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Earth system models underestimate carbon fixation
by plants in the high latitudes
Alexander J. Winkler 1,2, Ranga B. Myneni1,3, Georgii A. Alexandrov4 & Victor Brovkin 1

Most Earth system models agree that land will continue to store carbon due to the phy-

siological effects of rising CO2 concentration and climatic changes favoring plant growth

in temperature-limited regions. But they largely disagree on the amount of carbon uptake.

The historical CO2 increase has resulted in enhanced photosynthetic carbon fixation

(Gross Primary Production, GPP), as can be evidenced from atmospheric CO2 concentration

and satellite leaf area index measurements. Here, we use leaf area sensitivity to ambient CO2

from the past 36 years of satellite measurements to obtain an Emergent Constraint (EC)

estimate of GPP enhancement in the northern high latitudes at two-times the pre-industrial

CO2 concentration (3.4 ± 0.2 Pg C yr−1). We derive three independent comparable estimates

from CO2 measurements and atmospheric inversions. Our EC estimate is 60% larger than

the conventionally used multi-model average (44% higher at the global scale). This suggests

that most models largely underestimate photosynthetic carbon fixation and therefore likely

overestimate future atmospheric CO2 abundance and ensuing climate change, though not

proportionately.
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Predicting climate change requires knowing how much of the
emitted CO2 (currently ~40 Pg CO2 yr−1) will remain in
the atmosphere (~46%) and how much will be stored in the

oceans (~24%) and lands (~30%)1. Earth system models (ESM)
show a large spread in projected increase of terrestrial photo-
synthetic carbon fixation (GPP)2–6 and are thought to over-
estimate current estimates5,7, although the latter is also subject of
debate5,8–11. Historical increase of atmospheric CO2 concentra-
tion, from 280 to current 400 ppm, has resulted in enhanced
GPP due to its radiative12 and physiological13,14 effects, which is
indirectly evident in amplified seasonal swings of atmospheric
CO2 concentration15–17 and large scale increase in summer time
green leaf area18–20. Thus, these observables, expressed as sensi-
tivities to ambient CO2 concentration, might serve as predictors
of changes in GPP21–24 and help to reduce uncertainty in multi-
model projections of terrestrial carbon cycle entities.

This study is focused on the northern high latitudes (NHL,
north of 60°N) where significant and linked changes in climate25

and vegetation15 have been observed in the past 3–4 decades: 52%
of the vegetated lands show statistically significant greening
trends over the 36-year record of satellite observations26

(1981–2016, Methods), while only 12% show browning trends,
mostly in the North American boreal forests due to dis-
turbances27 (Fig. 1). We therefore hypothesize that the greening
sensitivity (i.e., leaf area index, LAI, changes in response to
changes in the driver variables) inferred from the historical period
of CO2 increase can be used to obtain a constrained estimate23

of future GPP enhancement from both the radiative and phy-
siological effects (Supplementary Fig. 1).

State-of-the-art fully coupled carbon-climate ESMs vary in
their representation of many key processes, e.g., vegetation
dynamics, carbon–nitrogen interactions, physiological effects of
CO2 increase, climate sensitivity, etc. This results in divergent
trajectories of evolution of the 21st century carbon cycle4–6. To
capture this variation, we use two sets of simulations28 available
from seven ESMs23 from the Coupled Model Intercomparison
Project Phase 5 (CMIP5)—one with historical forcings including
anthropogenic CO2 emissions for the period 1850–2005 and the
second with idealized forcing (1% CO2 increase per year, com-
pounded annually, starting from a pre-industrial value of 284
ppm until quadrupling). In our analyses, the magnitude of the
physiological effect is represented by the CO2 concentration and
the radiative effect by growing degree days (GDD0, > 0 °C,
Methods) as plant growth in NHL is principally limited by the
growing season temperature12. Leaf area changes can be repre-
sented either by changes in annual maximum LAI (LAImax)29 or
growing season average LAI—we use the former because of its
ease and unambiguity, as the latter requires quantifying the start-
and end-dates of the growing season, something that is difficult
to do accurately in NHL30 with the low-resolution model data.

