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Abstract We use a neural network-based estimate of the sea surface partial pressure of CO, (pCO,)
derived from measurements assembled within the Surface Ocean CO, Atlas to investigate the dominant
modes of pCO, variability from 1982 through 2015. Our analysis shows that detrended and deseasonalized
sea surface pCO, varies substantially by region and the respective frequencies match those from the major
modes of climate variability (Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, multivariate
ENSO index, Southern Annular Mode), suggesting a climate modulated air-sea exchange of CO,. We find
that most of the regional pCO, variability is driven by changes in the ocean circulation and/or changes

in biology, whereas the North Atlantic variability is tightly linked to temperature variations in the surface
ocean and the resulting changes in solubility. Despite the 34-year time series, our analysis reveals that

we can currently only detect one to two periods of slow frequency oscillations, challenging our ability to
robustly link pCO, variations to climate variability.

Plain Language Summary In our study we show that there is a link between the amount of
carbon in the surface ocean and natural climate variability. We find that this variability is very different
between different oceanic regions, but most of the observed variability is on decadal timescales and longer.
Current data products therefore do not extend long enough in time to robustly detect long-term oscillations
of the surface ocean carbon content.

1. Introduction

The global oceans absorb roughly 25% of the annually emitted carbon dioxide (CO,) by human activities
and thereby play a substantial role in moderating the effects of climate change (Le Quéré et al., 2018). While
historically marine carbon budgets were largely based on ocean carbon cycle models (e.g., Aumont & Bopp,
2006; Assmann et al., 2010; Buitenhuis et al., 2010; Doney et al., 2009; Galbraith et al., 2010; Graven et al.,
2012;Ilyina et al., 2013; Matear & Lenton, 2008), in recent years a series of observation-based estimates of the
air-sea CO, exchange have emerged (Rodenbeck et al., 2015), challenging our understanding of the air-sea
flux variability on interannual to decadal timescales (Landschiitzer et al., 2015; Ritter et al., 2017; Rédenbeck
et al., 2015). These estimates rely upon surface ocean CO, measurements gathered within the two largest
databases, namely the Lamont-Doherty Earth Observatory (Takahashi et al., 2018) and the Surface Ocean
CO, Atlas (SOCAT) databases (Bakker et al., 2016). The databases contain the to-date largest collections
of measurements of the surface ocean partial pressure of CO, (pCO,) and the CO, fugacity, that is, the
pCO, equivalent corrected for the nonideal behavior of the gas. To estimate the exchange of CO, between
the atmosphere and the ocean from these data bases, the surface measurements are extrapolated using
various novel approaches from statistical techniques based on autocorrelation (S. D. Jones et al., 2015) to
machine learning approaches such as neural networks (Landschiitzer et al., 2013; Nakaoka et al., 2013; Zeng
et al., 2014).

The new observation-based estimates suggest substantial variations in the global ocean carbon sink, espe-
cially on decadal timescales (Landschiitzer et al., 2016; Rédenbeck et al., 2015). Particularly noteworthy are
the Tropical Pacific variability (Rodenbeck et al., 2015) and the decadal variability in Southern Ocean CO,
flux (DeVries et al., 2017; Gregor et al., 2018; Gruber et al., 2019; Landschiitzer et al., 2015; Ritter et al.,
2017), that is, the least observed ocean basin responsible for the majority of the oceanic uptake and storage
of anthropogenic carbon (Frolicher et al., 2015; Gruber et al., 2009; Khatiwala et al., 2013). Substantial CO,
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flux variability has also been noted in the North Pacific and other ocean basins (Landschiitzer et al., 2016;
Rodenbeck et al., 2015).

