of nonsignificantly
changing pixels (as in the NHL spatially averaged estimate),
an additional source of uncertainty is possibly introduced.
The mean sensitivity value is, of course, higher when only
pixels showing a greening trend are considered in the anal-
ysis (green dashed line; Fig. 3). These are the only areas in
NHLs that actually show a large increase in plant productiv-
ity and consequently significant changes in leaf area.

The model output of several ESMs (CMIP5) reveal similar
pixel-level variation in both the predictor (LAImax to ω, his-
torical simulation; Sect. 2.3) and associated changes in the
predictand (GPP, 1pctCO2; Sect. 2.3), although ESMs oper-
ate on much coarser resolution (Fig. A2; see also Anav et al.,
2013, 2015). Due to the coupling of the predictor and pre-
dictand, the distribution of pixels with significant changes is
approximately the same for the two variables (Fig. A2). Ac-
cordingly, averaging the equally distributed estimates likely
does not affect the predictor–predictand relationship in the
model ensemble (Fig. 1). Consequently, if all spatial gridded
data arrays are consistently processed to spatially aggregated
estimates, each predictand and predictor (observed and mod-
eled) estimate contains a coherent component of spatial vari-

Figure 3. Histograms and associated probability density functions
(Gaussian kernel density estimation) of observed LAImax sensi-
tivity to ω at pixel scale for the northern high-latitudinal band
(> 60◦ N, data from AVHRR sensor). Blue depicts the distribution
of LAImax sensitivities of all pixels and red is for pixels with statis-
tically significant (Mann–Kendall test, p < 0.1) greening or brown-
ing trends (the dashed lines denote the respective mean value). The
green dashed line shows the mean value of “greening” pixels only,
whereas the dashed yellow line shows the LAImax sensitivity to ω

for the entire northern high-latitudinal belt.

ations. In other words, considering browning and nonsignif-
icant pixels results in a lower overall LAImax sensitivity in
NHLs, which in turn leads to a lower constrained estimate of
1GPP in NHLs. This is consistent with the underlying rela-
tionship between the predictor and predictand. On a related
note, Bracegirdle and Stephenson (2012a) suggest that this
source of error is not significantly dependent on the spatial
resolution when comparing model subsets from high to low
resolution.

The above analysis confirms that spatially averaged esti-
mates are approximations containing a random error compo-
nent due to the inclusion of data from insignificantly chang-
ing pixels and a systematic bias component from pixels of
reversed sign. This uncertainty is relevant to the EC method,
wherein the observed sensitivity decisively determines the
constrained estimate from the ensemble of ESM projections
(Kwiatkowski et al., 2017; Winkler et al., 2019). However, if
spatial variations are treated consistently as an inherent com-
ponent of observations and models, the EC method is only
slightly susceptible to this source of uncertainty.

3.3 Uncertainty due to temporal variations

We rely on long-term CMIP5 ESM simulations covering the
historical period 1850 to 2005 (Sect. 2.3) to assess the tem-
poral variation in the predictor variable because of the short-
ness of the observational record. Three representative models
(CESM1-BGC, MIROC-ESM, and HadGEM2-ES) spanning
the full range of NHL greening sensitivities in the CMIP5
ensemble (Winkler et al., 2019) are selected for this analysis.
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Figure 4. Temporal variation of LAImax sensitivity to ω in three
selected CMIP5 models spanning the full range from low-end
(CESM1-BGC, a), to closest to observations (MIROC-ESM, b), to
high-end (HadGEM2-ES, c). The colored lines show LAImax sen-
sitivity variations for moving windows of varying length: 15 (blue),
30 (green), and 45 (red) years over the historical period from 1860
to 2005.

For each model, LAImax sensitivity to ω in moving windows
of different lengths is evaluated (15, 30, and 45 years; Figs. 4
and A3). The analysis reveals two crucial aspects that high-
light how temporal variations impair the comparability of the
predictor variable between models and observations – an es-
sential component of the EC approach.

First, the window locations of modeled and observed pre-
dictor variables have to match. If the forcing in the simu-
lations is low, for example in the second half of the 19th
century when the CO2 concentration was increasing slowly,
interannual variability dominates and LAImax sensitivity can-
not be accurately estimated irrespective of the window length
(Figs. 4 and A3). With increasing forcing over time (rising
yearly rate of CO2 emissions and, consequently, the concen-
tration), the signal-to-noise ratio increases and LAImax sen-
sitivity to ω estimation stabilizes, for example in the second
half of the 20th century. Therefore, LAImax sensitivities es-
timated at different temporal locations result in noncompa-
rable values and eventually a false constrained estimate (de-
tails in Sect. 3.4). As an example, modeled sensitivities based
on a 30-year window centered on the year 1900, when the
CO2 level increased by 10 ppm, and observed sensitivity es-
timated from a 30-year window centered on the year 2000,
when the CO2 level increased by 55 ppm, describe different
states of the system and therefore should not be contrasted in
the EC method.

Second, in addition to the temporal location, window
lengths also have to match between observations and mod-
els. For all three models, sensitivities estimated from 15-year
chunks show high variability, and thus a 15-year record is
perhaps too short to obtain robust estimates. The LAImax sen-
sitivity estimation becomes more stable with strengthening
forcing and increasing window length (Figs. 4 and A3). As a
consequence, using short-term observed sensitivity as a con-
straint on long-term model projections results in an incorrect
EC estimate. Hence, the MODIS sensor record is, on the one
hand, too short and does not, on the other hand, overlap tem-
porally with the historical CMIP5 forcing. Therefore, it does
not provide a robust predictor in this EC study.

3.4 Level and time rate of CO2 forcing

The EC method raises an obvious question – does it not im-
plicitly assume that the key operative mechanisms underpin-
ning the EC relation remain unchanged because a future sys-
tem state is being predicted based on its past behavior? To be
specific, we are attempting to predict GPP at a future point
in time based on greening sensitivity inferred from the past.
Does this not require the assumption that the key underlying
relationship that makes this prediction possible, namely a ro-
bust coupling between contemporaneous changes in GPP and
LAImax, remains unchanged from the past to the future? To
address this question, we resort to the CMIP5 idealized sim-
ulation (1pctCO2), wherein atmospheric CO2 concentration
increases 1 % annually, starting from a preindustrial level of
284 ppm until a quadruple of this value is reached (Sect. 2.3).
We limit the analysis to the three models (CESM1-BGC,
MIROC-ESM, and HadGEM2-ES) that bracket the full range
of GPP enhancement and LAImax sensitivity in the original
seven-ESM ensemble (Winkler et al., 2019).

The relationship between simultaneous changes in GPP
and LAImax remains linear for all CMIP5 models in the range
1×CO2 to 2×CO2 (Figs. 5 and A4, Table 2). With concen-
tration increasing beyond 2×CO2, all models show a weak-
ening correlation (R2; Table 2) and decreasing slope (b; Ta-
ble 2) of this relationship (Figs. 5 and A4), suggesting a sat-
urating rate of allocation of additional GPP to new leaves at
higher levels of CO2. Consequently, LAImax sensitivity to in-
creasing CO2 and associated warming decreases. At and over
4×CO2 (1140 ppm), a level unlikely to be seen in the near
future, there appears to be no relationship between 1GPP
and 1LAImax in some models. This raises the question of to
what extent the weakening of the relationship between the
predictor and predictand in each model at higher CO2 con-
centrations affects the EC analysis (Fig. 1). To shed light on
this matter, we perform the following thought experiment.

Understanding the relationship and interplay between
forcing (increasing CO2 concentration), the predictor
(LAImax sensitivity), and the predictand (1GPP) is key to
evaluating the EC method. We conceive four possible sce-
narios of how the system might behave with increasing forc-
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Table 2. Slopes (b) and coefficients of determination (R2) for regression between changes in LAImax against changes in annual mean GPP
for the NHLs at different atmospheric CO2 levels in all available CMIP5 models (1pctCO2 simulation). Asterisks denote nonsignificant
values: ∗∗ p > 0.1; ∗ p > 0.05.

Correlation details > 2×CO2 &
< 2×CO2 < 3×CO2 > 3×CO2

b R2 b R2 b R2

MIROC-ESM 0.23 0.97 0.16 0.89 0.08 0.63
CESM1-BGC 0.45 0.93 0.36 0.82 0.27 0.62
GFDL-ESM2M 0.37 0.89 0.04 0.07∗∗ 0.01 0.12∗∗

CanESM2 0.22 0.95 0.19 0.83 0.17 0.67
HadGEM2-ES 0.13 0.99 0.08 0.96 0.06 0.78
MPI-ESM-LR 0.13 0.94 0.09 0.78 0.04 0.51
NorESM1-ME 0.26 0.94 0.2 0.77 0.09 0.27

ing. For simplicity, we assume a linearly increasing CO2 con-
centration; LAI represents LAImax, and GPP refers to its an-
nual value below (Fig. 6). The four scenarios are as follows:
all linear, all nonlinear (saturation), and two mixed linear–
nonlinear cases (Table A1). We emulate a multi-model en-
semble by applying different random parameterizations for
the linear and saturation (the hyperbolic tangent function) re-
sponses of GPP to CO2 and of LAI to GPP. One of these real-
izations is assumed to represent pseudo observations (dashed
lines, Fig. 6). We discuss one case in detail for illustrative
purposes (no. 3; Table A1).

