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Combining crowd-sourcing and deep learning to understand

meso-scale organization of shallow convection

Stephan Rasp* Hauke Schulz! Sandrine Bony! Bjorn Stevensf

The discovery of new phenomena and mechanisms often begins with a scientist’s intuitive ability
to recognize patterns, for example in satellite imagery or model output. Typically, however, such
intuitive evidence turns out to be difficult to encode and reproduce. Here, we show how crowd-
sourcing and deep learning can be combined to scale up the intuitive discovery of atmospheric
phenomena. Specifically, we focus on the organization of shallow clouds in the trades, which
play a disproportionately large role in the Earth’s energy balance. Based on visual inspection
four subjective patterns or organization were defined: Sugar, Flower, Fish and Gravel. On cloud
labeling days at two institutes, 67 participants classified more than 30,000 satellite images on
a crowd-sourcing platform. Physical analysis reveals that the four patterns are associated with
distinct large-scale environmental conditions. We then used the classifications as a training set
for deep learning algorithms, which learned to detect the cloud patterns with human accuracy.
This enables analysis much beyond the human classifications. As an example, we created global
climatologies of the four patterns. These reveal geographical hotspots that provide insight into
the interaction of mesoscale cloud organization with the large-scale circulation. Our project
shows that combining crowd-sourcing and deep learning opens new data-driven ways to explore
cloud-circulation interactions and serves as a template for a wide range of possible studies in the

geosciences.

Together, crowd-sourcing and deep learning offer a new way to discover knowledge from large
datasets, which we illustrate on the example of shallow cloud organization.

The human visual system is exquisitely good at
identifying patterns. A quick glance at a satellite
image, for example, suffices to detect a multitude of
interesting features, such as tropical cyclones, extra-
tropical fronts or cloud clusters. While subjective,
such intuitive pattern recognition can serve as a start-
ing point for understanding new phenomena. Tradi-
tionally, however, this intuition is difficult to encode
and scale up for statistical analysis.

Here, we combine two emerging tools to tackle this
problem: crowd-sourcing and deep learning. Crowd-
sourcing describes projects where a task is collabora-
tively solved by a group of people. This can be a small
research group or a large group of internet users. One
of the first examples of crowd-sourcing in the natu-
ral sciences is Galaxy Zoo!, a project that has citizen
scientists classify different galaxy types and has pro-
duced 60 peer-reviewed publications so far. An early

Sorbonne Université, LMD/IPSL, CNRS, Paris, France

W N = = ¥

meteorological example focused on estimating hurri-
cane intensity (Hennon et al., 2015). Current climate
projects on Zooniverse?? ask volunteers to transcribe
old, hand-written weather records. Thanks to the col-
laboration of many individuals such projects produce
a wealth of data that would be unattainable for a
single scientist.

Deep learning is a sub-field of machine learning
based on multi-layered networks that has seen a surge
in popularity in recent years. In particular, computer
vision and natural language processing have been rev-
olutionized by the switch from hard-coded, rule-based
algorithms towards data-driven approaches (LeCun
et al., 2015). Deep neural networks also have many
potential applications in the Earth sciences, particu-
larly where already existing deep learning techniques
can be transferred to geoscientific problems (Reich-
stein et al., 2019). A perfect example of this is the

Ludwig-Maximilian-University, Munich, Germany. Corresponding author: s.rasp@lmu.de
Max Planck Institute for Meteorology, Hamburg, Germany

https://www.zooniverse.org/projects/zookeeper/galaxy-zoo
https://www.zooniverse.org/projects/edh/weather-rescue
https://www.zooniverse.org/projects/drewdeepsouth/southern-weather-discovery


https://www.zooniverse.org/projects/zookeeper/galaxy-zoo
https://www.zooniverse.org/projects/edh/weather-rescue
https://www.zooniverse.org/projects/drewdeepsouth/southern-weather-discovery

Rasp, Schulz, Bony and Stevens — 2019

Flower

Sugar
Dusting of very fine clouds, little
evidence of self-organization

Large-scale stratiform cloud
features appearing in bouquets,
well separated from each other.

Large-scale skeletal networks of
clouds separated from other cloud
forms.

]

Grave

Meso-beta lines or arcs defining
randomly interacting cells with
intermediate granularity.

