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ABSTRACT

Over the tropical oceans, the large-scale, meridional circulation drives the accumulation of moist and

warm air, leading to a relatively narrow, convectively active band. Therein, deepmoist convection interacts

with its heterogeneous environment—the intertropical convergence zone (ITCZ)—and organizes into

multiscale structures that strongly impact Earth’s hydrological cycle and radiation budget. Understanding

the spatial correlations and interactions among deep convective clouds is important, but challenging. These

clouds are investigated in this study with the help of large-domain, storm-resolving simulations over the

tropical Atlantic. Based on vertically integratedmass flux fields, deep convective updraft cells are identified

with object-based techniques and analyzed with respect to their structural behavior and spatial arrange-

ment. The pair-correlation method, which compares simulated pair numbers as a function of pair distance

to an appropriately chosen reference, is applied and extended to allow for spatial statistics in a hetero-

geneous environment (i.e., the ITCZ). Based on pair-correlation analysis, the average probability is en-

hanced to find an updraft cell pair within 100 km compared to a random distribution. Additionally, the

spatial arrangement of larger or stronger cells deviates more from randomness compared to smaller or

weaker cells, which might be related to their stronger dynamical interaction mechanisms. Using simplified

equilibrium statistics of interacting cells, several spatial characteristics of the storm-resolving simulations

can be reproduced.

1. Introduction

The inherent complexity of our nature can be expe-

rienced when we look at the fascinating beauty of

clouds. They can appear in very irregular patches with

fractal characteristics over a vast size range (Lovejoy

1982), sometimes being spatially clustered and other

times possessing a higher degree of randomness

(Nair et al. 1998). Over the oceans, tropical deep

convection arranges itself in a relatively narrow,

convectively active band located in the intertropical

convergence zone (ITCZ; Waliser and Gautier 1993;

Schneider et al. 2014). Planetary and synoptic-scale

waves cause undulations in the deep convection band

and organize convective activity on the larger scales

(Machado et al. 1993; Kiladis et al. 2009). On the me-

soscales (i.e., from several hundred kilometers down to

kilometer scale), several interaction mechanisms be-

tween clouds have been discussed. Preexisting clouds

influence new cloud formation by modifying environ-

mental properties due to local moistening (Randall and

Huffman 1980; Hohenegger and Stevens 2013; Kumar

et al. 2014) or due to changing atmospheric stability
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(Ramirez et al. 1990; Ramirez and Bras 1990). