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A B S T R A C T

The purpose of this dissertation is to advance our knowledge of wind-shear effects
on entrainment in a convective boundary layer (CBL) and to synthesize this new
knowledge in the form of closure equations for bulk models. It is well-known that
wind shear generally enhances entrainment, which thickens the entrainment zone
and increases the growth rate of the CBL. Although previous work has identified
major sensitivities of entrainment, and accordingly of sheared CBL properties, to
changes in environmental conditions, the characterization of the shear enhancement
of entrainment and of its dependence on environmental conditions remains elusive.
In particular, scaling laws for different properties of sheared CBLs as functions of the
surface and free-atmosphere conditions are lacking. Given that local scales within the
entrainment zone become more relevant in sheared CBLs than in shear-free CBLs,
one potential reason for the lack of a characterization of wind-shear effects on CBLs
is the limitation of previous single-case studies in resolving the required small scales,
which are of the order of tens of meters. We use direct numerical simulation and
dimensional analysis, for the first time in the context of sheared CBLs, to reduce the
uncertainty associated with small scales and to perform a systematic study.

We scrutinize the vertical structure of the sheared CBL and show that wind-shear
effects on the CBL structure remain constrained within the entrainment zone. We
further show that the entrainment zone in sheared CBLs, consistent with shear-free
CBLs, is better described as a composition of two sublayers. However, contrary to
shear-free CBLs in which only the upper entrainment-zone sublayer is characterized
by a local length scale, we demonstrate that both lower and upper entrainment-zone
sublayers in sheared CBLs are characterized by local length scales. We perform an
integral analysis of the turbulence kinetic energy budget and find an independent
variable that fully embeds the dependence of sheared CBL properties on environmen-
tal conditions. The reduction in the number of independent variables to one enables
us to provide the scaling laws for different CBL properties, such as different defini-
tions of the CBL height and the entrainment-flux ratio, as functions of environmental
conditions. These scaling laws allow us to tackle a major long-standing limitation
of previous bulk models, which is the singularity at a finite wind strength, and to
propose non-singular bulk models of sheared CBLs. We argue that zero-order bulk
models, despite their simplicity compared to higher-order models, can accurately
predict bulk properties of sheared CBLs when the relevant features of the actual
entrainment zone are considered in the entrainment closures.
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Z U S A M M E N FA S S U N G

Das Ziel dieser Dissertation ist es, besser zu verstehen, wie Windscherung Entrain-
ment in einer atmosphärischen konvektiven Grenzschicht beeinflusst und dieses neue
Wissen im Form der Schließungsgleichungen für Massenmodelle zu synthetisieren. Es
ist bekannt, dass Windscherung Entrainment im Allgemeinen verstärkt und dadurch
die Dicke der Entrainmenzone und die Wachstumsrate der konvektiven Grenzschicht
erhöht. Obwohl frühere Forschungsarbeiten herausgefunden haben, wie Entrainment
— und somit die Eigenschaften einer gescherten konvektiven Grenzschicht im Allge-
meinen — von den Umgebungsbedingungen abhängen, bleibt es schwierig diese Ef-
fekte zu charakterisieren. Insbesondere fehlen Skalierungsgesetze, welche beschreiben,
wie verschiedene Eigenschaften der gescherten konvektiven Grenzschicht von den
Oberflächen und Atmosphäreneigenschafen abhängen. Die Tatsache, dass Wind die
Bedeutung der lokalen Skalen innerhalb der Entrainmentzone erhöht, legt nahe, dass
der Grund für die fehlende Charakterisierung von Windscherungseffekten, in der
Unfähigkeit früherer Studien liegt, diese kleinskaligen Prozesse darzustellen. Daher
verwendet diese Dissertation das erste Mal direkte numerische Simulationen um
die Unsicherheiten, welche als Folge kleinskaliger Prozesse entstehen, zu reduzieren.
Des weiteren führen wir eine Dimensionsanalyse durch, um Windscherungseffekte
systematisch zu analysieren.

Wir untersuchen die vertikale Struktur der gescherten konvektiven Grenzschicht
und zeigen, dass Windscherungseffekte in der Entrainmentzone lokalisiert bleiben.
Des weiteren zeigen wir, dass sich die Entrainmentzone, auch in der Gegenwart von
Wind, gut als Zusammensetzung von zwei Teilschichten beschreiben lässt. Allerdings
ändert Wind die Skalierung der unteren Teilschicht. Während sich in der scherfreien
konvektiven Grenzschicht nur die obere Teilschicht mit einer lokalen Längenskala
charakterisieren lässt, lassen sich in einer gescherten konvektiven Grenzschicht beide
Teilschichten mit Hilfe lokaler Längenskalen charakterisieren. Darüber hinaus zeigt
eine Integralanalyse des Turbulenz-Energiebudgets, dass sich verschiedene Eigen-
schaften einer gescherten konvektiven Grenzschicht als Funktion einer einzigen unab-
hängigen Variable charakterisieren lassen. Diese neuen Skalierungsgesetze erlauben
es uns, eine bekannte Schwachstelle bestehender Massenmodelle zu beheben. Diese
Schwachstelle besteht darin, dass bisherige Massenmodelle aufgrund einer Singular-
ität bei einer endlichen Windstärke divergieren. Wir führen ein Massenmodell nullter
Ordnung ein, welches frei von einer solchen Singularität ist. Des weiteren zeigen wir,
dass dieses Massenmodell, trotz seiner Einfachheit im Vergleich zu Massenmodellen
höherer Ordnung, die Eigenschaften einer gescherten konvektiven Grenzschicht akku-
rat darstellt. Dies folgt daraus, dass die verwendete Schließungsgleichung relevante
Eigenschaften der Entrainmentzone implizit berücksichtigt.
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Part I

U N I F Y I N G T E X T





1
O N T H E R E L E VA N C E O F S M A L L - S C A L E T U R B U L E N T M I X I N G
I N S H E A R E D C O N V E C T I V E B O U N D A RY L AY E R S

The atmosphere boundary layer (ABL) is of significant importance for the climate
Atmospheric
boundary layer: the
bottom, often
turbulent part of the
atmosphere that is
directly influenced by
the Earth’s surface and
by the diurnal cycle.

Free atmosphere: the
often quiescent and
stably stratified part of
the atmosphere, which
is located immediately
above the ABL.

Entrainment: the
process by which a
non-turbulent fluid is
incorporated and
mixed into a turbulent
fluid such that the
former non-turbulent
fluid becomes a part of
the turbulent fluid.

system as it regulates the exchange of energy, momentum, moisture, and other scalars
between the Earth’s surface and the free atmosphere. Despite continuing efforts in
the past decades, uncertainties still remain in different aspects of ABLs. Entrainment
is one key aspect of ABLs that still remains a challenge. There is emerging evidence
that the still incomplete characterization of entrainment stems from the limited under-
standing of small-scale turbulent mixing in stably-stratified environments (Driedonks
& Tennekes, 1984; Mellado, 2017; Reeuwijk et al., 2018; Mellado et al., 2018). Indeed,
difficulties in obtaining accurate data at the required small scales, which are of the
order of tens of meters, account for the lack of complete understanding and quantifi-
cation of entrainment. In this regard, entrainment often compounds turbulent mixing
with other complex phenomena such as wind shear and clouds (Stull, 1988; Garratt,
1992). The presence of wind shear within the ABL strengthens the relevance of local
small scales, as wind shear locally generates turbulence on smaller scales compared to
convection (Kim et al., 2003; Fedorovich & Conzemius, 2008). The presence of clouds
at the ABL top reinforces the importance of local small scales even more substantially,
given that radiative and evaporative cooling near the cloud top generates convective
instabilities, and accordingly turbulence, on meter and submeter scales (VanZanten,
2002; Wood, 2012; Mellado, 2017). This dissertation elaborates on fluid mechanical
aspects associated with the effects of wind shear on entrainment in a cloud-free ABL,
arguing that studying entrainment in this simplified case, i.e. the cloud-free limit,
helps to better understand cloud formation and entrainment in cloud-top ABLs.

This dissertation is written in a cumulative way, comprising a unifying text and
two appendices. The appendices contain two journal papers (one published and one
submitted) that are the cornerstones of the unifying text.

1.1 importance of atmospheric boundary layers

Given that most living entities are within the ABL, an understanding of ABL processes
and their potential influence on life on Earth is of great significance. The ABL plays a
vital role in controlling key aspects of many disciplines, including urban meteorology,
mesoscale meteorology, agricultural science, hydrology, renewable energy, weather
forecasting and climate, etc. For instance, the structure and dynamics of the ABL are
fundamental to air quality issues, since the ABL acts as a buffer region between the
Earth’s surface and the free atmosphere. Knowledge on the ABL is, hence, essential for
urban meteorology as the depth of the ABL regulates the concentration of air pollution.

1



2 on the relevance of small-scale mixing in sheared cbls

In this regard, the need for better understanding of the controlling factors of the ABL
depth becomes more critical, and studies of the ABL become increasingly in demand
as cities become larger and more polluted (Yu et al., 2013; Barlow, 2014). Agriculture
and hydrology are also highly associated with the ABL and its different processes
such as dispersion and deposition of atmospheric pollutants to crops, evaporation,
frost formation and rainfall (Camillo et al., 1983; Fritz & Hoffmann, 2008). Natural
hazards such as floods, thunderstorms and wildfires that might threaten terrestrial
life are largely affected by the ABL (Zampieri et al., 2005; Sun et al., 2009; Nowotarski
et al., 2014). Better understanding of the structure and dynamics of the ABL is key
for continuing the rapid expansion of renewable energy. Optimizing the efficiency
of wind farms considerably relies on the accurate prediction of ABL flow and its
interactions with wind turbines at a wide range of spatial and temporal scales (Burton
et al., 2011; Porté-Agel et al., 2014).

The importance of the ABL as a critical component of the climate system has
been recognized since the pioneering work of Manabe & Strickler (1964). About
half of the kinetic energy of the atmosphere is dissipated in the ABL, and it is the
major sink of momentum for the atmosphere (Stull, 1988; Garratt, 1992). One key
challenge in atmospheric science and related disciplines is that resolution in large-scale
atmospheric models is far beyond the dynamically relevant scales of the ABL. This
means that the ABL needs to be accurately parameterized to be reasonably represented
in large-scale models, given that no large-scale model is conceptually complete
without representation of ABL effects, and that any prediction model is condemned
to failure without a sufficiently accurate parameterization of the ABL (Stewart, 1979).
Despite considerable progress in the past decades, uncertainties associated with ABL
parameterization remain one of the primary sources of inaccuracies in large-scale
models (Ayotte et al., 1996).

Better understanding of ABL processes and more accurate ABL parameteriza-
tion schemes are becoming increasingly in demand with the growing relevance
of mesoscale numerical modeling to climate science and the development of high-
resolution large-scale models (Baklanov et al., 2011). In this regard, since much of the
incomplete characterization of ABL processes arises from uncertainties in the under-
standing of small-scale turbulent mixing within the ABL, information on very small
spatial and temporal scales is highly critical. Following this line of argumentation,
this dissertation aims at providing better understanding of prevailing daytime ABL
processes and more accurate daytime ABL parameterization schemes by analyzing
data obtained on very small spatial and temporal scales.

1.2 entrainment in sheared convective boundary layers

This section restricts the research context and introduces the specific problem concern-
ing this dissertation. The turbulent nature of the ABL is its most conspicuous feature,
which is driven by two main forcing mechanisms: wind shear and buoyancy. However,
buoyancy can also play a damping role on turbulence under some circumstances. The
ABL is commonly classified into three main groups based on the role of buoyancy in
the ABL evolution (Garratt, 1994):
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Mixed layer

Surface layer

Residual layer

Stable layerStable layer
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Capping inversion

Phase of interest
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Capping inversion

Stably stratified, non-turbulent 
free atmosphere
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about
100-300 m
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1-2 km

Figure 1: Sketch of the diurnal variation of the ABL over land and of its vertical structure.
This research work focuses on the third phase of the CBL evolution, which is shaded in
yellow. Strong turbulent mixing and slow growth of the CBL by entrainment are the main
characteristics of the CBL in this phase. [Figure adopted from Stull (1988)].

• The unstable ABL: when buoyancy triggers turbulence, resulting from the strong
underlying surface heating that produces thermal instability and convection in
the form of plumes and thermals.

• The stable ABL: when buoyancy hampers turbulence, resulting from the strong
underlying surface cooling that produces thermal stability.

• The neutral ABL: when buoyancy plays no role in triggering or hampering
turbulence, resulting from the situation in which there is no flux of buoyancy
from the underlying surface.

Wind shear that originates from the vertical gradient of the horizontal wind due to
surface friction is the only driving mechanism of turbulence in the last two groups.
The unstable ABL occurs during the day time and the neutral and stable ABL occur
mostly, though not exclusively, during the night time. The unstable ABL—also referred
to as the convective boundary layer (CBL)—is itself classified into the shear-free and
sheared CBL, depending on the presence of wind shear within the CBL. Arguing
that the shear-free CBL is very rare in nature, the subject of this research work is the
sheared CBL in which both buoyancy and wind shear drive turbulence. We approach
the sheared CBL such that we consider buoyancy as the prevailing forcing mechanism
of turbulence, and we perturb the system by adding first weak and then gradually
stronger wind shear. We then investigate how wind shear affects the structure and
dynamics of the CBL.

The diurnal cycle of solar heating in the daytime and longwave cooling in the
nighttime is one of the important factors in determining the ABL evolution and
structure (Stull, 1988). The evolution of CBLs over land is generally described in
four phases (see figure 1) : (i) during the early morning the CBL is shallow and it
grows slowly into the strongly stable boundary layer that was formed in the previous
night; (ii) by the late morning, the stable layer is fully eroded, and the CBL starts to
penetrate into the residual layer, a weakly stratified layer that is left from the CBL of
the previous afternoon. The CBL in this phase grows rapidly until it fully devours
the residual layer; (iii) the CBL encounters the capping inversion at the top of the
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residual layer. The capping inversion, which is also a remnant of the CBL from the
previous afternoon, hinders the CBL growth rate. The rising thermals, however, tend

Surface layer: the
shallow layer above
the Earth’s surface,
where the vertical
gradients of CBL
properties are large.

Mixed layer: the
thick layer above the
surface layer, where
the vertical gradients
of CBL properties are,
due to strong
turbulent mixing,
relatively small.

Entrainment zone:
the layer of negative
buoyancy flux at the
CBL top, where the
vertical gradients, due
to the suppression of
vertical mixing, are
once again large.

to overshoot and penetrate through the free atmosphere, causing a slow growth of
the CBL. This phase lasts over most of the afternoon and results in the conventional
conceptual structure of the CBL that comprises three sublayers: the surface layer, the
mixed layer, and the entrainment zone (EZ); and (iv) buoyancy-generated turbulence
decays as the underlying surface heating diminishes after sunset. This leads to the
formation of the stable layer near the Earth’s surface and to the collapse of the CBL
through most of the boundary layer.

In this study, we focus on the third phase, i.e., when the CBL has already penetrated
into the stably stratified free atmosphere and grows slowly (see figure 1). The reason
to consider this phase is that it accounts for a large period of the day, covering
from the late morning till the late afternoon. We refer to this phase as the quasi-
steady (equilibrium) entrainment regime that is defined by three characteristics
(Fedorovich et al., 2004a). First, CBL properties should evolve on time scales much
larger than the eddy turnover time of the large, energy-containing motions; second,
there should be a balance between the bulk shear production, buoyancy production
and viscous dissipation of the turbulence kinetic energy (TKE); and third, the profiles
of different properties, when appropriately normalized, should behave approximately
self-similarly. Hereafter, we call this regime the "quasi-steady regime", for simplicity.

One of the most important aspects of the CBL in the quasi-steady regime is
entrainment, the process by which air from the free atmosphere is incorporated and
mixed into the boundary-layer interior. This work focuses on this process, among
different important topics1 in the context of CBLs that have attracted attention in
previous literature. Entrainment is relevant for the structure and dynamics of CBLs
because first, the engulfment of non-turbulent air into the CBL causes the CBL to grow
slowly, and second, the non-turbulent air in the free atmosphere often has different
properties than the air within CBLs. This means that entrainment substantially
modifies mean properties of CBLs and plays a critical role in cloud formation and
desiccation at the boundary-layer top, in the evolution of mixed-layer properties,
and in surface processes. Entrainment influences the atmospheric system on both
short and long time scales (Wulfmeyer et al., 2016). On short time scales, entrainment
controls the evolution of CBL properties as well as the convective available potential
energy and convective inhibition. On longer time scales, entrainment determines the
vertical distribution of moisture and accordingly the formation, maintenance, and
desiccation of clouds and precipitation.

Entrainment has been investigated in the past decades in both the fields of fluid
mechanics and meteorology. In fluid mechanics, entrainment in a stably stratified
environment has often been studied in idealized configurations where the turbulence
is forced by a grid or by an imposed mean shear (e.g., Fernando, 1991; Strang &
Fernando, 2001; Peltier & Caulfield, 2003; Chung & Matheou, 2012, and references
therein). The emphasis in these studies lies on understanding various mixing mecha-

1 A list of the most important topics on CBLs includes formation, maintenance, and dissipation of
clouds and their realistic representations in large-scale models (Suarez et al., 1983), vertical transport of
properties across CBLs and development of turbulent closures (Louis, 1979), Monin-Obukhov similarity
theory (Maronga, 2014) and its breakdown in highly unstable conditions, flow over orography and
complex terrain (Grant & Mason, 1990), the interaction between the CBL and the free atmosphere
(Sullivan et al., 1998), and development of bulk models of CBLs (Conzemius & Fedorovich, 2006b).



1.3 current knowledge on entrainment in sheared cbls 5

nisms and deriving entrainment-rate laws depending on the stratification conditions.
In meteorology, however, entrainment is studied in the context of the CBL, and it
remains difficult to extend the results of entrainment in fluid mechanics to entrain-
ment in CBLs. For instance, these previous studies in fluid mechanics indicate that
the buoyancy Reynolds number, defined as the ratio of the dissipation rate to the
molecular buoyancy flux, should be on the order of 100 for large patches of turbulence
to be sustained (Smyth & Moum, 2000a; Portwood et al., 2016), whereas buoyancy
Reynolds numbers on the order of 10 are sufficient in the entrainment zone of CBLs
(Garcia & Mellado, 2014). The reason for this difference is that large-scale updrafts
in the CBL continuously transport turbulence into the entrainment zone. Besides,
turbulence in the CBL has its distinct properties, such as the large-scale organization
of the flow in convective rolls and the possible interaction between entrainment and
near-surface dynamics (LeMone, 1973; Boer et al., 2014; Salesky et al., 2017).

Although previous work has made considerable efforts in studying entrainment
in CBLs, uncertainties still remain in key aspects associated with understanding
and quantifying entrainment and its parameterization. Having critically reviewed
and evaluated ABL parameterization schemes, Ayotte et al. (1996) found that all
ABL parameterization schemes have difficulty with representing entrainment even in
the cloud-free boundary layer. Characterization of entrainment in CBLs is difficult
owing to the complexity and diversity of the influential phenomena in CBLs, namely,
turbulent mixing within a stratified medium, convective and shear instabilities, cloud
formation and gravity waves. The uncertainties associated with entrainment mostly
arise from the limited understanding of small-scale turbulent mixing at the CBL
top and challenges in obtaining accurate turbulent quantities, such as variances
and covariances, for both simulations and measurements (Driedonks & Tennekes,
1984; Mellado et al., 2018). Given that entrainment in the shear-free cloud-free CBL
is relatively well understood and characterized (Fedorovich et al., 2004a; Garcia &
Mellado, 2014), this dissertation introduces one extra degree of freedom, i.e. shear
instability, and investigates wind-shear effects on entrainment in a cloud-free CBL.

1.3 current knowledge on entrainment in sheared cbls

In this section, we briefly discuss the current knowledge on the characterization of
entrainment in sheared CBLs and its parameterization in large-scale models.

Characterization of wind-shear effects on entrainment

Our knowledge of wind-shear effects on entrainment in CBLs is shaped primarily
by three tools: atmospheric measurements, laboratory experiments, and numerical
simulations (see review in Conzemius & Fedorovich, 2006a; Pino & Vilà-Guerau
De Arellano, 2008; Fedorovich & Conzemius, 2008, and references therein). These
studies have shown that, in addition to the surface wind shear, an elevated wind
shear is developed across the entrainment zone. They have further shown that the
entrainment-zone wind shear generally enhances entrainment, which thickens the
entrainment zone and increases the growth rate of the CBL.

A quantitative analysis of wind-shear effects on entrainment in CBLs through
atmospheric measurements proves difficult because first, isolating wind-shear effects
from the influence of other processes determining the CBL evolution is challenging,
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and second, collecting data with satisfactory spatial and temporal resolution, particu-
larly within the entrainment zone, is demanding (Ayotte et al., 1996; Fedorovich &
Conzemius, 2008). Sophisticated measurements, including measurements of different
definitions of the CBL height, of the entrainment-zone thickness, and of turbulence
and stability throughout the boundary layer and above, are required to investigate
entrainment in detail (Träumner et al., 2011; Wulfmeyer et al., 2016). Fulfillment
of such a complicated task is only feasible by the employment of state-of-the-art
facilities such as in-situ aircraft, lidar and Doppler lidar. Early observational stud-
ies provided evidence of shear-generated turbulence in the surface layer but not in
the entrainment zone (Lenschow, 1970; Pennell & LeMone, 1974). The reason was
insufficient measurements at the CBL top to address shear generation of TKE in
the entrainment zone (Fedorovich & Conzemius, 2008). It was shown, however, that

Entrainment-flux
ratio: the ratio
between the minimum
turbulent buoyancy
flux and the surface
buoyancy flux.

most of the shear-generated turbulence in the surface layer is probably balanced by
dissipation. Later studies in the 1980s, despite collection of sparse data, qualitatively
indicated entrainment enhancement due to the presence of wind shear (Garratt et al.,
1982; Boers et al., 1984). Although large entrainment-flux ratios were reported in
some studies based on satellite data (Betts & Ball, 1994; Margulis & Entekhabi, 2004),
the overall correlation between wind shear and entrainment-flux ratios was relatively
weak. The most solid evidence of entrainment enhancement by wind shear was
provided by the observational data of Angevine (1999) and Angevine et al. (2001).

Although laboratory experiments, in particular using the water tank, were suc-
cessfully designed and conducted to study shear-free CBLs (Deardorff et al., 1969;
Willis & Deardorff, 1974) and purely shear-driven boundary layers (Kato & Phillips,
1969; Kantha et al., 1977), few attempts have been made to investigate sheared CBLs.
Particularly challenging, in this respect, is conducting a laboratory experiment to
simulate the boundary layer growing into the stably stratified medium with wind
shear and buoyancy forcings acting simultaneously. In wind-tunnel experiments,
stratifying the air is demanding and in water-tank experiments, statistics might be
significantly affected by several factors, including side walls and a different Prandtl
number from air. Even though considering an annular tank might alleviate side-wall
effects, it gives rise to a secondary circulation within the tank that might influence the
results (Kato & Phillips, 1969). Despite the described intrinsic challenges in laboratory
experiments, stratified wind tunnels have been utilized for studies of a horizontally
evolving sheared CBL (Fedorovich & Kaiser, 1998; Fedorovich et al., 2001a,b). These
studies have shown significant effects of wind shear on the CBL structure and heat
flux at the CBL top. But direct quantification of wind-shear effects on the CBL growth
rate were hindered due to the dominating effects of the flow contraction/expansion
in the wind tunnel on entrainment (Fedorovich & Conzemius, 2008).

Numerical simulation serves as a powerful tool to investigate systematically sheared
Large eddy
simulation:
simulation that
requires a turbulence
model to represent the
effect of subgrid-scale
motions on
resolved-scale motions.

CBLs for the following reasons. First, it enables us to conduct a simulation of sheared
CBLs in a well-defined setup that is unaffected by the bounding geometry. Second, it
allows us to isolate wind-shear effects from the influence of other processes affecting
the CBL evolution. Third, it provides a full, three-dimensional set of variables over
the entire parameter space for long averaging times. Nonetheless, today numerical
simulations suffer from numerical artifacts and limited scale separation. These deficits,
however, are becoming less and less with increasing computing power. Large eddy
simulation (LES) is the numerical tool employed in almost all previous studies of
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sheared CBLs. Only within the mixed layer could previous large-eddy simulations
accurately reproduce the general vertical structure of shear-free and sheared CBLs
and the behavior of relevant low-order statistics of buoyancy and velocity (Stull, 1988;
Garratt, 1992; Zilitinkevich, 1991). The reason is that large-scale motions are dominant
across the mixed layer, and subgrid-scale models play a relatively small role in that
region. The role of small scales on the dynamics and structure of the CBL is, however,
significant within the surface layer and the entrainment zone, where the gradients of
CBL properties are very large. Hence, one key aspect to quantify the relevant processes
affecting the dynamics and structure of the CBL in these regions is to obtain accurate
data at the required small scales. These scales are of the order of tens of meters.
Typical grid spacings in previous large-eddy simulations are usually of the order of
ten meters or more, and hence simulated properties can be strongly influenced by
the subgrid-scale models and numerical artifacts, as illustrated by the order-of-one
intra-model variability of the minimum buoyancy flux in the inter-comparison study
of Fedorovich et al. (2004b). Despite the explained limitation of previous large-eddy
simulations, they have lent further evidence that wind shear generally enhances
entrainment (Moeng & Sullivan, 1994; Pino & Vilà-Guerau De Arellano, 2008; Liu
et al., 2016). They have illustrated that the entrainment enhancement due to wind
shear leads to a thicker entrainment zone and a larger growth rate of the CBL. This
entrainment enhancement has been attributed to the shear-generated turbulence in
the entrainment zone, and not to the vertical transport of shear-generated turbulence
from the surface layer. A consensus has been reached in the literature that the wind
shear in the surface layer dissipates almost completely locally. Therefore, the surface
wind shear affects entrainment mainly indirectly by slowing the flow in the CBL
interior that gives rise to the formation of an elevated wind shear, and accordingly a
localized shear layer, at the CBL top (Fedorovich & Conzemius, 2008).

Direct numerical
simulation:
simulation that does
not require a
turbulence model as it
resolves the whole
range of scales from
large, energy
containing scales to
the Kolmogorov scale.

Despite the fact that sheared CBLs have been an active research topic in the com-
munity of fluid mechanics and meteorology for several decades, some key aspects of
sheared CBLs are still unclear. In particular, the quantification of the shear enhance-
ment of entrainment and of its dependence on environmental conditions remains
elusive. This work employs a new numerical tool in the context of sheared CBLs,
namely direct numerical simulation (DNS), to revisit an old problem in the hope
of better understanding and characterizing effects of wind shear on entrainment by
resolving the required small scales.

Parameterization of sheared CBLs in large-scale models

Several ABL parameterization schemes—also known as boundary-layer schemes—
have been proposed in the literature to represent the ABL in a physically realistic way
in large-scale models. Here, we discuss briefly the two most commonly-used ones.

The first scheme solves the Reynolds-averaged Navier-Stokes (RANS) equations
using a turbulence closure (see Holt & Raman, 1988, for a review). (RANS equations
are the governing equations of fluid motion subjected to time averaging based on
Reynolds decomposition.) The order of prognostic equations that are retained in this
approach determines the complexity of the approach. For instance, in the first-order
approach the equations for the first moment are retained and any turbulence statistics
of second or higher order that appear in the governing equations are replaced by
approximations that depend only on first-order statistics. This approach makes the
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number of unknown variables equal to the number of governing equations, allowing
them to be mathematically closed. For the turbulence closure, the eddy-diffusivity
approach, in which the turbulent flux is assumed to be equal to the product of local
mean gradients and a turbulent eddy diffusivity, is commonly used. The symbol
for eddy diffusivity is often chosen to be K, hence, this approach is also known as
K-approach (see e.g. Louis, 1979; Holtslag & Boville, 1993). The eddy diffusivities for
momentum, heat, and moisture, which vary in space and time, are determined by a
combination of dimensional considerations and empirical measurements (Mason &
Thomson, 2015). The eddy diffusivity is usually considered as a product of a length
scale and a turbulent velocity scale. Near the surface, the distance from the surface is
usually considered as the length scale, whereas within the middle of the boundary
layer some length scale related to the boundary layer depth is taken into account. An
estimate of the velocity scale is usually made from a mixing length model wherein
the velocity scale is approximated as a product of a length scale and the velocity
gradient. Despite severe challenges, the boundary-layer scheme based on a RANS
approach suits better to neutral and stable ABLs, where the transition between the
surface and the free atmosphere above is gradual, and the turbulence slowly dies off
with height (Garratt et al., 1996). Although the RANS approach has been extensively
modified to address its failure at the top of the mixed layer in CBLs by including a
counter-gradient correction term (Deardorff, 1972), computational time is still wasted
by having a fine vertical resolution across the mixed layer (Suarez et al., 1983).

The second scheme is based on the bulk model, where the ABL bulk properties
Zero-order model:
the model in which the
transition layer is
considered as an
infinitesimally thin
layer with a
discontinuous
variation of properties.

First-order model:
the model in which the
transition layer is
considered as a finite
thickness with linear
variation of properties.

such as the ABL depth and the entrainment fluxes are explicitly predicted using the
momentum, buoyancy, and moisture budgets (see e.g. Haltiner & Williams, 1980;
Suarez et al., 1983). A very attractive aspect of bulk-model scheme is that interactions
with the free atmosphere and processes associated with the ABL-top clouds can be
explicitly formulated. The ABL in this conceptual framework is represented by a
layer of height-constant properties (also referred to as the mixed layer), which is
accompanied by a transition layer at the top. Bulk models are classified based on their
degree of complexity in the representation of this transition layer. The simplest is
the zero-order model (ZOM) (Lilly, 1968). Alternatively, the first-order model (FOM)
(Betts, 1974) and higher-order models2 (Deardorff, 1979) have been proposed, arguing
that a more realistic representation of the transition layer between the mixed layer and
the free atmosphere is required to better quantify CBL bulk properties. However, we
show in this dissertation that this argument is not necessarily true and the infinitesimal
transition-layer representation of the ZOM is sufficient to precisely reproduce bulk
properties in the cloud-free sheared CBL. The set of equations in the zero-order model
obtained from vertical integration of momentum, buoyancy, and specific humidity
equations suffers from closure problems. These closure problems are associated with
the surface and entrainment. For the surface closure, the surface-drag relation with a
constant surface-drag coefficient is generally used (see e.g. Boers et al., 1984). For the
entrainment closure, a parameterization for the entrainment-flux ratio—also referred
to as the entrainment parameterization—is commonly derived by either using a local
TKE budget (Zeman & Tennekes, 1977; Pino et al., 2003) or using an integrated TKE
budget (Boers et al., 1984; Batchvarova & Gryning, 1994). It is important to note

2 The higher-order models are the models in which the transition layer between the mixed layer and free
atmosphere is considered as a finite thickness with high-order polynomial variation of CBL properties.
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that the quite flat vertical structure of conserved CBL quantities within the mixed
layer makes the bulk model the most appropriate scheme to parameterize CBLs in
large-scale models (Ayotte et al., 1996).

Following this line of reasoning, a great deal of effort has been devoted in previous
literature to develop bulk models of CBLs. However, uncertainties still remain in some
key aspects associated with closures in bulk models. This research work focuses on
entrainment closure and is motivated by several challenges in previous work, namely,
the lack of agreement on the minimum complexity of the bulk model that is necessary
to accurately represent sheared CBLs (Pino et al., 2006; Liu et al., 2016), the large
uncertainties in the empirical constants of the entrainment closure (see review in
Conzemius & Fedorovich, 2006b), and the singularity of the entrainment closure at a
finite wind strength (Driedonks, 1982; Conzemius & Fedorovich, 2004).

1.4 research proposition

As indicated before, entrainment in sheared CBLs still poses challenges in two differ-
ent aspects. The first aspect is concerned with the characterization of the dependence
of entrainment, and accordingly of different properties of sheared CBLs, on en-
vironmental conditions. The second aspect is associated with parameterization of
entrainment in sheared CBLs to develop bulk models. In the following, we raise four
research questions that guide us to address the aforementioned two main challenges.
We note that the first two questions are addressed in detail in Appendix A and the
second two questions in Appendix B.

Q1: How does the two-layer structure of the entrainment zone in shear-free CBLs
change with prescribing wind in the free atmosphere?

The entrainment-zone structure is a fundamental property of CBLs that is associated
with entrainment. In shear-free CBLs, Garcia & Mellado (2014) have introduced a two-
layer structure to describe the entrainment zone: (i) the lower sublayer is characterized
by global scales, namely, by a length scale proportional to the CBL depth, and (ii)
the upper sublayer acts as a transition layer between the turbulent region below
and the non-turbulent stably stratified region above, and is characterized by local
scales. Quantification of the characteristic scales for both sublayers helped them first,
to rationalize the observation that the entrainment-zone thickness deviates from a
constant fraction of the CBL depth, and second, to explain the dependence on weak
and strong stratification regimes of local properties like the minimum buoyancy flux.

Because of the relevance of the local wind shear in the entrainment zone, under-
standing the vertical structure of the entrainment zone and quantifying characteristic
scales are crucial to understand and characterize wind-shear effects on entrainment. In
this work, we show that the entrainment zone in sheared CBLs is also better described
as a two-layer structure. However, in addition to the upper entrainment-zone sublayer,
the lower entrainment-zone sublayer is also characterized by a local length scale.

Q2: How can we characterize the dependence of different properties of sheared
CBLs on environmental conditions?

Previous studies have identified major sensitivities of entrainment—and accordingly
of sheared CBL properties—to changes in environmental conditions. For instance,
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Pino & Vilà-Guerau De Arellano (2008) showed that entrainment generally increases
Scaling law:
functional
relationships between
dependent and
independent variables
that are consistent
with dimensional
analysis.

Mean entrainment
velocity: time rate of
change of the ABL
depth, caused by
engulfment of air from
the free atmosphere
into the ABL.

with the free-atmosphere wind velocity. Conzemius & Fedorovich (2006a) found that
increasing the free-atmosphere stratification or decreasing the surface buoyancy flux
enhances wind-shear effects, because a slower CBL growth permits the accumulation
of more wind shear at the CBL top. However, characterization of the dependence of
entrainment-zone properties on environmental conditions remains unclear.

In this work, using the new characterization of the entrainment-zone structure
(Q1) and performing an integral analysis of the TKE budget, we find a single non-
dimensional independent variable that solely characterizes wind-shear effects under
arbitrary environmental conditions. We then derive explicit scaling laws for different
sheared CBL properties, including the CBL depth, the entrainment-zone thickness,
the mean entrainment velocity, and the entrainment-flux ratio as functions of that
non-dimensional independent variable.

Q3: Why do previous bulk models of sheared CBLs suffer from a potential sin-
gularity at finite wind strength? How can this singularity be removed?

The potential singularity at finite wind strength in previous entrainment parameter-
izations is a major long-standing limitation of previous zero-order and first-order
models (Driedonks, 1982; Conzemius & Fedorovich, 2004; Conzemius & Fedorovich,
2007). Indeed, the contribution of entrainment-zone shear to the entrainment flux,
represented by a negative sign term in the denominator of previous entrainment
parameterizations (entrainment closure), could cause the denominator to become zero
and the entrainment-flux ratio to become unbounded. Such a singularity occurs not
only under very strong shear conditions, but also under moderate shear conditions
with initial conditions that are far away from the quasi-steady regime.

We show that the derivation of the entrainment parameterization in previous work
in the idealized framework of bulk models—in particular, using the CBL depth as
the characteristic length scale of the entrainment zone—accounts for the emergence
of the singularity. Using the local length scale of the entrainment zone (Q1) in the
integral analysis of the TKE budget solves the singularity issue and leads us to a new
non-singular parameterization of entrainment properties (Q2).

Q4: What is the simplest bulk model of sheared CBLs that faithfully represents
bulk properties?

The minimum complexity of the structure of the CBL bulk model to precisely predict
the evolution of CBL bulk properties such as the CBL growth rate and entrainment
fluxes is a controversial issue in previous literature. Betts (1974) argued that oversim-
plification of the CBL structure leads to misrepresentation of vital processes to the CBL
evolution. Although the dependence of sheared entrainment on the entrainment-zone
Richardson number, predicted by Mahrt & Lenschow (1976), might suggest that one
needs, as a minimum, the FOM representation of the CBL in order to adequately
capture the entrainment process in sheared CBLs, some recent work (Pino et al., 2006;
Conzemius & Fedorovich, 2007) has found no substantial differences between the
overall ability of the ZOM and FOM to predict sheared CBL bulk properties. However,
Conzemius & Fedorovich (2007) found that the FOM largely mitigates—though not
completely removes—the singularity of the ZOM at finite wind strength. Because of
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Figure 2: Sketch of the cloud-free barotropic CBL in the quasi-steady regime considered in this
work. The background is a cross-section of the logarithm of the magnitude of the buoyancy
gradient for a strongly sheared CBL.

this advantage, they argued that the FOM is superior to the ZOM. Following this line
of argumentation, most recent work made the effort to further develop a FOM (Sun &
Xu, 2009; Huang et al., 2011; Liu et al., 2016).

In this work, we show that the infinitesimal transition-layer representation of the
ZOM is sufficient to precisely reproduce bulk properties of cloud-free sheared CBLs,
as long as the entrainment closure appropriately represents the local effects of wind
shear on entrainment.

1.5 research formulation

In this section, we explain how we formulate the problem such that we can systemati-
cally investigate wind-shear effects on entrainment. We then shortly discuss the new
research tools in the context of sheared CBLs employed in this work, namely direct
numerical simulation and dimensional analysis, and their advantages. In addition,
we elaborate on the dimensional analysis of the sheared CBL considered in this work;
this discussion helps the reader to follow how we set up the simulations and how we
characterize the problem on the basis of the dimensional analysis.

It is a general practice to analyze a simplified (reduced complexity) configuration
of any problem, instead of studying it in its full complexity. This approach allows a
systematic analysis of the problem. Convective boundary layers, in general, evolve as a
result of a complex interaction of diverse phenomena (Stull, 1988). These phenomena
include convective instabilities due to heating from the surface or radiative and
evaporative cooling at the top, shear instabilities due to the presence of strong wind
shear within CBLs, horizontal divergence or convergence of the CBL flow associated
with subsidence or lifting at the CBL top, the stability of the free atmosphere and

N2
0 : the constant

buoyancy gradient
within the free
atmosphere.

B0: the constant and
homogeneous
buoyancy flux at the
surface.

U0: the
height-constant wind
velocity within the
free atmosphere.

also the stability of the interface between the turbulent boundary layer and the free
atmosphere, differential temperature advection, and entrainment. Additionally, the
boundary-layer evolution of the previous day as well as terrain effects influence the
CBL. In this dissertation, however, we consider a simplified configuration and retain
only a subset of the aforementioned processes, namely, convective instability due to
surface heating, shear instability, entrainment, and the free-atmosphere stability.

We consider a cloud-free CBL that develops over an aerodynamically smooth
surface and that penetrates into a free atmosphere with constant buoyancy gradient,
N2

0 (see figure 2). Here N0 is the Brunt-Väisälä frequency. Convection is imposed
and maintained by a constant and homogeneous surface buoyancy flux, B0. We
consider barotropic conditions, i.e., the wind strength in the free atmosphere, U0,
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is constant with height (Fedorovich & Conzemius, 2008; Pino & Vilà-Guerau De
Arellano, 2008). In addition, we consider zero Coriolis parameter, which implies that
the mean pressure gradient associated with the geostrophic balance is zero. The main
reason not to include the Coriolis force in our configuration, despite its relevance
for the dynamics of CBLs, is that only one degree of freedom, namely the wind, is
intended to be added to the well-studied shear-free limit. Such an approach allows
us to systematically study wind-shear effects on sheared CBLs and also provides
a reference case to systematically study Coriolis effects in future. The considered
simplified configuration is representative of CBLs in midday conditions at the equator
over land. Nonetheless, results show that our simulations reproduce main features of
barotropic CBLs in middle latitudes.

Research Tools

In this study, we systematically employ direct numerical simulation, a widely-used
tool to study canonical problems in fluid mechanics (Moin & Mahesh, 1998), to
investigate entrainment in sheared CBLs. Direct numerical simulation reduces the
uncertainties associated with subgrid-scale models in previous work to only one non-
dimensional parameter—the Reynolds number. In particular, the Reynolds number
achieved in our simulations (Re∗ ∼ 104) is still orders of magnitudes smaller than in
the atmosphere (Re∗ ∼ 108). Here Re∗ is the convective Reynolds number defined by
considering the depth of the CBL and the convective velocity scale (Deardorff, 1970) as
the length and velocity scales, respectively. A careful assessment of the dependence

Reynolds-number
similarity: the theory,
based on observation,
that some statistics
become independent of
the Reynolds number
once it is sufficiently
large.

of results on the Reynolds number is, hence, necessary to examine whether a tendency
towards Reynolds-number similarity (Dimotakis, 2000) exists. An observation of this
tendency justifies certain extrapolation of results to atmospheric conditions. We note
that the discretization of the governing equations in our DNS code is carried out by
sixth-order spectral-like compact schemes for the spatial derivatives (Lele, 1992) along
with a low-storage fourth-order Runge–Kutta scheme to advance in time (Carpenter
& Kennedy, 1994). Such a discretization method, compared to the typically-used
second-order central scheme in previous LESs, considerably reduces the uncertainty
associated with numerical artifacts.

In this study, we employ dimensional analysis, as another novelty of this work in
terms of the research tools, to formulate the problem in terms of non-dimensional
parameters. This approach enables us to perform a systematic study of wind-shear
effects on the structure and dynamics of the CBL. We note that previous work has
done only some single-case studies from which it is difficult to extrapolate the results
for other environmental conditions. Dimensional analysis benefits this work in several
aspects: (i) dimensional analysis simplifies the study of sheared CBLs, as it reduces
the complexity of the problem by organizing the number of control parameters into
a smaller number of dimensionless groups; (ii) dimensional analysis enables us to
cover a wide range of the parameter space by few numerical simulations, because
dimensional analysis generalizes the results such that any conclusion reached for the
given values of the non-dimensional parameters is applicable for all different com-
binations of control parameters that create the given values of the non-dimensional
parameters; and (iii) dimensional analysis provides the basis for the derivation of
scaling laws for properties of interest, as every non-dimensional property is a function
of non-dimensional parameters and independent variables.
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Dimensional Analysis

The sheared CBL described in the previous section is completely governed by the
control parameters {ν, κb, B0, N0, U0} and the independent variables {z, t}, once the
quasi-steady regime is reached. The parameters ν and κb are the kinematic viscosity
and thermal diffusivity, respectively. The variables z and t represent the vertical
distance from the surface and time, respectively. Dimensional analysis indicates
that three non-dimensional parameters are sufficient to characterize the system: the
reference buoyancy Reynolds number, the Prandtl number, and the reference Froude
number, respectively, defined as

L0: a length scale that
provides a relevant
measure for the
thickness of the upper
region of the EZ in
shear-free CBLs.

LOz: a length scale
that represents the size
of the largest motions
in a turbulent field
unaffected by a
background
stratification.

zenc: an integral
length scale that
provides a relevant
measure for the depth
of the mixed layer in
shear-free CBLs.

Re0 ≡
(N0L0)L0

ν
, Pr ≡ ν

κb
, and Fr0 ≡

U0

N0L0
, (1)

where

L0 ≡
(

B0

N3
0

)1/2

(2)

is the reference Ozmidov length, LOz. Previous work has shown that L0 helps char-
acterize main properties, such as the mean gradients and variances of temperature
and specific humidity, in the upper region of the entrainment zone in shear-free CBLs
(Garcia & Mellado, 2014; Mellado et al., 2017). The first two non-dimensional parame-
ters, namely the reference buoyancy Reynolds number and the Prandtl number, fully
characterize the shear-free limit, and the reference Froude number is introduced to
characterize wind-shear effects. The reference Froude number can be rewritten as
U0/(B0L0)1/3, which compares the wind velocity in the free atmosphere with the
velocity scale associated with motions of size L0 in a turbulent cascade characterized
by an energy transfer rate B0.

We use {z/zenc, zenc/L0} as the non-dimensionalized form of the independent
variables {z, t}. Obtained from the integral analysis of the buoyancy equation, the
encroachment length scale, zenc, has an analytical relationship (Carson & Smith, 1975)
as

zenc =
[
2 B0N−2

0 (1 + Re−1
0 )(t− t0)

]1/2
, (3)

where t0 is a constant of the integration, which quantifies the dependence of the
encroachment length scale on the initial buoyancy profile. The independent variable
zenc/L0 characterizes the state of the CBL development. Using zenc instead of time
as an independent variable proves useful because it enables us to simply make a
one-to-one comparison with results from different numerical simulations conducted
with different initial conditions and also with atmospheric measurements. We refer
the reader to §A.2.2 in Appendix A for details of the dimensional analysis.

Dimensional analysis indicates that every non-dimensional variable, Π, in the
sheared CBL is a function of the non-dimensional parameters and independent
variables

Π(z, t) = f (Re0, Pr, Fr0; z/zenc, zenc/L0) . (4)

As explained in §1.4, one of the main aims of this research work is to characterize
the dependence on environmental conditions of various sheared CBL properties by
providing corresponding scaling laws.
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Description of simulations

In our simulations, we fix Pr = 1 in the simulations, which is a good approximation
for the Prandtl number of the air in the atmosphere. To systematically investigate
the sheared CBL, we consider the shear-free limit, Fr0 = 0, as the reference and
gradually increase the reference Froude number. Under weak-wind conditions, effects
of wind shear on the structure and dynamics of sheared CBLs are expected to be
insignificant. However, we keep increasing the Froude number to observe order-of-one
effects of wind shear. This approach allows us to scan a wide range of the param-
eter space—from strongly to weakly unstable conditions—occurring in the typical
midday atmospheric conditions over land. In particular, we change the reference
Froude number between zero (no wind condition) and 25 (strong wind condition that
corresponds to U0 ' 15 ms−1 for typical midday atmospheric conditions) in intervals
of 5 [see table A.1 in Appendix A for more details]. We run the simulations from a
shallow CBL, zenc/L0 ' 5, and reach zenc/L0 ' 35, covering in this way a large extent
of the typical values observed in nature, i.e. zenc/L0 ' 5− 50. As mentioned before,
the reference Reynolds number is the only non-dimensional parameter that can not
be matched between the conducted simulations and the real atmosphere. We perform
the main analysis based on the simulations with Re0 = 25 because these cases reach
higher values of state of CBL development zenc/L0. In addition, we simulate some
cases with Re0 = 42 to study the sensitivity of the results to the Reynolds number.
Although this range of Reynolds number is small, the observed tendency towards
Reynolds number similarity (Dimotakis, 2000) is consistent with that observed in
previous work in similar configurations, and supports the use of DNS to study some
aspects of the atmospheric boundary layer (Jonker et al., 2013; Waggy et al., 2013;
Garcia & Mellado, 2014; Van Heerwaarden & Mellado, 2016; Mellado et al., 2018).

1.6 summary of results

In this section, we present the key results of this dissertation. The first part summarizes
the general effects of the wind shear on the structure and dynamics of the CBL. The
second part characterizes wind-shear effects on entrainment and answers in detail
the first two scientific questions posed in §1.4 (see Appendix A for more details).
The third part takes the advantage of this characterization to address the second two
scientific questions (see Appendix B for more details).

The main features of barotropic CBLs in middle latitudes, despite neglecting
Coriolis effects, are reproduced by the idealized CBL considered in this study (see
figure 2). These features include:

1. Strong turbulent mixing within the interior of the CBL that leads to a well-mixed
profile of buoyancy and velocity in the mixed layer and an elevated wind shear
in the entrainment zone (Sorbjan, 2006; Pino & Vilà-Guerau De Arellano, 2008).

2. Low-speed streaks near the surface due to the presence of surface wind shear,
that through interaction with convective cells, tend to form horizontal convective
rolls (LeMone, 1973; Moeng & Sullivan, 1994; Salesky et al., 2017).

3. Sustainable patches of Kelvin-Helmholtz-like billows across the entrainment
zone, which are induced by the elevated wind shear in a stratified region and
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Figure 3: Vertical profiles of the TKE budget terms normalized by the surface buoyancy flux,
B0, for different Froude numbers at zenc/L0 ' 25.

are sustained by the interaction between the elevated wind shear and convective
thermals impinging from below (Kim et al., 2003).

4. Enhanced gravity waves triggered at the CBL top with respect to shear-free
CBLs due to the presence of patches of Kelvin-Helmholtz-like billows that
radiate energy from the CBL into the free atmosphere (Schröter, 2018).

Consistently with previous studies of barotropic CBLs in middle latitudes (Pino &
Vilà-Guerau De Arellano, 2008; Fedorovich & Conzemius, 2008), we observe that

1. Under all shear conditions considered in this work, some relevant properties,
like buoyancy and vertical-velocity statistics, remain approximately unchanged
within the mixed layer (see figure 3a).

2. Under weak-shear conditions characterized by small Froude numbers, wind-
shear effects on the CBL structure and buoyancy properties are negligible over
the whole depth of the CBL (see figure 3a).

3. Under moderate- and strong-shear conditions characterized by Froude numbers
larger than 10, wind shear enhances entrainment. However, these effects on the
structure and dynamics of the CBL remain constrained within the entrainment
zone. Entrainment enhancement thickens the entrainment zone and increases
the growth rate of the CBL (see figure 3).

The relevance of wind shear on the CBL for Fr0 & 10 is rationalized by examining
wind-shear effects on the dynamics of the entrainment zone. In the shear-free limit,
the turbulent transport term is the only source of turbulence across the entrainment
zone (figure 3d). As wind is introduced in the free atmosphere, additional turbulence
is generated through the elevated wind shear in the entrainment zone (figure 3c). The
immediate effect of shear-generated turbulence on the dynamics of the entrainment
zone is that the turbulent transport term reduces across the entrainment zone, meaning
that less convectively-generated turbulence in the CBL interior is allowed to enter
the entrainment zone. The amount of shear-generated turbulence increases with the
Froude number, and therefore, the ratio between the turbulent-transport term and
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Figure 4: Temporal evolution of the height of the minimum buoyancy flux, zi,f, normalized by
the encroachment length scale, zenc, for different Froude numbers. Lines indicate the average
within an interval ∆zenc/L0 = 2, and shadow regions indicate the interval of two standard
deviations around that average.

the shear-production term decreases with the Froude number. This ratio becomes
comparable at Fr0 ' 10, which justifies why relevant effects of the wind shear start to
emerge at this Froude number.

A key aspect of the barotropic CBL is that wind-shear effects diminish and eventu-
ally vanish as the CBL grows (see figure 4). The reason is that the wind velocity in the
free atmosphere is constant, and therefore, wind shear is limited in the considered
configuration, whereas convection caused by the constant surface buoyancy flux is
unlimited and thermals ascending from the mixed layer become more vigorous and
dominate mixing in the entrainment zone as time advances (Mahrt & Lenschow,
1976; Liu et al., 2016). Hence, as indicated in the dimensional analysis (cf. Eq. 4),
wind-shear effects depend not only on the Froude number Fr0, or, equivalently, the
wind velocity in the free atmosphere, but also on the state of the CBL development,
zenc/L0 (see figure 4). This fact complicates addressing the second research question
in §1.4, namely, deriving scaling laws for different CBL properties.

zi,0: the zero-crossing
height, where the
buoyancy flux
becomes zero.

zi,f: the flux-based
height, where the
buoyancy flux is
minimum.

zi,g: the
gradient-based height,
where the mean
buoyancy gradient is
maximum.

zi,s: the reference
height that marks the
transition from the
lower EZ sublayer to
the upper EZ sublayer.

Q1: The two-layer structure of the entrainment zone in sheared CBLs

A property that proves useful for the analysis of wind-shear effects on entrainment is
the CBL depth and the structure of the entrainment zone. Different definitions of the
CBL height have been considered in the literature (see, e.g., Garratt, 1992; Sullivan
et al., 1998), as they provide reference positions needed for the detailed analysis of
the entrainment zone. In this work, we restrict ourselves to the buoyancy-related
definitions of the CBL height, namely, the zero-crossing height, zi,0, the flux-based
height, zi,f, and the gradient-based height, zi,g. It is worthy of remark that these heights
vary by a few hundred meters in midday atmospheric conditions over land. We follow
the structural analysis in Garcia & Mellado (2014) and measure the deviations for
different definitions of the CBL height with respect to the shear-free limit.

As explained in §1.4, Garcia & Mellado (2014) have shown that the entrainment
zone in the shear-free limit is better described as a composition of two sublayers (see
figure 5). The lower entrainment-zone sublayer is located around the height of the
minimum buoyancy flux and its vertical structure is characterized by a global length
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Figure 5: Sketch of the vertical structure of the CBL-top region. Here zi,0 is the zero-crossing
height, zi,f is the height of the minimum buoyancy flux, zi,s marks the transition from the
lower to upper EZ sublayer, and zi,g is the height of maximum buoyancy gradient.

scale that is the encroachment length scale, zenc. The upper EZ sublayer is centered
around the height of the maximum buoyancy gradient and is characterized by a local
length scale that is the Ozmidov length particularized at the height of the minimum
buoyancy flux, (LOZ)zi,f . As another buoyancy-related definition of the CBL height
that will prove useful in the characterization of the entrainment zone of sheared CBLs
and also in bulk models, we define zi,s that marks the transition from the lower to
upper EZ sublayer (see figure 5).

Figure 4 illustrates that, in sheared CBLs under moderate- and strong-shear condi-
tions, the height of the minimum buoyancy flux around which the lower EZ sublayer
is formed is not anymore characterized by the encroachment length scale. Rather
a local length scale governs the lower EZ sublayer. We argue that a shear layer is
formed around the height of the minimum buoyancy flux, owing to the resemblance
between the structure of the wind shear in the entrainment zone of the sheared CBL
(see figure 2) and in a stably stratified shear layer (see e.g. Sherman et al., 1978; Peltier
& Caulfield, 2003). Given that the vorticity thickness is the well-known characteristic
length scale of the stably stratified shear layer, we introduce the local length scale

∆zi ≡
∆u

(∂z〈u〉)zi,f

(5)

to quantify how wind shear modifies the lower EZ sublayer. The variable ∆u is
the velocity difference across the entrainment zone. Our further analysis of the EZ
structure confirms that ∆zi fully characterizes the whole lower EZ sublayer (for more
details see figure A.12(a) and the corresponding discussion in Appendix A). Therefore,
we choose to refer to ∆zi as the EZ scale.

We further find that the Ozmidov length particularized at the height of the mini-
mum buoyancy flux, (LOZ)zi,f , characterizes the upper entrainment zone in the sheared
CBL, supporting the interpretation of the upper EZ sublayer as a transition layer
between the turbulent region below and the non-turbulent stably stratified region
above (for more details see figure A.12(b) in Appendix A). As the turbulence intensity
in the lower EZ sublayer increases due to extra shear-generated turbulence, the lower
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EZ sublayer broadens and so does the upper EZ sublayer. The latter is because a
stronger turbulence within the lower EZ sublayer results in a thicker transition layer.

Characterization of the whole vertical structure of the sheared CBL enables us
to derive scaling laws for different definitions of the CBL height in terms of the
characteristic length scales as

zi,f ' 0.94 zenc + 0.8 ∆zi , (6a)

zi,s ' 0.94 zenc + 1.0 ∆zi , (6b)

zi,g ' 0.94 zenc + 1.0 ∆zi + 1.78 (LOz)zi,f . (6c)

The coefficients of proportionality are obtained from the DNS data. The term 0.94 zenc

can be identified with zi,0, the height of zero-crossing of the buoyancy flux, which
marks the base of the entrainment zone (see figure 5). We find the limits of ∆zi for
vanishingly weak- and strong-wind conditions, respectively, as

(∆zi)c ≡ 0.25 zenc and (∆zi)s ≡
√

1/3 ∆u/N0 , (7)

where subscripts "c" and "s" denote convective and shear limit, respectively. The
first relationship follows from Eq. (6a) and the observation that zi,f ' 1.14 zenc in the
shear-free limit (see figure 4). The second relationship follows from Eq. (5) and the
observation that with increasing wind condition the gradient Richardson number
asymptotes toward 1/3, while the buoyancy gradient at zi,f remains constant ' N2

0 .

Q2: Scaling laws for different properties os sheared CBLs

Although the scaling laws for different definitions of the CBL height, Eq. (6), help
characterize wind-shear effects on entrainment, we are still lacking a scaling law for
∆zi and (LOz)zi,f in terms of environmental conditions. This means that the structure
of the sheared CBL can not be reconstructed using the control parameters, unless the
scaling laws for the characteristic length scales in terms of the control parameters are
provided (cf. Eq. 4).

The TKE budget has proven a useful tool in the analysis of entrainment in the
literature, since entrainment of more buoyant air into the CBL is associated with an
expenditure of energy supplied by turbulence. This line of argumentation encourages
us to turn to the budget of turbulent kinetic energy in the hope of deriving a scaling
law for ∆zi. Although early studies considered the TKE budget equation at the height
of the minimum buoyancy flux (Zeman & Tennekes, 1977; Tennekes & Driedonks,
1981), recent work has shown that a vertically integrated (bulk) energy budget is
more practical because quantifying the integrated TKE budget is much easier than at
a specific level (Kim et al., 2006; Conzemius & Fedorovich, 2006b).

The integral analysis of the TKE budget in the present work is different in various
aspects from the approach in previous work, which considered the integrated TKE
budget (Boers et al., 1984; Batchvarova & Gryning, 1994; Conzemius & Fedorovich,
2006b). First, we constrain the integral analysis within the entrainment zone, and
second, we perform it with respect to the shear-free limit. In this way, wind-shear
effects on entrainment are underlined and can be better investigated. Last but not
least, we perform this analysis in the actual structure of the CBL, not in an idealized
framework of bulk models as in previous work. In particular, we explicitly take the
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Figure 6: Verification of the scaling laws for different definitions of the CBL height (dashed
lines) with DNS data (colored lines).

EZ scale into account to determine the integral of the negative buoyancy flux and of
the shear production across the entrainment zone.

The integral analysis of the TKE balance along with the scaling of the relevant
terms therein yield a relationship between the enhancement in the buoyancy flux and
the shear production term (see Eq. (A.36) in Appendix A). This relationship implies
that the entrainment enhancement in sheared CBLs is due to the additional TKE
generated by the wind shear in the entrainment zone. We obtain the scaling law for
the EZ scale as

∆zi

(∆zi)c
=

[
1 + 0.3

(
∆u

N0(∆zi)c

)2
]1/2

, (8)

by employing the scaling arguments for the shear production and the buoyancy
flux and solving the achieved equation for ∆zi. Recall that (∆zi)c ≡ 0.25 zenc is the
convective limit of the EZ scale. The proposed scaling law for ∆zi is supported in
figure 6, where the reference heights zi,f and zi,s calculated from Eqs. (6a) and (6b)
using ∆zi obtained from Eq. (8) agree with the DNS data. Comparison of the data
from simulations with different Reynolds number supports the tendency towards
Reynolds-number similarity and indicates that local effects of the Reynolds number
are estimated to be commensurate to the achieved statistical convergence, i.e. ap-
proximately 10− 20%. We employ Eq. (8) to provide the scaling laws for different
properties of the sheared CBL, including the Ozmidov length, mean entrainment
velocity and entrainment-flux ratio, as functions of ∆u/[N0(∆zi)c]. We argue that the
proposed scaling laws in terms of ∆u/(N0L0) and zenc/L0 remain approximately valid
for different surface properties because the shear near the surface affects entrainment
mainly indirectly through the change of ∆u, and Eq. (8) and the other derived scaling
laws depend explicitly on ∆u. We refer to §A.5 in Appendix A for details of the
integral analysis of the TKE budget and the derivation of scaling laws for different
CBL properties.

One relevant implication of the derived scaling laws is that we found one single
independent variable, ∆u/[N0(∆zi)c], that embeds the dependence of mixed-layer
and entrainment-zone properties on zenc/L0 and Fr0 (cf. figure 4 and figure 6). This
importance enables us to determine the critical condition to observe relevant wind-
shear effects, i.e. ∆u/[N0(∆zi)c] ' 0.6 (see figure 6). This critical condition corresponds
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to ' 5 ms−1 wind velocity in the free atmosphere for typical midday conditions,
which is often considered as a reference value for wind effects to become relevant
in unstable conditions (Stull, 1988). We note, however, that even such a weak wind
could significantly affect the entrainment zone when the buoyancy forcing is weak,
e.g., in the early morning or the late evening within the quasi-steady regime.

The scaling laws in terms of zenc, N0, and ∆u for different CBL properties help
characterize a barotropic CBL penetrating into a linearly stratified atmosphere in
the quasi-steady regime. Nonetheless, we are still lacking a relationship between
the velocity increment ∆u, the control parameter Fr0, and the independent variable
zenc/L0 in order to quantify the dependence of CBL properties on the control parame-
ters (cf. Eq. 4). This relationship could be obtained from the integral analysis of the
momentum equation between the surface and the CBL top. This analysis, however,
leads to a closure problem associated with the surface that requires the study of
the friction velocity and its dependence on surface properties, e.g., on the Reynolds
number for an aerodynamically smooth surface or on the roughness properties for an
aerodynamically rough surface.

Even though studying the surface closure for the CBL over an aerodynamically
smooth surface proves interesting, our preliminary analysis showed non-negligible
sensitivities of surface-layer properties to low Reynolds numbers, generally because
small-scale turbulent mixing near the surface is even more critical than across the en-
trainment zone. This dependence on low Reynolds number of surface-layer properties
hinders us to study, in a systematic manner, the surface closure for the CBL over an
aerodynamically smooth surface using the simulated cases. Higher Reynolds-number
simulations are required in this respect. Therefore, in the following, to tackle this
issue and also to examine the capability of the derived scaling laws and their sensi-
tivities to surface properties, we develop bulk models and address the relationship
between the velocity increment ∆u, the control parameter Fr0, and the independent
variable zenc/L0 in the framework of bulk models of the CBL over an aerodynamically
rough surface. Considering the aerodynamically rough surface, which is the more
appropriate boundary condition for the land surface, allows us to simply consider
the surface-drag relationship with a constant drag coefficient as the surface closure in
dealing with the integral analysis of the momentum equation. This simplification, in
addition, enables us to keep focusing on entrainment and investigate advantages of
the derived scaling laws compared to previous entrainment parameterizations.

Q3: Singularity in previous bulk models of sheared CBLs

The crucial problem in previous bulk models of sheared CBLs, associated with the
entrainment closure, arises from an incomplete characterization of wind-shear effects
on entrainment. The singularity at finite wind strength in previous entrainment
parameterizations is one manifestation of this incomplete characterization. We show
that the singularity in previous entrainment closures takes place under a very strong-
shear condition when the sheared CBL depth becomes nearly two times larger than
the encroachment length scale or equivalently when ∆u/(N0zenc) ' 1.8. In addition,
we show that considering initial conditions far away from the quasi-steady regime
leads to the singularity at finite wind strength even in moderate-shear conditions.
This limits the applicability of previous models to parametrize CBL bulk properties in
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large-scale atmospheric models, since bulk models are likely initialized in large-scale
models with initial conditions that are far away from the quasi-steady regime.

We find that this potential singularity has formed because previous work has
derived the entrainment parameterization in the idealized framework of the bulk
models. In the ZOM framework, the CBL depth—as the only length scale defined
in this framework—is employed as the characteristic length scale in the scaling
arguments of different TKE terms associated with the entrainment zone. In particular,
the CBL depth is used in the scaling of the shear production at the CBL top in the
local TKE approach (see e.g. Tennekes & Driedonks, 1981), and is used in the scaling
of the integral of the negative buoyancy flux in the integrated TKE approach (see e.g.
Boers et al., 1984). Increasing the complexity of the bulk model to the first-order or
higher-order models does not help tackle the singularity issue as long as the CBL
depth is deemed as the characteristic length scale of different TKE terms associated
with the entrainment zone.

We have shown in the previous section that when the integral analysis of the TKE
budget is done in the actual CBL structure, and in particular, when the local length
scale of the entrainment zone is taken into account to determine the integral of the
negative buoyancy flux and of the shear production across the entrainment zone, the
singularity at finite wind strength in the scaling laws vanishes. For instance, the EZ
scale, according to Eq. (8), grows monotonically with increasing the shear condition.

Q4: ZOM faithfully represents bulk properties of sheared CBLs

In this section, as the main implication of the derived scaling laws, we employ some of
them to develop bulk models that are free from any singularity at finite wind strength.
We develop two zero-order bulk models with different entrainment closures for a
cloud-free barotropic convective boundary layer that grows over an aerodynamically
rough surface into a linearly stratified atmosphere. As indicated before, considering
the aerodynamically rough surface allows us to consider the surface-drag relationship
with constant surface drag as the surface closure (see e.g. Kim et al., 2006).

In the first ZOM, referred to as the energetics-based model, we assume that the
negative and positive areas of the buoyancy flux match between the model and the
actual CBL. We derive a non-singular scaling law for the ratio of the actual negative
and positive buoyancy flux and consider this scaling law as the entrainment-closure
equation. The closure assumption in the energetics-based model is similar to the
closure assumption in previous work, i.e., the bulk or local energetics between the
model and the actual CBL were assumed to be equal (see e.g. Conzemius & Fedorovich,
2006b). Although the proposed entrainment-closure equation, and thus the proposed
ZOM, are validated with the DNS data, we further evaluate this model by comparing
its predictions with those obtained from previous models in the literature for a
moderate-shear condition. This analysis enables us to further examine the capability
and accuracy of the energetics-based model in the prediction of CBL bulk properties
and also to better underline the advantage of this model with respect to models
proposed in previous literature.

Our analysis shows that the temporal evolution of different CBL properties obtained
from the energetics-based model agrees very well with predictions of those previous
models that appropriately considered the contribution of the entrainment-zone shear
in the entrainment-closure equation. The best match was observed with predictions of
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Liu et al. (2016)’s model wherein 43% of generated turbulence by entrainment-zone
shear was assumed to be available for the entrainment. The observed agreement
between the prediction of the present and previous models might sound surprising
because of the differences in entrainment closures, in particular, differences in the
length scale used to estimate the various terms of the TKE budget equation in
the entrainment zone. The reason for such an agreement is that under weak- and
moderate-shear conditions, the CBL depth (applied in previous work) and the local
length scale of the entrainment zone (applied in the present work) are approximately
proportional to each other, which results in equally good predictions of CBL bulk
properties from the present and previous models for moderate-shear conditions.
Under a very strong-shear condition, however, these two length scales differ, and
the CBL depth does not act as an appropriate proxy of the local length scale of the
entrainment zone anymore. This different scaling eventually leads to the emergence of
the singularity in models developed in previous work for very strong-shear conditions.

One potential disadvantage of the energetics-based model and models developed in
previous literature is that the modeled CBL depth can not be a priori associated to any
actual CBL height. This lack of knowledge has led to some controversy in previous
work and might become important when the bulk model is intended to include more
complexity like cloud formation. We develop the second ZOM, referred to as the
geometric-based model, to address this issue. In this ZOM, instead of matching the
energetics, we assume that the modeled CBL depth matches different definitions of
the actual CBL height. We consider three options for the CBL depth in the geometric-
based model, namely, the height of the minimum buoyancy flux, the height that marks
the transition from the lower to upper entrainment-zone sublayer, and the height of
the maximum buoyancy gradient. We employ the non-singular scaling laws for these
properties [Eqs. (6) and (8)] as the entrainment-closure equation in this ZOM.

Predictions of the geometric-based model suggest that the CBL depth in the
energetics-based model and models developed in previous work corresponds better
to the height that marks the interface between the lower and upper entrainment-zone
sublayers, rather than the height of the minimum buoyancy flux, as is typically consid-
ered in previous work. This finding helps explain the reported ' 5% deviation of the
zero-order CBL depth from the height of the minimum buoyancy flux in sheared CBLs
in Conzemius & Fedorovich (2007). This finding also indicates that Fedorovich et al.
(2004a) have obtained 0.17 for the zero-order entrainment-flux ratio in the shear-free
limit (which is 15% smaller than the generally-agreed value 0.2) just because they have
assumed that the zero-order CBL depth corresponds to the height of the minimum
buoyancy flux, and not because of statistical uncertainty.

An important conclusion of this study is that the zero-order bulk model, despite
its simplicity, can faithfully represent CBL bulk properties. This means that a finite
transition layer between the mixed layer and the free atmosphere, as is the case in
the first- and higher-order bulk models, is not explicitly required. This is because
the relevant shear-induced features of the actual entrainment zone are implicitly
considered in the zero-order bulk models through the entrainment closures. If needed,
the vertical structure of the actual entrainment zone of the sheared CBL can be
reconstructed a posteriori using the zero-order CBL depth predicted from any of the
ZOMs and using the relationships between the zero-order CBL depth and various
actual heights of the CBL provided in Eqs. (6) and (8).
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1.7 outlook

In this section, we make a number of suggestions for a potential continuation of this
research work. The main suggestion is concerned with the elimination of main limita-
tions of this project. These limitations are basically imposed by the simplifications
in the considered configuration, including zero Coriolis force, the aerodynamically
smooth surface, the constant and homogeneous surface buoyancy flux. Particularly
important here is prioritizing these limitations based on their relevance for the appli-
cation of the proposed characterization of entrainment.

The good agreement observed in the previous section between the predictions of
the bulk models proposed in this work and of Liu et al. (2016)’s model can help us
to anticipate the relevance of some of these simplifications on the characterization
of entrainment and, in particular, on the derived scaling laws. The critical point is
that Liu et al. (2016) have obtained the entrainment closure from a variety (twenty six
cases) of simulated CBLs in the mid latitudes, including barotropic and equivalent-
barotropic sheared CBLs over two aerodynamically rough surfaces, while we have
derived the entrainment closures from few simulations of barotropic sheared CBLs
without the Coriolis force over an aerodynamically smooth surface. The observed
agreement is, hence, promising in two aspects. First, it confirms that the scaling
laws in this work are independent of the surface properties, as they are explicitly
expressed in terms of the velocity increment at the CBL top. Second, it suggests
that they would most likely apply to sheared CBLs with Coriolis force and also
to equivalent-barotropic CBLs, although a proof of concept is necessary to draw a
definitive conclusion.

The Coriolis force takes the highest priority, even though we have already observed
that main features of barotropic CBLs in the mid latitudes were reproduced by
our idealized CBL. Retaining rotation effects and conducting few simulations that
are formulated in terms of the Rossby number enable us to generalize the results
of this dissertation. As an outcome of these simulations, one can determine the
latitude up to which the rotation-free entrainment parameterizations are applicable
and investigate the possible variation of the derived scaling laws. The Coriolis force
induces an inertial oscillation of the horizontal velocity. Given that the amplitude
of this oscillation depends on initial conditions (Stull, 1988), it sounds logical to
prescribe the Coriolis force when the CBL is very shallow and the whole domain is in
the geostrophic equilibrium. As the CBL grows and the surface friction decelerates
the flow, the CBL gets out of the geostrophic equilibrium that leads to formation
of an inertial oscillations. This approach enables us to study the quasi-geostrophic
equilibrium and to perform a systematic analysis that is free from effects of initial
conditions. In addition, this approach provides a reference case to systematically
study influence of initial conditions on the oscillation. The time scale associated
with the inertial oscillations is approximately 17 hours in the mid latitudes, meaning
that a quarter of its cycle is of the same order as the time scale associated with
entrainment. This implies that the inertial oscillation might affect the proposed
entrainment parameterizations in this dissertation. Schröter (2018), however, found
no specific influence of the inertial oscillation on the TKE budget, which indicates
that our proposed characterization of entrainment in terms of ∆u/(N0zenc) remains
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approximately unchanged. A probable modification would be the replacement of ∆u2

with the modulus of the CBL-top velocity jump.
The next priority in the elimination of the limitations of this work is to study differ-

ent boundary conditions. The important ones, in order of priority, are as following:

1. An aerodynamically rough surface: One might argue that the surface roughness
for the CBL considered in this dissertation (with constant and homogeneous
surface buoyancy flux) does not play a key role on entrainment, because we have
learned that the surface wind shear is dissipated locally, and it only affects the
entrainment indirectly by slowing the mixed-layer velocity (Pino & Vilà-Guerau
De Arellano, 2008). In this regard, changing the surface roughness modifies the
temporal evolution of the velocity jump at the CBL top, however, these changes
are captured by ∆u/(N0zenc), and therefore, the proposed characterization of
entrainment should remain approximately valid.

2. A constant surface temperature: The characterization of wind-shear effects
on the CBL with a constant surface temperature seems complicated due to
the interplay between the growing CBL and the gradually decreasing surface
buoyancy flux (see e.g. Van Heerwaarden & Mellado, 2016). Given that the
surface wind shear modifies the evolution of the surface buoyancy flux, some
large effects of wind shear even on the evolution of mixed-layer properties are
expected. However, illustrating self-similar behavior, in spite of the unsteadiness,
and providing the mathematical model for key properties of such a CBL in
the shear-free limit in Van Heerwaarden & Mellado (2016) raises the hope to
characterize wind-shear effects.

3. Heterogeneous heating at the surface: Wind-shear effects on the CBL with
a heterogeneous surface heating also sounds appealing. The reason is that,
in reality, the shear-free limit is very rare and the surface heating is often
heterogeneous, for instance, because of variations in land cover, topography,
and soil moisture. The main aim of this study would be to address how wind
shear modifies the main phenomena observed in a shear-free CBL with a
heterogeneous surface heating. These phenomena include first, the optimal
heterogeneity state, which is defined as the state when a peak in the vertically
integrated kinetic energy, and accordingly the strongest secondary circulation,
is formed and second, the transition from the mesoscale towards the microscale
regimes (Van Heerwaarden et al., 2014). The interaction of the surface wind shear
and heterogeneity might be significant in accelerating the onset of the optimal
heterogeneity state, as the surface wind shear intensifies merging process of the
plumes near the surface (see the figure on the front page of this dissertation).

Another limitation of this dissertation is the studied range of the parameter space.
Although one can keep increasing the Froude number to determine the critical
∆u/(Nzenc) up to which the derived scaling laws remain valid, it sounds more
practical to study sheared CBLs from the limit of the purely shear-driven boundary
layer and then gradually adding convection to the system. Jonker et al. (2013) have
shown than for the purely shear-driven boundary layer growing into a linearly
stratified free atmosphere, not a very flat profile is observed for the mean velocity. As
outcome of studying sheared CBLs from the limit opposite to what we have discussed
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in this dissertation, first, one can show how much convection is needed to get the
vertical profile of mean velocity flat within the boundary-layer interior (Moeng &
Sullivan, 1994), and second, one can determine the maximum value of ∆u/(Nzenc)

under which the derived scaling laws hold valid.
Apart from the limitations of this project, one can address other relevant problems

in sheared CBLs using the available data. The following topics sound promising in
this respect. First, conditional analysis can be employed to study the turbulent and
non-turbulent regions at the CBL top to provide characteristic scales, and accordingly
scaling laws, for other properties such as variances that are important, for instance,
for cloud formation. Second, one can investigate large-scale circulation within the
mixed layer, in particular, the formation of the convective rolls and their possible
interaction with Kelvin-Helmholtz-like billows in the entrainment zone and near-
surface dynamics (Salesky et al., 2017). Third, from fluid-dynamics perspective, despite
the fact that our preliminary analysis of the simulations with Re0 = 25 showed non-
negligible effects of the moderate Reynolds number on surface-layer properties, one
can use the data for Re0 = 25 and Re0 = 42 to study the Monin-Obukhov similarity
theory over an aerodynamically smooth surface and to investigate the convergence of
gradient-flux relations towards the available functional relationships in the literature
(Maronga, 2014), supporting Reynolds-number similarity theory.
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Direct numerical simulations are used to characterize wind-shear effects on entrain-
ment in a barotropic convective boundary layer (CBL) that grows into a linearly strati-
fied atmosphere. We consider weakly to strongly unstable conditions −zenc/LOb & 4,
where zenc is the encroachment CBL depth and LOb is the Obukhov length. Dimen-
sional analysis allows us to characterize such a sheared CBL by a normalized CBL
depth, a Froude number, and a Reynolds number. The first two non-dimensional quan-
tities embed the dependence of the system on time, on the surface buoyancy flux, and
on the buoyancy stratification and wind velocity in the free atmosphere. We show that
the dependence of entrainment-zone properties on these two non-dimensional quan-
tities can be expressed in terms of just one independent variable, the ratio between
a shear scale (∆zi)s ≡

√
1/3 ∆u/N0 and a convective scale (∆zi)c ≡ 0.25 zenc, where

∆u is the velocity increment across the entrainment zone, and N0 is the buoyancy
frequency of the free atmosphere. (∆zi)s and (∆zi)c represent the entrainment-zone
thickness in the limits of weak convective instability (strong wind) and strong convec-
tive instability (weak wind), respectively. We derive scaling laws for the CBL depth,
the entrainment-zone thickness, the mean entrainment velocity, and the entrainment-
flux ratio as a function of (∆zi)s/(∆zi)c. These scaling laws can also be expressed as
a function of only a Richardson number (N0zenc/∆u)2, but not in terms of only the
stability parameter −zenc/LOb.

Key words: atmospheric flows, stratified turbulence, turbulent convection

a.1 introduction

Entrainment, the process by which air from the free atmosphere is incorporated and
mixed into the boundary-layer interior, is crucial for the structure and evolution
of planetary boundary layers. Entrainment is important for cloud formation and
dessication at the boundary-layer top, for the evolution of mixed-layer properties in
the interior, and for surface processes. However, characterizing entrainment remains
a challenge despite continuing efforts. On one hand, it is difficult to obtain accurate
data at the required small scales. On the other hand, entrainment often compounds
turbulent mixing in a stably stratified environment with other complex phenomena
such as clouds and wind shear (Stull, 1988; Garratt, 1992; Mellado, 2017). In this paper,
we study the effect of wind shear on entrainment in a cloud-free convective boundary
layer (CBL).

The effect of wind shear on entrainment in CBLs has been studied by means of
atmospheric measurements, laboratory experiments, and numerical simulations (see
review in Conzemius & Fedorovich, 2006a; Fedorovich & Conzemius, 2008, and
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references therein). These studies have shown that wind shear generally enhances
entrainment, which thickens the entrainment zone and increases the growth rate of
the CBL. The entrainment zone is defined as the region of negative buoyancy flux at
the boundary-layer top. The main cause for this enhancement is the shear-generated
turbulence in the entrainment zone, and not the vertical transport of shear-generated
turbulence in the surface layer. The shear in the surface layer affects entrainment
mainly indirectly by slowing the flow in the CBL interior, which leads to the formation
of a localized shear layer at the CBL top. This indirect effect is even found in the
absence of convection, when turbulence is solely mechanically driven (Jonker et al.,
2013). Consequently, local scales in the entrainment zone become more important
in sheared CBLs than in shear-free CBLs, and the boundary-layer depth and the
associated convective scales are insufficient to characterize the system (Kim et al.,
2006; Conzemius & Fedorovich, 2006b, 2007). Nonetheless, the quantification of the
shear enhancement of entrainment and of its dependence on the environmental
conditions remains difficult. In the work here presented, we use a configuration of
reduced complexity to better understand and characterize the vertical structure of the
entrainment zone, and we use this new characterization to quantify the dependence
of entrainment-zone properties on the surface and free-atmosphere conditions.

We consider a zero-pressure-gradient turbulent boundary layer that is forced by a
constant surface buoyancy flux and that grows into a linearly stratified atmosphere.
As we will show, such a configuration is representative of a barotropic CBL over land.
Mixing and entrainment in a stably stratified environment has often been studied in
idealized configurations where the turbulence is forced by a grid or by an imposed
mean shear (e.g., Fernando, 1991; Strang & Fernando, 2001; Peltier & Caulfield,
2003; Chung & Matheou, 2012, and references therein). From these studies, we have
learned about various mixing mechanisms and entrainment-rate laws depending
on the stratification conditions. However, it remains difficult to extend these results
to the entrainment zone of CBLs. For instance, these previous studies indicate that
the buoyancy Reynolds number should be on the order of 100 for large patches of
turbulence to be sustained (Smyth & Moum, 2000a; Portwood et al., 2016), whereas
buoyancy Reynolds numbers on the order of 10 are sufficient in the entrainment zone
of CBLs (Garcia & Mellado, 2014). The reason for this difference is that large-scale
updraughts in the CBL continuously transport turbulence into the entrainment zone.
Besides, turbulence in the CBL has its distinct properties, such as the large-scale
organization of the flow in convective rolls and the possible interaction between
entrainment and near-surface dynamics (LeMone, 1973; Moeng & Sullivan, 1994; Boer
et al., 2014; Salesky et al., 2017). Configurations of intermediate complexity as the
one considered here provide a closer representation of planetary boundary layers
and can help to transfer results from studies of more idealized configurations, such
as stratified shear layers and homogeneous stratified shear turbulence, to planetary
boundary layers.

Because of the relevance of the local shear in the entrainment zone, understanding
the vertical structure of the entrainment zone is crucial to understand shear effects
on entrainment. In shear-free CBLs, Garcia & Mellado (2014) have introduced a two-
layer structure to describe the entrainment zone. The lower sublayer is characterized
by global scales, namely, by a length scale proportional to the CBL depth and by
the convective scales that characterize the variances in the CBL interior. The upper
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sublayer acts as a transition layer between the turbulent region below and the non-
turbulent stably stratified region above, and is characterized by local scales. As the CBL
broadens, the upper sublayer becomes thinner compared to the lower sublayer. This
two-layer structure rationalizes the observation that the entrainment-zone thickness
deviates from a constant fraction of the CBL depth as the CBL grows (Deardorff et al.,
1980; Sullivan et al., 1998), and that the variance correlates with the local gradients
and not with the convective scales that characterize the CBL interior (Deardorff, 1974;
Sorbjan, 2005). This two-layer structure also helps explain the observed dependence
on weak- and strong stratification regimes of the minimum buoyancy flux, and of the
relationship between the mean entrainment velocity and the convective Richardson
number. In this work, we show that the entrainment zone in sheared CBLs is also
better described as a two-layer structure.

One last goal of the work here presented is to quantify the dependence of entrain-
ment zone properties on environmental conditions, which is particularly important
for sheared CBLs because, as indicated above, these properties partly define the evo-
lution of global CBL properties. Previous studies have identified major sensitivities of
entrainment-zone properties to changes in environmental conditions. For instance,
Pino & Vilà-Guerau De Arellano (2008) showed that entrainment generally increases
with the wind velocity in the free atmosphere. Conzemius & Fedorovich (2006a) found
that increasing the free atmosphere stratification or decreasing the surface buoyancy
flux enhances shear effects, because a slower CBL growth permits the accumulation
of more shear in the entrainment zone. Mahrt & Lenschow (1976) and Kim et al.
(2003) observed that gradient and flux Richardson numbers in the entrainment zone
approach constant values in the range 0.25− 0.3 as shear increases, which indicates
a balance between shear-production of turbulence kinetic energy (TKE), buoyancy
destruction, and viscous dissipation. This condition is accompanied by patches of
Kelvin-Helmholtz-like billows, which are induced by convective thermals imping-
ing into the inversion and reducing locally the gradient Richardson number (Kim
et al., 2003). The quantification of these sensitivities, however, remains elusive. In this
paper, we provide explicit scaling laws in terms of the surface and free-atmosphere
conditions. Based on these scaling laws, we identify the conditions for which shear
effects become relevant, and for which shear effects become of order one. In contrast
to previous work, the scaling laws proposed here do not have a singularity at a finite
wind strength.

One curious aspect of wind-shear effects on entrainment is that, for weak shear
conditions and during the early state of the CBL development, entrainment slightly
decreases with respect to the shear-free CBL (Conzemius & Fedorovich, 2006a; Pino
& Vilà-Guerau De Arellano, 2008). Such a reduction has been associated with the
blockage of turbulence propagation near a turbulent/non-turbulent interface (Hunt &
Durbin, 1999; Fedorovich & Thäter, 2001), and with the enhancement of the energy
drain from the CBL top by gravity-wave radiation into the free atmosphere (Schröter,
2018). It remains unclear, however, how much this phenomenon depends on the initial
conditions and on the different CBL regimes. Systematic studies of sheared CBLs can
also help to clarify this aspect.

We note that one key to better quantify entrainment is to obtain accurate data
at the required small scales, which are on the order of tens of meters. Typical grid
spacings in large-eddy simulations are also on the order of ten meters or more, and
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hence simulated properties can be strongly affected by the subgrid-scale models
and numerical artefacts, as illustrated by the order-of-one intra-model variability
of the minimum buoyancy flux in the inter-comparison study of Fedorovich et al.
(2004b). To reduce this uncertainty, we use direct numerical simulation and assess the
dependence of the results on the Reynolds number.

The structure of the paper is as follows. After defining the problem in §A.2, we
discuss in §A.3 wind-shear effects on buoyancy and velocity properties, identifying
the conditions at which these effects become significant. In §A.4, we characterize
the two-layer structure of the entrainment zone. The local scales identified in this
section are then used in §A.5 to provide scaling laws that express the dependence of
entrainment-zone properties on the surface and free-atmosphere conditions, and on
the state of development of the CBL. In §A.6, we use the results to define a convection-
dominated regime, where shear effects are negligible, and a shear-dominated regime,
where shear effects are on the order of one. We finally summarize these results and
draw conclusions in §A.7.

a.2 problem definition

We consider a cloud-free CBL that develops over a flat, aerodynamically smooth wall
and penetrates into a free atmosphere with constant buoyancy gradient, N2

0 , where
N0 is the Brunt-Väisälä frequency (see figure A.1). Convection is forced by a constant
and homogeneous surface buoyancy flux, B0. We consider barotropic conditions, i.e.,
the wind strength in the free atmosphere, U0, is constant with height (Fedorovich
& Conzemius, 2008; Pino & Vilà-Guerau De Arellano, 2008). This configuration is
representative of midday conditions over land. In addition, we consider the limit of
zero Coriolis parameter, which implies that the mean pressure gradient associated
with the geostrophic balance is zero. Results show that our simulations reproduce
main features of barotropic CBLs in middle latitudes, and the limit of zero Coriolis
parameter provides a reference case to systematically study Coriolis effects. The
resulting configuration is a temporally evolving zero-pressure-gradient boundary
layer that is convectively forced at the surface. Because of the stable stratification in
the free atmosphere, the boundary layer develops in a quasi-steady regime, in which
CBL properties evolve on time scales much larger than the eddy turnover time of the
large, energy-containing motions. We focus on this quasi-steady regime.

a.2.1 Governing equations

We solve the conservation equations for mass, momentum, and energy in the Boussi-
nesq approximation

∇ · u = 0 , (A.1a)
∂u
∂t

+∇·(u⊗ u) = −∇p + ν∇2u + bk , (A.1b)

∂b
∂t

+∇·(ub) = κb∇2b , (A.1c)

where u(x, t) is the velocity vector with components (u, v, w), x = (x, y, z) is the
position vector with x the streamwise coordinate, y the spanwise coordinate, and z
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Figure A.1: Sketch of the barotropic CBL considered in this analysis. The vertical white bars
indicate different definitions of the CBL depth, namely, from left to right, the encroachment
length scale, zenc, the flux-based height, zi,f, and the gradient-based height, zi,g. The back-
ground is a cross-section of the logarithm of the magnitude of the buoyancy gradient from
case Fr0 = 20 and Re0 = 25 of table A.1 at zenc/L0 ' 15. (The image only shows the lower
40% of the vertical domain.)

the vertical coordinate, t is the time, k = (0, 0, 1) is the unitary vector in the vertical
direction, and p is the modified pressure divided by the constant reference density.
The buoyancy b is linearly related to the virtual potential temperature θv by b '
g(θv − θv,0)/θv,0, where θv,0 is the constant reference value obtained by extrapolating
the linear stratification of θv in the free atmosphere downwards to the surface. The
parameters ν and κb are the kinematic viscosity and thermal diffusivity, respectively.
Equation (A.1c) can be derived from the evolution equations of the energy variable
(e.g., entropy or enthalpy) and the specific humidity assuming that the mass diffusivity
of water vapour is equal to the thermal diffusivity, once b has been expressed as a
linear combination of the energy variable and the specific humidity by linearising the
equations of state.

Impermeable, no-slip and impermeable, free-slip boundary conditions are applied,
respectively, at the bottom and at the top of the domain. Neumann boundary condi-
tions are used for the buoyancy at the bottom, ∂zb = −B0/κb, and at the top, ∂zb = N2

0 ,
to maintain fixed constant fluxes. Periodicity is applied at the lateral boundaries. A
linear relaxation term acts on the velocity and buoyancy fields inside a sponge layer
occupying the upper 15− 20% of the computational domain. The reference values
of this relaxation term are the initial conditions. The proportionality coefficient of
the relaxation term increases quadratically with the distance from the inner limit of
the sponge layer, from zero at the inner limit to N0/(2π) at the outer limit (which
coincides with the top of the computational domain).

The initial buoyancy field is defined as

b(x, 0) = bics

[
1− erf

(√
π

2
z

δics

)]
+ N2

0 z , (A.2)

where bics(x1, x2) = (B0/κb + N2
0 ) δics(x1, x2) is the surface buoyancy and δics is the

local gradient thickness (Mellado et al., 2016). A broadband field is constructed by
specifying δics(x1, x2) = δ0[1 + ξ(x1, x2)], the parameter δ0 to be given. The random
field ξ(x1, x2) has a Gaussian power spectral density centred at a spatial frequency
λ−1

0 = (4 δ0)−1 and with a standard deviation (6 λ0)−1, so that there is practically no
energy with spatial frequencies below (2 λ0)−1. The phase of ξ is random, and its
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mean value is zero and the root-mean-square (r.m.s.) is ξrms = 0.1 . The initial velocity
field is imposed as

u(x, 0) = U0

[
erf
(√

π

2
z
δ0

)]
i , (A.3)

where i = (1, 0, 0). Such a function provides the no-slip boundary condition at the
surface and a height-constant velocity in the streamwise direction in the bulk of the
domain.

A finite difference method using Cartesian coordinates and a structured grid is
employed to solve the governing equations. The discretization of the equations is
carried out by sixth-order spectral-like compact schemes for the spatial derivatives
(Lele, 1992) along with a low-storage fourth-order Runge-Kutta scheme to advance
in time (Carpenter & Kennedy, 1994). For the compact schemes used in this study,
about 4 points per wavelength provide 99% accuracy in the transfer function of the
derivative operator. For comparison, second-order central schemes need about 8
points per wavelength to reach 90% accuracy, which is the motivation to employ
compact schemes despite being computationally more demanding (Lele, 1992). The
pressure-Poisson equation is solved using a Fourier decomposition along the horizon-
tal directions, which results in a set of second-order differential equations along the
vertical coordinate (Mellado & Ansorge, 2012).

a.2.2 Dimensional analysis

The sheared CBL described in the previous section is completely governed by the
control parameters {ν, κb, B0, N0, U0} once the turbulent flow has sufficiently forgotten
the initial conditions. Hence, three non-dimensional parameters are sufficient to
characterize the system. In this work, we take the shear-free limit U0 = 0 as reference
and study how entrainment-zone properties change as we gradually increase the
wind velocity. Hence, we choose N0 and B0 to non-dimensionalize the problem, which
yields N−1

0 as the reference time scale,

L0 ≡
(

B0

N3
0

)1/2

(A.4)

as the reference length scale, and N0L0 = (B0/N0)1/2 as the reference velocity scale.
(Henceforth, the symbol ≡ indicates a definition.) The characteristic length scale L0

will be referred to as the reference Ozmidov length. This scale provides a reference
value of the Ozmidov length

LOz ≡
(

ε

N3

)1/2

(A.5)

in the entrainment zone, since the viscous dissipation rate ε in shear-free CBLs is an
order-of-one fraction of the surface buoyancy flux B0 (Fedorovich et al., 2004a), and
the mean buoyancy gradient N2 is partly characterized by N2

0 (Garcia & Mellado,
2014). The Ozmidov length represents the size of the largest motions unaffected by a
background stratification N2 in a turbulent field characterized by a viscous dissipation
rate ε (Dougherty, 1961; Ozmidov, 1965). Garcia & Mellado (2014) and Mellado et al.
(2017) have shown that, in shear-free CBLs, L0 helps characterize main properties in
the upper region of the entrainment zone, such as the mean gradients and variances
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of temperature and specific humidity. We will show that L0 is also a useful parameter
to characterize the entrainment zone in the sheared CBLs considered in this study.

The shear-free limit is fully characterized by a reference buoyancy Reynolds number

Re0 ≡
(N0L0)L0

ν
=

B0

νN2
0

(A.6)

and the Prandtl number Pr ≡ ν/κb. The parameter Re0 provides a reference value of
the buoyancy Reynolds number

Reb ≡
ε

νN2 (A.7)

in the lower part of the entrainment zone, since ε ∼ B0 and N ∼ N0 in shear-free
CBLs, as explained before. A buoyancy Reynolds number is often used in the study of
the interaction between turbulence and stable stratification (see, e.g., Smyth & Moum,
2000a; Hebert & Bruyn Kops, 2006; Chung & Matheou, 2012; Portwood et al., 2016).
As explained in the introduction, the work here presented helps ascertain to what
extent results from those previous studies apply to the entrainment zone of sheared
CBLs.

To characterize wind-shear effects, we use the reference Froude number

Fr0 ≡
U0

N0L0
=

U0

(B0L0)1/3 (A.8)

as third non-dimensional parameter. The denominator is the velocity scale that stems
from the buoyancy acceleration N2

0 L0 associated with a vertical displacement L0 in
an environment with a buoyancy stratification N2

0 . The last equality follows from the
definition of L0 and indicates that Fr0 can be interpreted as the ratio between the
wind velocity in the free atmosphere and the velocity scale associated with motions
of size L0 in a turbulent cascade characterized by an energy transfer rate B0, as is the
case is shear-free CBLs.

Due to statistical homogeneity in the horizontal directions, statistical properties are
only functions of two independent variables, namely, height and time {z, t}. Following
previous work in shear-free CBLs growing into linearly stratified atmospheres (Garcia
& Mellado, 2014; Mellado et al., 2016; Van Heerwaarden & Mellado, 2016), we use
the non-dimensionalized form of these variables {z/zenc, zenc/L0}. The variable zenc

is the encroachment length scale defined as

zenc ≡
{

2N−2
0

∫ z∞

0

[
〈b〉(z, t)− N2

0 z
]
dz
}1/2

, (A.9)

where z∞ is located far enough into the non-turbulent free atmosphere for the integral
to become approximately independent of z∞. Angle brackets denote averaging along
horizontal planes. The integral analysis of the buoyancy equation (A.1c) yields

zenc

L0
=
[
2 (1 + Re−1

0 )N0(t− t0)
]1/2

, (A.10)

where t0 is a constant of integration, so that zenc can be easily calculated at any time.
The reason to use zenc instead of time as independent variable is that the encroachment
length scale provides a measure of the shear-free CBL depth (Carson & Smith, 1975),
and it can be calculated from the mean buoyancy profile according to Eq. (A.9), which
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makes it convenient for the interpretation of results. We will show that zenc also
provides a relevant depth measure for the sheared CBLs considered in this study.

The sheared CBL can also be partly characterized by the stability parameter defined
as the ratio between the CBL depth and the Obukhov length (Stull, 1988). The
Obukhov length is defined as

LOb ≡ −
u3
∗

κB0
= −

(
u∗
w∗

)3 zenc

κ
, (A.11)

where κ ' 0.41 is the von Karman constant,

u∗ ≡ (ν ∂z〈u〉)1/2
z=0 (A.12)

is the friction velocity, and
w∗ ≡ (B0 zenc)

1/3 (A.13)

is a convective velocity scale (Deardorff, 1970). Very large values of −zenc/LOb corre-
spond to nearly shear-free CBLs, and very small values correspond to nearly neutral,
shear-driven boundary layers. When studying entrainment-zone properties, however,
the stability parameter alone is not sufficient as an independent variable, and alterna-
tive options have been proposed, such as a Richardson number (see Conzemius &
Fedorovich, 2006b; Pino & Vilà-Guerau De Arellano, 2008, and references therein).
We will discuss these alternative variables in §A.6.

a.2.3 Parameter space and description of simulations

For typical midday conditions N0 ' 0.6− 1.8× 10−2 s−1, B0 ' 0.3− 1.0× 10−2 m2s−3

and zenc ' 500− 2000 m, one finds L0 ' 20− 200 m and states of development in
the range zenc/L0 ' 5− 50. For these conditions and wind velocities in the interval
U0 = 0 − 15 ms−1, the reference Froude number is in the range Fr0 ' 0 − 35.
Using κb = 2.1× 10−5 m2s−1 and ν = 1.5× 10−5 m2s−1, one further obtains Re0 '
6× 105 − 2× 107 and Pr ' 0.7.

In our simulations, we fix Pr = 1 and change the reference Froude number between
zero (no wind condition) and 25 (strong wind condition) in intervals of 5. Table A.1
summarizes the configurations studied in this work. We reach zenc/L0 ' 35, covering
in this way a large extent of the typical values observed in nature. The stability
parameter −zenc/LOb is larger than 4. Hence, we cover the regime of weakly unstable
conditions 0 < −zenc/LOb . 15− 20, characterized by horizontal convective rolls
aligned with the mean wind direction, as well as the regime of strongly unstable
conditions, characterized by polygonal convective cells (LeMone, 1973; Moeng &
Sullivan, 1994; Salesky et al., 2017). The reference Reynolds number that we achieve in
our simulations, however, is much smaller than in the atmosphere. Nonetheless, the
entrainment zone is largely occupied with turbulent patches, as shown in figure A.2.
We use data from simulations with Re0 = 25, Re0 = 42 and Re0 = 117. The main
analysis is based on the simulations with Re0 = 25 because these cases reach higher
values of state of development zenc/L0, and, unless otherwise stated, the figures show
data from these simulations. The cases with Re0 = 42 are used to study the sensitivity
of the results to the Reynolds number; for the shear-free cases, we also compare
to case Re0 = 117. Although this range of Reynolds number is small, the observed
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Re0 Fr0
zenc
L0

Re∗ (Ret)max (Ret)zi,f (Reb)zi,f
zenc
ηmin

zi,f
zenc

(∆zi)s
(∆zi)c

−zenc
LOb

25 0 35 2860 1400 410 4 575 1.14− 1.14 0 ∞

25 5 35 2860 1480 540 5 598 1.14− 1.14 0.27− 0.16 57− 241

25 10 35 2860 1550 810 5 617 1.16− 1.15 0.58− 0.34 17− 78

25 15 35 2860 1760 1090 6 643 1.19− 1.16 0.91− 0.55 9− 44

25 20 35 2860 2300 1670 8 673 1.24− 1.18 1.21− 0.78 6− 28

25 25 31 2410 1900 1770 9 597 1.28− 1.22 1.50− 1.07 4− 16

42 0 33 4500 2540 940 10 850 1.14− 1.14 0 ∞

42 10 23 2680 1700 1040 8 610 1.15− 1.15 0.53− 0.42 20− 37

42 15 21 2420 1710 1390 11 591 1.19− 1.18 0.84− 0.71 10− 17

42 20 15 1610 1430 1080 14 466 1.24− 1.24 1.12− 1.12 6− 6

117 0 22 6960 4050 1640 25 1240 1.15− 1.15 0 ∞

Table A.1: Simulation properties. Columns 3− 8 provide data at the final time of the simula-
tions, and columns 9− 11 show the variation between zenc/L0 = 15 and the final time of the
simulations: Re0 is the reference buoyancy Reynolds number defined by Eq. (A.6), Fr0 is the
reference Froude number defined by Eq. (A.8), zenc is the encroachment length defined by Eq.
(A.9), and L0 is the reference Ozmidov length defined by Eq. (A.4). The convective Reynolds
number is defined as Re∗ ≡ zencw∗/ν, where w∗ is the convective velocity scale defined by Eq.
(A.13). The turbulent Reynolds number is defined as Ret ≡ e2/εν, where e is the turbulence
kinetic energy and ε its viscous dissipation rate. (Ret)max is the maximum turbulent Reynolds
number in the CBL, and (Ret)zi,f is the turbulent Reynolds number particularized at the
height of the minimum buoyancy flux. (Reb)zi,f is the buoyancy Reynolds number defined
by Eq. (A.7) particularized at the height of the minimum buoyancy flux. η ≡ (ν3/ε)1/4 is the
Kolmogorov scale. (∆zi)c and (∆zi)s are defined by Eq. (A.29) and Eq. (A.30), respectively,
and are the convective and shear limits of the entrainment-zone scale, which is defined by Eq.
(A.26). LOb is the Obukhov length defined by Eq. (A.11).
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Figure A.2: Horizontal cross-section of the standardized natural logarithm of the viscous
dissipation rate ε ≡ ν(∂iu′j + ∂ju′i)∂ju′i at the height of the minimum buoyancy flux from
case Fr0 = 20 and Re0 = 42 of table A.1 at zenc/L0 ' 15. Apostrophes indicate turbulent-
fluctuation fields.

tendency towards Reynolds number similarity is consistent with that observed in
previous work in similar configurations, and supports the use of DNS to study some
aspects of the atmospheric boundary layer (Jonker et al., 2013; Waggy et al., 2013;
Garcia & Mellado, 2014; Van Heerwaarden & Mellado, 2016; Mellado et al., 2018).

The domain size is 215 L0× 215 L0× 130 L0 in all cases, and stopping the simulation
at zenc/L0 ' 35 implies that the boundary layer occupies approximately 30% of the
computational domain. Preliminary studies have shown that this ratio between the
CBL depth and the depth of the computational domain is small enough for results to
be independent of the depth of the computational domain. The aspect ratio of the
horizontal domain size and the CBL depth varies between 12:1 at the beginning of
the quasi-steady regime to around 5:1 at the final time considered in the analysis. The
thickness δ0 used in the initial conditions Eq. (A.2) and Eq. (A.3) is δ0 ' 0.2 L0, small
compared to zenc ' 10 L0, which is when the quasi-steady regime in shear-free CBLs
starts. Preliminary studies considering additional perturbations in the velocity field
over a similarly thin region have shown that results are independent to the details of
the initial conditions.

Apart from the case Fr0 = 20, the grid spacings are uniform and isotropic in all of
the computational domain except near the surface and in the free atmosphere above
the turbulent boundary layer (see table A.2). As we move towards the surface, the
vertical grid spacing is smoothly refined according to a hyperbolic tangent profile to
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Re0 Fr0 Grid (∆z/η)max (∆+
x )max (∆+

y )max ∆+
z |z=0

25 0 1280× 1280× 512 1.44 − − −
25 5 1280× 1280× 512 1.45 2.45 2.45 0.80− 0.66

25 10 1280× 1280× 512 1.43 3.46 3.46 1.19− 0.96

25 15 1536× 1536× 576 1.18 3.53 3.53 1.24− 0.96

25 20 1536× 2304× 576 1.18 4.14 2.75 1.46− 1.12

25 25 2560× 2560× 896 0.94 3.32 3.32 1.14− 0.89

42 0 2560× 2560× 896 1.04 − − −
42 10 2560× 2560× 896 1.15 2.97 2.97 1.09− 1.01

42 15 3072× 3072× 1024 0.84 2.71 2.71 0.99− 0.92

42 20 3072× 4608× 1024 0.91 3.19 2.12 1.17− 1.17

117 0 5120× 5120× 1024 1.16 − − −

Table A.2: Grid resolution. Here ∆x, ∆y, and ∆z are the grid spacings in the streamwise,
spanwise, and vertical directions, respectively. The maximum value of ∆z/η occurs at the
final time of the simulations, while the maximum values of ∆+

x , ∆+
y , and ∆+

z take place at the
very beginning of the simulations, when the friction velocity is large. The last column shows
the variation between zenc/L0 = 15 and the final time of the simulations.
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provide the required higher resolution near the surface. The ratio between the vertical
grid spacing in the bulk of the CBL and near the surface is 2.5, which is roughly the
ratio between the Kolmogorov length scale in the bulk of the turbulent layer and
near the surface in convection-dominated flows (Shishkina et al., 2010; Mellado, 2012).
The grid stretching associated with this refinement concentrates between z = 3 L0

and z = 15 L0 and the stretching factor is less than 1.5%, which has been shown
to be small enough to maintain the high accuracy of the compact schemes used in
this work (Mellado & Ansorge, 2012). As we move upwards outside of the turbulent
boundary layer and into the non-turbulent free atmosphere, the vertical grid spacing
is smoothly coarsened according to a second hyperbolic tangent profile. The aim
is to extend the vertical size of the computational domain and reduce the effect of
the spurious reflection of gravity waves at the top of the computational domain
without an excessive penalty in the required number of grid points. This coarsening
starts beyond z = 55 L0, which is well above the turbulent boundary layer, and the
corresponding stretching factor is less than 3.5%. We used preliminary studies to
ascertain that the results were insensitive to the details of the grid.

The grid spacings are chosen according to the well established resolution require-
ments for shear-driven flows (Flores et al., 2007; Spalart et al., 2008; Bernardini et al.,
2014) and convection-driven flows (Shishkina et al., 2010; Mellado, 2012; Waggy
et al., 2013). The vertical grid spacing, ∆z, satisfies always the relation ∆z/η . 1.5
(cf. table A.2), where η ≡ (ν3/ε)1/4 is the Kolmogorov scale. This ratio is sufficient
for the statistical properties of interest to depend less than 5% on the grid spacing,
which is comparable to or less than the statistical convergence of the properties
considered in the present work (Mellado, 2012; Garcia & Mellado, 2014). We also keep
∆+

x = ∆+
y . 4.5, where superscript + denotes quantities normalized with the wall

unit ν/u∗ (Ansorge & Mellado, 2014; Pirozzoli et al., 2017; Gohari & Sarkar, 2017).
Moreover, the viscous sublayer is resolved by ' 10 grid points in all simulations
(Spalart et al., 2008; Gohari & Sarkar, 2017). The reason for the anisotropic grid in
the horizontal directions in the cases with Fr0 = 20 is that we could satisfy the
aforementioned resolution constraints without the need to reduce the grid spacing
in the streamwise direction with respect to the corresponding cases with Fr0 = 15,
which allowed us to save computational time.

To improve statistical convergence and thus the clarity of the results discussed below,
horizontal averages are additionally averaged in time over an interval ∆zenc/L0 = 2,
which means ' 6 large-eddy turnover times at zenc/L0 = 30. This time interval
is small compared to the time required for the mean properties to change signifi-
cantly. When plotting the data, lines indicate this running average within an interval
∆zenc/L0 = 2, and shadow regions indicate the interval of two standard deviations
around that average.

a.2.4 Equilibrium (quasi-steady) entrainment regime

Garcia & Mellado (2014) have shown that the equilibrium (quasi-steady) entrainment
regime is reached beyond zenc/L0 ' 10 in shear-free CBLs growing into linearly
stratified atmospheres. In order to evaluate if the wind shear changes this critical
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Figure A.3: Temporal evolution of the terms of the integral TKE budget equation (A.16)
normalized with the convective velocity scale, defined in Eq. (A.13). Lines indicate the average
within an interval ∆zenc/L0 = 2, and shadow regions indicate the interval of two standard
deviations around that average.

value, following Fedorovich et al. (2004a), we perform an integral analysis of the TKE
evolution equation

∂te = P + 〈b′w′〉 − ∂zT − ε, (A.14)

where ∂te is the accumulation term, P ≡ −〈u′w′〉∂z〈u〉 is the shear-production rate,
〈b′w′〉 is the buoyancy production or destruction rate, −∂zT is the turbulent transport,
where T ≡ 〈u′iu′iw′/2 + p′w′ − u′iτ

′
i3〉, and ε ≡ 〈τ′ij∂ju′i〉 is the viscous dissipation

rate, τij ≡ ν(∂iuj + ∂jui) being the kinematic components of the viscous stress tensor.
Apostrophes indicate turbulent-fluctuation fields, e.g., b′ ≡ b− 〈b〉. Integrating Eq.
(A.14) from the surface to a height z∞ far into the non-turbulent free atmosphere
yields ∫ z∞

0
∂te dz =

∫ z∞

0
(P + 〈b′w′〉 − ∂zT − ε)dz , (A.15)

which for simplicity we write as

It = IP + Ibw + IT − Iε . (A.16)

The temporal evolution of each term normalized by w3
∗ is shown in figure A.3.

(Curves in this figure correspond to the upper limit of integration z∞ = 2.5 zenc, but
results remain similar when varying this limit between 1.5 zenc and 2.5 zenc.) Similar
to the shear-free case, the normalized integral of the transport term IT is small,
which implies that the energy drain due to the upward radiation of gravity waves
is negligible. Moreover, the normalized integral of the temporal term It becomes
negligible beyond zenc/L0 ' 10− 15, implying that there is a balance between shear
production, buoyancy production, and viscous dissipation, i.e., Ibw + IP ' Iε. This
balance corresponds to the equilibrium (quasi-steady) entrainment regime. In this
work, we focus on this regime and study wind-shear effects beyond zenc/L0 ' 15,
and we will only consider the data in the quasi-steady regime to derive scaling laws.
However, we will plot the data starting at zenc/L0 = 5 to indicate how the statistics
approach the quasi-steady regime.
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Figure A.4: Vertical profiles of (a) the mean buoyancy normalized by the encroachment
buoyancy, defined by Eq. (A.17), and (b) the buoyancy flux, defined by Eq. (A.18), normalized
by the surface buoyancy flux, for different Froude numbers at zenc/L0 ' 30. Data has been
averaged within an interval ∆zenc/L0 = 2.

a.3 wind-shear effects on buoyancy and velocity

In this section, we discuss the dependence of buoyancy and velocity properties
on Fr0 and zenc/L0, obtaining the values of these quantities for which wind-shear
effects become significant. Consistently with previous studies, some properties, like
horizontal-velocity statistics, vary monotonically with the Froude number, some
properties, like the buoyancy flux in the entrainment zone, change significantly only
when Fr0 & 10, and some properties, like the buoyancy and vertical-velocity statistics
in the mixed-layer, remain approximately unchanged and follow shear-free scaling
laws for all conditions considered in this study. In the following sections, we will
rationalize this behaviour.

a.3.1 Effects on the buoyancy

In the mixed layer, i.e., the well mixed region between z ' 0.1 zenc and z ' zenc,
the mean buoyancy increases in time due to the surface buoyancy flux and the
entrainment flux. In our study, the surface flux is constant and independent of the
wind velocity, but the entrainment flux increases with the wind velocity, and therefore
the mean buoyancy in the mixed layer is expected to increase with Fr0. Previous
studies have shown, however, that this increase is weak (e.g., Pino et al., 2003; Kim et
al., 2003; Pino & Vilà-Guerau De Arellano, 2008), so that the encroachment buoyancy
(Carson & Smith, 1975)

benc ≡ N2
0 zenc (A.17)

characterizes the mean buoyancy in the mixed layer not only in shear-free conditions
but also in sheared CBLs under weakly-to-strongly unstable conditions. Figure A.4(a)
confirms this result up to wind velocities corresponding to Fr0 = 25, for which the
mean buoyancy is only ' 2% higher than in shear-free conditions. Wind-shear effects
on the buoyancy flux

B ≡ 〈b′w′〉 − κb∂z〈b〉 (A.18)



A.3 wind-shear effects on buoyancy and velocity 17

5 10 15 20 25 30 35
zenc/L0

0.0

0.1

0.2

0.3
−
B
z
i,

f
/
B

0

(a)

Fr0 = 0

Fr0 = 5

Fr0 = 10

Fr0 = 15

Fr0 = 20

Fr0 = 25

5 10 15 20 25 30 35
zenc/L0

0.75

1.00

1.25

1.50

z
i,
ξ
/
z
e
n
c zi,g

zi,f

zi,0

(b)

Fr0 = 0 Fr0 = 10 Fr0 = 25

Figure A.5: Temporal evolution of (a) the minimum buoyancy flux normalized by the surface
buoyancy flux, and (b) different definitions of the CBL depth normalized by the encroachment
length scale. For clarity in the right panel, the height of the maximum buoyancy gradient, zi,g,
is indicated by dashed lines.

are also negligible in the mixed layer for all Froude numbers considered in this
study (figure A.4b). In contrast, in the entrainment zone, the region of negative
buoyancy flux above the mixed layer, wind-shear effects become significant for Froude
numbers larger than 10. Hence, in agreement with the aforementioned previous
studies where Coriolis effects are retained, wind-shear effects on buoyancy properties
remain localized inside the entrainment zone for the idealized CBLs considered in
this study.

To better quantify the effect of the wind shear on entrainment-zone properties, we
plot the temporal evolution of the minimum buoyancy flux normalized by the surface
buoyancy flux, −Bzi,f /B0, in figure A.5(a). (Henceforth, a subscript zi,¸ indicates that
the corresponding quantity is evaluated at zi,¸, and zi,f is the height of the minimum
buoyancy flux.) For Fr0 . 10, this quantity approximately coincides with that of the
shear-free case for zenc/L0 & 10− 15, which indicates a negligible effect of wind shear
on the minimum buoyancy flux during the quasi-steady regime. The slight decrease
for weak shear conditions Fr0 = 5 at early states of development zenc/L0 . 15 has
also been observed in Pino & Vilà-Guerau De Arellano (2008), and it might be a
manifestation of the sheltering effect of shear on the propagation of turbulence near a
turbulent/non-turbulent interface (Hunt & Durbin, 1999; Fedorovich & Thäter, 2001),
or of the enhancement of the energy drain from the CBL top by gravity-wave radiation
into the free atmosphere (Schröter, 2018). However, more analysis would be required
to draw a definitive conclusion because the effect of the shear near the surface might
still be significant in such a shallow CBL. For Froude numbers larger than 10, the ratio
−Bzi,f /B0 increases. Visualizations show that Kelvin-Helmholtz-like instabilities inside
the entrainment zone are associated with this increase (cf. figure A.1), in agreement
with previous observations (Kim et al., 2003).

Another property that proves useful for the analysis of wind-shear effects on
entrainment zone properties is the CBL depth. We consider the following definitions
of the CBL depth (see, e.g., Garratt, 1992; Sullivan et al., 1998): (i) The zero-crossing
height, zi,0, where the buoyancy flux becomes zero, (ii) the flux-based height, zi,f,
where the buoyancy flux is minimum, and (iii) the gradient-based height, zi,g, where
the mean buoyancy gradient is maximum. The temporal evolution of these heights,
shown in figure A.5(b), corroborates the features discussed before. First, the zero-



18 characterization of wind-shear effects on entrainment in a cbl

0.0 0.5 1.0
〈u〉/U0

0.0

0.5

1.0

1.5

z
/
z e

n
c

(a)

zenc/L0 = 3

zenc/L0 = 10

zenc/L0 = 20

zenc/L0 = 30

−0.08 −0.04 0.00
τx/(U0N0L0)

0.0

0.5

1.0

1.5

z
/
z e

n
c

(b)

Figure A.6: Vertical profiles of (a) the mean streamwise velocity normalized by the wind
velocity in the free atmosphere, U0, (b) the momentum flux normalized with U0 and the
reference convection velocity N0L0. Data corresponds to case Fr0 = 25 at different zenc/L0.

crossing height zi,0, which marks the bottom of the entrainment zone, is independent
of the wind strength and it is well approximated by the encroachment length scale,
zenc. This result further indicates that wind-shear effects above the surface layer on the
mean buoyancy concentrate in the entrainment zone (Fedorovich & Conzemius, 2008;
Pino & Vilà-Guerau De Arellano, 2008). Second, the difference in zi,f and zi,g between
cases Fr0 = 0 and Fr0 = 10 is small, which further indicates that entrainment-zone
properties remain unchanged for such a weak wind condition. Third, for stronger
wind conditions, wind-shear effects in the entrainment zone become considerable, and
both zi,f and zi,g increase. We note that, although the change of these heights is small
relative to the CBL depth, those changes are about 100% of the entrainment-zone
thickness, and are relevant for the local analysis of the entrainment zone in §A.4.

Figure A.5(a, b) also shows that wind-shear effects diminish and eventually vanish
as the CBL grows and thermals ascending from the mixed layer become more vigorous
and dominate mixing in the entrainment zone (Mahrt & Lenschow, 1976; Pino &
Vilà-Guerau De Arellano, 2008; Liu et al., 2016). Hence, shear effects depend not only
on the Froude number Fr0, or, equivalently, the wind velocity in the free atmosphere,
but also on the normalized CBL depth zenc/L0. In §A.5, we find a non-dimensional
variable that embeds the dependence on both Fr0 and zenc/L0, which facilitates the
characterization of wind-shear effects.

a.3.2 Effects on the velocity

As seen in figure A.6(a), when the CBL depth becomes an order of magnitude larger
than L0, the velocity profile varies rapidly across the CBL top, and becomes almost
flat within the mixed-layer. Because of this flat shape, the vertically averaged mean
velocity

uml ≡
1

zi,f

∫ zi,f

0
〈u〉dz (A.19)

provides an appropriate characteristic scale, and velocity profiles normalized by uml
collapse on top of each other and exhibit self-similarity within the mixed layer. This
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Figure A.7: Vertical profiles of (a) the TKE budget and (b) the root-mean-square of the vertical
velocity at zenc/L0 ' 30. Data from case Fr0 = 10 correspond to the transition from a
convection-dominated regime in the entrainment zone to a shear-dominated regime, and
data from case Fr0 = 25 correspond to a shear-dominated regime [(∆zi)s/(∆zi)c ≈ 0.43 and
(∆zi)s/(∆zi)c ≈ 1.21, respectively; see figure A.17 and table A.3].

vertical structure consisting of a well mixed velocity profile in the mixed layer and an
elevated wind shear in the entrainment zone is characteristic of the weakly-to-strongly
unstable conditions −zenc/LOb & 4 considered in this study (Kim et al., 2003; Sorbjan,
2006; Conzemius & Fedorovich, 2006a; Pino & Vilà-Guerau De Arellano, 2008). Hence,
the idealized CBL considered in this study also reproduces this main feature of
barotropic CBLs in middle latitudes, despite neglecting Coriolis effects.

The corresponding profiles of the kinematic momentum flux

τx ≡ 〈u′w′〉 − ν
∂〈u〉
∂z

(A.20)

are shown in figure A.6(b). Horizontal momentum is entrained at the CBL top,
transported down across the mixed layer, and finally removed by friction at the
surface. The larger magnitude of the momentum flux at the surface compared to the
entrainment zone causes the momentum inside the mixed layer to decrease in time
(figure A.6a). However, the difference between the momentum flux at the surface and
at the CBL top decreases in time, which implies a decrease in the time rate-of-change
of the mean velocity in the mixed layer.

The TKE budget is shown in figure A.7(a). For Fr0 = 10, the strong shear production
of TKE near the surface changes the transport and dissipation terms, but those
changes remain constrained to a depth below ' 0.25 zenc: compared to the shear-
free case, the turbulent transport additionally removes energy from very near the
surface, below ' 0.05 zenc, and deposits it in a thin layer above that region, between
' 0.05 zenc and ' 0.25 zenc. The turbulent transport remains unchanged in the CBL
interior, between ' 0.25 zenc and ' 0.9 zenc. In the entrainment zone, the reduction
of turbulent transport approximately compensates the shear production, while the
buoyancy flux and viscous dissipation remain practically the same as in shear-free
conditions.

For stronger shear conditions such as for Fr0 = 25, the changes near the surface
become larger but the turbulent transport still seems to redistribute TKE within a
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Figure A.8: Temporal evolution of (a) the ratio between turbulent transport and shear produc-
tion of TKE, and (b) the flux Richardson number Eq. (A.21), both evaluated at the height of the
minimum buoyancy flux. Grey areas indicate the interval where both shear and convection
are important, as discussed in §A.6.

region below ' 0.25 zenc, which indicates that shear-generated turbulence near the
surface is not responsible for the shear enhancement of entrainment (Conzemius
& Fedorovich, 2006a; Fedorovich & Conzemius, 2008). In contrast, the changes in
the entrainment zone are now more substantial. The turbulent transport develops a
local minimum close to zero at the height of maximum shear production, and the
magnitudes of the buoyancy flux and dissipation rate increase. We also observe a
slight change in the turbulent transport in the CBL interior, a displacement of the
curve towards the right. This change indicates that, with respect to the shear-free
case, less TKE is being transported from the lower half of the CBL to the upper half,
or that shear-generated TKE in the entrainment zone is actually being transported
downwards towards the CBL interior. The magnitude of the dissipation rate in the
CBL interior increases accordingly.

The variance of the vertical velocity, shown in figure A.7(b), further stresses the
importance of shear across the entrainment zone compared to the shear near the
surface, since the curves for different Froude numbers differ for z & zenc but approxi-
mately collapse on top of each other for z . zenc. In this region, the parametrisation
for wrms proposed by Lenschow et al. (1980) provides accurate estimates for the
weakly-to-strongly unstable conditions −zenc/LOb & 4 considered here.

a.4 wind-shear effects on the entrainment-zone vertical structure

We have seen in the previous section that wind-shear effects on entrainment-zone
properties become significant when Fr0 & 10. This behaviour can be understood by
examining the energetics in the entrainment zone. The ratio between the turbulent-
transport term and the shear-production term decreases with Fr0, as shown in fig-
ure A.8(a), and both terms become comparable at Fr0 ' 10. Concomitantly, the flux
Richardson number,

Rif ≡ −
〈b′w′〉

P
, (A.21)

becomes less than one and asymptotically approaches ' 0.25− 0.3 (figure A.8b). This
change in energetics with increasing shear has often been documented in previous
studies (Pino et al., 2003; Conzemius & Fedorovich, 2006a; Fedorovich & Conzemius,



A.4 wind-shear effects on the entrainment-zone vertical structure 21

 

 

 

 

Upper EZ sublayer  
Characterized by Ozmidov scale 

Lower EZ sublayer
Characterized by EZ scale

Mixed layer
Characterized by encroachment scale

Non-turbulent stably stratified region

Wind

Figure A.9: Sketch of the vertical structure of the CBL-top region. zi,0 is the zero-crossing
height, zi,f is the height of the minimum buoyancy flux, zi,s marks the transition from the
lower EZ sublayer to the upper EZ sublayer, and zi,g is the height of the maximum buoyancy
gradient. Red indicates the upper EZ sublayer, yellow indicates the lower EZ sublayer, and
blue indicates the mixed layer.

2008; Pino & Vilà-Guerau De Arellano, 2008). In this section, we further rationalize
this change in energetics in terms of a change in characteristic length scales in the
two-layer structure of the entrainment zone.

a.4.1 The two-layer structure of the EZ in the shear-free CBL

The analysis presented in this section is based on previous work on shear-free CBLs
by Garcia & Mellado (2014), who described the entrainment zone as a composition of
two sublayers (cf. figure A.9). The lower entrainment-zone (EZ) sublayer is located
around zi,f and is characterized by a length scale proportional to the CBL depth and
by the convective scales derived from the CBL depth and the surface buoyancy flux
(Deardorff, 1970). The scaling law for zi,f in shear-free CBLs is (figure A.10a)

zi,f − zenc ' 0.14 zenc . (A.22)

In the left-hand side, we measure distances with respect to zenc, the encroachment
length scale, because zenc provides an analytical reference height for the position
of the entrainment zone, and subtracting this order-of-one quantity allows us to
emphasize the local structure. (By scaling law we mean functional relationships
between dependent and independent variables that consistent with the dimensional
analysis presented in §A.2.2.)

The upper EZ sublayer is centred around zi,g, acts as a transition layer between
the turbulent region below and the non-turbulent stably stratified region above, and
is characterized by local scales. The local length scale is (LOz)zi,f , the Ozmidov scale
defined in Eq. (A.5) particularized at the height of the minimum buoyancy flux zi,f.
Since the upper EZ sublayer, which is characterized by (LOz)zi,f , is on top of the lower
EZ sublayer, which is characterized by zenc, we seek for a scaling law for zi,g of the
form

zi,g − zenc ' αczenc + βc(LOz)zi,f , (A.23)

where αc and βc are constants to be determined. This ansatz is supported by fig-
ure A.10(b). A linear regression to the data for zenc/L0 & 15 provides the values
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Figure A.10: Scaling of the flux-based and gradient-based CBL depths in the shear-free CBL
in terms of the encroachment length, zenc, and the Ozmidov length (LOz)zi,f . Symbols indicate
the average within an interval ∆zenc/L0 = 2. In the right panel only data for zenc/L0 & 15 is
considered.

αc = 0.184 and βc = 1.78. Equation (A.23) extends the result zi,g ∝ zenc proposed in
Garcia & Mellado (2014) with a first-order correction proportional to (LOz)zi,f .

We can define
zi,s ≡ zi,g − βc(LOz)zi,f (A.24)

as a reference height that marks the transition from the lower EZ sublayer to the
upper EZ sublayer, i.e., the transition from a region characterized by zenc to a region
characterized by (LOz)zi,f . The upper boundary of the entrainment zone, and thus the
upper boundary of the CBL, can be estimated as zi,g + 1.78 (LOz)zi,f . The thickness
of the upper EZ sublayer can be estimated as 2 (zi,g − zi,s) ' 3.56 (LOz)zi,f . As later
discussed in §A.5, the length scale (LOz)zi,f varies only weakly in time and it is well
approximated by 0.45 L0, where L0 is the reference Ozmidov length.

a.4.2 The two-layer structure of the EZ in the sheared CBL

How does the two-layer structure of the entrainment zone change with wind in the
free atmosphere? As observed in §A.3, wind in the free atmosphere leads to the
formation of a shear layer in the entrainment zone, i.e., a layer of marked variation of
the mean velocity between two regions with homogeneous velocity. From the various
idealized configurations often employed to study stably stratified sheared turbulence,
the stably stratified shear layer seems appropriate to introduce the discussion on
the interaction between shear and stratification in the entrainment zone of the CBL,
given the coincidence of a localized shear layer with a localized stratified layer (see,
e.g., Sherman et al., 1978; Peltier & Caulfield, 2003; Mashayek & Peltier, 2011). The
minimum gradient Richardson number

Rig ≡
∂z〈b〉

(∂z〈u〉)2 (A.25)

is a major variable characterizing the evolution of stably stratified shear layers. If the
initial shear layer is thin enough for the Richardson number to be relatively small,
Kelvin-Helmholtz-like instabilities will cause an overturning of the stably stratified
fluid and a thickening of the shear layer. As the shear layer thickens, overturning
the fluid becomes more difficult because the vertical displacement increases whereas
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the available kinetic energy, proportional to the squared velocity jump across the
shear layer, remains constant. Once the shear layer reaches a critical thickness, or
equivalently a critical Richardson number, the available kinetic energy is insufficient
to overturn the fluid and turbulence decays. Results show that this critical Richardson
number is 1/3± 15%, the uncertainty interval representing statistical convergence
and the dependence on Prandtl number, Reynolds number, and initial conditions
given that the flow is strongly transient (see, e.g., Smyth & Moum, 2000b; Brucker &
Sarkar, 2007; Howland et al., 2018).

In the CBL, convection in the mixed layer underneath the entrainment zone is
expected to introduce important differences with respect to the stably stratified shear
layer. One difference is that turbulence is sustained for a gradient Richardson number
significantly larger than 1/3. This is shown in figure A.11(a), which plots Rig at
the height of the minimum buoyancy flux, which approximately coincides with the
height of the minimum Rig. The main reason is that convective motions in the CBL
make the shear layer locally thinner, which leads to local subcritical Richardson
numbers and hence local shear instabilities that maintain a turbulent state (Mahrt
& Lenschow, 1976; Kim et al., 2003; Conzemius & Fedorovich, 2007). It is curious
that the gradient Richardson number in the entrainment zone approaches the value
1/3 as shear increases, which is the upper value observed in stably stratified shear
layers, although there is a priori no strong argument to expect this agreement given
the strong differences between the two cases.

To quantify how wind shear modifies the lower EZ sublayer, specifically, the scaling
law Eq. (A.22) for zi,f, we introduce the length scale

∆zi ≡
∆u

(∂z〈u〉)zi,f

, (A.26)

where
∆u ≡ U0 − uml (A.27)

is the velocity difference across the entrainment zone, the mixed-layer value uml being
defined by Eq. (A.19). The length scale ∆zi is referred to as vorticity thickness in the
literature of stably stratified shear layers. In this work we will refer to ∆zi as EZ scale,
because, as shown in the remaining of this section and in §A.5, ∆zi characterizes
the lower EZ sublayer (cf. figure A.9). Since the lower EZ sublayer is on top of the
mixed layer, which is characterized by zenc, we seek for a scaling law for zi,f that is a
linear combination of ∆zi and zenc. Figure A.12(a) supports this ansatz, and a linear
regression to the data for zenc/L0 & 15 yields

zi,f − zenc ' −0.06 zenc + 0.8 ∆zi . (A.28)

The largest deviation from this linear behaviour occurs for weak wind conditions,
Fr0 . 10, where the turbulent and buoyancy Reynolds numbers in the entrainment
zone are smallest in our DNS (see table A.1). However, even in these cases the linear
behaviour is approached as the CBL—and accordingly the Reynolds number—grows,
the deviation becoming less than 20% for zenc/L0 & 25. The data from the case
Fr0 = 10 and Re0 = 42 further supports this argument, since the deviation of this
data from Eq. (A.28) at zenc/L0 = 15 decreases by ' 33% with respect to the case
Fr0 = 10 and Re0 = 25. To avoid this low-Reynolds-number effect from the weak
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Figure A.11: Temporal evolution of (a) the gradient Richardson number Eq. (A.25), and (b) the
normalized buoyancy gradient, both evaluated at the height of the minimum buoyancy flux.
Grey area indicates the interval where both shear and convection are important, as discussed
in §A.6.

shear cases, only the data from the cases Fr0 > 10 is considered in the regression. Last,
we also verified that the dependence of the regression coefficients on the threshold of
zenc/L0 is small: the coefficients in zi,f ' 0.94 zenc + 0.8 ∆zi vary by ' 2% and ' 5%,
respectively, as the threshold changes from 15 to 20.

We can easily find the limits of ∆zi for weak wind conditions and strong wind
conditions. For a vanishingly small wind, Eq. (A.28) has to recover Eq. (A.22), which
implies that we can define

(∆zi)c ≡ 0.25 zenc (A.29)

as the asymptotic limit of ∆zi when Fr0 tends towards zero. This limit is indicated in
figure A.12(a) by the symbol "x". We will refer to (∆zi)c as the convective limit of the
EZ scale. To obtain the behaviour of ∆zi for a strong wind, we use Eq. (A.25) to rewrite

Eq. (A.26) as ∆zi '
√
(Rig)zi,f ∆u/N0, where we have used the result (∂z〈b〉)zi,f ' N2

0

shown in figure A.11(b). Hence, as the wind strength increases and the gradient
Richardson number decreases towards 1/3, ∆zi asymptotically approaches

(∆zi)s ≡
√

1/3
∆u
N0

. (A.30)

We will refer to (∆zi)s as the shear limit of the EZ scale. When convection dominates
in the entrainment zone, (∆zi)s is smaller than (∆zi)c, and the latter characterizes the
lower EZ sublayer. As the wind intensity U0 increases, (∆zi)s increases and eventually
becomes comparable to (∆zi)c, at which point (∆zi)s starts to characterize the lower
EZ sublayer. The weakly-to-strongly unstable conditions −zenc/LOb & 4 considered
in this paper correspond to (∆zi)s/(∆zi)c . 1.5. We will further explore in §A.5 the
capability of the ratio (∆zi)s/(∆zi)c to characterize shear effects on entrainment-zone
properties.

To characterize the upper EZ sublayer, we propose the following scaling law for the
height of the maximum buoyancy gradient:

zi,g − zi,f ' γs∆zi + βs(LOz)zi,f . (A.31)

This ansatz is motivated by Eq. (A.23), which indicates that, for shear-free conditions,
the position of the upper EZ sublayer with respect to the lower EZ sublayer can be
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Figure A.12: Scaling of the flux-based and gradient-based CBL depths in the sheared CBL in
terms of the encroachment length, zenc, the EZ scale, ∆zi, and the Ozmidov length (LOz)zi,f .
Light colours indicate low values of zenc/L0, and dark colours indicate higher values of
zenc/L0.

characterized by a linear combination of the scales characterizing the lower and upper
sublayers. Figure A.12(b) supports this ansatz, providing the coefficients γs ' 0.184
and βs ' 1.78 . The linear behaviour is also supported by the data corresponding to
higher Reynolds-number simulations (Re0 = 42), although longer simulations would
help to further validate Eq. (A.31). For vanishingly small Fr0, substituting ∆zi by
(∆zi)c in equations Eq. (A.28) and Eq. (A.31) recovers the shear-free result Eq. (A.23),
which indicates that changes in the upper EZ sublayer due to wind shear are captured
by the changes in (LOz)zi,f , the Ozmidov scale at zi,f. This further supports this length
as a characteristic scale of the upper EZ sublayer. As the turbulence intensity in
the lower EZ sublayer increases with respect to shear-free conditions, the lower EZ
sublayer broadens and so does the upper EZ sublayer.

In summary, the entrainment zone in sheared CBLs can also be described as a
composition of two sublayers, the lower EZ sublayer around the height of the mini-
mum buoyancy flux, and the upper EZ sublayer around the height of the maximum
buoyancy gradient. The difference from the shear-free case is that wind introduces
a local scale ∆zi in the characterization of the entrainment zone, in addition to the
encroachment scale zenc and the Ozmidov scale (LOz)zi,f . The scaling laws for the
reference heights are:

zi,f ' 0.94 zenc + 0.8 ∆zi , (A.32a)

zi,s ' 0.94 zenc + 1.0 ∆zi , (A.32b)

zi,g ' 0.94 zenc + 1.0 ∆zi + 1.78 (LOz)zi,f . (A.32c)

These equations recover the shear-free results when ∆zi is substituted by (∆zi)c. The
term 0.94 zenc can be identified with zi,0, the height of zero-crossing of the buoyancy
flux, which marks the base of the entrainment zone. Hence, the encroachment length
scale provides a measure of the CBL depth, in particular the mixed-layer depth,
which justifies referring to it as encroachment CBL depth. The height zi,s marks the
transition from the lower EZ sublayer to the upper EZ sublayer, i.e., the transition
from a region characterized by ∆zi to a region characterized by (LOz)zi,f . The height
zi,g + 1.78 (LOz)zi,f provides an upper boundary of the entrainment zone and of the
whole CBL. Such an upper boundary is sometimes defined based on a threshold
in the buoyancy-flux profile as the buoyancy flux increases from its minimum in
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the entrainment zone towards zero in the free atmosphere. However, such a defini-
tion of an upper boundary is very sensitive to the threshold chosen, the statistical
convergence, and the low-Reynolds-number effects (or the effect of subgrid-scale
models and numerical artefacts in large-eddy simulation). For this reason, we follow
Garcia & Mellado (2014) and define the upper boundary of the CBL as the upper
boundary of the upper EZ sublayer zi,g + 1.78 (LOz)zi,f . For the current study, this
boundary approximately coincides with the height where the buoyancy flux is 15% of
the minimum.

a.5 quantifying wind-shear effects on entrainment-zone properties

Normalized entrainment-zone properties in the barotropic CBLs considered in this
study depend on the Froude number Fr0 and on the normalized CBL depth zenc/L0.
The analysis of the entrainment-zone structure presented in §A.4, however, indicates
that the variable ∆zi/zenc embeds both dependencies and fully describes key proper-
ties such as zi,f. This reduction from two independent variables to one independent
variable can help simplify the parametrisation of wind-shear effects in boundary-layer
schemes of atmospheric models. Therefore, we further investigate in this section the
capability of the EZ scale, ∆zi, to characterize entrainment-zone properties. More-
over, we will obtain a relationship between ∆zi and the velocity increment across
the entrainment zone, ∆u, so that the latter can be used as independent variable.
The motivation for changing the variable ∆zi by the variable ∆u is that ∆zi is locally
defined in terms of a gradient [cf. Eq. (A.26)] whereas ∆u is defined as the velocity
difference between two regions of homogeneous velocity [cf. Eq. (A.27)], and thus ∆u
is less sensitive to measurements and numerical uncertainties.

a.5.1 Scaling law for the EZ scale

To derive a scaling law for ∆zi, we consider the integral analysis of the TKE balance
equation discussed in §A.2.4 but restricted to the entrainment zone:

IEZ
t = IEZ

T + IEZ
P + IEZ

bw − IEZ
ε . (A.33)

Henceforth, the superscript EZ stands for entrainment zone and indicates that the
corresponding integral is calculated in the interval zi,0 < z < z∞. To better quantify
shear effects, we subtract the balance equation for the shear-free CBL from the balance
equation for the sheared CBL, and we focus on the cases Fr0 & 15 because wind-shear
effects on entrainment-zone properties are small for smaller Froude numbers.

The shear enhancement of the accumulation term in the left-hand side of Eq. (A.33)
is less than 10− 20% of the shear-production term for zenc/L0 & 15 (cf. figure A.13a)
and hence negligible to leading order, which indicates a quasi-steady regime in the
entrainment zone. The transport term can be written as

IEZ
T = Tzi,0 − Tz∞ , (A.34)

i.e., the difference between the transport of kinetic energy from the mixed layer into
the entrainment zone and the transport of kinetic energy from the entrainment zone
into the free atmosphere. As seen in figure A.13(b), shear reduces the energy that is
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Figure A.13: Temporal evolution of the contributions from the accumulation term, IEZ
t , and the

turbulent-transport term, IEZ
T = Tzi,0 − Tz∞ , to the TKE budget equation (A.33). The subscript

c indicates the convective limit Fr0 = 0.

transported into the entrainment zone from the mixed layer and shear increases the
energy that is radiated out into the free atmosphere by gravity waves, so that IEZ

T
decreases with increasing shear. For weak shear conditions Fr0 = 5, the reduction
of energy transported into the entrainment zone is larger than the enhancement of
energy drained at the top (cf. figure A.13b), which suggests that shear sheltering
(Hunt & Durbin, 1999) dominates over shear enhancement of gravity-wave radiation
(Schröter, 2018). This effect on the transport term for weak shear conditions, however,
is not observed in the entrainment flux and viscous dissipation rate, which remain
practically unchanged for Fr0 . 10 once the CBL is inside the quasi-steady regime (see
also figure A.5a and A.7a). We also see that the shear reduction of IEZ

T saturates and
asymptotically approaches ' 0.02 w3

∗ with increasing shear, where w3
∗ = B0zenc. This

saturation is more clearly shown in figure A.13(c), where we plot the flux difference
across the entrainment zone as a function of the variable ∆u/[N0(∆zi)c]. (Using this
independent variable is motivated by the results presented below.) Hence, as the
shear production increases, the relative contribution of the turbulent transport in Eq.
(A.33) decreases (cf. figure A.13d). For instance, the relative contribution is ' 0.35 IEZ

P
for Fr0 = 15 and ' 0.15 IEZ

P for Fr0 = 25. We also observe that data from cases with
Re0 = 42 coincides with data from cases Re0 = 25 within the statistical convergence
reached in our simulations. Although the relative contribution of IEZ

T is arguably
non-negligible for Fr0 = 15, the shear effect on entrainment-zone properties is still
moderate for that Froude number, and therefore we neglect the turbulent transport
terms in Eq. (A.33) as a first approximation; this approximation is validated below.
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Figure A.14: Scaling laws for the dominant terms in the TKE budget equation (A.33) as a
function of the mean entrainment velocity, we, the velocity jump across the entrainment zone,
∆u, the buoyancy stratification of the free atmosphere, N2

0 , and the EZ scale, ∆zi.

Shear effects on the viscous dissipation rate and the buoyancy flux are negligible for
Fr0 . 10 once the CBL is inside the quasi-steady regime. For Fr0 > 10, figure A.14(a)
demonstrates that they are commensurate with each other,

− [IEZ
bw − (IEZ

bw )c] ∼ IEZ
ε − (IEZ

ε )c , (A.35)

which indicates that energy destruction by viscous dissipation and by conversion to
potential energy increase in a constant ratio independently of the shear strength in
the equilibrium entrainment regime of the sheared CBL. The subscript c indicates
the convective limit Fr0 = 0 . All these considerations, namely, using Eq. (A.35) and
neglecting the accumulation term and the turbulent transport term in Eq. (A.33), yield
the relationship

(IEZ
bw )c − IEZ

bw ∼ IEZ
P . (A.36)

This relationship implies that the entrainment enhancement in sheared CBLs is
due to the additional turbulence kinetic energy generated by the wind shear in the
entrainment zone.

Here, we proceed further and use the structure analysis presented in §A.4 to
estimate the terms in Eq. (A.36) and thereby obtain a closed equation for the unknown
∆zi. First, neglecting the thickness of the upper EZ sublayer, the integration intervals
in Eq. (A.36) are well approximated by ∆zi. Second, the velocity gradient can be
scaled by its maximum value, ∆u/∆zi [cf. Eq. (A.26)]. Last, to estimate the fluxes of
buoyancy and momentum, we use the entrainment-rate equations, which are obtained
by integrating the evolution equations for the mean buoyancy and mean velocity from
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a height zi,f upwards (see appendix AA). The entrainment-rate equations provide the
scalings −〈b′w′〉zi,f ∼ we∆b and −〈u′w′〉zi,f ∼ we∆u. In these expressions,

we ≡
dzi,f

dt
(A.37)

is the mean entrainment velocity, ∆b ≡ N2
0 ∆zi is a measure of the buoyancy increment

across the entrainment zone, and the velocity jump ∆u is defined by Eq. (A.27). All
these considerations indicate that the integrals on the left-hand side and right-hand
side of Eq. (A.36) are scaled by we∆b∆zi and by we(∆u)2, respectively, which is
confirmed by figures A.14(b, c). Substituting these scaling laws into Eq. (A.36) yields

weN2
0 (∆zi)

2 − we,cN2
0 (∆zi)

2
c ' c1we(∆u)2 . (A.38)

Figure A.14(d) supports this ansatz and shows that c1 ' 0.3. This coefficient can
be interpreted as a modified Richardson number where the shear enhancement
of the buoyancy flux is considered instead of the total buoyancy flux as in Eq.
(A.21). This interpretation indicates that the values (Rif)zi,f ' 1 observed when shear
effects become relevant are significantly larger than the values 0.25− 0.3 reported in
marginally stable stratified shear flows becasuse of the buoyancy flux caused by the
turbulence in the CBL interior.

To use Eq. (A.38) to obtain a closed equation for the EZ scale, ∆zi, we need
to consider the mean entrainment velocity, we. The shear enhancement of mean
entrainment velocity, we − we,c, can be split into two contributions by factorizing
zi,f − (zi,f)c as the product of [zi,f − (zi,f)c]/zenc and zenc, which yields

we − we,c =

[
zi,f − (zi,f)c

zenc
+ zenc

d
dzenc

zi,f − (zi,f)c

zenc

]
wenc , (A.39)

We have introduced the mean encroachment velocity wenc ≡ dtzenc, which can be
written as wenc ' N0L2

0/zenc by using Eq. (A.10). The first contribution is positive and
represents a quasi-steady contribution to the shear enhancement of the entrainment
velocity due to penetrative convection of a CBL that is deeper than in shear-free con-
ditions. The second contribution is negative and represents the unsteady contribution
due to the reduction of shear effects in time as the CBL grows and approaches the
shear-free limit. As inferred from table A.1, the ratio [zi,f − (zi,f)c]/zenc for Fr0 = 25
changes less than 40% when zenc changes by an order of one. Since [zi,f − (zi,f)c]/zenc

is on the order of 0.15, neglecting the second term implies an error of ' 5% in the
mean entrainment velocity we, which suggests to neglect this unsteady contribution
as a first approximation. With this approximation, the mean entrainment velocity can
be written as

we '
zi,f

zenc
wenc . (A.40)

Substituting Eq. (A.40) into Eq. (A.38), using the relationship wenc ' N0L2
0/zenc,

and using Eq. (A.32a) to express zi,f in terms of zenc and ∆zi, we can derive a cubic
equation for ∆zi/zenc. This cubic equation, however, can be easily approximated by a
simpler quadratic equation. To this aim, we rewrite Eq. (A.38) as

we
[
(∆zi)

2 − (∆zi)
2
c
]
+ (we − we,c)(∆zi)

2
c ' 0.3 weN−2

0 (∆u)2 . (A.41)
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Figure A.15: Verification with DNS data (coloured lines) of the scaling laws for the entrainment-
zone properties derived in §A.5 (dashed lines): (a) reference heights, (b, c, d) buoyancy-flux
properties, (e) viscous dissipation rate, and ( f ) Ozmidov length.
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Approximating we using Eq. (A.40), we can show that the ratio of the second to the
first term satisfies

(we − we,c)(∆zi)2
c

we [(∆zi)2 − (∆zi)2
c ]
' 0.8 (∆zi)2

c

[∆zi + (∆zi)c] (0.94 zenc + 0.8 ∆zi)
. 0.09 , (A.42)

where the upper bound is obtained by using the inequality (∆zi)c < ∆zi and the
definition (∆zi)c ≡ 0.25 zenc. This estimate is confirmed by the data, which shows that
the ratio of the second to the first term in Eq. (A.41) is less than 0.04 (not shown).
Hence, we can neglect the second term in Eq. (A.41), which leads to

∆zi

(∆zi)c
=

[
1 + 0.3

(
∆u

N0(∆zi)c

)2
]1/2

(A.43)

as an explicit expression for the EZ scale in terms of the controlling parameters and
the velocity increment across the entrainment zone. The proposed scaling law for ∆zi

is supported in figure A.15(a), where the reference heights zi,f and zi,s calculated by
Eq. (A.32a) and Eq. (A.32b) using ∆zi obtained from Eq. (A.43) agree with the DNS
data. The small deviation between the scaling laws and the DNS data for Fr0 = 10
and 15 in figure A.15(a) is due to the neglect of the turbulent flux of TKE in Eq. (A.33),
but, as already indicated before, the shear effects in those cases are still relatively
small. Comparing the data from cases Re0 = 25 and cases Re0 = 42 shows that the
Reynolds-number dependence of these scaling laws is small, less than the achieved
statistical convergence. Substituting the expression for zi,f, Eq. (A.32a), into Eq. (A.40),
we obtain

we

we,c
' 0.82 + 0.18

∆zi

(∆zi)c
(A.44)

as an explicit expression for the mean entrainment velocity in the barotropic CBLs
considered in this study. The convective limits are we,c ' 1.14 N0L2

0/zenc, from Eq.
(A.37) and Eq. (A.32a), and (∆zi)c ≡ 0.25 zenc, from Eq. (A.29).

a.5.2 Scaling law for buoyancy-flux properties

Besides zi,f and ∆zi, other properties that are relevant to characterize the entrainment
zone are the ratio between the minimum turbulent buoyancy flux and the surface
buoyancy flux, −〈b′w′〉zi,f /B0, referred to as the entrainment-flux ratio (Pino et al.,
2003; Conzemius & Fedorovich, 2006a; Pino et al., 2006), and the square root of
the ratio between the negative and positive areas of the turbulent buoyancy flux,
(−IEZ

bw /IML
bw )1/2, where the superscript ML stands for the mixed layer and indicates

that the corresponding integral is calculated in the interval 0 < z < zi,0 (Conzemius &
Fedorovich, 2006a).

An estimate for (−IEZ
bw /IML

bw )1/2 can be obtained as follows. From the relationship
−IEZ

bw ∼ we∆b∆zi = weN2
0 ∆z2

i used before, estimating the corresponding coefficient
of proportionality as 0.3 according to figure A.14(c), and using the approximation
IML
bw ' 0.5 B0zenc based on the linear variation of the turbulent buoyancy flux between

the surface and zi,0 (see figure A.7a), the area ratio can be expressed as
[
−IEZ

bw

IML
bw

]1/2

' 0.21
∆zi

(∆zi)c

[
0.82 + 0.18

∆zi

(∆zi)c

]1/2

, (A.45)
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Figure A.16: Temporal evolution of (a) the entrainment-flux ratio, 〈b′w′〉zi,f /B0; (b) the normal-
ized Ozmidov length particularized at the height of the minimum buoyancy flux, (LOz)zi,f /L0,
in the shear-free CBL. Symbols indicate the average within an interval ∆zenc/L0 = 2.

where we have used Eq. (A.44) to express the result in terms of ∆zi/(∆zi)c. This
scaling law is supported by the DNS data in figure A.15(b). Consistent with previous
work, we obtain a value ' 0.2 in the shear-free limit (Conzemius & Fedorovich,
2006a).