In scenario 3, 1GPP increases linearly with increasing
CO2 (Fig. 6a), while 1LAI / 1GPP saturates (Fig. 6b). The
LAI sensitivity to CO2 weakens with increasing forcing
(Fig. 6c) as a response to the saturation of GPP allocation
to leaf area. We derive LAI sensitivities to CO2 for three dif-
ferent periods (“past periods” in Fig. 6c) to constrain 1GPP
at a much higher CO2 level (“projected period” in Fig. 6a).
Next, we apply the EC method on these pseudo projections
of 1GPP, relying on LAI sensitivities derived from the three
past periods (Fig. 6d). The EC method is applicable even
at a low forcing level (past period 1) in this simplified sce-
nario because we neglect the stochastic internal variability of
the system. The slope of the emergent linear relationship in-
creases (Fig. 6d) as modeled LAI sensitivities decrease with
a rising CO2 concentration (Fig. 6c). The observational con-
straint on future 1GPP, however, remains nearly the same
because pseudo-observed LAI sensitivity also weakens at
higher CO2 levels (dashed lines, Fig. 6c and d). Thus, the
three EC estimates of 1GPP are approximately identical
(Fig. 6d) and independent of the forcing level during past pe-
riods. With intensified forcing, the relationship between the
predictor and predictand remains linear within the model en-
semble, although their relationship becomes nonlinear within
each model and, crucially, in reality as well. In other words,
as long as the models agree on the occurrence and strength of
saturation for given forcing, i.e., the dynamics of the system,
the inter-model variations of the predictor and predictand re-

late linearly within the ensemble (Fig. 6). The same behavior
is also seen in the other three scenarios (Table A1; Figs. A5
and A6).

Nevertheless, with ever increasing forcing and associated
steepening of the emergent linear relationship, the LAI sen-
sitivity loses its explanatory power at some point because the
linear relationship eventually lies within the observational
uncertainty and no meaningful constraint can be derived.
This and disagreement between models on system dynam-
ics are ultimate limits of the EC method. Interestingly, we
find that all CMIP5 models agree on the occurrence of satu-
ration but slightly disagree on the strength of saturation for
given CO2 forcing (Figs. 5 and A4, and Table 2). Further, we
find that the “all nonlinear” scenario best describes the dy-
namics of the system in the forcing range from 1×CO2 to
4×CO2. However, the saturation of LAI to GPP happens at
a lower CO2 level than saturation of GPP to CO2. Still, infer-
ences from the interpretation of Case 3 (Fig. 6) are equally
applicable.

Results from the above thought experiment also high-
light the importance of matching window locations and
lengths between models and observations, as discussed ear-
lier (Sect. 3.3). For instance, taking LAI sensitivity from past
period 2 (green dashed line, Fig. 6d) as an observational
constraint on the multi-model linear relationship based on
past period 3 (red solid line, Fig. 6d) results in a significant
overestimation of constrained 1GPP (intersection of the two
lines, Fig. 6d).

The above analysis confirms that the constrained GPP es-
timate at one future period (e.g., 2×CO2) is nearly inde-
pendent of the past periods from which the observational
sensitivities are derived. Now, we evaluate the EC method
wherein the sensitivity from one past period is used to obtain
constrained GPP estimates at different periods in a potential
future, i.e., progressively farther down the timeline of a CO2-
enriched world. We utilize the greening sensitivity derived
from 35 years of observed LAImax data (AVHRR; Sect. 2.1)
and apply the EC method to CMIP5 1pctCO2 simulations.
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Figure 5. Correlation of 1LAImax and 1GPP with increasing CO2
forcing, starting from a preindustrial concentration of 280 ppm (1×
CO2) to 4×CO2 (CMIP5 1pctCO2 simulations). Results are shown
for three selected CMIP5 models spanning the full range of LAImax
sensitivity to ω: low-end: CESM1-BGC (a), closest to observations:
MIROC-ESM (b), and high-end: HadGEM2-ES (c). Blue colored
dots show the relation between 1×CO2 and 2×CO2, green colored
dots between 2×CO2 and 3×CO2, and red colored dots between
3×CO2 and 4×CO2. The respective colored lines represent the
best linear fit through those dots and the shading represents the 95 %
confidence interval.

The sensitivities in this case are due to forcing from both the
CO2 increase and associated warming during the observa-
tional period (Sect. 2.4). We seek constrained GPP estimates
for the NHLs at different CO2 levels (2×CO2, 3×CO2, and
4×CO2).

Winkler et al. (2019) previously reported a strong linear
relationship between modeled contemporaneous changes in

LAImax and GPP arising from the combined radiative and
physiological effects of CO2 enrichment until 2×CO2 in
the CMIP5 ensemble. As a result, models with low LAImax
sensitivity to ω project lower 1GPP for a given increment
of CO2 concentration and vice versa. Thus, the large varia-
tion in modeled historical LAImax sensitivities linearly maps
to the variation in 1GPP at 2×CO2 (blue line, Fig. 7a;
Winkler et al., 2019). At higher levels, such as 3×CO2
(green line, R2

= 0.93) and 4×CO2 (red line, R2
= 0.88),

this linear relationship within the model ensemble, while
still present, weakens (Fig. 7a; Table 3). This is because the
CMIP5 models do not agree on the strength of the satura-
tion effect at higher CO2 levels (Figs. 5 and A4). The in-
crement in constrained GPP estimates for successive equal
increments of CO2 decreases due to the saturation effect in
all CMIP5 models (dashed horizontal lines, Fig. 7a). For ex-
ample, the change in GPP between 3×CO2 and 4×CO2
(1GPP∼ 1.06 Pg C yr−1; Table 3) is much lower than be-
tween 2×CO2 and 3×CO2 (1GPP∼ 2.34 Pg C yr−1; Ta-
ble 3).

We have thus far focused on the magnitude of CO2 con-
centration change and not on the time rate of this change.
For example, a given amount of change in CO2 concentra-
tion, say 200 ppm, can be realized over different time pe-
riods, say over 100 or 150 years. The problem of varying
rates of CO2 concentration change is implicitly encountered
when ESMs are executed under different forcing scenar-
ios, such as RCPs (Sect. 2.3). A question then arises as to
whether the constrained predictand estimate is independent
of the time rate of CO2 concentration change and depen-
dent only on the magnitude of CO2 concentration change.
To investigate this aspect of forcing, we extract GPP esti-
mates at the same CO2 concentration (535 ppm; final con-
centration in RCP4.5) from three simulations of different
forcing rates and calculate the difference relative to a com-
mon initial CO2 concentration (380 ppm; initial concentra-
tion of RCP scenarios). Hence, the magnitude of the forc-
ing is the same but applied over different durations (RCP4.5:
∼ 90 years, RCP8.5: ∼ 45 years, and 1pctCO2: ∼ 30 years).
A clear majority of the CMIP5 models show substantial dif-
ferences in 1GPP between the different pathways of CO2
forcing. In general, GPP changes are higher for lower time
rates of CO2 forcing, i.e., forcing over longer time peri-
ods. As a consequence, the EC estimates of 1GPP for the
same increase in CO2 concentration are scenario dependent
(Fig. 7b; Table 3) – a counterintuitive result. For instance,
in the RCP4.5 scenario (which is characterized by a lower
rate of CO2 increase) an increment of 155 ppm CO2 yields
a GPP enhancement of ∼ 2.84 Pg C yr−1 (see Table 3). This
GPP enhancement is ∼ 39 % and ∼ 20 % larger than in the
1pctCO2 run (∼ 2.05 Pg C yr−1; Table 3) and the RCP8.5
(∼ 2.38 Pg C yr−1; Table 3) scenario, respectively, for the
same total increase in CO2 concentration. Both these sce-
narios are characterized by a faster rate of CO2 increase than
RCP4.5. This analysis suggests that the vegetation response
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Figure 6. Thought experiment to examine the applicability of EC analysis under the assumption of an idealized linear–nonlinear behavior of
the system (Case 3, Table A1). (a) Changes in GPP relate linearly to changes in CO2 concentration. The yellow band marks the projection
period of interest, i.e., the period of CO2 concentration from x+ 41 to x+ 51. (b) The increment in LAI with increasing GPP is assumed
to decrease with rising CO2 concentration (described by a hyperbolic tangent function). The parameterization in the linear and nonlinear
functions for pseudo observations (dashed black line) as well as models (solid gray lines) is determined randomly for each model. (c) The
diagnostic variable, LAI sensitivity to CO2, decreases with increasing CO2 as a consequence of the nonlinear relation between 1GPP and
1LAI. The colored bands indicate three “past” periods from x to x+1 (blue), x+1 to x+21 (green), and x+21 to x+31 (red). (d) Linear
relationships among the pseudo model ensembles (Ensemble LR, colored lines) between LAI sensitivities to CO2 of the three past periods
and 1GPP from the projected period. Colored dots mark different models and the dashed lines represent associated pseudo observations for
the respective historical period. The solid yellow line depicts the constant EC on projected 1GPP irrespective of the past period.

to rising CO2 is pathway dependent, at least in the NHLs.
One of the reasons for this could be species compositional
changes in scenarios of low forcing rates, i.e., over longer
time frames. This novel result, however, requires a separate
in-depth study.

3.5 Effects of CO2 forcing

A higher concentration of CO2 in the atmosphere stimulates
plant productivity through fertilization and radiative effects
(Nemani et al., 2003; Leakey et al., 2009; Arora et al., 2011;
Goll et al., 2017). The two effects can be disentangled in
the model world by conducting simulations in a “CO2 fer-
tilization effect only” (esmFixClim1) and a “radiative effect
only” (esmFdbk1) setup (Sect. 2.3). These are termed below
as idealized model simulations. We investigate here whether
historical runs and observations, which include both effects,

can be used to constrain GPP changes in idealized CMIP5
simulations (as in Wenzel et al., 2016).

We find strong linear relationships between historical
LAImax sensitivity and 1GPP for 2×CO2 in both ide-
alized setups (esmFixClim1: R2

= 0.92, esmFdbk1: R2
=

0.98; Table 3, Fig. 7c). Consequently, this linear relation-
ship is also pronounced for calculated sums of both effects
for each model (esmFixClim1+ esmFdbk1: R2

= 0.95; Ta-
ble 3, Fig. 7c). This suggests that the two effects act addi-
tively on plant productivity, and thus each effect can be sim-
ply expressed in terms of a scaling factor of the total GPP
enhancement. Hence, the application of the EC method on
idealized simulations using real-world observations is con-
ceptually feasible.

Interestingly, the two effects contribute about the
same to the general increase in GPP at 2×CO2
(esmFixClim1: 1GPP∼ 1.35 Pg C yr−1, esmFdbk1:
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Table 3. Coefficients of determination (R2) of the emergent linear relationships in Fig. 7 (asterisks denote nonsignificant values: ∗∗ p > 0.1;
∗ p > 0.05). ECs on 1GPP (upper and lower bound of uncertainty in square brackets) for different atmospheric CO2 levels and fully coupled
as well as idealized setups. The rightmost column shows the increase in 1GPP for an increment of 1×CO2. The lowermost section compares
EC estimates of 1GPP for equivalent changes in CO2 concentration (CO2 rises from 380 to 535 ppm) but for different time rates.

R2 EC 1GPP EC 1GPP for
estimate 11×CO2

(Pg C yr−1) (Pg C yr−1)

2×CO2

Fully coupled (1pctCO2) 0.96 3.36 [3.15, 3.56] –
CO2 fertilization only (esmFixClim1) 0.88 1.35 [1.29, 1.62] –
Radiative effect only (esmFdbk1) 0.94 1.38 [1.13, 1.51] –
Sum of both effects (esmFixClim1+ esmFdbk1) 0.95 2.74 [2.6, 2.9] –

3×CO2

Fully coupled (1pctCO2) 0.93 5.7 [5.26, 6.16] 2.34
CO2 fertilization only (esmFixClim1) 0.92 2.15 [2.02, 2.37] 0.79
Radiative effect only (esmFdbk1) 0.98 2.53 [2.3, 2.66] 1.15
Sum of both effects (esmFixClim1+ esmFdbk1) 0.96 4.68 [4.38, 4.97] 1.94

4×CO2

Fully coupled (1pctCO2) 0.88 6.76 [6.08, 7.53] 1.06
CO2 fertilization only (esmFixClim1) 0.88 2.42 [2.23, 2.74] 0.28
Radiative effect only (esmFdbk1) 0.97 3.06 [2.83, 3.2] 0.53
Sum of both effects (esmFixClim1+ esmFdbk1) 0.95 5.49 [5.09, 5.85] 0.81

380–535 ppm CO2

Slow increase in CO2 (RCP4.5) 0.93 2.84 [2.54, 3.08] –
Medium–fast increase in CO2 (RCP8.5) 0.96 2.38 [2.18, 2.55] –
Rapid increase in CO2 (1pctCO2) 0.96 2.05 [1.94, 2.16] –

1GPP∼ 1.38 Pg C yr−1; Table 3, Fig. 7c). At higher
concentrations, such as 3×CO2 and 4×CO2, the enhance-
ment in GPP saturates in both idealized setups. However,
the radiative effect becomes dominant relative to the CO2
fertilization effect when CO2 concentration exceeds 2×CO2
(e.g., at 4×CO2 esmFixClim1: 1GPP∼ 2.42 Pg C yr−1,
esmFdbk1: 1GPP∼ 3.06 Pg C yr−1; Table 3). Therefore, we
can expect that at some point in the future, NHL photosyn-
thetic carbon fixation will benefit more from climate change
(e.g., warming) than from the fertilizing effect of CO2.

3.6 Uncertainties in the multi-model ensemble

Besides the methodological sources of uncertainty discussed
above, the estimate of an EC may also be deficient due to in-
accurate assumptions about the model ensemble. First, pos-
sible common systematic errors in a multi-model ensemble
(i.e., the entire ensemble misses an unknown process that
plays a key role in a high CO2 world) are implicitly omit-
ted in the EC approach; however, they could cause a gen-
eral overestimation or underestimation of the constrained
value (Bracegirdle and Stephenson, 2012b; Stephenson et al.,
2012). Second, the set of forcing variables for historical sim-

ulations may be incomplete (i.e., not yet identified drivers of
observed changes), and thus the comparability of observa-
tions and model simulations is limited (Flato et al., 2013).
Third, the EC method can be overly sensitive to individual
models of the ensemble, which has a bearing on the robust-
ness of the constrained value (Bracegirdle and Stephenson,
2012b). Bracegirdle and Stephenson (2012b) proposed a di-
agnostic metric (Cook’s distance) to test an ensemble for in-
fluential models. Fourth, the predictand–predictor relation-
ship not only has to rely on a physical but also on a logical
connection within the model ensemble. For instance, Wen-
zel et al. (2016) established a linear relationship between rel-
ative changes in the predictand taking the initial state into
account (changes in GPP for a doubling of CO2 relative to
the initial preindustrial state) and a predictor neglecting the
initial state (historical sensitivity of CO2 amplitude to rising
CO2). This statistical relationship can be spurious because
the model skills in simulating an accurate initial state and
a plausible sensitivity to a forcing are not connected. These
issues are to be contemplated when establishing an EC esti-
mate and evaluating its robustness.
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Figure 7. Linear relationships between the historical sensitivity of
LAImax to ω and an absolute increase in GPP at different levels (a),
different time rates (b), and the effects of rising CO2 (c). The solid
black line depicts the observational sensitivity including the stan-
dard error (gray shading). Each CMIP5 model is represented by
a distinct marker (legend at the top). The colored lines show the
best linear fits including the 68 % confidence interval estimated by
bootstrapping across the model ensemble. The colored dashed lines
indicate the derived constraints on 1GPP. (a) Absolute changes in
GPP at different levels of CO2: 2×CO2 (blue), 3×CO2 (green),
and 4×CO2 (red). (b) Absolute changes in GPP for a rising CO2
concentration from 380 to 535 ppm at different time rates: RCP4.5
(90-year, blue), RCP8.5 (45-year, green), and 1pctCO2 (30-year,
red). (c) Absolute changes in GPP due to the two disentangled ef-
fects of CO2 at 2×CO2 in idealized simulations: fertilization effect
(esmFixClim1, blue), radiative effect (esmFdbk1, green), and the
sum of both effects (red).

4 Conclusions

An in-depth analysis of the EC method is illustrated in this ar-
ticle through its application to projections of change in NHL
photosynthesis under conditions of a rising atmospheric CO2
concentration. Key conclusions highlighting the functional-
ity of the EC method are presented below.

The importance of how the observational predictor is ob-
tained cannot be emphasized enough because the EC method
is particularly sensitive to observational uncertainty. The sin-
gle observational estimate essentially determines the EC,
whereas the emergent linear relationship is established based
on a collection of multi-model estimates (each model gets
“one vote”; however, some models might be more influen-
tial than others; Bracegirdle and Stephenson, 2012b). Hence,
the observational uncertainty has a much larger bearing on
the EC than the uncertainty of each individual model. To
overcome this source of uncertainty, various meaningful ob-
servations should be taken into consideration when establish-
ing the observed predictor.

Spatially aggregating observations and model output at
different resolutions in the EC method constitutes another
source of uncertainty. Predictors and predictands expressed
as regional estimates (e.g., area-weighted mean of the NHLs)
are approximations of complex fine-scale processes. Aggre-
gation will inevitably introduce a random error component
due to the inclusion of estimates from areas where the pre-
dictor does not change or a systematic bias from areas where
the predictor has a reversed sign. Thus, the spatially aggre-
gated variables are meaningful only if most of the region is
in agreement about the response to CO2 forcing (e.g., more
than half of the NHLs is greening with rising CO2). However,
we find that the source of uncertainty related to spatial aggre-
gation is of minor importance as long as spatial variations in
observations and model simulations are treated consistently.

A large source of uncertainty is associated with the tem-
poral variability of the predictor variable when comparing
models and observations. Establishing a robust predictor re-
quires evaluating temporal window lengths of sufficient du-
ration (approximately 30 years) and their locations along the
forcing timeline. Both window length and location should
match between models and observations in the EC method.
For example, the analysis in Wenzel et al. (2016) might have
yielded different results and conclusions if the model and ob-
servational predictor sensitivities were temporally matched.
We find that the relevance of window length decreases with
increasing and accelerating forcing, depending on the magni-
tude of the natural and/or internal variability (signal-to-noise
ratio) of the predictor variable.

The level, effect, and time rate of applied CO2 forcing can
have a bearing on the linear relationship between the predic-
tand and predictor variables (Fig. 1). In our case study, the
relationship underpinning the EC method, namely that be-
tween concurrent 1GPP and 1LAImax, changes nonlinearly
with an increasing forcing level (i.e., saturation with rising
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CO2 concentration). The EC method can still be applied be-
cause the CMIP5 models agree on the nonlinear behavior of
the system. However, at very high CO2 concentrations the
models diverge and this relation breaks down, at which point
the EC method fails. The two dominant effects of a rising
CO2 concentration on vegetation, namely fertilization and ra-
diative effects, appear to be approximately additive in terms
of GPP enhancement to CO2 forcing in the NHLs. There-
fore, the EC method can be applied to constrain estimates of
GPP due to one, the other, or both of the effects. The models,
however, document a higher radiative effect than fertiliza-
tion at concentrations exceeding 2×CO2. Another intriguing
conclusion from our analysis is that the time rate of forcing
has an effect on GPP changes; that is, the projected GPP en-
hancement to CO2 forcing seems to be dependent on how
the forcing is applied over time, as in different scenarios or
RCPs. This aspect is presently not well understood and re-
quires further study.

The EC framework is widely promoted as observation-
based evaluation tool for climate projections, especially in
the context of the nascent CMIP6 ensemble (Eyring et al.,
2019; Hall et al., 2019). Previous EC studies, however, ex-
clusively focused on predictor–predictand combinations that
exhibit so-called existent ECs (Hall et al., 2019); i.e., the
predictor and predictand are found to relate linearly across
the ensemble. In the context of ESM evaluation, nonexis-
tent ECs, for which the predictor and predictand are found
to be unrelated in the ensemble, are equally important. Since
predictor and predictand variables are premised on our mech-
anistic process understanding, nonexistent ECs reveal a fun-
damental disagreement on the system dynamics among the
models. This study encourages researchers to scrutinize these
system dynamics in the predictor–predictand space and also
report such nonexistent, yet expected, ECs in order to ad-
vance model development and evaluation.

Across different disciplines each EC and its set of predic-
tors and predictands are unique to some extent and require
an individual detailed examination. In this article, we ad-
dressed general potential sources of uncertainty and limita-
tions in the EC method by means of a case study in carbon
cycle research. Thus, the illustrated results are qualitatively
transmissible to other sets of predictors and predictands and
are generally relevant in Earth system sciences.

Data availability. All data used in this study are available from
public databases or literature, which can be found with the refer-
ences provided in respective “Data and methods” section. Processed
data are available from the corresponding author upon request or by
contacting Carola Kauhs at carola.kauhs@mpimet.mpg.de.
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Appendix A

Figure A1. Standardized temporal anomalies of annual averaged atmospheric CO2 concentration (blue solid line), area-weighted averaged
GDD0 for NHLs (green solid line), and their leading principal component ω (red dashed line) in observations.

Figure A2. Similar pixel distribution of the predictor and predictand in each model, except HadGEM2-ES. Histograms and associated
probability density functions (Gaussian kernel density estimation) of LAI sensitivity to ω (red, left y axis, historical simulations) and temporal
trends in GPP (blue, right y axis, 1pctCO2, until 2×CO2) for NHLs are shown for all CMIP5 models. Only significant pixels are included
(Mann–Kendall test, p < 0.1). To obtain comparability between the distributions, the x axis was normalized and has only a qualitative
meaning.
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Figure A3. Temporal variation of LAImax sensitivity to ω in four CMIP5 models analogous to Fig. 4. The colored lines show LAImax
sensitivity variations for moving windows of varying length: 15 (blue), 30 (green), and 45 (red) years over the historical period from 1860
to 2005.
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Figure A4. Correlation of 1LAImax and 1GPP with increasing CO2 forcing, starting from a preindustrial concentration of 280 ppm (1×
CO2) to 4×CO2 (CMIP5 1pctCO2 simulations). Results are shown for four CMIP5 models analogous to Fig. 5. Blue colored dots show
the relation between 1×CO2 and 2×CO2, green colored dots between 2×CO2 and 3×CO2, and red colored dots between 3×CO2 and
4×CO2. The respective colored lines represent the best linear fit through those dots and the shading represents the 95 % confidence interval.
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Figure A5. Thought experiment to examine the applicability of the EC analysis assuming an idealized linear–linear behavior of the system
(Case 1, Table A1). (a) Changes in GPP relate linearly to changes in CO2 concentration. The yellow band marks the projection period of
interest, i.e., the period of CO2 concentration from x+ 41 to x+ 51. (b) Changes in LAI relate linearly to changes in GPP. The param-
eterization in the linear functions for pseudo observations (dashed black line) as well as models (solid gray lines) is determined randomly
for each model. (c) The diagnostic variable, LAI sensitivity to CO2, remains constant with increasing CO2 as a consequence of the overall
linear characteristics of the system. The colored bands indicate three “past” periods from x to x+1 (blue), x+1 to x+ 21 (green), and
x+ 21 to x+ 31 (red). (d) Linear relationships among the pseudo model ensembles (Ensemble LR 1–3 on top of each other, red) between
LAI sensitivity to CO2 of the three past periods and 1GPP from the projected period. Red dots mark different models and the dashed line
represents associated pseudo observations for all three historical periods. The solid yellow line depicts the constant EC on projected 1GPP
irrespective of the past period.
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Figure A6. Thought experiment to examine the applicability of the EC analysis assuming an idealized nonlinear–nonlinear behavior of
the system (Case 4, Table A1). (a) 1GPP decreases with increasing CO2 concentration (described by a hyperbolic tangent function). The
yellow band marks the projected period of interest, i.e., the period of CO2 concentration from x+ 41 to x+ 51. (b) Also, 1LAI decreases
with increasing GPP (described by a hyperbolic tangent function). The parameterization in the hyperbolic tangent functions for pseudo
observations (dashed black line) as well as models (solid gray lines) is determined randomly for each model. (c) The diagnostic variable,
LAI sensitivity to CO2, decreases with increasing CO2 as a consequence of the overall saturating characteristics of the system. The colored
bands indicate three “past” periods from x to x+1 (blue), x+1 to x+ 21 (green), and x+ 21 to x+ 31 (red). (d) Linear relationships
among the pseudo model ensembles (Ensemble LR, colored lines) between LAI sensitivity to CO2 of the three past periods and 1GPP from
the projected period. Colored dots mark different models and the dashed lines represent associated pseudo observations for the respective
historical period. The solid yellow line depicts the constant EC on projected 1GPP irrespective of the past period.
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Table A1. Overview of four possible cases of interaction between forcing, nonobservable, and observable identified in the thought experi-
ment: all linear, all nonlinear, and two mixed cases.

Different assumptions d[non-observable]
d[forcing] , e.g., d[GPP]

d[CO2]
d[observable]

d[non-observable] , e.g., d[LAI]
d[GPP]

1 linear linear

2 nonlinear linear

3 linear nonlinear

4 nonlinear nonlinear
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