Despite the advancements in data-interpolation techniques as well as the increasing abundance of mea-
surements, observation-based estimates of the air-sea CO, exchange still rely heavily on data extrapolation,
causing substantial differences between estimates (Ritter et al., 2017; R6denbeck et al., 2015). Furthermore,
the majority of available measurements and auxiliary driver data is only available for the recent past (Bakker
et al., 2016), limiting the time period the CO, flux can be estimated with a certain degree of confidence.
Previously, regional studies have linked the air-sea flux variability to atmospheric dynamics in the Tropical
Pacific (Feely et al., 2006), the North Atlantic (Breeden & McKinley, 2016; Schuster & Watson, 2007), the
Tropical Atlantic (Lefévre et al., 2016), and the Southern Ocean (Le Quéré et al., 2007; Lovenduski et al.,
2007). However, an attempt to attribute the dominant mode of variability on global scale to one single climate
mode using empirical orthogonal function analysis has failed to identify a clear connection (Landschiitzer
etal., 2016). Understanding the modes of local and global pCO, variability as well as identifying their origin
is essential to understand the contemporary marine carbon cycle, but also provides the basis for near term
predictions and future projections (Li et al., 2016; Lovenduski et al., 2019; Séférian et al., 2018).

Here, we use a neural network-based estimate (Landschiitzer et al., 2013) of the sea surface pCO, derived
from shipboard measurements from 1982 through 2015 to investigate the spatial and temporal structure of
sea surface pCO, anomaly, that is, the primary driver of air-sea CO, flux anomalies. We investigate for each
major ocean basin the dominant frequency of pCO, variability and show that they compare well with the
spectral structure of the major climate modes on the basin-scale, but vary substantially when resolved for
refined 1° x 1° regions.

2. Methods

Our analysis is based on the 2-step self-organizing map feed-forward (SOM-FFN) approach by Landschiitzer
et al. (2013) in its global configuration (Landschiitzer et al., 2014). In a first step the global ocean is divided
into provinces of similar surface carbon content using a neural network-based clustering approach, that is,
a self-organizing map. Within these highly dynamic provinces the actual partial pressure of CO, is then
reconstructed using a nonlinear neural network regression approach (feed-forward network) where auxil-
iary driver data known to drive the surface ocean carbonate system are regressed against available gridded
observations from the fourth release of the SOCAT (Bakker et al., 2016; Sabine et al., 2013). The method
reproduces annual available observations (from SOCAT as well as independent observations from time series
and data from the Lamont Doherty Earth Observatotory database that are not included in SOCAT) nearly
bias free (see Landschiitzer et al., 2016) and has further been shown to accurately reproduce the observed
variability in the SOCAT observations (Rodenbeck et al., 2015). While observational coverage varies in time,
with fewer observations in the 1980s and 1990s, the reconstructed pCO, shows no temporal bias increas-
ing confidence in the reconstruction of temporal signals. More details regarding the method as well as its
extensive validation can be found in Landschiitzer et al. (2016) and Landschiitzer et al. (2018).

We focus our analysis both on the grid scale as well as on larger biogeochemical provinces from a com-
bination of the Fay and McKinley (2014) biomes. In order to reduce the number of biomes we combine
some of the smaller scale biomes within each basin, namely, we combine the subtropical permanently strat-
ified biome, the subpolar seasonally stratified biome and subtropical seasonally stratified biome. In the
South Atlantic we combine the equatorial biome and the subtropical permanently stratified biome, whereas
we separate the Southern Ocean by combining the subtropical seasonally stratified and subpolar season-
ally stratified biomes. We exclude the marginal sea ice biome (ICE) to avoid direct biogeochemistry-sea ice
interactions—see Figure 1. In this way, we roughly divide the global ocean into six regions: (a) the Pacific
Ocean except the tropical regions, (b) the Tropical Pacific Ocean, (¢) the Indian Ocean, (d) the North Atlantic,
(e) the South Atlantic, and (f) the Southern Ocean. Choosing this large-scale basin structure washes out
some of the smaller dynamical features of each basin, but it has the advantage that our variability results
may be directly linked to the climate modes known to drive the variability in these basins.