Here, we apply the concept of Emergent Constraints (EC) to
reduce uncertainty in multi-model projections of GPP using
historical simulations and satellite observations of LAI focusing
on NHL. We find that the EC estimate is 60% larger than the
commonly accepted multi-model mean value, in line with a
recent study that assessed the impact of physiological effects
of higher CO2 concentration on GPP of northern hemispheric
extra-tropical vegetation23. Detailed independent analyses of in-
situ CO2 measurements and atmospheric inversions imbue con-
fidence in our conclusions. Our central finding is, the effect of
ambient CO2 concentration on terrestrial photosynthesis is larger
than previously thought, and thus, has important implications
for future carbon cycle and climate.

Results
Large inter-model spread in greening sensitivity. The
enhancement in NHL greenness throughout the observational
period relates linearly to both increasing quantities, GDD0 and CO2

concentration, in general agreement between models and
observations15,19,31. To avoid redundancy from co-linearity
between the two driver variables, but retain their underlying
time-trend and interannual variability (Supplementary Table 1), we
use the dominant mode from a principal component analysis
(PCA) of CO2 and GDD0 as the proxy driver (denoted ω) in
subsequent analysis (Methods). Expressed in this compact form,
greenness level (Fig. 2a) as well as greening sensitivity to ω (here-
after greening sensitivity, Fig. 2b) span a wide range across the
multi-model ensemble. All models with low greenness levels
(LAImax < 0.75m2m−2) tend to simulate low greening sensitivities
(< 0.015m2m−2 LAImax per 1 unit ω), relative to observations.
These models (NorESM1-ME, CESM1-BGC, and CanESM2) lack
a representation of dynamic vegetation, i.e., do not allow plant
functional type shifts in response to changing simulated climate,
and/or show overly strong nitrogen limitations on plant growth
and thus fail to capture GPP enhancement and its re-investment
in green leaf area (Supplementary Table 2). The other four mod-
els behave randomly—some reproduce observed greenness
levels (LAImax ~1.7m2m−2) but not the greening sensitivities
(~0.045m2m−2 LAImax per 1 unit ω) and the others vice versa.
Whether this is because these four models in common lack
carbon–nitrogen interactions, or are missing some other key pro-
cesses, is not known31, but the end result is a large range in model
simulated greening sensitivity (hereafter LAImax sensitivity), during
the historical period (0.022–0.075m2m−2 LAImax per 1 unit ω).

18

Trend in annual summer (JJA) LAI, 10–2 m2 m–2 decade–1

141186530–4–6–9–12< –18 > 24

Fig. 1 Greening (LAI increase) and browning trends during 1981–2016 in the
northern high latitudes. Statistically significant (Mann–Kendall test, p < 0.1)
trends in summer (June–August) average LAI are color coded. Non-
significant changes are shown in gray. White areas depict ice sheets or
barren land. Details of the LAI data set are provided in Methods. The figure
was created using the cartographic python library Cartopy (Release: 0.16.0)
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Emergent Constraint on projected increase of GPP. What is
known, however, is the strong linear relationship between mod-
eled contemporaneous changes in LAImax and GPP arising from
the combined radiative and physiological effects of CO2 enrich-
ment in the range 1 × CO2 to 2 × CO2 (Supplementary Figs. 2 and
3). As a result, models with low LAImax sensitivity (Fig. 2b)
project lower ΔGPP for a given increment of CO2 concentration,
and vice versa. Thus, the large variation in modeled historical
LAImax sensitivities (Fig. 2b) linearly maps to variation in ΔGPP
at 2 × CO2 (Fig. 2c; r= 0.98, P= 0.0001), with the consequence
that the uncertainty of the multi-model mean ΔGPP is large
enough to undermine its value—e.g., 2.1 ± 1.91 Pg C yr−1 for 2 ×
CO2 in NHL. This linear relation in inter-model variation

between ΔGPP at 2 × CO2 and historical LAImax sensitivities
allows using the observed sensitivity as an EC on GPP estimation
at 2 × CO2. Moreover, the probability contours about the best
linear fit together with the uncertainty of observed sensitivity
(blue and gray shadings in Fig. 2c) allow a robust characterization
of the constrained estimate23, namely 3.4 ± 0.2 Pg C yr−1 for 2 ×
CO2 in NHL (Fig. 2d). This EC estimate is 60% larger than the
multi-model mean value. Wenzel et al.23 reported a similar result
for NHL (37 ± 9% versus 20–25% for relative GPP increase at 2 ×
CO2) and a somewhat smaller number for the extra-tropical
vegetation in the northern hemisphere, both for the physiological
effect only (Supplementary Fig. 4 shows that the radiative and
physiological effects each contribute about half of the total GPP
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Fig. 2 CMIP5 ensemble mean considerably underestimates absolute increase of GPP for a doubling of pre-industrial atmospheric CO2 concentration
(2 × CO2). a Observations (black) and CMIP5 historical simulations (colors) of the first principal component of annual mean atmospheric CO2 and annual
growing degree days above 0 °C (ω) versus the annual LAImax. All quantities are area weighted and spatially averaged for NHL (60°N–90°N). b Bar chart
showing the corresponding slopes of the best linear fits, where the gray bar at the top indicates the standard error. Linear trends are derived for the period
1982–2016 for observations and 1971–2005 for model simulations, maximizing the overlap and sample size. c Linear relationship between the sensitivity of
annual LAImax to ω (x axis) and the absolute increase of high-latitude GPP at 2 × CO2. Each model is represented by an individually colored marker with
error bars indicating one standard deviation (y axis) and standard error (x axis). The black solid line shows observed sensitivity, where the gray shading
indicates the respective standard error. The blue line shows the best linear fit across the CMIP5 ensemble including the 68% confidence interval estimated
by bootstrapping (blue shading; Methods). The intersection of the blue and black line gives the Emergent Constraint on ΔGPP at 2 × CO2 (dashed black
line). d Probability density functions resulting from Emergent Constraint (blue) and CMIP5 ensemble mean estimates (red, assuming Gaussian
distribution). Details in Methods
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enhancement). Together, these results indicate that most models
are largely underestimating photosynthetic carbon fixation, which
is in contrast to previous studies5,7 that suggested an over-
sensitivity of ESMs to atmospheric CO2. Below, we provide three
independent lines of evidence, i.e., not using LAImax but atmo-
spheric CO2 measurements, to buttress our EC estimate.

Independent lines of evidence. First, the seasonal cycle of CO2

concentration in the NHL, which shows a winter maximum due
to respiratory processes and a late-summer minimum due to
photosynthetic drawdown, may be considered as a proxy for NHL
carbon exchange with the atmosphere15–17. Analyses of long-
term measurements at NHL stations, Point Barrow (BRW,
Alaska) and Alert Nunavut (ALT, Canada), reveal that this sea-
sonal cycle has changed over time, dominated by a decreasing
trend in the annual CO2 minimum (Fig. 3a, b). Nearly all of this

change can be attributed to the land, as the trend in the abutting
Arctic Ocean flux is ~15 times smaller (Fig. 3d; Methods). This
strengthening of the seasonal swings of CO2 concentration relates
to photosynthesis rather than respiration changes15–17 and thus
features changes in GPP. So, if the EC estimate is closer to the
true value of ΔGPP at 2 × CO2, then, models matching the EC
estimate (e.g., MIROC-ESM) must also better simulate the
changing CO2 seasonal cycle measured at the NHL stations, in
comparison to models that over- (e.g., HadGEM2-ES) or
underestimate (e.g., CESM1-BGC). Indeed, the MIROC-ESM best
reproduces the average observed seasonal cycle, and critically, the
change in summertime minimum over time at both stations, in
comparison to the other models (Fig. 3a, b). None of the models
reproduce the observed phase of the seasonal cycle, which sug-
gests a recurring problem among models in their representation
of vegetation phenology5. Nevertheless, the model that projects
ΔGPP matching the LAImax-based EC estimate is also the one
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that best captures the changes in observed seasonal cycle sug-
gesting that the EC estimate, rather than the corresponding
multi-model mean, best represents the true value of ΔGPP at
2 × CO2. Thus, the multi-model mean is a large underestimate.

Second, measured changes in the amplitude of CO2 seasonal
cycle can be regarded as a metric of changes in NHL GPP15–17,23.
This is not necessarily the case in ESMs, because uncertainty in
wintertime carbon release processes influences considerably the
annual CO2 maximum and hence the amplitude—variations
unrelated to photosynthetic activity17. To better isolate the effect
of photosynthetic carbon fixation in the seasonal CO2 signal, we
use the slope of summertime drawdown instead of its amplitude.
With the observed lengthening of the growing season30 and
general enhancement of GPP, the CO2 concentration is increas-
ingly tugged downward relative to the steady increasing trend.
At both stations, the drawdown slope decreased over a period
of 30 years (ALT: −1.04 ± 0.18 ppmmonth−1 30 yr−1 and BRW:
−0.68 ± 0.12 ppmmonth−1 30 yr−1; Fig. 3c; Methods). The
models also show a decreasing slope but disagree on the
magnitude (Fig. 3c). Again, we note that the MIROC-ESM
best reproduces the observed change in drawdown slope at both
stations. Likewise, HadGEM2-ES considerably overestimates and
CESM1-BGC underestimates the decline of the drawdown slope.
According to the hypothesized EC approach (Supplementary
Fig. 1), this is rooted in MIROC-ESM correctly capturing the
sensitivity of an observable (LAImax in Fig. 2b or BRW and ALT
drawdown slope in Fig. 3c) to CO2 concentration. Consequently,
this agreement in changes in CO2 drawdown slope between long-
term measurements and the closest-to-observations model in
terms of greening sensitivity provides further support for the EC
estimate of ΔGPP at 2 × CO2 and suggests that the multi-model
mean is a large underestimate.

Third, the available longest records of carbon exchange
between the land/ocean and atmosphere (1980–2015) indicate
that NHL lands changed from being a small carbon source in the
early 1980s to a strong sink in the mid-2010s (Supplementary
Fig. 5) meaning that the net biome production (NBP) increased—
Jena CarboScope32 (JENA) ΔNBP: 0.31 ± 0.09 Pg C yr−1 and the
Copernicus Atmosphere Monitoring Service33 (CAMS) ΔNBP:
0.78 ± 0.04 Pg C yr−1. NBP fluxes include emissions from dis-
turbances, such as fire, and heterotrophic respiration, which may
have increased due to warming over the period of record.
Accordingly, the derived changes in NBP from the CO2 inversion
products can be considered as conservative estimates of NPP
enhancement. The EC estimate using greening observations
translates to a land net primary production (NPP) enhancement
of about 0.32 ± 0.02 Pg C yr−1, when adjusted for CO2 concen-
tration increase over the period of the atmospheric CO2 inversion
datasets (Methods). This estimate better agrees with the JENA
estimate than the multi-model mean (0.19 ± 0.18 Pg C yr−1). All
three, however, do not overlap with the CAMS estimate. Hence,
the available evidence from inversion studies of atmospheric CO2

measurements indicates NPP changes in NHL comparable to or
larger than our EC estimate, and therefore the multi-model mean
to be an underestimate.

Discussion
The causes for model underestimation can perhaps be traced to
the representation of carbon–nitrogen interactions and vegetation
dynamics. Models that strongly underestimate (CESM1-BGC,
NorESM-ME, and CanESM2) show excessive nitrogen limitation
(in CanESM2, the CO2 fertilization effect is down-regulated based
on ambient and elevated CO2 experiments)9. These models also
lack the simulation of vegetation cover dynamics, and thus, do
not reproduce the observed northward shift of vascular plants

and the associated higher productivity of shrubs and trees6. On
the other hand, models that overestimate (HadGEM2-ES) show
overly strong CO2 fertilization effect and consequently excessive
greening, presumably due to a lack of nitrogen limitation23,34.
The model MIROC-ESM, which is closest to the EC estimate,
stands out in its implementation of photosynthetic response to
CO2. Unlike the biogeochemical approach in other models,
MIROC-ESM uses an empirical approach that implicitly includes
nutrient limitation6,35.

Although the Arctic represents only a small fraction of the
terrestrial biosphere, the rapid climatic changes in NHL and
uncertainties associated with the net carbon balance emphasize
the need for further detailed analysis. The tendency for GPP
underestimation in NHL by models reported here is also seen at
the global scale (Supplementary Fig. 6). This, together with
another recent study23, suggests that most models are under-
estimating photosynthetic carbon fixation by plants and thus
possibly overestimating atmospheric CO2 and ensuing climatic
changes2,4,6.

Methods
Observational LAI product (LAI3gV1). The new version (V1) of the LAI data set
is an update of the widely used LAI3g data set26. It was generated using an artificial
neural network (ANN) and the latest version (third generation) of the Global
Inventory Modeling and Mapping Studies group (GIMMS) Advanced Very High
Resolution Radiometer (AVHRR) normalized difference vegetation index (NDVI)
data (NDVI3g). The latter has been corrected for sensor degradation, intersensor
differences, cloud cover, solar zenith angle, viewing angle effects due to satellite
drift, Rayleigh scattering, and stratospheric volcanic aerosols36. The ANN model
was trained with overlapping data of NDVI3g and Collection 6 Terra MODIS LAI
product37,38, and then applied to the full NDVI3g time series to generate the
LAI3gV1 data set. This data set provides global and year-round LAI observations at
15-day (bi-monthly) temporal resolution and 1/12 degree spatial resolution from
July 1981 to December 2016. Currently, it is the only data set that spans this long
period.

The quality of the previous version (V0) of the GIMMS LAI3g data set was
evaluated through direct comparisons with ground-based measurements of LAI,
indirectly with other estimates from similar satellite-data products, and also
through statistical analysis with climatic variables, such as temperature and
precipitation variability26. The LAI3gV0 data set (and related fraction vegetation-
absorbed photosynthetically active radiation data set) has been widely used in
various studies5,15,19,20,31,39–41. The new version LAI3gV1 used in our study is an
update of that earlier version.

For both, observational and CMIP5 data, LAI is defined as the one-sided green
leaf area per unit ground area in broadleaf canopies and as one-half the green
needle surface area in needleleaf canopies. It is expressed in units of m2 green leaf
area per m2 ground area. In this study, we use the annual maximum value of LAI,
LAImax, to quantify the greenness level of a surface. LAImax is less influenced by
cloudiness and noise; accordingly, it is most useful in investigations of long-term
greening and browning trends. The drawback of LAImax is the saturation effect at
high LAI values42. However, this is less of a problem in high latitudinal ecosystems
which are mostly sparsely vegetated, with LAImax values typically in the range
of 2–3.

The bi-monthly GIMMS LAI3gV1 data are merged to a monthly temporal
resolution by averaging the two composites in the same month. Then, for model
and observational data alike, the two-dimensional global fields are cropped to the
northern high latitudinal band defined as 60°N to 90°N, averaged in space and
temporally reduced to the annual maximum value.

Although the AVHRR data underlying the LAI data in this study have
corrections for various deleterious effects36, the data may still contain residual non-
vegetation-related effects. Therefore, we sought confirmation of the greening
trend19, on which the current study relies, from a more reliable but shorter record
from the MODIS sensors37,38. These data are well calibrated, cloud-screened, and
corrected for atmospheric effects, especially tropospheric aerosols. The sensor-
platforms are regularly adjusted to maintain precise orbits. All algorithms,
including the LAI algorithm, are physics-based, well-tested and currently
producing the sixth generation data sets. The results, not shown here for brevity,
illustrate global scale greening, across all latitudinal zones and broad vegetation
classes. Zhang et al.43 also reported matching greening trends between the latest
(Version 6) MODIS and AVHRR (Version 3) vegetation index data sets.

We also found that the LAImax sensitivity derived with MODIS LAI data
matched well with that obtained from the AVHRR LAI data (results not shown for
brevity). Whether this indicates that the 17-year MODIS record from the period
2000 to 2016 captures information similar to the longer AVHRR record
(1981–2016), or is simply a fortuitous occurrence, is not known, and deserves
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further study. In the present context, however, this adds confidence to the AVHRR
LAI data used in our study.

Temperature data from ECMWF ERA-Interim. Estimates of surface air tem-
perature at 2 m height are from the widely used global atmospheric reanalysis
product ERA-Interim by ECMWF44 (for details see https://www.ecmwf.int/en/
research/climate-reanalysis/era-interim). The global temperature fields were
retrieved at a resolution of 0.5° × 0.5° for monthly mean estimates derived from
daily means. Other reanalysis products with similar specifications (NCEP/NCAR
reanalysis, University of Delaware Air Temperature & Precipitation, and GHCN/
CAMS reanalysis product) were also investigated. The differences among the
various products were found to be minor.

CMIP5 models used in this study. In this study, we analyze a set of the most
recent climate-carbon simulations of seven ESMs participating in the fifth phase of
the Coupled Model Intercomparison Project, CMIP528. The model data were
obtained from the Earth System Grid Federation, ESGF (https://esgf-data.dkrz.de/
projects/esgf-dkrz/). Seven ESMs provided output for the variables of interest for
simulations esmHistorical, 1pctCO2, esmFixClim, and esmFdbk.

The esmHistorical simulation spans the period 1850–2005 and was driven by
observed conditions such as solar forcing, emissions or concentrations of short-
lived species and natural and anthropogenic aerosols or their precursors, land use,
anthropogenic as well as volcanic influences on atmospheric composition. The
models are forced by prescribed anthropogenic CO2 emissions, rather than
atmospheric CO2 concentrations.

1pctCO2 is an idealized fully coupled carbon/climate simulation initialized
from steady state of the pre-industrial control run and atmospheric CO2

concentration prescribed to increase 1% yr−1 until quadrupling of the pre-
industrial level. The simulations esmFixClim and esmFdbk and are set up as the
1pctCO2 with the difference, that in esmFixClim (esmFdbk) only the radiative
effect from increasing CO2 concentration is included, while the carbon cycle sees
the pre-industrial CO2 level (vice versa)28,45.

Historical simulation with MPI-ESM higher-resolution setup. MPI-ESM-HR is
the coupled high-resolution setup of the latest version of the Max-Planck-Institute
Earth System Model MPI-ESM1.2, which is the baseline for the upcoming Coupled
Model Intercomparison Project Phase 6 (CMIP6). Here, the atmospheric compo-
nent ECHAM6.3 has 95 vertical levels and twice the horizontal resolution (~100
km) than the CMIP5 version. The ocean component MPIOM is set up on a tripolar
grid at nominal 0.4° horizontal resolution (TP04) and 40 vertical levels. MPI-
ESM1.2 includes the latest versions of the land and ocean carbon cycle modules,
comprising the ocean biogeochemistry model HAMOCC and the land surface
scheme JSBACH. The forcing components for the historical simulation are chosen
from CMIP5 (Methods) as at the time the simulations were conducted CMIP6
forcing was not available46.

Atmospheric CO2 concentration data. Monthly means of atmospheric CO2

concentration at Point Barrow (71.3°N, 203.4°E) and Alert Nunavut (82.5°N,
297.7°E) are taken from the Global Monitoring Division measurement datasets
(co2_brw_surface-insitu_1_ccgg_MonthlyData respectively co2_alt_surface-
flask_1_ccgg_month) provided by the National Oceanic and Atmospheric
Administration/Earth System Research Laboratory (NOAA/ESRL). Global monthly
means of atmospheric CO2 concentration are taken from the GLOBALVIEW-CO2
product (obspack_co2_1_GLOBALVIEWplus_v2.1_2016_09_02; for details see
https://doi.org/10.15138/G3259Z) also available at NOAA/ESRL.

Atmospheric CO2 inversion products. Atmospheric CO2 inversions estimate
surface–atmosphere net carbon exchange fluxes by utilizing CO2 concentration
measurements, a transport model and prior information on anthropogenic carbon
emissions as well as carbon exchange between atmosphere and land respectively
ocean47. We choose two products, which cover the longest time period
(1980–2015) and are regularly updated, the Jena CarboScope32 (JENA, version
s81_v3.8, for details see http://www.bgc-jena.mpg.de/CarboScope/s/s81_v3.8.html)
and the Copernicus Atmosphere Monitoring Service33 (CAMS, version v15r2, for
details see http://atmosphere.copernicus.eu/documentation-supplementary-
products#greengas-fluxes) inversion systems. Both products provide monthly mean
net flux estimates on a spatial resolution of 3.75° latitude and 5° longitude (JENA)
and 1.875° latitude and 3.75° longitude (CAMS).

Calculation of growing degree days above 0 °C (GDD0). The global tempera-
ture fields from the reanalysis and model data are cropped to the northern high
latitudinal band and averaged in space. The resulting one-dimensional time-series
is converted to GDD above 0 °C by multiplying the days of each month with the
respective monthly mean estimate if it is above 0 °C. Thus, we not only capture the
warming signal, but also the prolongation of the growing season.

Dimension reduction using principal component analysis. The drivers GDD0
and atmospheric CO2 concentration vary co-linearly due to the radiative effect of

increasing CO2 concentration in the NHL. Thus, it is problematic to conduct an
accurate factor separation in terms of their respective contribution to increase in
LAImax. However, the co-linearity suggests that a large amount of the signal is
shared. Therefore, we conduct a PCA to apply dimension reduction48.

The aim of the PCA is to find a linear combination of the driver variables that
represents the one-dimensional projection with the largest possible variance. First,
each driver time series xi is normalized by centering on its mean (subtracting �xi)
and scaling to unit variance (divide by one standard deviation σi). Thus,

X ¼ x′i ¼
xi � �xi
σi

: ð1Þ

The matrix X contains the scaled time series x′i as columns. Next, we compute
the covariance matrix CX,

CX ¼ 1
n
XTX ð2Þ

where n is the length of each time series. The eigenvector uk is obtained by solving
the eigenvalue problem,

CXuk ¼ λkuk: ð3Þ

The eigenvectors uk are sorted according to the ordering of their associated
eigenvalues λk. Projecting the initial driver matrix X onto the eigenvector u1 with
the highest associated eigenvalue we arrive at the one-dimensional vector, the first
principal component (PC),

ω ¼ Xu1ð ÞT: ð4Þ

Transposed to a row vector, ω denotes the time-series of the first PC, which
explains the maximum variance of the two driver time series, atmospheric CO2

concentration and GDD0.

Estimation of historical LAImax sensitivity. We derive the historical LAImax

sensitivity applying a standard linear regression model (fn)

fn ¼ aþ bxn ð5Þ

where xn denotes the driver time series, a the intercept and b the gradient. We
obtain the best-fit line by minimizing the squared error (s2)

s2 ¼ 1
N � 2

XN
n¼1

ðyn � fnÞ2 ð6Þ

where yn is the predictand time series and N is the number of data points of each
time series. The resulting best-fit gradient b′ represents the sought sensitivity. The
standard error of b and a are given by

σb ¼
s

σx
ffiffiffiffi
N

p ð7Þ

and

σa ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
þ �x2

σ2xN

s
ð8Þ

respectively, for σx being the standard deviation and �x being the mean value of xn.

Derivation of changes in NHL CO2 drawdown slope. Graven et al.17 showed that
NHL CO2 drawdown mostly happens in June and July. ESMs, however, disagree on
the phase, mainly due to a premature start of the growing season (Fig. 3a, b). As a
consequence, the CO2 drawdown in models peaks earlier in the season. To obtain
comparability for changes in CO2 drawdown strength, we calculate the first deri-
vative of the CO2 concentration time series for the observational sites and each
model individually. The annual minimum of the derivative in each time series
reflects the months where the increase in photosynthetic CO2 fixation is strongest
(CO2 drawdown slope). This procedure does not require a detrending of the
atmospheric CO2 signal.

For the BRW record, the 30 years of continuous overlap with the CMIP5
historical simulations were used to calculate the drawdown slopes (1974–2005).
Due to the shorter overlap in the ALT record, 30 years of data from 1985 (start of
measuring campaign) to 2015 were used for comparison with models. This is
legitimate, because the CO2 concentration rate of increment for both periods are
just about the same. Model time series are obtained from the near-surface CO2

concentration using the grid box in close proximity to each site. All yearly time
series are slightly smoothed with a 2-year moving window. Changes are calculated
from 5-year averages at the beginning and end of the record. Here, we only present
a low-end, high-end and the closest-to-observation model from the greening EC
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analysis, because Wenzel et al.23 already reported the behavior of the entire CMIP5
ensemble in terms of simulating the NHL CO2 seasonal cycle.

Scaling of NPP estimates. We scale and convert the EC estimate for changes in
the GPP flux ΔFGPP,EC for a doubling of the pre-industrial CO2 level ([CO2]pi) to a
NPP flux (ΔFNPP,EC) to obtain a comparable estimate to the atmospheric CO2

inversion datasets using

ΔFNPP;EC ¼ b
Δ½CO2�1980�2015

½CO2�pi
´ΔFGPP;EC ð9Þ

where Δ[CO2]1980–2015 denotes the change in atmospheric CO2 concentration over
the observational period from 1980 to 2015 and b the standard GPP to NPP
conversion factor of 0.5 (assuming uncertainty of 10%)49,50.

Comparison of C fluxes between Arctic Ocean and NHL land. We require the
use of a fully coupled ESM to separate between land and ocean in terms of the sign,
magnitude, and seasonal cycle of the respective net carbon exchange fluxes with the
atmosphere. We have access to a spatially-high resolved historical run (10 reali-
zations) of the MPI-ESM which has the ability to reproduce seasonality in the
Arctic Ocean (Methods). The terrestrial carbon pools have not been brought into
equilibrium due to computational limitations in these high-resolution simulations.
Thus, we use simulations from the same model but at low spatial resolution (3
realizations), the CMIP5 esmHistorical simulation, to address land carbon
exchange fluxes (Methods).

The NHL land sink is approximately 2.5 times larger than the Arctic Ocean
sink, on an annual basis. However, in terms of the change in carbon sink between
the mid-1970s and early-2000s, the increase in CO2 uptake by the land is about 15
times larger than the ocean. Accordingly, the Arctic Ocean can be ignored when
trying to explain changes during the recent past, i.e., BRW period of CO2

concentration measurements.
During the months from May to September (may-to-sep) when photosynthetic

CO2 drawdown is happening, the change in land sink is about 0.4 Pg C on an
annual basis. Especially between May and July, the CO2 concentration is rapidly
declining, i.e., photosynthesis prevails CO2 release processes. Thus, nearly the
entire increase of 0.4 Pg C can be attributed to increasing NPP. The EC analysis
shows that the MPI-ESM model is rather close to observations but generally
underestimating greening sensitivity and thus also the GPP enhancement. These
results are not provided as further proof of the EC estimate, although they are not
contradictory, they are provided to compare the strength of NHL land and Arctic
Ocean carbon sinks and why the ocean component can be neglected.

Bootstrapping for probability estimation. We apply bootstrapping to estimate
the 68% confidence of the emergent linear relationship due to the small sample size
of the CMIP5 ensemble. First, we randomly resample the data with replacement,
where the size of the resample is equal to the size of the original sample N. Second,
we compute the least-squares linear best fit for the resampled data. Third, we repeat
this procedure m times (minimum m= 100) until the difference between the
median best fit line of m− 1 and m computed regressions approaches zero (the
actual threshold was set to a difference less than 1%). We derive the 68% con-
fidence contours of equal probability based on the set of m random regression lines.

Calculation of probability density functions. We derive a probability density
function (PDF) for the observed sensitivity b′ (associated standard error σb,
Methods)

PðbÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2b

p exp �ðb� b′Þ2
2σ2b

� �
ð10Þ

assuming Gaussian distribution. The PDF of y for given x,

PðyjxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2f

q exp �ðy � f ðxÞÞ2
2σ2f

( )
; ð11Þ

represent the contours of equal probability density around the best-fit linear
regression, where σf denotes the 68% confidence contours estimated by boot-
strapping (Methods). As shown in Cox et al.21, for a given observation-based PDF
P(b) and a model-based PDF P(y|x), the PDF of the EC on y is

P yð Þ ¼
Z 1

�1
P xjyf gP xð Þ dx: ð12Þ

The PDF of the CMIP5 unweighted multi-model mean is configured assuming
Gaussian distribution.

Code availability. The code used in this study is available from the corresponding
author upon request.

Data availability
All data used in this study are available from public databases or literature, which can be
found with the references provided in respective Methods section. Processed data is
available from the corresponding author upon request.
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