An estimate for −〈b′w′〉zi,f /B0 can be obtained in a similar way. From the scaling
law −〈b′w′〉zi,f ∼ we∆b = weN2

0 ∆zi employed before and using Eq. (A.44), we obtain

〈b′w′〉zi,f

[〈b′w′〉zi,f ]c
' ∆zi

(∆zi)c

we

we,c
' ∆zi

(∆zi)c

[
0.82 + 0.18

∆zi

(∆zi)c

]
. (A.46)

This scaling law is supported by the DNS data in figure A.15(c). The deviation of
' 20% for strong wind conditions is a Reynolds-number effect. For the cases with
Re0 = 25, the turbulent Reynolds number at z = zi,f, (Ret)zi,f , is approximately four
times larger for cases Fr0 = 20 and Fr0 = 25 than for case Fr0 = 0 (1600 compared
to 400, as seen in table A.1). A similar variation in Ret is observed between cases
Re0 = 25 and Re0 = 117 in shear-free conditions, and the entrainment-flux ratio in
shear-free conditions, which is used to normalize the entrainment-flux ratio in sheared
conditions, varies about 30% over this interval of Reynolds number (see figure A.16a).
Normalizing the minimum buoyancy flux for cases Fr0 = 20 and Fr0 = 25 with the
approximation

−
[
〈b′w′〉zi,f

]model
c

B0
' 0.12− 0.45

(
zenc

L0

)−1

, (A.47)

which is derived in Garcia & Mellado (2014) from data at Ret ' 1600 and hence
turbulent Reynolds numbers that are comparable to the ones here in the strong shear
conditions, Eq. (A.46) represents better the DNS data, as shown in figure A.15(d).

The scaling laws Eq. (A.45) and Eq. (A.46) do not feature a reduction of entrainment
flux for weak shear conditions. The slight decrease observed in figures A.15(c, d) for
the case Fr0 = 5 near ∆u/[N0(∆zi)c] = 0.5 is smaller than the statistical convergence
of our data, as indicated in that figure by the shadow region. Besides, those values
correspond to an early stage of the quasi-steady regime, and is not observed in the
case Fr0 = 10 near ∆u/[N0(∆zi)c] = 0.5, where the CBL is further into the quasi-
steady regime and the local turbulent Reynolds number is six times larger. We recall
that, for weak shear conditions, the analysis of the TKE budget equation presented
in §A.5.2 indicates that the shear production of TKE is mostly used to modify the
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transport of TKE in and out of the entrainment zone without significantly affecting
the buoyancy flux and the dissipation rate, at least, to the accuracy achieved by our
simulations.

a.5.3 Scaling law for the Ozmidov length

To reconstruct the complete entrainment-zone structure using Eq. (A.32) one needs a
scaling law for the Ozmidov length (LOz)zi,f in addition to the scaling law Eq. (A.43)
for the EZ scale ∆zi. From the definition of the Ozmidov length Eq. (A.5), this implies
obtaining a scaling law for the viscous dissipation rate at the height of minimum
buoyancy flux. Such scaling law can be obtained from the relationship Eq. (A.35),
which states that changes in the dissipation rate relative to the shear-free limit are
well scaled by the changes in the buoyancy flux, the constant of proportionality being
' 0.3, as observed in figure A.14(a). Hence, we can write

IEZ
ε

(IEZ
ε )c

' 1 + c2

[
IEZ
bw

(IEZ
bw )c

− 1

]
' 1 + c2

[
∆z2

i
(∆zi)2

c

we

we,c
− 1
]

, (A.48)

where the proportionality constant is c2 ≡ −(IEZ
bw )c/[0.3 (IEZ

ε )c] and we have used
the approximation −IEZ

bw ' 0.3 weN2
0 ∆z2

i employed before to derive Eq. (A.45). The
ratio of mean entrainment velocities in the equation above is provided by Eq. (A.44).
To evaluate the proportionality constant c2, we know that −(IEZ

bw )c ' 0.022 B0zenc by
substituting ∆zi = (∆zi)c into Eq. (A.45), and we know that (IEZ

ε )c ' (IEZ
T + IEZ

bw )c from
the TKE budget equation for shear-free conditions, which yields (IEZ

ε )c ' 0.048 B0zenc

when we use the estimate (IEZ
T )c ' 0.07 B0zenc from figure A.13(c). The value that we

obtain is c2 ' 1.53 and the resulting scaling law Eq. (A.48) is validated with the DNS
data in figure A.15(e).

To find the scaling law for the Ozmidov length at zi,f, we define a characteristic scale
for the dissipation rate in the entrainment zone as IEZ

ε /∆zi. From definition Eq. (A.5),
we obtain the following ratio of the Ozmidov length between sheared conditions and
shear-free conditions

(LOz)zi,f

[(LOz)zi,f ]c
'
[
(∆zi)c

∆zi

IEZ
ε

(IEZ
ε )c

]1/2

'
{
(∆zi)c

∆zi

[
1.53

∆z2
i

(∆zi)2
c

we

we,c
− 0.53

]}1/2

, (A.49)

where the ratio of mean entrainment velocities is given by Eq. (A.44) as a function
∆zi/(∆zi)c. This scaling law is supported in figure A.15( f ). The deviation of ' 20%
for strong wind conditions is a Reynolds-number effect, which, as explained in §A.5.2,
arises because the Ozmidov length in sheared conditions is normalized by the shear-
free value, and the latter varies about 15% within the interval of turbulent Reynolds
numbers in the entrainment zone spanned between case Fr0 = 0 and case Fr0 = 25
(cf. figure A.16b). As a first approximation, one can consider

[
(LOz)zi,f

]
c

L0
'
[

0.23− 0.85
(

zenc

L0

)−1
]1/2

, (A.50)

which is obtained from definition Eq. (A.5), from Eq. (A.47), and from (∂z〈b〉)zi,f '
0.9 N2

0 (see figure A.11b) and the observation that (−ε/〈b′w′〉)zi,f ' 1.6 according to
figure A.7(a). Normalizing the Ozmidov scale in sheared CBLs with the shear-free
limit provided by Eq. (A.50) represents better the DNS data (not shown).
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a.6 discussion

The scaling laws Eq. (A.32) for the reference heights, Eq. (A.43) for the EZ scale, Eq.
(A.49) for the Ozmidov length, and Eq. (A.46) for the entrainment-flux ratio help
characterize the two-layer structure of the entrainment zone in the equilibrium (quasi-
steady) entrainment regime of a barotropic CBL penetrating into a linearly stratified
atmosphere. We still miss a relationship between the velocity increment ∆u, the control
parameter Fr0, and the independent variable zenc/L0. This relationship could be
obtained from the integral analysis of the momentum equation between z = 0 and z =

zi,f, but such analysis requires the study of the friction velocity and its dependence on
surface properties, e.g., on the Reynolds number for an aerodynamically smooth wall
or on the roughness properties for an aerodynamically rough wall, and such a study
deserves its own paper. Nonetheless, the proposed characterization of entrainment-
zone properties in terms of ∆u/(N0L0) and zenc/L0 should remain approximately
valid for different surface properties because, as reviewed in the introduction and
shown in §A.3, the shear near the surface affects entrainment mainly indirectly
through the change of ∆u. Besides, scaling laws in terms of ∆u are convenient
because ∆u might be more easily measured and simulated than local properties in
the entrainment zone, such as ∆zi. The reason is that the mean velocity profile is
approximately height-invariant inside the mixed layer and inside the free atmosphere,
and hence ∆u is insensitive to the exact location where those two velocity values are
calculated.

The independent variable ∆u/[N0(∆zi)c] can be interpreted in various ways. From Eq.
(A.30), the definition of (∆zi)s, we can write ∆u/[N0(∆zi)c] =

√
3 (∆zi)s/(∆zi)c and

use (∆zi)s/(∆zi)c as the independent variable, which can be interpreted as the ratio
between the shear limit and the convective limit of the EZ scale. Under strongly
unstable conditions (weak wind), (∆zi)s is smaller than (∆zi)c, and the latter charac-
terizes the lower EZ sublayer. For weakly unstable conditions (strong wind), (∆zi)s is
comparable to (∆zi)c and characterizes the lower EZ sublayer.

A second interpretation of ∆u/[N0(∆zi)c] can be obtained by using Eq. (A.29), the
definition of (∆zi)c, to write ∆u/[N0(∆zi)c] = 4 ∆u/(N0zenc). We can then use

Rib ≡ N2
0 z2

enc/(∆u)2 (A.51)

as the independent variable, which can be interpreted as a bulk Richardson number
that compares the energy necessary for a fluid particle to penetrate a distance zenc into
the free atmosphere, and the kinetic energy associated with the velocity difference
across the entrainment zone.

This definition of a bulk Richardson number differs from the definition R̃ib ≡
∆̃b zi,f/∆u2 often used in previous analysis (Pino et al., 2003; Conzemius & Fedorovich,
2006b, 2007), where ∆̃b represents a measure of the buoyancy increment across
the entrainment zone and it is not necessarily equal to the definition ∆b ≡ N2

0 ∆zi

used here. These previous studies commonly result in an entrainment-flux ratio

proportional to (1− a R̃i
−1
b )−1, where a ' 0.3− 1.0, which can become infinity and

hence unphysical for strong wind conditions (Conzemius & Fedorovich, 2006b).
Differently from these previous studies, we have used the EZ scale ∆zi instead of the
CBL depth zi,f to estimate IEZ

bw in the TKE budget analysis presented in §A.5. For small
values of ∆u, both scales zenc and zi,f are proportional to each other, which implies
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∆u
N0(∆zi)c

(∆zi)s
(∆zi)c

∆zi
(∆zi)c

Rib (Rig)zi,f (Rif)zi,f − zenc
LOb

〈b′w′〉zi,f
[〈b′w′〉zi,f ]c

convection-dominated 0.6 0.35 1.05 44 2.75 1.0 60 1.06

shear-dominated 1.04 0.60 1.15 15 1.0 0.55 33 1.18

Table A.3: Critical values of various variables defining the boundary of the convection-
dominated regime, where shear effects in the entrainment zone are negligible, and the
boundary of the shear-dominated regime, where shear effects are of order one or larger.

Rib ∝ R̃ib. Besides, for small values of ∆u, the Taylor expansion of Eq. (A.46) yields
〈b′w′〉zi,f /[〈b′w′〉zi,f ]c ' 1 + 2.8 Ri−1

b , where the linear dependence on Ri−1
b agrees with

that obtained from the expansion (1− a R̃i
−1
b )−1 ' 1 + a R̃i

−1
b for large values of R̃ib.

However, for larger values of ∆u, the length scales zenc and zi,f differ, Rib and R̃ib are
not proportional to each other, and the scaling laws derived here remain finite for
strong wind conditions.

We can use the scaling laws derived above to construct a partition of the parameter
space depending on the relevance of shear in the entrainment zone. We choose
to measure this relevance by the ratio between the shear-production rate and the
turbulent-transport rate, since this variable is often used in the literature to discuss
shear effects. We define the convective-dominated regime when [P/(−∂zT)]zi,f . 0.5
and the shear-dominated regime when [P/(−∂zT)]zi,f & 2. These limits are indicated
in figure A.8(a), the grey area in-between corresponding to conditions in which both
shear and convection are important for entrainment-zone properties. These limits are
also indicated in terms of the flux Richardson number in figure A.8(b). As observed
previously in the literature (Conzemius & Fedorovich, 2006a; Pino & Vilà-Guerau De
Arellano, 2008), we find that wind-shear effects appear at flux Richardson numbers
of order one, which is significantly larger than the asymptotic value ' 0.25− 0.3
characteristic of marginally stable stratified shear layers. As explained before with
help of Eq. (A.38), the value ' 0.25− 0.3 is recovered when we subtract the buoyancy
flux in shear-free conditions from the buoyancy flux in sheared conditions.

Plotting [P/(−∂zT)]zi,f as a function of ∆u/[N0(∆zi)c] (not shown), we can express
the thresholds that define the convective-dominated regime and the shear-dominated
regime in terms of ∆u/[N0(∆zi)c]. We find that the upper threshold for the convection-
dominated regime corresponds to

(∆u)conv

N0(∆zi)c
' 0.6 (A.52)

and the lower threshold for the shear-dominated regime corresponds to

(∆u)shear

N0(∆zi)c
' 1.04 . (A.53)

The corresponding thresholds in terms of other independent variables are summa-
rized in table A.3. The critical value of ∆u/[N0(∆zi)c] = 0.6 corresponds to ' 5 m s−1

wind velocity in the free atmosphere for typical midday conditions, which is often
considered as a reference value for wind effects to become relevant in unstable condi-
tions (Stull, 1988). We note, however, that even such a weak wind could significantly
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Figure A.17: Partition of the parameter space of a barotropic CBL penetrating into a linearly
stratified atmosphere. The dashed lines mark the critical values separating the regimes as
defined in Eq. (A.54) and Eq. (A.55).

affect the entrainment zone when the buoyancy forcing is weak, e.g., in the early
morning or the late evening.

We can represent these various regimes in a parameter space spanned by the
normalized velocity jump across the entrainment zone and the normalized convective
velocity, as shown in figure A.17. Using the definition of the convective velocity
scale Eq. (A.13), the boundaries between the various regions are

(∆u)conv

N0L0
' 0.15

(
w∗

N0L0

)3

, (A.54)

and
(∆u)shear

N0L0
' 0.26

(
w∗

N0L0

)3

. (A.55)

Hence, depending on the strength of ∆u and w∗, the entrainment-zone dynamics
in the equilibrium (quasi-steady) entrainment regime of a barotropic CBL penetrat-
ing into a linearly stratified atmosphere can be categorized in the following three
regimes: the convection-dominated regime for ∆u < (∆u)conv, a regime in which
shear and convective forcing are comparable for (∆u)conv < ∆u < (∆u)shear, and the
shear-dominated regime for ∆u > (∆u)shear.

We have also considered alternative variables that are often used in the literature
to characterize shear effects, like the flux Richardson number. As observed in fig-
ure A.18(a), the flux Richardson number at the height of the minimum buoyancy
flux captures wind-shear effects as well as the bulk Richardson number, since curves
corresponding to different Froude numbers align into a single general curve. However,
one disadvantage of using (Rif)zi,f instead of Rib to characterize wind-shear effects is
that (Rif)zi,f asymptotes towards ' 0.25− 0.3 for large Froude numbers (figure A.8b).
Hence, properties become very sensitive with respect to (Rif)zi,f and small errors in
determining (Rif)zi,f can lead to large errors in the diagnosed statistical properties.
Another disadvantage of using (Rif)zi,f to characterize wind-shear effects is that, from
a practical point of view, measuring the flux Richardson number at the height of
the minimum buoyancy flux requires calculating gradients and covariances, which
can be challenging, whereas estimating ∆u, the velocity difference between the free
atmosphere and the mixed layer, can be easier.

Another variable that we have studied as an alternative independent variable is
the stability parameter −zenc/LOb, since this variable is often used to characterize
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Figure A.18: Temporal evolution of the normalized flux-based CBL depth as a function of (a)
the flux Richardson number (Rif)zi,f and (b) the stability parameter −zenc/LOb.

wind-shear effects on various properties of CBLs. We plot in figure A.18(b) the evolu-
tion of the height of the minimum buoyancy flux normalized by the encroachment
length scale versus −zenc/LOb. Curves corresponding to different Froude numbers
do not align into a single general curve, and the dependence of the entrainment-zone
thickness on Fr0 is on the order of one for −zenc/LOb < 20. Hence, the stability param-
eter −zenc/LOb is insufficient to characterize wind-shear effects on entrainment-zone
properties.

One last aspect that is worth discussing is to what extent DNS studies as the ones
presented here might be representative of the atmospheric CBL, given the disparity of
Reynolds numbers between the DNS and the atmospheric CBL. There are properties
that might certainly be poorly represented with the Reynolds number that we reach
in our simulations. For instance, inertial-range and dissipative-range properties in
the entrainment zone are likely poorly represented, since the ratio between the
Ozmidov scale and the Kolmogorov scale, quantified by (Reb)

3/4, is less than 10.
However, the entrainment-zone properties addressed in this work, such as second-
order moments and the TKE budget equation, show less than 10− 20% sensitivity to
the larger Reynolds numbers reached in our simulations—the mean properties and
the corresponding layered vertical structure show even less sensitivity. The reason is
that much of those properties is determined by the interaction between convection in
the mixed layer, which is dominated by large scales, and the mean velocity profile
in the entrainment zone, which is also well represented. Hence, even if some of the
coefficients in the scaling laws derived in this work might still vary on the order of
10− 20% as the Reynolds number in the DNS is further increased, the functional
relationships in those scaling laws are likely robust, and therefore DNS can provide
relevant information about the atmospheric CBL. A similar convergence towards
Reynolds number similarity has also been reported in cloud-topped boundary layers,
and it is associated with the capability to resolve the Ozmidov scale at the CBL
top, and hence resolve wave-like motions, which are very poorly represented by
standard down-gradient mixing models (Mellado et al., 2018). A more challenging
aspect, we believe, is how to transfer the results obtained from idealized studies to
the atmospheric context, given the complex interaction of various processes often
occurring in the atmospheric CBL.
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a.7 summary and conclusions

A systematic analysis of wind-shear effects on barotropic convective boundary lay-
ers growing into linearly stratified atmospheres has been carried out by means of
dimensional analysis and direct numerical simulation. Dimensional analysis allows
us to characterize the system by a normalized CBL depth, zenc/L0, a Froude number
Fr0 ≡ U0/(N0L0), a reference buoyancy Reynolds number, Re0 ≡ N0L2

0/ν, and the
Prandtl number. The first two non-dimensional quantities embed the dependence of
the system on time, on the surface buoyancy flux, B0, and on the wind velocity and the
buoyancy stratification in the free atmosphere, U0 and N2

0 , respectively. The encroach-
ment length scale zenc is a measure of the shear-free CBL depth, and L0 = (B0/N3

0 )
1/2

is the reference Ozmidov length. L0 and Re0 characterize the turbulence in the upper
sublayer of the entrainment zone, a strongly stratified region that serves as a transition
between the CBL and the free atmosphere. The ratio zenc/L0 increases as the CBL
grows into the linearly stratified atmosphere, and we have focused on the equilib-
rium (quasi-steady) entrainment regime, when CBL properties evolve on time scales
much larger than the eddy turnover time of the large, energy-containing motions. In
particular, we have studied the intervals 15 . zenc/L0 . 35 and 0 ≤ Fr0 ≤ 25, which
represents typical midday atmospheric conditions over land with wind velocities of
up to U0 ' 15 m s−1. The Prandtl number has been set to 1. We have thoroughly
studied the case Re0 = 25 and compared the main results with data from Re0 = 42.
The observed degree of Reynolds-number similarity indicates that the results found
in this study can be informative for atmospheric conditions.

We have found that the dependence of mixed-layer and entrainment-zone prop-
erties on the normalized CBL depth zenc/L0 and the Froude number Fr0 can be
expressed in terms of one single independent variable, (∆zi)s/(∆zi)c, where (∆zi)s =√

1/3 ∆u/N0 is the entrainment-zone scale in weakly unstable conditions (strong
wind), ∆u ≡ U0 − uml being the velocity difference between the free atmosphere and
the mixed layer, and (∆zi)c = 0.25 zenc is the entrainment-zone scale in strongly un-
stable conditions (weak wind). The ratio (∆zi)s/(∆zi)c increases as the wind velocity
increases and in this study we have considered the range 0 ≤ (∆zi)s/(∆zi)c . 1.5,
which corresponds to the weakly-to-strongly unstable conditions −zenc/LOb & 4. The
mean buoyancy and the mean buoyancy flux in the mixed layer follow shear-free scal-
ing laws for all those conditions. For (∆zi)s/(∆zi)c < 0.35, convection dominates the
entrainment-zone dynamics and wind-shear effects on entrainment-zone properties
are negligible. Wind-shear effects on entrainment appear when (∆zi)s/(∆zi)c ' 0.35,
which corresponds to ' 5 m s−1 for typical midday conditions, and become of order
one when (∆zi)s/(∆zi)c ' 0.6. The corresponding critical values of ∆u are provided
in Eq. (A.54) and Eq. (A.55) in terms of the encroachment CBL depth, the surface
buoyancy flux, and the stratification in the free atmosphere.

We have rationalized the relevance of the variable (∆zi)s/(∆zi)c and the validity of
shear-free scaling laws below (∆zi)s/(∆zi)c ' 0.35 by analysing the two-layer vertical
structure of the entrainment zone. In particular, we have obtained the entrainment-
zone scale ∆zi that characterizes the lower entrainment-zone sublayer. The limit of
∆zi for vanishingly weak wind is (∆zi)c, and the limit of ∆zi for strong wind is
(∆zi)s. The variable (∆zi)s can be interpreted as the asymptotic thickness of a stably
stratified shear layer that would form in the limit of strong wind. Hence, as wind shear
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Figure A.19: Temporal evolution of the normalized buoyancy difference and velocity difference
at the height of minimum buoyancy flux in the entrainment-rate equations for the buoyancy
(A.58) and for the velocity (A.59).

increases and the variable (∆zi)s/(∆zi)c increases, the value ' 0.35 can be interpreted
as the condition at which the characteristic length scale in the lower entrainment-zone
sublayer ∆zi changes from the convective limit (∆zi)c towards the shear limit (∆zi)s.
Consistently, the analysis of the budget of the turbulence kinetic energy shows that,
at this condition, shear production becomes comparable to turbulent transport as a
source of turbulence kinetic energy in the entrainment zone. The corresponding flux
Richardson number Rif ≡ −〈b′w′〉/P particularized at zi,f at this state is ' 1, instead
of the value ' 0.25− 0.3 characteristic of marginally stable stratified shear layers: the
value ' 0.25− 0.3 is recovered when we substract the buoyancy flux of the shear-free
limit from the numerator. The upper entrainment-zone sublayer is characterized by
the Ozmidov scale evaluated at the height of the minimum buoyancy flux. As the
turbulence intensity in the lower entrainment-zone sublayer increases with respect to
shear-free conditions, the lower entrainment-zone sublayer broadens and so does the
upper entrainment-zone sublayer.

The reduction of the number of independent variables from two to one can help
simplify the parametrisation of mixed-layer and entrainment-zone properties in atmo-
spheric models. To this aim, we have provided scaling laws for the reference heights
in Eq. (A.32), for the entrainment-zone scale in Eq. (A.43), for the Ozmidov length
in Eq. (A.49), and for the entrainment-flux ratio in Eq. (A.46), in terms of B0, N0,
∆u, and time. Such a reduction from two independent variables to one can also be
expressed in terms of the bulk Richardson number Rib ≡ N2

0 z2
enc/(∆u)2, but not in

terms of the stability parameter −zenc/LOb.
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APPENDIX AA

Entrainment-rate equation

To derive the entrainment-rate equation based on the mean buoyancy, we integrate
the evolution equation of the mean buoyancy relative to the reference background
profile

∂t(〈b〉 − N2
0 z) = −∂z

[
〈b′w′〉 − κb∂z〈b〉

]
(A.56)

from zi,f upwards. Applying the Leibniz rule yields

dt

∫ z∞

zi,f

(〈b〉 − N2
0 z)dz +

[
〈b〉 − N2

0 z
]

zi,f
dtzi,f = −

∫ z∞

zi,f

∂z
[
〈b′w′〉 − κb∂z〈b〉

]
dz , (A.57)

which can be rearranged to obtain the entrainment rate equation

[
N2

0 z− 〈b〉
]

zi,f
dtzi,f = −

[
〈b′w′〉 − κb∂z〈b〉

]
zi,f
− Re−1

0 B0 − dt

∫ z∞

zi,f

(N2
0 z− 〈b〉)dz .

(A.58)
Garcia & Mellado (2014) have shown that the distortion term (the integral term in
A.58) is relatively small. Therefore, for Reynolds numbers that are large enough to
neglect the molecular-flux terms, the turbulent buoyancy flux at zi,f is approximately
equal to [N2

0 z− 〈b〉]zi,fdtzi,f. Concomitantly, figure A.19(a) shows that [N2
0 z− 〈b〉]zi,f ,

which is the local deviation of the mean profile with respect to the background profile
b0 at the height zi,f, is well scaled by N2

0 ∆zi. As a result, the entrainment-rate equation
based on the mean buoyancy provides the scaling law −〈b′w′〉zi,f ∼ weN2

0 ∆zi, where
we ≡ dtzi,f.

The same analysis is carried out to derive the entrainment-rate equation based on
the mean velocity

[
U0 − 〈u〉

]
zi,f

dtzi,f = −
[
〈u′w′〉 − ν∂z〈u〉

]
zi,f
− dt

∫ z∞

zi,f

(U0 − 〈u〉)dz . (A.59)

The contribution of the distortion term compared to the contribution of the kinematic
momentum flux at zi,f is small, which implies that −〈u′w′〉zi,f is approximately equal to
[U0−〈u〉]zi,f dtzi,f for a large enough Re0. Figure A.19(b) shows that [U0−〈u〉]zi,f is well
scaled by ∆u, the velocity increment across the entrainment zone defined by (A.27).
Therefore, the entrainment-rate equation based on the mean velocity provides the
scaling law −〈u′w′〉zi,f ∼ we∆u.

The entrainment-rate equations derived above recover the jump relations used
in mixed-layer-models when the mixed-layer-model approximations to the actual
solutions are substituted into them (Fedorovich et al., 2004a). With this mixed-layer
approximation, the increments [N2

0 z− 〈b〉]zi,f and [U0− 〈u〉]zi,f coincide with the jumps
of buoyancy and velocity across the CBL top. However, when the entrainment-rate
equations are applied to the actual solutions of the governing equations (A.1), those
increments are not the difference between two arbitrary heights at the CBL top,
but have a very specific definition, namely, the difference between the reference
background profiles and the mean values at the particular height chosen to track the
CBL top, in this case, the height of minimum buoyancy flux.
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Non-singular zero-order bulk models of sheared
convective boundary layers

Armin Haghshenas, Juan Pedro Mellado and Moritz Hartmann

Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany

Two zero-order bulk models (ZOM) are developed for the velocity, buoyancy, and
moisture of a cloud-free barotropic convective boundary layer (CBL) that grows into
a linearly stratified atmosphere. The models differ in the entrainment-closure as-
sumption: in the first one, termed "energetics-based model", the negative and positive
areas of the buoyancy flux are assumed to match between the model and the actual
CBL; in the second one, termed "geometric-based model", the modeled CBL depth is
assumed to match different definitions of the actual CBL height. Parameterizations
for these properties derived from direct numerical simulation are employed as the
entrainment-closure equations. These parameterizations, and hence the resulting
models, are free from the potential singularity at finite wind strength that has been
a major limitation in previous models. A good agreement is observed in the tempo-
ral evolution of CBL bulk properties predicted by the energetics-based model and
previous ZOMs that appropriately estimate the contribution of entrainment-zone
shear in their entrainment closure. Predictions of the geometric-based model sug-
gest that the CBL depths obtained from the energetics-based model and previous
ZOMs correspond better to the height that marks the transition from the lower to
the upper entrainment-zone sublayer; this reference height is few hundred meters
above the height of the minimum buoyancy flux. We also argue that ZOMs, despite
their simplicity compared to higher-order models, can accurately represent CBL bulk
properties when the relevant features of the actual entrainment zone are considered
in the entrainment closures.

b.1 introduction

Bulk, or integral, models of a convective boundary layer (CBL) have been developed
over the last decades to parametrize bulk properties such as the CBL depth, the
inversion strength, and the entrainment fluxes in atmospheric models whose grid
spacings are much larger than the dynamically relevant scales of CBLs (Haltiner &
Williams, 1980; Suarez et al., 1983; Ayotte et al., 1996). Equally important, bulk models
have broadly been used to investigate the sensitivity of the evolution of CBLs to
changes in environmental conditions (Pelly & Belcher, 2001; De Roode et al., 2014), and
even to study process interaction (Naumann et al., 2017). Nonetheless, uncertainties
still remain in some key aspects associated with the surface and entrainment closures.
The work presented here focuses on the entrainment closure and is motivated by
challenges identified in previous work, namely, the lack of agreement on the minimum
complexity of the bulk model that is necessary to accurately represent sheared CBLs
(Pino et al., 2006; Liu et al., 2016), the large uncertainties in the empirical constants of
the entrainment closure (see review in Conzemius & Fedorovich, 2006b, and references
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therein), and a singularity in the entrainment closure that can appear at finite wind
strength (Driedonks, 1982; Conzemius & Fedorovich, 2004). In this work, we address
these three issues.

Bulk models are classified based on their degree of complexity in the representation
of the transition layer between the mixed layer and the free atmosphere. The simplest
is the zero-order model (ZOM) (Lilly, 1968) in which the transition layer is considered
as an infinitesimally thin layer with discontinuous variations of velocity, buoyancy,
and moisture. Alternatively, the first-order model (FOM) (Betts, 1974) and higher-
order models (Deardorff, 1979) have been proposed, arguing that the transition
layer between the mixed layer and the free atmosphere plays a key role in the
dynamics of the CBL, and therefore, a better representation of the transition layer
is required to accurately reproduce CBL bulk properties (Mahrt & Lenschow, 1976;
Sullivan et al., 1998; Zanten et al., 1999; Kim et al., 2003). These models consider the
transition layer as a layer of finite thickness with, respectively, linear and high-order
polynomial variations of velocity, buoyancy, and moisture. Although the dependence
of entrainment-zone properties on the entrainment-zone Richardson number, already
shown by Mahrt & Lenschow (1976), might suggest that one needs at least the FOM
representation of the CBL to adequately capture the entrainment process in sheared
CBLs, some recent work has found no substantial differences between the overall
ability of the ZOM and FOM to predict sheared CBL bulk properties (Pino et al., 2006;
Conzemius & Fedorovich, 2007). However, Conzemius & Fedorovich (2007) found
that the FOM largely mitigates—though not completely removes—the singularity of
the ZOM at finite wind strength. Because of this advantage, they argued that the FOM
is superior to the ZOM. Following this line of argumentation, most recent work made
the effort to further develop a FOM (Sun & Xu, 2009; Huang et al., 2011; Liu et al.,
2016). In this paper, we show that the infinitesimal transition-layer representation of
the ZOM is sufficient to precisely reproduce bulk properties in the cloud-free sheared
CBL, as long as the entrainment closure appropriately represents the local effects of
wind shear on entrainment.

A parameterization for the entrainment-flux ratio, defined as the ratio of a buoy-
ancy flux at the CBL top to the surface buoyancy flux, is commonly used as the
entrainment closure in the integral equations. This parameterization, also referred to
as the entrainment parameterization or the entrainment equation, is developed by
analyzing either the local turbulence kinetic energy (TKE) budget (Zeman & Tennekes,
1977; Tennekes & Driedonks, 1981; Driedonks, 1982) or the integrated TKE budget
(Boers et al., 1984; Batchvarova & Gryning, 1994; Conzemius & Fedorovich, 2006b).
Even though there is a consensus regarding the processes that drive entrainment, the
empirical constants associated with the contribution of each process to the entrain-
ment flux vary widely. In particular, the contribution of the surface wind shear to the
entrainment flux remains ambiguous, and the amount of the shear-generated TKE at
the CBL top that is used for entrainment remains uncertain (see e.g. Conzemius &
Fedorovich, 2006b).

More importantly, the previous entrainment parameterizations suffer from a po-
tential singularity at finite wind strength, which is a major long-standing limitation
of previous zero-order and first-order models (Driedonks, 1982; Conzemius & Fe-
dorovich, 2004). Such a singularity arises when the CBL depth is used in the scaling
arguments of different TKE terms in the entrainment zone (see e.g. Tennekes &
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Driedonks, 1981; Boers et al., 1984). This is physically inconsistent with the observa-
tion that, under strong wind-shear conditions, the entrainment zone, defined as the
region of negative buoyancy flux at the boundary-layer top, is characterized by a local
length scale that is different from the CBL depth (Zeman & Tennekes, 1977; Kim et al.,
2003; Pino & Vilà-Guerau De Arellano, 2008; Haghshenas & Mellado, 2019). Applying
this local length scale in the integral analysis of the TKE budget, Haghshenas &
Mellado (2019) derived non-singular parameterizations (or scaling laws) for different
CBL properties. In the present work, we exploit these parameterizations to develop
non-singular zero-order bulk models for the velocity, buoyancy, and moisture.

We structure the paper as follows. After describing the formulation in section B.2,
we summarize the derivation of the set of equations in the zero-order bulk model
and briefly discuss the closures used in previous work in section B.3. In section B.4,
we introduce two new entrainment-closure equations and develop two ZOMs based
on them. Evaluation of the proposed models is done in section B.5 by comparing
their predictions with those of previous work. In section B.6, the potential singularity
observed in the previous entrainment parameterization is investigated numerically
and analytically. One of the developed models is then used to address the dependence
of the sheared CBL on environmental conditions. We finally summarize these results
and draw conclusions in section B.7.

b.2 formulation

We consider a cloud-free convective boundary layer over an aerodynamically rough
surface that grows into a linearly stratified atmosphere (Fig. B.1). The background
profiles of buoyancy and specific humidity are, respectively,

bbg ≡ N2
0 z , (B.1a)

qbg ≡ qbg,0 − γq z , (B.1b)

where −N2
0 and γq are the lapse rates, N0 is the Brunt-Väisälä frequency, and z is

the vertical distance from the surface. The subscript "bg" denotes background, and
qbg,0 is the background specific humidity at the surface obtained by extrapolating the
linear variation of q in the free atmosphere downwards to the surface. The surface
roughness, z0, and the surface kinematic fluxes of buoyancy and specific humidity,
respectively B0 and Fq,0, are constant and horizontally homogeneous. We assume
Fq,0 ≥ 0 and γq ≥ 0, which correspond to a moist surface and a dry free atmosphere.
In addition, we consider a barotropic case in the limit of zero Coriolis parameter,
which indicates that the wind strength in the free atmosphere, U0, is constant with
height. (Henceforth, the symbol ≡ indicates a definition.)

b.2.1 Governing equations

The set of governing equations comprises the conservation equations for mass, momen-
tum, energy, and moisture in the Boussinesq approximation. Under the assumptions
of statistical homogeneity in the horizontal directions, no subsidence, and neglect-
ing condensation and radiation, and in the limit of zero Coriolis parameter, the
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horizontally-averaged equations for streamwise kinematic momentum, u, buoyancy,
b, and specific humidity, q, read

∂〈u〉
∂t

= −∂τx

∂z
, (B.2a)

∂〈b〉
∂t

= −∂B
∂z

, (B.2b)

∂〈q〉
∂t

= −∂Fq

∂z
. (B.2c)

We have chosen the streamwise coordinate x aligned with the wind in the free at-
mosphere, so that the mean wind in the spanwise direction is zero. The buoyancy is
linearly related to the virtual potential temperature θv by b ' g(θv − θv,0)/θv,0, where
θv,0 is the constant reference value obtained by extrapolating the linear stratification
of θv in the free atmosphere downwards to the surface. The variables τx, B, and Fq

are, respectively, the fluxes of kinematic momentum, buoyancy, and specific humid-
ity. Angle brackets denote averaging along horizontal planes. Mathematically, the
moisture becomes a passive scalar once the equation of state is linearized and the
system is formulated in terms of buoyancy and moisture instead of temperature and
moisture. This means that changing moisture without changing buoyancy does not
alter the CBL dynamics, which facilitates the study of how moisture properties vary
with changes in environmental conditions (Mellado et al., 2017). The energy variable
(e.g. potential temperature or static energy) can be recovered from the buoyancy, the
specific humidity, and the linearized equation of state.

b.2.2 Dimensional analysis

In the limit of high Reynolds number and once the initial conditions have been
sufficiently forgotten, the dynamics of the sheared CBL is completely governed by
the control parameters {B0, N0, U0, z0} and the independent variables {z, t}, where t
represents the time. We focus on the quasi-steady (equilibrium) entrainment regime
under which CBL properties evolve on time scales much larger than the large-eddy
turnover time, and the profiles of various properties, when appropriately normalized,
behave approximately self-similarly (Fedorovich et al., 2004a). Hereafter, we will use
the term "quasi-steady regime" for simplicity.

The system in the quasi-steady regime, hence, depends on two non-dimensional
parameters: a reference Froude number

Fr0 ≡
U0

N0L0
(B.3)

and a normalized surface roughness, z0/L0. Here L0 is the reference Ozmidov length
defined as

L0 ≡
(

B0

N3
0

)1/2

, (B.4)

which provides a relevant measure for the thickness of the upper region of the entrain-
ment zone in the shear-free and sheared CBL (Garcia & Mellado, 2014; Haghshenas &
Mellado, 2019).

Statistical properties of the specific humidity depend on {Fq,0, γq, qbg,0} in addi-
tion to the aforementioned non-dimensional parameters. Mellado et al. (2017) have
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Figure B.1: Vertical profiles of different properties in the conceptual framework of the zero-
order bulk model. The parameters defining the problem are the kinematic surface fluxes B0
and Fq,0, the lapse rates in the free atmosphere −N2

0 and γq, the wind velocity in the free
atmosphere U0, and the background specific humidity at the surface qbg,0. The sketch depicts

two different moisture regimes: entrainment-drying regime (ϕ < ϕ
(0)
cr ) and surface-moistening

regime (ϕ > ϕ
(0)
cr ), where ϕ is the flux-ratio parameter defined in Eq. (B.5), and ϕ

(0)
cr is its

critical value whose analytical relationship is provided in Eq. (B.24).

shown that moisture statistics can be conveniently analyzed by the non-dimensional
parameter

ϕ ≡ 2 Fq,0

Fq,0 + Fq,1
. (B.5)

The parameter Fq,1 is a reference scale for the entrainment flux of the specific humidity
and is defined as

Fq,1 ≡ γq B0N−2
0 = (γq L0)(N0L0) , (B.6)

which can be interpreted as the product of a moisture variation γq L0 and a velocity
scale N0L0 both in the upper region of the entrainment zone. The quantity ϕ is a flux-
ratio parameter that varies, by definition, between 0 and 2. These limits correspond to
the pure-drying regime and the pure-moistening regime, respectively. The condition
ϕ ≈ 1 corresponds to Fq,0 ≈ Fq,1, i.e. an entrainment flux comparable with the surface
flux, which marks the transition from the drying regime to the moistening regime
(Mahrt, 1991).

We express the dependence of statistical properties on time in terms of the non-
dimensional variable zenc/L0. The variable zenc is the encroachment length scale (Lilly,
1968; Carson & Smith, 1975) defined as

zenc(t) ≡
{

2 N−2
0

∫ z∞

0

[
〈b〉(z, t)− N2

0 z
]
dz
}1/2

, (B.7)

where z∞ is located far enough into the non-turbulent stably stratified region for the
integral to become approximately independent of z∞. The integral analysis of the
buoyancy equation in the limit of high Reynolds number yields

zenc/L0 =
[
2 N0 (t− t0)

]1/2
, (B.8)

where t0 is a constant of integration, which quantifies the dependence on the initial
buoyancy profile.

The logic behind using zenc/L0 instead of tN0 to represent the state of the CBL
development is that it facilitates the comparison between atmospheric measurements
and results from numerical simulations conducted with different initial conditions.
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Notice that the encroachment length scale provides a measure for the depth of
the mixed layer in shear-free and sheared CBLs growing into linearly stratified
atmosphere (Van Heerwaarden & Mellado, 2016; Mellado et al., 2016; Haghshenas &
Mellado, 2019), and it can be calculated from the mean buoyancy profile, obtained
from atmospheric measurements or numerical simulations, according to Eq. (B.7).

For typical midday conditions of the sheared CBL over land, one finds N0 '
0.006 − 0.018 s−1, B0 ' 0.001 − 0.01 m2s−3, U0 ' 0− 20 ms−1, z0 ' 0.01 − 0.1 m,
γq ' 0− 0.002 g kg−1m−1, Fq,0 ' 0.03− 0.1 g kg−1ms−1, and zenc ' 500− 2000 m,
which yields the parameter space Fr0 ' 0 − 85 , z0/L0 ' (0.05 − 5) × 10−3 and
zenc/L0 ' 5− 50 . The parameter ϕ can change between its theoretical limits, 0 and 2.

b.3 zero-order bulk model

In this section, we summarize the derivation of ZOM equations for a barotropic CBL
without the Coriolis force, and we discuss the basic form of previous surface and
entrainment closures and their corresponding limitation and uncertainty. Further
details of the derivation of the equation set and closures can be found, e.g., in
Conzemius & Fedorovich (2006b).

The CBL in the conceptual framework of the zero-order model is represented
by a single layer of height-constant buoyancy, kinematic momentum, and specific
humidity, which is accompanied by zero-order discontinuities in these quantities
at the top (see Fig. B.1). These profiles concomitantly result in a linear variation
of the fluxes of buoyancy, kinematic momentum, and specific humidity within the
CBL with zero-order discontinuities at the top. The superscript "(0)" indicates the
zero-order bulk model, and we use a prefix "zero-order" to distinguish quantities
in the model from those in the actual CBL. The variable h(0) is the zero-order CBL
depth, ∆b(0), ∆u(0), and ∆q(0) are, respectively, the zero-order buoyancy, kinematic
momentum, and specific-humidity increments at the CBL top, u(0)

∗ = (−τ
(0)
x,0 )

1/2 is

the zero-order friction velocity, and B(0)
h , τ

(0)
x,h , and F(0)

q,h are the zero-order fluxes of
buoyancy, kinematic momentum, and specific humidity at the CBL top, respectively.

b.3.1 Derivation of zero-order model equations

The full set of zero-order model equations is derived by approximating the actual
properties with the ZOM properties, by vertically integrating Eqs. (B.2) from the
surface z = 0 up to a height that is slightly above the CBL depth z = h(0) + ε and
taking the limit ε→ 0 after the integration, and by evoking basic assumptions of the
zero-order representation of the CBL vertical structure (see e.g. Fedorovich, 1995).
This analysis yields

d
d t

[
∆u(0)h(0)

]
= (u(0)

∗ )2 , (B.9a)

d
d t

[
N2

0 (h
(0))2

2
− ∆b(0)h(0)

]
= B0 , (B.9b)

d
d t

[
γq (h(0))2

2
− ∆q(0)h(0)

]
= −Fq,0 . (B.9c)



B.3 zero-order bulk model 9

The zero-order fluxes of buoyancy, kinematic momentum, and specific humidity at
the CBL top are related to the zero-order increment of these properties at the CBL top
and the growth rate of the CBL depth as

−B(0)
h = ∆b(0)

d h(0)

d t
, (B.10a)

−τ
(0)
x,h = ∆u(0) d h(0)

d t
, (B.10b)

F(0)
q,h = ∆q(0)

d h(0)

d t
. (B.10c)

These equations are derived by vertically integrating Eqs. (B.2) over the height from
z = h(0) − ε up to z = h(0) + ε and taking the limit ε → 0 after the integration. In
addition to the three fluxes introduced above, the unknown variables are h(0), u(0)

∗ ,
∆u(0) (or alternatively the mixed-layer velocity u(0)

ml = U0 − ∆u(0)), ∆b(0) (or alterna-

tively the mixed-layer buoyancy b(0)ml = N2
0 h(0) − ∆b(0)), and ∆q(0) (or alternatively

the mixed-layer specific humidity q(0)ml = qbg,0 − γq h(0) + ∆q(0)). Therefore, two more
equations are required to close the system of equations.

b.3.2 Surface-closure equation

Previous work has often considered the surface-drag relation

(u(0)
∗ )2 = CD (u(0)

ml )
2 , (B.11)

as the surface-closure equation (see e.g. Boers et al., 1984; Garratt, 1992). The param-
eter CD is the surface-drag coefficient, which is derived from the Monin-Obukhov
similarity theory as a function of the surface roughness, Obukhov length, and surface-
layer depth (see Garratt et al., 1982, for a review). A constant value is, however,
usually taken for simplification (Flamant et al., 1999; Kim et al., 2006; Conzemius
& Fedorovich, 2007). Hence, the dependence of CBL properties on the normalized
surface roughness, z0/L0 (cf. section B.2.2), is translated to a dependence on the
surface-drag coefficient, CD.

b.3.3 Entrainment-closure equation

Previous work has often developed a parameterization for the entrainment-flux ratio
as the entrainment-closure equation. The basic form of this parameterization in
previous work reads

− B(0)
h

B0
=


1 + A

(
u(0)
∗

w(0)
∗

)3

 C1

1 + CTRi−1
t − CPRi−1

GS

, (B.12)

which is derived by either a local analysis of the TKE budget (Zeman & Tennekes,
1977; Tennekes & Driedonks, 1981; Driedonks, 1982) or an integral analysis of the TKE
budget (Boers et al., 1984; Batchvarova & Gryning, 1994; Conzemius & Fedorovich,
2006b), assuming that, respectively, the local or bulk energetics in the model and the
actual CBL match. The local TKE approach, however, has proven more challenging
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Author C1 CT CP A

Tennekes (1973) 0.2 0 0.0 12.5

Driedonks (1982) 0.2 0 0.0 25.0

Pino et al. (2003) 0.2 4 0.7 8.0

Conzemius & Fedorovich (2006b) 0.2 0 0.4 0.0

Pino et al. (2006) 0.2 0 0.72 1.3

Sun & Xu (2009) 0.2 0 0.3 1.3

Liu et al. (2016) 0.21 0 0.43 0.05 C−1/2
D

Table B.1: Values of empirical constants in the entrainment parameterization, Eq. (B.12), in
some previous work.

due to difficulties in the accurate quantification of the TKE budget at a single level
(Kim et al., 2006). The variable w(0)

∗ ≡ (B0h(0))1/3 is the convective velocity scale
(Deardorff, 1970), and the variables

Rit ≡
∆b(0)h(0)

(w(0)
∗ )2 + A(u(0)

∗ )2
(B.13)

and

RiGS ≡
∆b(0)h(0)

(∆u(0))2 + (∆v(0))2
(B.14)

are the bulk Richardson numbers associated, respectively, with the accumulation term
and the entrainment-zone wind shear.

The parameters A, C1, CT, and CP are empirical constants, which were obtained by
different approaches in previous literature. One approach is to consider separately
the different mechanisms of the TKE production, namely, the surface buoyancy flux
and the surface and entrainment-zone wind shear. Early studies (e.g., Tennekes,
1973; Tennekes & Driedonks, 1981; Driedonks, 1982) followed this approach using
results from laboratory experiments of shear-free CBLs (Deardorff et al., 1969; Willis
& Deardorff, 1974) and of purely shear-driven boundary layers (Kato & Phillips, 1969;
Kantha et al., 1977). More recently, Conzemius & Fedorovich (2006a) followed the
same approach but using results from numerical simulations instead of laboratory
experiments. Another approach taken in previous work is applying a regression
analysis to bulk properties obtained from numerical simulations and obtaining the
empirical constants directly (Kim et al., 2006; Liu et al., 2016).

The main differences among entrainment parameterizations in previous work lie in
the values of the empirical constants (see Table B.1). It is important to point out that
Sun & Xu (2009) and Liu et al. (2016) have derived the entrainment parameterization
in the FOM framework, but we obtain their corresponding parameterization in the
ZOM framework by setting to zero the variable that represents the thickness of the
transition layer between the mixed layer and the free atmosphere, as done in Pino
et al. (2006) and Conzemius & Fedorovich (2007).

The constant C1 corresponds to the zero-order entrainment-flux ratio in the shear-
free limit and its most commonly used value is 0.2. The constant CT corresponds to
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the contribution of the accumulation term, which is negligibly small with respect to
the other terms in the TKE budget equation once the quasi-steady regime is reached.
The main controversy stems from the constants associated to wind-shear effects
on entrainment, namely, CP and A, which correspond to the contribution from the
entrainment-zone and surface wind shear to the entrainment flux, respectively.

Aside from the large uncertainty in the empirical constants, the main limitation
of the previous entrainment parameterization is the potential singularity at finite
wind strength. The contribution of the entrainment-zone shear to the entrainment flux
represented by a negative sign term in the denominator of Eq. (B.12) could cause the
denominator to become zero and the entrainment-flux ratio to become unbounded.
Such a singularity occurs not only under very strong shear-conditions characterized
by large Froude numbers, but also under moderate shear-conditions with initial
conditions that are far from the quasi-steady regime (Driedonks, 1982; Conzemius &
Fedorovich, 2004; Conzemius & Fedorovich, 2007).

This singularity arises when the entrainment parameterization is derived in the
idealized framework of the bulk models. In the ZOM framework, the CBL depth—as
the only length scale defined in this framework—is used in the scaling of the shear
production at the CBL top in the local TKE approach (see e.g. Tennekes & Driedonks,
1981), and is used in the scaling of the integral of the negative buoyancy flux in the
integral TKE approach (see e.g. Boers et al., 1984). This is physically contradictory
to the observation that the entrainment zone under strong wind-shear conditions is
characterized by a local length scale that is different from the CBL depth (Zeman &
Tennekes, 1977; Kim et al., 2003; Pino & Vilà-Guerau De Arellano, 2008; Haghshenas
& Mellado, 2019). Increasing the complexity of the bulk model to the first-order or
higher-order models does not help tackle the singularity issue as long as the CBL
depth is deemed as a characteristic length scale in the scaling arguments of different
TKE terms in the entrainment zone.

b.4 non-singular entrainment-closure schemes

The work presented here focuses on the entrainment closure and, following previous
work, uses the surface-drag relation as the surface-closure equation [cf. Eq. (B.11)]. As
entrainment closure, we introduce two new non-singular equations by making two
different closure assumptions and by employing the non-singular parameterizations
for different CBL properties derived in Haghshenas & Mellado (2019). In contrast
to previous work, these authors have considered the actual CBL structure instead
of the bulk-model structure, and have used the local length scale to characterize the
entrainment zone, which led to non-singular parameterizations.

b.4.1 Energetics-based closure

As the first option for the entrainment closure, we assume that the negative and
positive areas of the buoyancy flux in the model equal the ones in the actual CBL. This
assumption is similar to that used in previous work, where the bulk or local energetics
between the model and the actual CBL were assumed to be equal (cf. section B.3.3).
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Mathematically, the zero-order entrainment-flux ratio can be written in terms of
the energetics as (Conzemius & Fedorovich, 2006a)

− B(0)
h

B0
=

[
A(0)

N

A(0)
P

]1/2

, (B.15)

evoking basic assumptions of the zero-order representation of the CBL vertical struc-
ture (cf. Fig. B.1). Here A(0)

N and A(0)
P are, respectively, the negative and positive areas

of the buoyancy flux in the zero-order model framework.
A parameterization for the ratio of the negative and positive buoyancy flux in the

actual CBL is obtained in appendix A using the results of Haghshenas & Mellado
(2019). This parameterization, Eq. (B.36), along with Eq. (B.15) and the closure as-
sumption that the negative and positive areas of the buoyancy flux in the actual CBL
equal the ones in the model yields

− B(0)
h

B0
' 0.21

[
1 + 4.5

d h(0)

d t
(∆u(0))2

B0zenc

]1/2

. (B.16)

We will refer to this entrainment closure as energetics-based closure and to the model
that uses this closure as energetics-based model.

We obtain −B(0)
h /B0 ' 0.21 in the shear-free limit, which is consistent with Liu et al.

(2016) and is slightly larger than the value 0.2 that is commonly used in previous work
(cf. Table B.1). The energetics-based closure indicates that the shear-free entrainment
flux of buoyancy is solely characterized by the surface buoyancy flux as the only
source of turbulence in this case, and that the entrainment flux of buoyancy in
the sheared CBL increases due to extra turbulence generated by the entrainment-
zone shear. Explicitly representing the extra shear-generated turbulence, which is a
relevant feature of the dynamics of actual sheared CBLs (see review in Fedorovich
& Conzemius, 2008), raises the expectation that the energetics-based ZOM, despite
the simplification in the CBL structure, should be able to faithfully represent the CBL
bulk properties.

b.4.2 Geometric-based closure

The CBL depth predicted by the energetics-based model and by models in previous
work cannot be a priori associated to any actual CBL height, such as the height of the
minimum buoyancy flux or the height of the maximum buoyancy gradient. These
heights differ by approximately 100 m for typical midday atmospheric conditions
over land in the shear-free limit, and might increase to 200 m under strong-shear
conditions in the barotropic CBL. This uncertainty about the CBL depth might be
relevant for the parameterization of other processes in the CBL, for instance, for cloud
formation. To address this issue, we propose a new model in which the zero-order
CBL is assumed to equal different definitions of the actual CBL height, and then
we compare the results of this model with those of the energetics-based model and
models in previous work.

Several definitions of the actual CBL height might be associated with the zero-order
CBL depth. Two common choices are the height of the minimum buoyancy flux
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(Fedorovich et al., 2004a; Pino et al., 2003, 2006) and the height of the maximum mean
gradient of buoyancy (Sullivan et al., 1998). These heights mark, respectively, the
lower and upper entrainment-zone sublayers (Garcia & Mellado, 2014; Haghshenas
& Mellado, 2019). Hence, as a third option, we consider the height that marks the
transition between these two sublayers. Using Eqs. (4.12) and (5.11) in Haghshenas &
Mellado (2019) as parameterizations for these heights, we obtain

h(0)

zenc
' 0.94 + 0.25 α


1 + 4.8

(
∆u(0)

N0zenc

)2



1/2

, (B.17)

where α ' 0.8 corresponds to the height of the minimum buoyancy flux, and α '
1.0 corresponds to the height that marks the transition from the lower to upper
entrainment-zone sublayer. The parameterization for the height of the maximum
buoyancy gradient has an additional contribution from the upper entrainment-zone
sublayer, and it is discussed in appendix B but not in the main text, for conciseness.
We will refer to Eq. (B.17) as geometric-based closure and to the model that uses this
closure as geometric-based model.

The geometric-based closure indicates that the zero-order shear-free CBL depth
can be interpreted as a buoyancy-driven single-layer entity, since the right hand
side of Eq. (B.17) reduces to a constant in the limit of zero wind velocity. For a
non-zero wind velocity, this closure indicates that the zero-order CBL depth can be
interpreted as a two-layer entity, namely, a buoyancy-driven layer that represents the
actual mixed layer, and a buoyancy- and shear-driven layer that represents part of the
actual entrainment zone. This is important because, as mentioned before, the finite
thickness of the entrainment zone is a relevant feature of actual sheared CBLs (Mahrt
& Lenschow, 1976; Zanten et al., 1999; Kim et al., 2003), and explicitly representing this
feature in the ZOM raises the expectation that this model should faithfully represent
the CBL bulk properties.

b.4.3 Closed set of zero-order model equations

The closed set of ZOM equations in non-dimensional form for the buoyancy and
velocity are derived from Eqs. (B.9a) and (B.9b) as follows:

d
d zenc

[
∆u(0)

N0L0
h(0)
]
= CD

[
Fr0 −

∆u(0)

N0L0

]2
zenc

L0
, (B.18a)

∆b(0)

N2
0 zenc

=
h(0)

2 zenc
− zenc

2 h(0)
(B.18b)

plus either the energetics-based closure, Eq. (B.16),

∆b(0)

N2
0 zenc

d h(0)

d zenc
= 0.21


1 + 4.5

d h(0)

d zenc

(
∆u(0)

Nzenc

)2



1/2

, (B.19)

or the geometric-based closure, Eq. (B.17). We have already substituted Eq. (B.11) and
Eq. (B.10a), respectively, in Eq. (B.18a) and Eq. (B.19). We have also taken the integral
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in Eq. (B.9b) and changed the variable from t to zenc, where d/d t = N0L2
0 z−1

enc ×
d/d zenc [cf. Eq. (B.8)]. Recall that Fr0 and CD are the non-dimensional control
parameters.

The ZOM equation for the moisture reads

∆q(0)

qref
=

h(0)

L0

{
1 +

ϕ

2

[(
zenc

h(0)

)2

− 1

]}
, (B.20)

which is obtained by integrating Eq. (B.9c). Here ϕ is the flux-ratio parameter that
characterizes the moisture, and qref is the reference moisture scale

qref ≡
Fq,0 + Fq,1

2 N0L0
, (B.21)

which is defined as a linear combination of Fq,0 and Fq,1 normalized by a velocity scale
N0L0 (Mellado et al., 2017). Normalization of ∆q(0) with qref instead of Fq,0/(N0L0) or
Fq,1/(N0L0) allows us to study the whole theoretical range of the flux-ratio parameter,
since qref remains non-zero for both limits of ϕ = 0 (associated with Fq,0 = 0) and
ϕ = 2 (associated with Fq,1 = 0).

A key property to characterize the moisture is the critical zero-order flux-ratio
parameter ϕ

(0)
cr . This parameter marks the transition between drying and moisten-

ing regimes. A functional relationship for ϕ
(0)
cr can be readily determined from the

condition d q(0)ml /d t = 0, which, by definition [obtained from Eq. (B.9c)], corresponds
to

F(0)
q,h = Fq,0 . (B.22)

Substituting F(0)
q,h from Eq. (B.10c) in the equation above, and using Eq. (B.10a) to

rewrite d h(0)/d t in the resulting equation in terms of ∆b(0) and B(0)
h yields

∆q(0)

∆b(0)
= − Fq,0

B(0)
h

, (B.23)

as the condition that marks the transition between drying and moistening regimes.
Provided that the LHS of Eq. (B.23) is larger than the RHS, the entrainment flux of
drying air is dominant and the CBL is in the drying regime. When the LHS is smaller
than the RHS, the surface flux of moisture dominates and the CBL is in the moistening
regime. When the LHS equals the RHS, the mean moisture, q(0)ml , remains constant in
time and the water vapor introduced at the surface is used to moisten the entrained
dry air towards the mixed-layer value.

The critical zero-order flux-ratio parameter, ϕ
(0)
cr , can be written in terms of the CBL

depth and the entrainment rate as

ϕ
(0)
cr =

(
d h(0)
d zenc

h(0)
zenc

)

1 + 1
2

(
d h(0)
d zenc

) (
h(0)
zenc
− zenc

h(0)

) , (B.24)

by substituting B(0)
h , ∆b(0), and ∆q(0) from Eqs. (B.10a), (B.18b), and (B.20) in Eq. (B.23)

and by solving the resulting equation for ϕ. The idea behind providing this functional
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relationship is that it allows us to determine whether the CBL is in the drying or
in the moistening regime. The CBL is in the moistening regime when the flux-ratio
parameter, calculated from Eq. (B.5), is larger than the critical value, determined from
Eq. (B.24), and the CBL is in the drying regime when the flux-ratio parameter is
smaller than the critical value.

The critical flux-ratio parameter is constant in time for the shear-free limit, when
h(0) ∝ zenc, but varies in time for the sheared CBL, according to Eq. (B.24). The reason
is that the entrainment enhancement due to the wind shear—causing the critical flux-
ratio parameter to increase with respect to the shear-free limit—diminishes as the CBL
grows. Therefore, the critical flux-ratio parameter decreases with time and asymptotes
towards the corresponding shear-free value. We further discuss this behaviour in
section B.6.

b.5 evaluation of zom predictions

Although the entrainment-closure equations and thus the ZOMs proposed in this
work have been validated in Haghshenas & Mellado (2019) and appendix A, in this
section we compare the resulting ZOMs with previous work. Such an analysis enables
us to further examine the capability and accuracy of the new models proposed in this
work.

b.5.1 The shear-free CBL

The set of equations for the shear-free limit has an analytical solution of the following
form (see Fedorovich et al., 2004a, for a review)

−B(0)
h = C1 B0 ,

h(0) = C2 zenc ,

∆b(0) = C3 N2
0 zenc , (B.25)

where the model coefficients satisfy the following relationships

C2 = (2 C1 + 1)1/2 and C3 = C1 C−1
2 . (B.26)

One of the three model coefficients {C1, C2, C3} remains free and has to be prescribed
to close the system.

In the energetics-based model, we prescribe C1 = 0.21 according to Eq. (B.16) and
obtain C2 ' 1.19 and C3 ' 0.18. These coefficients coincide with those of Liu et al.
(2016)’s model, but are slightly larger than the predictions of models in previous work
with C1 = 0.2, where one obtains C2 ' 1.18 and C3 ' 0.17.