In order to isolate the dominant interannual signals within our pCO, time series, we first remove a linear
least-squares fit to the data and focus on the resulting anomalies. We further remove the seasonal cycle using
a 12-month average filter as the seasonal cycle dominates most of the variability globally. The remaining
anomaly time series, we convert from time into frequency space using a fast-fourier transformation. In order
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Figure 1. Sea surface pCO, anomaly time series for six large-scale ocean regions defined by combining the time mean
Fay and McKinley biomes (indicated by black lines in the center map). The regions include the North Atlantic, the
South Atlantic, the Indian Ocean, the Pacific Ocean excluding the tropics, the Tropical Pacific, and the Southern
Ocean. Numbers in the top-right corners refer to the standard deviation (SD) of the respective anomaly time series.
Colors on the map indicate the regions and arrows direct to the anomaly time series.

to link the observed anomalies to processes either related to temperature or circulation/biology, we use the
temperature sensitivity of CO, of y; = 4.23% per degree Celsius proposed by Takahashi et al. (1993). While
local sensitivities might divert from this experimentally determined number we assume this to have only a
small impact on our results. Following Takahashi et al. (2002) we can perturb the long-term mean pCO,,
<pCO,>, with the observed temperature anomalies to derive the thermally driven changes in time:

pCOY =< pCO, > -exp(yy - (SST— < SST >)). 1)

Furthermore, we can extract the nonthermal counterpart by removing the temperature effect from the pCO,
time series.

pCO™ = pCO, - exp(yy - (< SST > —SST)). @)

We compare the observed fluctuations with index data from commonly used climate indices, that is, the
Pacific Decadal Oscillation (PDO, Zhang et al., 1997), the multivariate ENSO index (MEI, Wolter & Timlin,
2011), the Atlantic Multidecadal Oscillation (AMO, Enfield et al., 2001), and the Southern Annular Mode
(SAM, Marshall, 2003). The MEI represents the first principal component of six observed variables over the
Tropical Pacific Ocean, namely, sea level pressure, u and v surface wind components, sea surface tempera-
ture, surface air temperature, and total cloudiness fraction (Wolter, 1987), and represents the environmental
response to the El Nifio Southern Oscillation climate phenomenon usually oscillating between its positive
(El Nifio) and its negative (La Nifia) phase on 3- to 7-year timescales (Feely et al., 1999, 2006). During posi-
tive MEI phases (i.e., El Nifio), the equatorial trade winds weaken resulting in reduced equatorial upwelling
of subsurface water masses and likewise an increase in surface water temperatures (see, e.g., Feely et al.,
2006). The PDO represents an extension of the ENSO-like pattern (Deser et al., 2012) across the entire Pacific
Ocean basin but includes also a dominant signal at decadal timescales. Its index is calculated from the
first principal component of the sea surface temperature in the North Pacific Ocean (Zhang et al., 1997),
where positive PDO phases correspond to negative temperature anomalies. The AMO describes significant
fluctuations in the sea surface temperature on multidecadal timescales of the North Atlantic and has been
shown previously by model studies to drive large-scale changes in the sea surface pCO, (see, e.g., Breeden
& McKinley, 2016). Positive AMO phases are associated with increasing surface temperatures and a signifi-
cant reduction in surface ocean DIC in the North Atlantic Ocean (Breeden & McKinley, 2016). Finally, the
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SAM index describes the zonal pressure difference between 40 and 65°S and positive SAM phases corre-
spond with increasing strength of westerly winds (Marshall, 2003). This strengthening of the westerlies in
turn leads to increased upwelling of carbon rich subsurface waters leading to an increase in the sea surface
pCO, (Le Quéré et al., 2007; Lovenduski et al., 2007; Xue et al., 2018).

All these indices represent large-scale climate variability which we detrend and deseasonalize in the same
way as the pCO, time series. The choice of indices follows our choice of our large-scale regions and the
exclusion of the at least partly ice-covered regions. Therefore, we do not discuss other climatic links that
have been suggested in the past to influence the local and high latitude pCO, variability such as the Arctic
Oscillation and North Atlantic Oscillation (see, e.g., Landschiitzer et al., 2016; McKinley et al., 2004; Schuster
& Watson, 2007; Thomas et al., 2008).