Sugar
s Flower

Fish
- Gravel

-

Figure 1: (a—d) Examples of the four cloud organization patters. (e) Worldmap showing the three regions selected for
the Zooniverse project. Pie charts show the area fractions of the human classifications for the regions and seasons.

detection of features in images. One obstacle is that
deep learning requires a large number, typically sev-
eral thousands, of hand-labeled training samples. For
Earth science problems, these are usually not avail-
able. For this reason, previous studies that used deep
neural networks to detect atmospheric features relied
on training data created by traditional, rule-based al-
gorithms (Racah et al., 2016; Liu et al., 2016; Hong
et al., 2017; Kurth et al., 2018).

Here, we present a community project that used a
combination of crowd-sourcing and deep learning to
tackle the question of mesoscale organization of shal-
low clouds, a topic of high relevance for the Earth’s
climate. In this paper, we will describe how we set up
our project and what we learned from it, scientifically
and organizationally. Further, we hope to convince

fellow scientists that the approach presented here is a
feasible way to tackle a number of research questions
in the geosciences.

MESOSCALE ORGANIZATION OF SHALLOW
CLOUDS

Shallow cumulus clouds might look innocent com-
pared to their cumulonimbus counterparts but in
terms of their importance for the global energy bal-
ance, they play a disproportionately large role. This
has two reasons: first, they reflect a significant por-
tion of the incoming solar radiation back to space
while only contributing marginally to the greenhouse
effect, thereby cooling our planet; and second, shal-
low cumulus cover large fractions of our planet’s sub-
tropical oceans (Bony et al., 2004). The global net
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radiative effect of shallow cumulus is estimated to be
around -20 Wm™2 (Boucher et al., 2013), which il-
lustrates that even small changes in cloud cover are
important. Disagreement about these changes are
also though to be the major cause for the uncertainty
in model-based estimates of climate sensitivity (Bony
and Dufresne, 2005; Vial et al., 2013; Stevens et al.,
2016a). Understanding the mechanisms behind shal-
low cloud formation, therefore, is crucial.

Contrary to the textbook view of shallow cumulus,
they are typically not horizontally uniform but ex-
hibit a wide range of patterns on the mesoscale (20—
200 km, meso-f3; Young et al., 2002; Wood and Hart-
mann, 2006). So far the mechanisms driving many of
these patterns are poorly understood. These modes
of organization, however, could play a major role for
the radiative effect of shallow clouds, a fact that has
long been recognized for deep convection (Tobin et al.,
2012). In today’s climate models the typical assump-
tion is that of a scale separation between the large
and small scales, where the latter are slaved to the
former. Mesoscale organization, therefore, is largely
ignored, a potential cause of biases.

A first step towards better understanding shallow
cumulus organization is to define it. While some
patterns are easily detectable with traditional tech-
niques (Muhlbauer et al., 2014), many other forms of
organization are more ambiguous. Recently, twelve
cloud experts browsed through hundreds of NASA
Worldview? images and identified four frequently re-
curring cloud patterns, which they evocatively named
Sugar, Flower, Fish and Gravel (Stevens et al., 2019b,
Fig. 1a—d). The four categories were chosen entirely
subjectively based on visual intuition without any
climatological analysis. Flower and Gravel loosely
resemble closed and open cell convection (Atkinson
and Zhang, 1996), which occur behind mid-latitude
cold fronts, but quite possibly involve different mech-
anisms.

In this first labeling exercise, 1000 images were
labeled. This dataset already provided some clues
about the physical mechanisms behind the cloud
patterns and an initial machine learning model en-
couraged us to scale up our efforts. This is where
crowd-sourcing and deep learning come in.

https://worldview.earthdata.nasa.gov/
5
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Figure 2: (a) Crowd-sourced classifications. This valida-
tion image was labelled by three different users. Predic-
tions of (b) the Retinanet object detection algorithm and
(c) the image segmentation algorithm.

CROWDSOURCING THE CLIMATE
COMMUNITY

To obtain a large pool of classified images, we set
up a cloud labeling interface on Zooniverse®, an open
web platform that enables researchers to organize and

https://www.zooniverse.org/projects/raspstephan/sugar-flower-fish-or-gravel
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present research questions in ways that enable con-
tributions from the broader public. For our project
we downloaded roughly 10,000 21° longitude by 14°
latitude Terra and Aqua MODIS visible images from
NASA Worldview. To select the regions and seasons,
we started with the boreal winter east of Barbados as
a reference. Barbados is home to the Barbados Cloud
Observatory (Stevens et al., 2016b) and is the hub for
field campaigns, both past (Stevens et al., 2019a) and
upcoming (Bony et al., 2017), aiming to investigate
shallow clouds. By identifying climatological factors
thought to be important for shallow cloud formation
we identified and subsequently added two further re-
gions in the Pacific which are climatologically similar
(Fig. 1le; see Methods for details). Images were down-
loaded for an eleven year period from 2007 to 2017.

On the web interface, participants are served an
image randomly drawn from our library of 10,000
images. Users were then asked to draw rectangles
around regions where one of the four cloud patterns
dominates (Fig. 2a). Participants had the possibility
to draw any number of boxes, including none, with
the caveat that the box would cover at least 10% of
the image. When an image was classified by four dif-
ferent users, it was retired, i.e. removed from the
image library. No user was shown the same image
twice. With the interface in place, cloud classifica-
tion days were set up at the Max Planck Institute
for Meteorology in Hamburg, Germany on Nov 2nd
and at the Laboratoire de Météorologie Dynamique
in Paris, France on Nov 29th 2018. After a brief
instruction at the start of the day and a warm-up
on a practice dataset, 67 participants, most of them
researchers of the two institutes, labeled images for
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an entire day yielding roughly 30,000 classification,
i.e. around three classifications per image. On aver-
age, participants needed around 30 seconds to clas-
sify one image, amounting to approximately 250 h of
human classification. Overall, the four patterns oc-
curred with roughly similar frequency but with no-
table differences depending on the geographic region
and season (Fig. 1e).

HUMAN AGREEMENT AND PHYSICAL
INTERPRETATION OF PATTERNS

The first key question of this labeling exercise is to
which extent the human labelers even agreed on the
subjectively chosen cloud patterns. Analysis of data
from a small expert group suggested that there would
be sufficient agreement (Stevens et al., 2019a). But
could this be extended to a much larger group of peo-
ple with less expertise in the subject? To find out we
computed the following agreement metric: “In which
percentage of cases, if one user drew a box of a certain
class, did another user also draw a box of the same
class, under the condition that the boxes overlap?”
(see Methods for details). Overall, the agreement is
43% but there are notable differences between the four
patterns (Fig. 3a). Humans agree most on Flowers
(51%) while Fish (37%) are most controversial. Con-
sidering that some disagreement has to be expected
for such subjective classes, these number and visual
inspection of many classified images® lead us to con-
clude that the four patterns have some validity and
could be communicated to and subsequently identi-
fied by a group of non-experts.

A second central question is whether the four pat-
ters, which were purely chosen based on their visual

Mean pixel accuracy
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Figure 3: (a) Mean agreement between humans. (b) Mean pizel accuracy for each human participant and the two
deep learning algorithms. Definitions of the metrics can be found in the Methods.
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appearance on satellite imagery, actually correspond
to physically meaningful cloud regimes. To investi-
gate this, we created composites of the large-scale
conditions from ERA-Interim reanalyses’ correspond-
ing to each pattern (Fig. 4). These composites sug-
gest that Sugar, Flower, Fish and Gravel appear in
climatologically distinct environments. Flowers are
associated with a relatively dry and cold boundary
layer with a very strong inversion. Sugar on the other
hand appears in warm and humid boundary layers
with strong downward motion in boundary layer. For
Fish and particularly Gravel, on the other hand, the
inversion and downward motion is rather weak.

DEEP LEARNING SCALES UP HUMAN
INTUITION

The 30,000 human classifications already provide a
rich dataset which can be used to better understand
the four patterns. However, even after 250 hours of
labeling images, the classifications only cover a small
fraction of the globe for a small fraction of the time.
In fact, only around 0.6% of the data available dur-
ing the selected eleven year period were labeled. Deep
learning allows us to scale up this analysis by many
orders of magnitude.

The cloud classification task presented here can be
framed as one of two potential machine learning prob-
lems: object detection and semantic segmentation.
Object detection algorithms draw boxes around fea-
tures of interest, thereby exactly mirroring the human
workflow for this task. In contrast, segmentation al-

gorithms classify every pixel of the image. Fig. 2a,b
shows examples of these two approaches for an im-
age from a validation dataset that was not used dur-
ing training (see http://tiny.cc/wlth6y for more
randomly chosen examples). Details about the neu-
ral network architectures and preprocessing steps can
be found in the Methods. Both types of algorithm
accurately detect the most obvious patterns in the
image and agree well with human labels. Interest-
ingly, despite all training labels being rectangular, the
segmentation algorithm learns to focus on the actual
shape of the patterns.

To quantitatively compare the deep learning algo-
rithms against the human labelers, we compute the
mean accuracy, the percentage of correctly labeled
pixels (see Methods), for each human and the two al-
gorithms (Fig. 3b; ). Both, the object detection algo-
rithm and the segmentation algorithm, show a large
consensus with the average human labels for a ran-
dom validation set. The accuracy (Supp. Fig. S2)
is higher for patterns where humans agreed. Fur-
ther, the algorithms more frequently predicted pat-
terns with a higher inter-human agreement, i.e. Flow-
ers and Sugar. These results confirm that the deep
learning models are able to detect the cloud patterns
on par with human labelers.

Deep learning opens up many opportunities, pri-
marily because the algorithms are very fast (less than
one second to classify an image) and never tire. This
makes it possible go much beyond the original, hu-
man dataset by applying the algorithm for the entire
globe (Fig. 5a; see Methods for details). Caution is
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Figure 4: Median of large-scale environmental conditions corresponding to the four patterns as identified by the hu-
man labelers. Figures show deviations of (a) temperature, (b) specific humidity and (c) vertical velocity relative to the

climatological mean.
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Figure 5: (a) Global predictions of the image segmentation algorithm for May 1 2017. The colors are the same as in
the previous figures. For more examples, see http: // tiny. cc/ fsth6y (b—e) Heatmaps of the four patterns for the

year 2017.

always advisable when applying machine learning al-
gorithms outside of their training regime (Rasp et al.,
2018). A visual inspection of the global maps (see
http://tiny.cc/fsth6y for more examples), how-
ever, suggests that the algorithm’s predictions are
reasonable and physically interpretable as discussed
below. Naturally, over land the predictions have to
be assessed with greater care because no land was
present in the training dataset. Nevertheless, the al-
gorithm appears to correctly identify shallow cumuli

over the tropical landmasses as sugar.

To obtain global climatologies of Sugar, Flower,
Fish and Gravel we ran the algorithm on daily global
images for the entire year of 2017 (Fig. 5b—e). This
took only a few hours of computing on a single pro-
cessor. As a comparison, the same feat would require
more than 600 human hours. The heatmaps reveal
coherent hotspots for the four cloud patterns. Sugar
occurs predominantly north and south of the Inter-
Tropical Convergence Zone (ITCZ) and in the Ara-
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bian Sea. Flowers appear just west of the continents
where the trade wind inversion is strong, which is in
agreement with the large-scale composites (Fig. 4).
Further downstream in the trade regions, Flowers
transition to Gravel and Fish. These two patterns
are geographically intertwined, which again confirms
the physical analysis. Interestingly, Gravel seems to
be relatively confined, in particular to our selected re-
gions 1 and 2 (Fig. 1e). This contradicts our previous
view of cold pool patterns dominating the trade wind
regions globally (Rauber et al., 2007). Fish, which are
linked to stronger convergence (Fig. 4c) are often as-
sociated with synoptic convergence lines, sometimes
connected to trailing mid-latitude fronts. The phys-
ical coherence of the climatologies provide another
piece of evidence that the four subjectively chosen
patterns code for meteorologically meaningful regimes
and that the deep learning algorithms are able to pro-
vide new insight. An unanswered question is whether
important regimes of shallow cloud organization are
missing, which could be tackled with emerging deep
unsupervised learning approaches (Xie et al., 2016;
Caron et al., 2018).

NEW OPPORTUNITIES

This project was an experiment for us. Without
direct precedent it was hard to judge beforehand
whether the results would turn out useful or not.
Fortunately, they did. The combination of crowd-
sourcing and deep learning allowed us to better under-
stand the mesoscale organization of shallow clouds, a
topic that has turned out to be quite elusive. The
four patterns, that were defined subjectively based
on their appearance—albeit, of course, by experienced
cloud researchers—are physically meaningful and were
identifiable by a large number of people, most of
whom, while they share an atmospheric science back-
ground, are not versed in the study of low-clouds.
The deep neural networks learned to classify the satel-
lite images with human accuracy, despite considerable
uncertainty in the training dataset, and were able to
extrapolate beyond the human classifications. The
physical insight gained from the first analyses pre-
sented in this paper revealed new information, some
of which contradicts our preconceptions about these
cloud patterns.

The results here are just a teaser of knowledge to
be gained from this dataset. Because of the impor-
tance of shallow clouds for climate, ongoing and fu-
ture analysis will focus on the radiative properties
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associated with mesoscale organization and how the
environmental conditions in future climates might af-
fect the frequency of occurrence of each pattern. For
this, it might be helpful to use the existing classifica-
tions with different types of satellite images. Infrared
imagery, for example, allows classification at all times,
while geostationary satellites provide a much higher
temporal resolution. This may help understand how
shallow cloud organization develops over time. Ulti-
mately, understanding better how clouds interact on
the mesoscale and how these interactions affect the
energy balance of our planet will hint at what cur-
rent climate models, where the mesoscale is largely
ignored, are missing.

In addition to the gain in scientific knowledge, we
learned that such a project is feasible from an orga-
nizational point of view. Platforms like Zooniverse
make setting up crowd-sourcing interfaces fast and
easy. It is as simple as uploading the data and speci-
fying which task users should complete (categorizing
the entire image or drawing shapes). The results can
then be downloaded as a tabular data file. Similarly,
deep learning has become much more user-friendly
over the last couple of years. Free online courses®
and easy-to-use Python libraries such as Keras (Chol-
let and Others, 2015) and fastai® allow non-computer
scientists to apply state-of-the-art machine learning
models in a short amount of time. Further, for most
common tasks in image processing, such as object de-
tection and image segmentation in the paper, pre-
existing and pre-trained neural network architectures
are available, which make it convenient to transfer
existing technologies to new tasks (see Methods for
details on the models used in this paper). The com-
putational demand is also manageable. For the net-
works used in this study, training took on the order of
ten hours on a single graphics processing unit (GPU).
GPUs are now available in most scientific computing
centers and for rent on web computing services.

Crowd-sourcing is a solution for one of the big prob-
lems when applying deep learning in many scientific
disciplines: the lack of labeled training data. With
this study we hope to convince fellow researchers that
the effort required to create enough training data is
manageable. As a rough estimate of how much data
is required, we trained our networks with less data
and found that useful results can still be obtained
with 5,000-10,000 classifications. This translates to
a day of classification for around 15 people, which is
within the capabilities of even small research groups.
Of course, the amount of required training images
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depends strongly on the complexity of the task. For
our project, most participants were climate scientists.
Another interesting question is how good the classi-
fications would be if they were done by the general
public, as has been common for most previous crowd-
sourced science projects.

Similar projects could be useful for a wide range
of research questions in the geosciences. Typically, if
a feature is easy to identify by eye but hard to ob-
jectively define, a subjective crowd-sourced approach
could be a feasible way to harness human intuition on
a statistically significant scale.

Data availability

This dataset will be used for a Kaggle!® competition. To
ensure a fair competition, the raw data will stay private
for now. Interested researchers are encouraged to contact
us directly to obtain the data, deep learning models and
Jupyter notebooks for analysis. After the Kaggle com-
petition has finished the repository will be made public.
The Zooniverse project is still online!!, where readers can
try labeling clouds themselves.
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Supplemental Methods

Region selection criteria

The regions were selected ahead of the classification days according to a similarity analysis of atmospheric
conditions that resemble the conditions encountered during the DJF season east of Barbados where these
patterns were first found (Stevens et al., 2019b).

Because the mesoscale organization of shallow cumulus is a relatively new research topic, the meteorological
conditions influencing it are primarily an educated guess. Lower tropospheric stability (LTS), surface wind
speed (FF) and total integrated column water vapour (TCWV) are three parameters one could naively
imagine to describe the meteorological setting to a sufficient degree. Starting with the inter-annual seasonal
mean of these atmospheric properties at the region east of Barbados, we searched for climatologically similar
regions and seasons within a 120°-wide latitudinal belt (60°N to 60°S) around the globe. We used a k-means
clustering with eight clusters to find similar patterns within our search perimeter. As input to the algorithms
we used the climatological means of LTS, FF10 and TCWYV for each of the four seasons. The eight clusters
explain more than 90% of the variance in the dataset and provide large enough regions to fit 21° longitude
by 14° latitude boxes reasonably well.

Figure S1: Cluster analysis of LTS, FF10, TCWYV separated by season (DJF, MAM, JJA, SON). The colors identify
the 8 clusters as a result of the k-means algorithm. For a better visual impression the clusters are sorted by cluster
mean column integrated moisture with cluster 1 being the driest. Black bozes indicate regions chosen for human-
classifications.

Fig. S1 shows the clusters for the four seasons. Our analysis indicates that the meteorological conditions
over the Northwestern Atlantic change with season. This is not surprising due to the migration of the ITCZ,
but it illustrates that we shouldn’t expect to see the same cloud patterns or at least the same distribution
throughout the year. The final choice of seasons and regions was made to match the climate of region 1 in
DJF (Table S1)

Table S1: Selected domains used for human-classification of cloud patterns.

Domain Bounds Seasons used
1 -61°E -40°E; 10°N 24°N DJF, MAM
2 159°E 180°E; 8°N 22°N DJF
3 -135°E -114°E; -1°N -15°N DJF, SON
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Agreement metrics

In the paper we use two different metrics for agreement. First, the agreement score, used to compare the
inter-human agreement, defined as follows: “In which percentage of cases, if one user drew a box of a certain
class, did another user also draw a box of the same class, under the condition that the boxes overlap.”
The overlap is measured using the Intersection-over-Union (IoU) metric. For above metric an IoU of larger
than 0.1 is required. While this value might seem low, for two equally sized boxes this actually indicates
an overlap of 20%, almost one quarter of the box. Changing the threshold changes the absolute values but
not the relative agreement for each of the patterns. To measure inter-human agreement, for each image all
combinations of two users are compared against each other and subsequently averaged.

The second metric is the pixel accuracy used to compare the machine learning models to the human
predictions. Here, for each pixel, the accuracy of one user (or a machine learning prediction) compared to
another user is computed for each pattern. Pixels where both users predict no pattern are omitted for this
score.

The reason for using two different metrics is that while the first metric is easily understandable and
interpretable, it is not a proper metric (Guneiting and Raftery, 2007). This means that predicting the truth
does not necessarily give the best score. For example, because of the IoU threshold, predicting larger boxes
would result in a higher agreement score. The pixel agreement, in contrast, is a proper score and is therefore
suited to compare inter-human agreement with the two deep learning algorithms.

Deep learning models

Two deep learning models are used, one for object detection and one for semantic segmentation. For object
detection, an algorithm called Retinanet (Lin et al., 2017) is used. Here we used the following implementation
in Keras (Chollet and Others, 2015): https://github.com/fizyr/keras-retinanet, which uses a Resnet50
(He et al., 2015) backbone. The original images had a resolution of 2100 by 1400 pixels. For Retinanet the
images were downscaled to 1050 by 700 pixels. This is necessary to fit the batch (batch size = 4) into GPU
RAM.

For semantic segmentation, we first converted each human classification, i.e. all boxes by one user for
an image, to a mask. Sometimes boxes for different patterns overlap. In this case, the mask is chosen to
represent the value of the smaller box. Overall, the amount of overlapping boxes is small, however, so that the
resulting error is most likely negligible. To create a segmentation model, we used the fastai Python library!2.
The network architecture has a U-Net (Ronneberger et al., 2015) structure with a Resnet50 backbone. For
the segmentation model the images were downscaled to 700 by 466 pixels (batch size = 6).

To create the prediction masks, first a Gaussian filter with a half-width of 10 pixels was applied to smooth
the predicted field. Then, for each pixel the highest probability for each of the four patterns was used, if this
probability exceeded 30%. This last step counteracts the tendency to predict background, which is by far
the most common class in the training set.

Global heatmaps

To create the heatmaps, the segmentation algorithms was used. Predictions were created for a 21° longitude
by 14° latitude region at a time, with a windows sliding in 10.5° and 7° increments over the globe. The
highest pattern probability for the overlapping images was then taken to create the global mask. This was
necessary because the algorithm tends to predict background at the edges of the image, a consequence of the
human labelers not drawing boxes that extend all the way to the edge of the image. The climatology was
created from one year of Aqua data.

12 https://docs.fast.ai/
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Figure S2: (Top row) Total size of classifications for the two deep learning algorithms for a random validation dataset.
(Bottom row) Mean pizel accuracy for the two algorithms stratified by pattern, also for a random validation set.
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