In the geometric-based model with α = 1.0, we prescribe C2 ' 1.19 according to
Eq. (B.17) and obtain C1 ' 0.21 and C3 ' 0.18. These coefficients agree with those of
the energetics-based model presented in the previous paragraph, suggesting that the
zero-order CBL depth in the energetics-based model and also models in previous work
corresponds approximately to the reference height that marks the transition from the
lower to upper entrainment-zone sublayer. The geometric-based model with α = 0.8
that matches the zero-order CBL depth to the height of the minimum buoyancy flux
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prescribes C2 ' 1.14 according to Eq. (B.17) and yields C1 ' 0.15 and C3 ' 0.13. These
coefficients are different than those of the energetics-based model. This difference
helps explain the controversy in C1 in some previous work. Fedorovich et al. (2004a)
and Mellado et al. (2017) estimated C1 ' 0.17 and C1 ' 0.16± 0.01 assuming that
the zero-order CBL depth matches the height of the minimum buoyancy flux in
large-eddy simulations and direct-numerical simulation, respectively. These values
are smaller than 0.2 simply as a result of the aforementioned assumption, and not
because of statistical uncertainty.

Following the analytical solution of the set of equations for buoyancy-related
properties, the moisture properties in the shear-free limit read

∆q(0) = C4 qref zenc/L0 ,

F(0)
q,h = C5 qref N0L0 , (B.27)

where the model coefficients satisfy the following relationships

C4 = C2
[
1 + ϕ/2 (C−2

2 − 1)
]

,

C5 = C4 C2 . (B.28)

We obtain C4 ' 1.19− 0.17 ϕ and C5 ' 1.4− 0.2 ϕ for the energetics-based model and
the geometric-based model with α = 1, and C4 ' 1.14− 0.13 ϕ and C5 ' 1.3− 0.15 ϕ

for the geometric-based model with α = 0.8. In the shear-free limit, one obtains
ϕ
(0)
cr ' 1.17 for the energetics-based and the geometric-based models with α = 1,

using Eqs. (B.24) and (B.25). One also obtains ϕ
(0)
cr ' 1.13 for the geometric-based

model with α = 0.8, which coincides with that reported in Mellado et al. (2017).

b.5.2 The sheared CBL

As reference setup, we choose the strongest shear case investigated in Pino et al.
(2006) and initialize the ZOMs using the values listed in Table 1 of that work (see
Table B.2). The reason to select this case is twofold. First, the variation among the
predictions of different models appears more clear for stronger shear conditions, since
the main controversy in previous work stems from the contribution of the wind shear
to the entrainment flux. Second, the ZOM variables and the vertical profiles of the
mean buoyancy and buoyancy flux have been clearly reported in Pino et al. (2006)
for a condition in which the quasi-steady regime has been reached. The reference
Froude number and the reference Ozmidov length are, respectively, Fr0 ' 41 and
L0 ' 34 m, according to Eqs. (B.3) and (B.4). We determine the encroachment length
using Eq. (B.7) and integrating the vertical profile of the mean buoyancy presented
in Fig. 2 of Pino et al. (2006), obtaining zenc ' 510 m. We also determine t0 ' −35 s
from Eq. (B.8), which is consistent with the fact that the corresponding numerical
simulation has been started from a very shallow initial CBL.

For the model constants, we use those reported in Liu et al. (2016). The reason is
that Liu et al. (2016) have provided high-quality data for a large number of simulated
CBLs (twenty six cases) in terms of statistical convergence and of reaching the quasi-
steady regime by running the simulations sufficiently long, such that they started to
correct the second decimal in the empirical constants (cf. Table B.1).



B.5 evaluation of zom predictions 17

Case

Qs = 0.1 Kms−1
Θv,0 = 300 K

B0 ' 0.0033 ms−2

∂Θv/∂z = 0.006 Km−1
⇐⇒ N0 ' 0.014 s−1

U0 = 20 ms−1 U0 = 20 ms−1

z0 = 0.01 m CD ' 0.002

Initial Condition

t = 8000 s
zenc ' 510 m

zenc/L0 ' 15

h(0) = 704 m
=⇒ h(0)/zenc ' 1.4

∆u(0) = 5 ms−1 ∆u(0)/(N0zenc) ' 0.7

Table B.2: The control parameters in the strongest shear case studied in Pino et al. (2006) and
the corresponding initial conditions for ZOMs. Qs is the surface heat flux.

We classify previous models into two groups based on how the contribution of
the wind shear to entrainment is represented, facilitating in this way the comparison.
Group I contains the previous models that take into account the entrainment-zone
shear with or without the surface shear (Boers et al., 1984; Pino et al., 2003; Conzemius
& Fedorovich, 2006b; Pino et al., 2006; Sun & Xu, 2009; Liu et al., 2016), and group
II incorporates the ones that consider only the surface shear through their friction
velocity term (Tennekes, 1973; Driedonks, 1982; Batchvarova & Gryning, 1994). We
make the comparison with both groups for completeness, but we present the results
for group II in appendix C because models in this group predict the CBL bulk
properties poorly.

Figure B.2 illustrates that all considered ZOMs appropriately represent relevant
features of sheared CBLs that have been documented in previous observational and
numerical studies (Mahrt & Lenschow, 1976; Pino & Vilà-Guerau De Arellano, 2008;
Haghshenas & Mellado, 2019). First, the CBL depth and the entrainment-flux ratio
increase with respect to the shear-free limit. Second, as time goes by and the CBL
depth grows, wind-shear effects diminish, and the CBL properties asymptote towards
the shear-free values. Last but not least, wind-shear effects on buoyancy-related
properties remain constrained to the CBL top. For instance, the entrainment-flux ratio
grows substantially for strong wind conditions (by up to 100%, as shown in Fig. B.2b),
while the CBL depth increases only slightly (by up to 10%, as shown in Fig. B.2a).
Note, however, that this slight increase in the CBL depth implies an order-of-one
change of the actual entrainment-zone thickness.

The variation in the entrainment-flux ratio predicted from different models is
approximately 30− 40% (see Fig. B.2b). Pino et al. (2006) overestimate and Sun &
Xu (2009) underestimate wind-shear effects with respect to Liu et al. (2016). Such a
behaviour is explained by the different values of CP used in these three models, since
the contribution of the surface wind shear to the entrainment flux, represented by
the empirical constant A in Eq. (B.12), is approximately the same in these models.
This contribution is around 15% at zenc/L0 ' 15, but decreases to less than 5% at
zenc/L0 ' 25 for the case studied here, to some extent supporting the conclusion
in recent work that the surface wind shear affects entrainment mainly indirectly by
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Figure B.2: Comparison of different properties of the sheared CBL characterized by Fr0 = 41
and CD = 0.002 obtained from ZOMs developed in the present and previous work classified
as Group I.

changing the mean velocity in the mixed layer and thus the velocity jump at the CBL
top (Fedorovich & Conzemius, 2008).

A very good match is observed between the results of both the energetics-based
model and the geometric-based model with α = 1.0 and those of Liu et al. (2016),
with only ' 5% difference in the entrainment-flux ratio. This deviation is smaller than
the achieved statistical convergence in direct numerical simulations from which the
coefficients of proportionality in the closure equations were obtained (Haghshenas
& Mellado, 2019). The coincidence of the results of the geometric-based model with
α = 1.0 with those of the energetics-based model indicates that also the sheared
CBL depth predicted by the energetics-based model can be associated to the actual
CBL height that marks the transition from the lower to upper entrainment-zone
sublayer. The CBL depth predicted from the geometric-based model with α = 0.8,
which corresponds to the height of the minimum buoyancy flux, is ' 5% smaller than
the one obtained from the energetics-based model (see Fig. B.2a). This finding helps
explain the reported ' 5% deviation of the zero-order CBL depth from the height of
the minimum buoyancy flux in Conzemius & Fedorovich (2007) (see Table 2 in that
reference).

Figure B.2c demonstrates that, consistent with the actual sheared CBL (Liu et al.,
2016; Haghshenas & Mellado, 2019), the velocity increment at the CBL top increases
as the CBL grows. Moreover, all curves collapse on top of each other, because the
corresponding closure, Eq. (B.11), is the same in all models, and the deviation in the
CBL depth is small (approximately 10% or less).

b.6 discussion

In this section, we consider three relevant aspects of the ZOMs in some detail. First,
we discuss the good agreement observed among predictions from different models
despite differences in the entrainment closures and simulations setups. Second, we
discuss the singularity at finite wind strength observed in previous work, which was
one major limitation is those models. Third, we employ the energetics-based model to
investigate and discuss the dependence on environmental conditions of sheared CBL
bulk properties.



B.6 discussion 19

b.6.1 Good agreement despite differences in closures

We have shown that the energetics-based model and the geometric-based model with
α = 1 predict the CBL bulk properties similarly to previous work that appropriately
estimate the contribution of the entrainment-zone wind shear to the entrainment flux.
This agreement is remarkable because Liu et al. (2016) have simulated a variety of
CBLs in middle latitudes including shear-free, barotropic sheared, and equivalent-
barotropic sheared CBLs over an aerodynamically rough surface, while Haghshenas &
Mellado (2019) have simulated only shear-free and barotropic sheared CBLs without
the Coriolis force over an aerodynamically smooth surface.

The observed agreement is, hence, promising in two aspects: first, it confirms that
the parameterizations derived in Haghshenas & Mellado (2019) are independent of
the surface properties, as they are expressed in terms of the velocity increment at the
CBL top. Second, it suggests that they would most likely apply to sheared CBLs with
Coriolis force and also to equivalent-barotropic CBLs in which the velocity varies
linearly with height in the free atmosphere, although a proof of concept is necessary
to draw a definitive conclusion.

The observed agreement between the prediction of the present and previous models
might also sound surprising because of the differences in entrainment closures, in
particular, differences in the length scale used to estimate the various terms of the
TKE budget equation in the entrainment zone. The reason for such an agreement is
that under weak- and moderate-shear conditions, the CBL depth (applied in previous
work) and the local length scale of the entrainment zone (applied in the present work)
are approximately proportional to each other (Haghshenas & Mellado, 2019), which
results in equally good predictions of the CBL bulk properties from the present and
previous models for the moderate-shear conditions considered in section B.5. Under
very strong-shear conditions, however, these two length scales are not proportional to
each other, and a constant fraction of the CBL depth is not an appropriate proxy of
the local length scale of the entrainment zone. This different scaling eventually leads
to the emergence of the singularity in models developed in previous work for very
strong-shear conditions. The models proposed in the present work do not suffer from
this limitation.

b.6.2 Singularity at finite wind strength in previous work

A singularity in previous work takes place when the denominator of Eq. (B.12) equals
zero, i.e., when

CP (∆u(0))2 =
N2

0
2

[
(h(0))2 − z2

enc

]
(B.29)

wherein we have already taken CT = 0 (cf. table B.1) and substituted Eq. (B.18b).
Under very strong-shear conditions, one can write

h(0) − zenc ' 0.25 zenc


1 + 4.8

(
∆u(0)

N0zenc

)2



1/2

'
√

0.3
∆u(0)

N0
, (B.30)

where the first approximation follows from Eq. (B.17) with α = 1, and the second
approximation holds for ∆u(0)/(N0zenc) & 1.0 with less than 10% error. Substituting
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Figure B.3: Temporal evolution of the zero-order CBL depth obtained from different ZOMs
with different initial conditions.

the expression for ∆u(0) in terms of h(0) and zenc from Eq. (B.30) in Eq. (B.29) and
solving the achieved equation for h(0) gives

h(0)

zenc
' 6.6 CP + 1

6.6 CP − 1
, (B.31)

as the critical condition. For CP = 0.43, which is the constant used in Liu et al. (2016),
this condition yields h(0) ' 2 zenc as the critical value of the CBL depth at which the
singularity takes place. This critical condition corresponds to ∆u(0)/(N0zenc) ' 1.8,
according to Eq. (B.29). Such an extreme shear condition might happen during the
morning in a windy day, when the well-mixed CBL is still shallow, and the velocity
increment at the CBL top is strong.

Another relevant aspect is that, even though the entrainment closures in previous
and present work have been derived for the quasi-steady regime, bulk models are
likely initialized in atmospheric models with conditions that are far from the quasi-
steady regime. This might be problematic in models proposed in previous work
because they can also develop a singularity or become unrealistic when the initial
conditions are far from the quasi-steady regime even in moderate-shear conditions.
This occurs when [

(∆u(0))2

∆b(0)h(0)

]

initial

≥ 1
CP

(B.32)

according to Eq. (B.12) with CT = 0.
To address these issues, we evaluate our ZOMs and the one by Liu et al. (2016) (as

a representative of the models in group I) with different initial velocity increments
at the CBL top, ranging from 5 ms−1, which corresponds to the quasi-steady regime
retrieved from Pino et al. (2006), to 8 ms−1 in intervals of 1 ms−1. Results are shown
in Fig. B.3. We observe that all models smoothly relax towards the quasi-equilibrium
solutions, with deviations on the order of 10% in the CBL depth or less, except for Liu
et al. (2016)’s model with ∆u(0) = 8 ms−1, which predicts unrealistically small CBL
depths (out of the shown scale). This result illustrates that the singularity or unrealistic
results might occur in previous models even for moderate-shear conditions.

b.6.3 Dependence on environmental conditions of sheared CBL properties

For the purpose of illustration, we explicitly discuss the dependence of sheared CBL
bulk properties on environmental conditions using one of the ZOMs developed in
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Figure B.4: Contour plots of (top panel) the normalized zero-order buoyancy and (bottom
panel) its zero-order vertical flux as a function of the normalized distance from the surface
and in panel (a,b) zenc/L0, in panel (c,d) Fr0, and in panel (e,f) CD.

this work. We employ the energetics-based model and scan the whole parameter
space corresponding to midday atmospheric conditions over land (cf. section B.2.2).
As indicated before, dynamical properties of the described CBL, once the initial con-
ditions are sufficiently forgotten and the quasi-steady regime is reached, depend on
two non-dimensional parameters, namely Fr0 and CD, and the non-dimensional inde-
pendent variable zenc/L0. In addition, the non-dimensional parameter ϕ characterizes
moisture properties.

We consider the case {Fr0 = 41, CD = 0.002} at zenc/L0 = 40 as reference state and
vary one non-dimensional parameter at a time. The model is always initialized with
the initial condition provided in section B.5.2. Because this initial condition is not
the exact one corresponding to the quasi-steady regime for all the parameter space,
we illustrate the CBL properties at zenc/L0 = 40, which is sufficiently beyond the
initial state of the CBL development, zenc/L0 = 15 (cf. Fig. B.3). This assures that the
initial conditions have been sufficiently forgotten, and the discussed data are in the
quasi-steady regime.

b.6.3.1 Buoyancy

The dependence of the normalized buoyancy and buoyancy flux on Fr0, CD, and
zenc/L0 are provided graphically in Fig. B.4. This dependence is very small for the
buoyancy and buoyancy flux within the mixed layer. The dependence is, however, of
the order of one for the entrainment-flux ratio and the buoyancy increment at the
CBL top. This behavior illustrates one of the main features of the barotropic CBL,
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namely, wind-shear effects on the CBL structure and buoyancy-related properties
remain localized at the CBL top.

We also observe that, with increasing zenc/L0, the entrainment enhancement due to
wind shear diminishes, and hence, wind-shear effects on CBL properties reduce and
we approach the shear-free limit (cf. section B.5.1). The CBL depth and the mixed-layer
buoyancy reduce, respectively, by ' 7% and ' 1%, and the entrainment-flux ratio
decreases by ' 25% over the interval of zenc/L0 shown in Fig. B.4(a,b).

Wind-shear effects on CBL properties, as expected, grow when the reference Froude
number or the surface-drag coefficient increase, because both non-dimensional pa-
rameters directly or indirectly lead to the larger velocity increment at the CBL top.
The CBL depth and the mixed-layer buoyancy increase, respectively, by ' 25% and
' 10% and the entrainment-flux ratio grows by ' 200% for the interval of Fr0 shown
in Fig. B.4(c,d). For the case Fr0 = 80, CD = 0.002 and zenc/L0 = 40, the indepen-
dent variable ∆u(0)/(N0zenc) is approximately 1.14, which is still below the critical
condition to observe the singularity in previous ZOMs. Further analysis (not shown)
indicated that the critical condition, ∆u(0)/(N0zenc) ' 1.8, takes place, for instance,
for Fr0 = 80 and CD = 0.005 in the early state of the CBL development.

The effect of Fr0 and CD on the CBL evolution differs in that the CBL depth grows
with CD asymptotically towards a finite value (see Fig. B.4e, f ), whereas the growth of
the CBL with Fr0 is unbounded (see Fig. B.4c, d). The reason is that growing CD with
fixed Fr0 causes wind-shear effects to emerge earlier (at a smaller zenc/L0) because
the velocity increment at the CBL top increases fast. Wind-shear affects are, however,
limited since the reference Froude number, or equivalently the velocity in the free
atmosphere, is fixed.

b.6.3.2 Moisture

To address the dependence of moisture properties of the sheared CBL on environ-
mental conditions, we first consider ϕ = 0, which corresponds to the pure-drying
regime. Figure B.5 shows graphically the dependence of the normalized moisture and
moisture flux on Fr0, CD, and zenc/L0. There are two features worth mentioning in
this figure. First, given that the free atmosphere is dry and the wind shear enhances
entrainment, the CBL dries more when the Froude number or the surface-drag co-
efficient increase (see Fig. B.5c, e). The entrainment enhancement due to the wind
shear, however, diminishes as the CBL grows, and hence, the sheared CBL dries less
as zenc/L0 increases (see Fig. B.5a). Second, wind-shear effects on the mixed-layer
specific humidity, q(0)ml , are much larger than their effects on mixed-layer buoyancy,

b(0)ml (cf. Figs. B.4 and B.5). The reason is that ϕ = 0 corresponds to Fq,0 = 0, i.e.,
there is no surface flux of moisture but only the entrainment flux, so the entrainment
enhancement due to the wind shear is more relevant in the moisture field than in the
buoyancy field.

Figure B.6(a,b) illustrates graphically the dependence of moisture bulk properties
on the flux-ratio parameter for Fr0 = 41, CD = 0.002, and zenc/L0 = 40. For ϕ . 1.2,
the CBL dries because the flux of moisture out of the CBL (entrainment drying)
dominates over the surface flux into the CBL (surface moistening); the flux increases
from the surface to a maximum at the CBL top. By increasing ϕ, the surface flux
of moisture grows and for ϕ ' 1.2, the surface moistening equals the entrainment
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Figure B.5: Contour plots of (top plot) the normalized zero-order specific humidity and
(bottom plot) its zero-order vertical flux as a function of the normalized distance from the
surface and in panel (a) zenc/L0, in panel (b) Fr0, and in panel (c) CD for the condition ϕ = 0.

drying (Fig. B.6b). For ϕ & 1.2, the CBL moistens because the surface flux of moisture
into the CBL (surface moistening) dominates the flux of moisture out of the CBL
(entrainment drying); the flux decreases from surface to the CBL top.

The cross-over value, ϕ
(0)
cr ' 1.2, for the considered sheared CBL is slightly larger

than ϕ
(0)
cr ' 1.17 for the shear-free limit, since entrainment of dry air increases with

the wind shear. Figure B.6(c) illustrates this behaviour more clearly, as the critical
flux-ratio parameter enhances with increase of the Froude number. This enhancement,
however, diminishes as the CBL grows.

b.7 summary and conclusions

Two zero-order bulk models (ZOM) with different entrainment closures have been
developed for a cloud-free barotropic convective boundary layer (CBL) that grows
into a linearly stratified atmosphere. In the first one, the negative and positive areas
of the buoyancy flux were assumed to match between the model and the actual
CBL. In the second one, the CBL depth was the variable chosen to match between
the model and the actual CBL. Non-singular parameterizations for these properties
derived in Haghshenas & Mellado (2019) have been employed as the entrainment-
closure equation in each model. We referred to these models as energetics- and
geometric-based models, respectively.

The main advantage of the proposed models is that they are free from the potential
singularity at finite wind strength that has often been reported as a major limitation
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Figure B.6: Contour plots of (a) the normalized zero-order specific humidity and (b) its
zero-order vertical flux as a function of the normalized distance from the surface and the
flux-ratio parameter ϕ, defined by Eq. (B.5), for the sheared CBL characterized by Fr0 = 41,
CD = 0.002, and zenc/L0 = 40. Panel (c) demonstrates the contour plot of ϕ

(0)
cr as a function

of Fr0 and zenc/L0 with CD = 0.002.

in previous work. We eliminated the potential singularity by performing an integral
analysis of the TKE budget equation in the actual structure of the CBL and, in partic-
ular, by considering the local length scale of the entrainment zone when estimating
the integral of the negative buoyancy flux and of the shear production across the
entrainment zone. We discussed the potential singularity in the entrainment-closure
equation of previous work analytically and numerically. Using the parameterizations
for different CBL properties, we have shown that the singularity takes place under
very strong-shear conditions when the sheared CBL depth becomes nearly two times
larger than the encroachment length scale, or equivalently when ∆u(0)/(N0zenc), as
the independent variable that characterizes wind-shear effects, equals 1.8. In addition,
we have shown that considering initial conditions far away from the quasi-steady
regime also leads to the singularity or unrealistic results in the models proposed in
previous work even for moderate-shear conditions.

We have shown that the temporal evolution of different CBL properties obtained
from the energetics-based model agrees very well with predictions of those models
in previous work that appropriately considered the contribution of the entrainment-
zone shear in the entrainment-closure equation. The best match was observed with
predictions of Liu et al. (2016)’s model wherein 43% of generated turbulence by
entrainment-zone shear was assumed to be used for entrainment.

One potential disadvantage of the energetics-based model and also the models
in previous work, in which the energetics are matched between the actual and the
modeled CBL, is that the modeled CBL depth cannot be a priori associated to any
actual CBL-top height. This uncertainty might become important when the bulk
model is intended to include more complexity like cloud formation. We developed
the geometric-based model to address this issue. We considered three options for
the CBL depth in the geometric-based model, namely, the height of the minimum
buoyancy flux, the height that marks the transition from the lower to the upper
entrainment-zone sublayer, and the height of the maximum buoyancy gradient. These
heights differ by few hundred meters under typical midday atmospheric conditions
over land. Predictions of the geometric-based model suggested that the CBL depths
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in the energetics-based model and also models in previous work correspond better
to the height that marks the transition from the lower to upper entrainment-zone
sublayer, rather than the height of the minimum buoyancy flux. This finding helps
explain the approximately 5% deviation of the zero-order CBL depth from the height
of the minimum buoyancy flux reported in Conzemius & Fedorovich (2007).

An important conclusion of this study is that the zero-order bulk model, despite
its simplicity, can appropriately represent bulk properties of sheared CBLs, meaning
that a finite transition layer between the mixed layer and the free atmosphere is not
explicitly required. This is because the relevant shear-induced features of the actual
entrainment zone are considered in the entrainment closure. If needed, the vertical
structure of the actual entrainment zone of the sheared CBL can be reconstructed a
posteriori using the zero-order CBL depth predicted from any of the ZOMs and using
the relationships between the zero-order CBL depth and various actual CBL heights
provided in Haghshenas & Mellado (2019).
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APPENDIX BA

Parameterization for the area ratio of the negative and positive buoyancy flux in
the actual CBL
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Figure B.7: Verification with DNS data of the parameterization for the area ratio of negative
and positive buoyancy flux. Only data for zenc/L0 & 15, corresponding to the quasi-steady
regime, is plotted. Symbols and lines indicate the average within an interval ∆ zenc/L0 = 2,
and shadow regions indicate the interval of two standard deviations around that average. zi,0
is the zero-crossing height, zi,f is the height of the minimum buoyancy flux, zi,s marks the
transition from the lower EZ sublayer to the upper EZ sublayer, and zi,g is the height of the
maximum buoyancy gradient.
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Several cloud-free barotropic CBLs over an aerodynamically smooth surface forced
by a constant surface buoyancy flux growing into a linearly stratified atmosphere
have been simulated by means of direct numerical simulation in Haghshenas &
Mellado (2019). Each case was characterized by a reference buoyancy Reynolds
number, Re0 = N0L2

0/ν, and a reference Froude number, Fr0 = U0/(N0L0), setting
the Prandtl number to one. Here ν is the kinematic viscosity. They have studied the
quasi-steady regime of several cases scanning the parameter space 0 ≤ Fr0 ≤ 25 with
two Re0 of 25 and 42.

In order to derive the parameterization for the area ratio of the negative and positive
buoyancy flux, we consider Eq. (5.4) of Haghshenas & Mellado (2019)

∫ z∞

zi,0

[
〈b′w′〉c − 〈b′w′〉

]
dz ∼

∫ z∞

zi,0

−〈u′w′〉∂〈u〉
∂z

dz , (B.33)

which implies that the entrainment enhancement in sheared CBLs is due to the
additional TKE generated by the wind shear in the entrainment zone. Here zi,0 is the
reference height at which the buoyancy flux becomes zero. Primes indicate turbulent
fluctuation fields, and subscript c denotes the shear-free limit.

In agreement with previous work, the negative area of the buoyancy flux in the
shear-free limit is scaled by the convective scales as −

∫ z∞
zi,0
〈b′w′〉c dz ' 0.02 B0zenc,

where the coefficient of proportionality is obtained from the DNS data. Thus, the area
of the negative buoyancy flux in sheared CBLs can be approximated as

−
∫ z∞

zi,0

〈b′w′〉dz ' 0.02 B0zenc + c1 we(∆u)2 , (B.34)

using Eq. (B.33) and the well-known scaling argument for the integral of the shear
production term (see e.g. Boers et al., 1984). Here we ≡ d zi, f /d t is the growth rate
of the CBL depth, where zi, f is the height of the minimum buoyancy flux. To avoid
the poor statistical convergence associated with determining we by taking the time
derivative of zi, f , we use the approximation provided in Haghshenas & Mellado (2019)
as we ' (zi, f /zenc)d zenc/d t. The DNS data supports the ansatz in Eq. (B.34) and
shows c1 ' 0.09 .

The fact that wind shear only modifies the vertical structure of the entrainment-
zone indicates that the positive area of the buoyancy flux in sheared CBLs, consistent
with shear-free CBLs, is scaled as

∫ zi,0

0
〈b′w′〉dz ' 0.46 B0zenc , (B.35)

where the coefficient of proportionality is obtained from the DNS data. The parame-
terization for the area ratio then reads as

−
∫ z∞

zi,0
〈b′w′〉dz

∫ zi,0
0 〈b′w′〉dz

' 0.044 + 0.2
we (∆u)2

B0 zenc
. (B.36)

We obtain a value ' 0.044 for the area ratio in the shear-free limit, which is consistent
with previous work (Conzemius & Fedorovich, 2006a). Figure B.7 supports this
parameterization with DNS data, showing that the dependence of the proportionality
coefficient, c1, on the choice of the reference definition of the CBL height in we is
smaller than the achieved statistical convergence. This sensitivity analysis allows
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Figure B.8: Comparison of different properties of the sheared CBL (Fr0 = 41 and CD = 0.002)
obtained from ZOMs developed in the present and previous work classified as Group II.

us to consider Eq. (B.36) as the entrainment closure in the energetics-based model,
regardless of knowing a priori to which definition of the actual CBL height, the
modeled CBL depth can be associated. In addition, Comparing the data from cases
Re0 = 25 and cases Re0 = 42 shows that the Reynolds-number dependence of this
parameterization is small, less than the achieved statistical convergence (see Fig. B.7).

APPENDIX BB

Geometric-based model corresponding to the height of the maximum buoyancy
gradient

As explained in the main text, we also develop a geometric-based model with the
model CBL depth chosen to be equal to the actual height of the maximum buoyancy
gradient, for the sake of completeness. The corresponding closure equation is obtained
from Eqs. (5.17) and (5.18) in Haghshenas & Mellado (2019) as

h(0)

zenc
' 0.94︸︷︷︸

I

+ 0.25× X︸ ︷︷ ︸
II

+ 1.78 ×Y× Z︸ ︷︷ ︸
III

, (B.37)

where

X =


1 + 4.8

(
∆u(0)

N0zenc

)2



1/2

,

Y =

[
0.23

(
L0

zenc

)2

− 0.85
(

L0

zenc

)3
]1/2

,

Z =

[
1.34

d h(0)

d zenc
− 0.53

X2

]1/2

.

The first term (I) in Eq. (B.37) corresponds to the depth of the actual mixed layer, the
second term (II) corresponds to the thickness of the lower entrainment-zone sublayer,
and the third term (III) corresponds to the thickness of the upper entrainment-zone
sublayer. Even though employing the geometric-based model with the aforementioned
closure is straightforward, it is more convenient to use those two geometric-based
models explained in the main text and reconstruct the height of the maximum
buoyancy gradient from the results of those models and Eq. (B.37).
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APPENDIX BC

Evaluation of ZOMs classified in group II

In this section, we evaluate the results of the ZOMs classified in group II that
only takes the surface wind shear into account in the entrainment parameterization,
Eq. (B.12). Figure B.8 illustrates the temporal evolution of the CBL properties obtained
from these models. The result of the energetics-based model is incorporated in the
figure to facilitate the comparison. Driedonks (1982) produces large values of the CBL
depth and concomitantly the entrainment-flux ratio early on, followed by a sharp
reductions over the remainder of the CBL development. Tennekes (1973) appears to
work better in the early stage of the CBL development, however their predictions
undergo a sudden decline in time as well. The reason for such a behavior is as
follows. The surface wind shear, which fully determines the shear enhancement of
entrainment in these models, is initially large. This results in a large entrainment-flux
ratio and hence a large CBL depth. However, the surface wind shear decreases rapidly
as time proceeds, and it is not anymore an appropriate proxy of the entrainment-zone
shear, which, as discussed in recent previous work, is responsible for the entrainment
enhancement by wind shear. Note that the velocity increments at the CBL top fall
approximately on top of each other as a result of having the same surface closure,
Eq. (B.11), in all models and the little sensitivity of this closure to the CBL depth.
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