3. Results and Discussions

The observation-based SOM-FFN pCO, shows strong anomalies in the regional time series (Figure 1). In the
tropical band of the Pacific Ocean the strongest magnitude of variability can be observed ranging from —10
to 10 yatm around the mean annual pCO,. The variability in all remaining biomes is of similar magnitude
but does not exceed +2.5 patm. Likewise, the standard deviation of the Tropical Pacific anomaly exceeds
those of the other basins. This highlights that overall the Tropical Pacific variability is fout times larger
than the variability observed in all other basins in agreement with a model study by Le Quéré et al. (2000).
Due to the large area of the chosen biomes, however, their smaller fluctuations compared to the Tropical
Pacific in the sea surface pCO, can have a large impact on the global air-sea CO, flux (Landschiitzer et al.,
2015). While at first glance the intrabasin anomalies are rather different, the two Atlantic Ocean biome
anomalies reveal a strong correspondence, indicating the possibility of these fluctuations being connected.
The Southern Ocean variability suggests little connection with the other biomes, as it is nearly devoid of
high frequency variability.

Figure 2 further illustrates the anomalies in frequency space. Here we plot the inverse of the frequency, that
is, the phase, for better visualization of the observed oscillations. In the Tropical Pacific and Indian Ocean
(Figure 2a), that is, those regions where previous studies observed connections to changes in tropical trade
winds (e.g., Feely et al., 2006; Fay & McKinley, 2013; Rodenbeck et al., 2014; Valsala et al., 2010), we find
the shortest oscillation cycles in the range of a few years up to 8 years. The cycles up to 5 years correspond
well with the peaks in the phase diagram of the PDO and the MEI over the same time period. The Pacific
Ocean anomaly reveals moderate negative correlations with the PDO and the MEI (R = —0.35 and —0.57,
respectively). We further find a tighter link between the anomalies in the Tropical Pacific biomes with the
PDO and MEI index anomalies (R = —0.54 and —0.86, respectively), due to the equatorial origin of the ENSO
driven oscillation cycles and the tight link between ENSO and PDO (Deser et al., 2012). Correlating the pCO,
anomaly power spectrum with the power spectra of the indices, however, reveals a stronger link (R = 0.74
and 0.80, respectively, for the Pacific Ocean and R = 0.64 and 0.95, respectively, for the Tropical Pacific).

In the North Pacific the observed variability is tightly linked to the North Pacific PDO dipole pattern. The
western part of the basin experiences stronger mixing and cooling resulting in a stronger upward transport
of inorganic carbon (Fay & McKinley, 2013; Ishii et al., 2014; Landschiitzer et al., 2016). This is also evident
in Figure 3a, where the relative thermal and nonthermal pCO, contributions for the respective frequencies
are displayed. Here, the circulation-/biology-driven pCO, component dominates at frequencies correspond-
ing to those from the total pCO, variability and the PDO but also the MEI at time intervals of 3, 5, and 8 years,
respectively. An increase in the MEI index represents a slowdown of the vertical transport of dissolved inor-
ganic carbon along the equator and along the North American coastline (Feely et al., 2006; Ishii et al., 2014;
Rodenbeck et al., 2014), which is counteracted by warmer surface waters and a thermally driven increase
in pCO,. Overall these compensating mechanisms lead to a decrease of the surface pCO, with an increas-
ing MEI index (Fay & McKinley, 2013; Feely et al., 1999, 2006; McKinley et al., 2004). This is again evident
in Figure 3b where the nonthermal component of the pCO, variability dominates the respective frequen-
cies identified as peaks in the frequency diagram of the Tropical Pacific and MEI (Figure 2a). The Indian
Ocean is connected and impacted by the Pacific Ocean variability through the Indonesian Through Flow
(Sarma et al., 2013; Valsala et al., 2010). The decomposition into drivers (Figure 3c), however, reveals that
despite the strong correspondence between thermal and nonthermal components and the MEI index spec-
tra (Figure 2), both components nearly cancel each other out resulting in very limited net pCO, variations
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Figure 2. Normalized sea surface pCO, anomalies in frequency space in comparison with the frequency diagrams of
the major climate modes linked to the respective regions. (a) shows the Pacific Ocean excluding the tropics, the
Tropical Pacific, and the Indian Ocean in comparison to the PDO and MEI indices; (b) shows the North and South
Atlantic in comparison to the AMO; and (c) shows the Southern Ocean in comparison with the SAM index. Colored
areas highlight 5-year intervals where peaks in the frequency diagram occur. PDO = Pacific Decadal Oscillation;
MEI = Multivariate ENSO Index; AMO = Atlantic Multidecadal Oscillation; SAM = Southern Annular Mode.

in the Indian Ocean. The largest fluctuations observed in the Indian Ocean are in the order of 7 years,
entirely driven by temperature variations.

Continuing our analysis in the Atlantic Ocean (Figure 2b) shows that both North and South Atlantic basin
variability is dominated by the low frequency pCO, variability. Additionally, strong oscillations at 7-year
intervals in the North and 12-year intervals in the South Atlantic occur. At first sight this corresponds to
the low frequency peak in the AMO spectrum. While the direct correlation between the AMO anomalies
and the North and South Atlantic pCO, anomalies reveals only a moderate connection (R = 0.31 and 0.32,
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Figure 3. Normalized sea surface pCO, anomalies in frequency space (black) in comparison with their thermal (red)
and nonthermal (blue) components for the six large-scale ocean regions, namely, (a) the Pacific Ocean excluding the
tropics, (b) the Tropical Pacific, (c) the Indian Ocean, (d) the North Atlantic, (e) the South Atlantic, and (f) the
Southern Ocean.

respectively), their power spectra show again a much tighter link (R = 0.83 and 0.87, respectively). A closer
look at the drivers (Figure 3d) reveals that the situation is substantially different between the North and
South Atlantic. In the North Atlantic the temperature-driven pCO, spectrum (Figure 3d) almost perfectly
matches the AMO spectrum (Figure 2b), highlighting the dominant role of the AMO which transitioned
to a positive (i.e., warming) phase in the 1990's (McKinley et al., 2011). This suggests that surface ocean
temperature variability and the resulting variability in pCO, solubility is the main driver in recent North
Atlantic pCO, variability as suggested by Breeden and McKinley (2016). The nonthermal component only
in part compensates the thermally driven pCO, variations, but most visually in the low frequency spectrum
where the total pCO, variability nearly vanishes. The nonthermal component further suggests additional
variability at 8-year intervals matching those of the PDO. This suggests a connection in the northern Hemi-
sphere between the Atlantic and Pacific Ocean as suggested by Steinman et al. (2015). In the South Atlantic
in contrast (Figure 3e) the dominant low frequency pCO, variability results largely from variations in the
nonthermal pCO, component, whereas almost all high frequency variability vanishes as it is compensated
by both components.

An analysis of all pCO, power spectra reveals that the Southern Ocean (Figure 2c) shows the smallest ampli-
tude variability on timescales less than a decade. This might be the result of the limited observations here
(Bakker et al., 2016; Gruber et al., 2019; Lenton et al., 2013) that prohibit the neural network method from
fully reconstructing high frequency variability visible in the SAM spectrum. This has also been shown in
Landschiitzer et al. (2015) where an alternative interpolation method by Rddenbeck et al. (2014) reveals
stronger year-to-year variations in the Southern Ocean. Both Southern Ocean pCO, and SAM spectra are
however the only two that illustrate a maximum between 10 and 15 years. This is in agreement with observed
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variations from recent study investigating the CO, variability south of
Tasmania based on in situ measurements (Xue et al., 2018), whereas a
study by Gregor et al. (2018) suggests that modes of summer variabil-
ity are substantially smaller in the Southern Ocean. While the anomaly
time series between the pCO, and the SAM index exhibit low correla-
tions (R = 0.01), the power spectrum suggests a moderate link (R = 0.35)
between the two. Previous studies have linked a positive SAM trend to the
poleward shift and westerly wind intensification (Fyfe & Saenko, 2006;
Le Quéré et al., 2007; Lovenduski et al., 2007), resulting in an increas-
ing upwelling of inorganic carbon, yet it is not resolved if the SAM can
10-15 15-20 explain the observed variations in the Southern Ocean carbon flux (Fay

years/cycle @ max(Power) et al., 2014; Landschiitzer et al., 2015; Ritter et al., 2017). The separation

Figure 4. Map highlighting the dominant oscillation period for each

into drivers (Figure 3f) shows that nearly all Southern Ocean variabil-

1° x 1° pixel of the global ocean for the observation-based sea surface pCO, 1ty can be linked to the nonthermal component, which is in agreement
estimate considering the full 34-year time series. with previous studies. However, while basin-wide of lesser importance,

Landschiitzer et al. (2015) have shown that thermal trends can domi-
nate regionally. For example, in the Pacific sector of the Southern Ocean,
Landschiitzer et al. (2015) find that the air-sea CO, flux increase in the
2000's is dominated by surface cooling.

The choice of large-scale regions and the building of the average of the pCO, anomaly signal might have
caused finer scale structures to be averaged out, in particular since regions with different seasonal drivers
are combined. Therefore, we repeat our power spectrum analysis for each 1° X 1° pixel of the pCO, field.
Figure 4 illustrates a map of the dominant cycles, that is, the oscillations with the largest amplitude. While
patchy in places the overall structure of this map does reveal some familiar patterns. The analysis shows that
the slowest oscillations occur in the subtropics of the Pacific and Indian Oceans, roughly coincident with
the ocean gyres, that is, systems where we indeed would expect low frequency variability to dominate. In
contrast, the high frequency variability oscillations with a period less than 5 years dominates the Tropical
Pacific Ocean in agreement with Feely et al. (2006) and Ishii et al. (2014). As identified in Figure 2c for the
whole Southern Ocean also the spatially more refined analysis suggests a dominant oscillation in the order of
10-15 years plausibly linked to the SAM driven wind variations (Fyfe & Saenko, 2006; Le Quéré et al., 2007;
Lovenduski et al., 2007). A more surprising image results from the Atlantic Ocean where the spatially refined
analysis suggests a dominant oscillation period of 10-15 years over most of the Atlantic Ocean, which is in
contrast to the pronounced peak at an oscillation cycle of >15 years in the spectrum of Figure 2 as a result
from the spatial average. The local differences in the North Atlantic might result from the regional influence
of the North Atlantic Oscillation, which has been shown to be the dominant mode of pCO, variability in
the subpolar gyre (Metzl et al., 2010; Schuster et al., 2013). Overall our study illustrates that the oscillation
periods dominating the pCO, variability amplitude are on the order of 10 years and longer and thus, our
relatively short observational record can only reconstruct one to two oscillation periods.

4. Conclusions

Our results based on the past record from 1982 through 2015 of the observation-based SOM-FFN sea sur-
face pCO, product reveals substantial regional differences in the anomaly time series, with the strongest
anomalies in the Tropical Pacific. Unlike the other regions, high frequency variability is absent in the South-
ern Ocean, which is likely the result of the limited observational coverage. A fast-fourier analysis reveals
that there is a significant regional correspondence between the observed variations over the past 34 years
and the most commonly used climate indices, suggesting a climate modulated surface ocean pCO, and cor-
responding air-sea CO, exchange globally. In general, the correlation between the basin-wide frequency
spectra islarger than the correlation of the anomaly time series, indicating that lagged responses and possible
teleconnections might mask the direct link between anomalies.

A further decomposition into thermal and nonthermal pCO, drivers reveals that while thermal and nonther-
mal effects largely oppose each other, for most of the ocean the surface ocean pCO, variability is driven by
changing ocean circulation and/or biology, with the exception of the Indian Ocean and the North Atlantic,
where we find a strong correspondence between the AMO and thermally driven pCO, variations.
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A spatially refined analysis shows that the dominant oscillation patterns follow known oceanic struc-
tures such as gyres and current systems, highlighting the regional complexity of the ocean. From 1982
through 2015, we find high spectral power in pCO, oscillations at periods of >10 years, calling into question
whether we can conclude detectability of these oscillations from the rather short time series, particularly
since single events, such as forced trends arising from volcanic eruptions might have contributed to this
observed variability (see, e.g., C. D. Jones & Cox, 2001). Future work using millennia-long preindustrial
control simulations and/or large ensembles of historical simulations from state-of-the-art climate models
should investigate whether the observed variability is of internal (e.g., driven by climate) or forced (e.g.,
volcanic) origin (Lovenduski et al., 2015; McKinley et al., 2016) and help to determine how many years
of observation-based pCO, time series we would need to faithfully detect climate driven variations in the
air-sea CO, flux (see, e.g., Lovenduski et al., 2015).
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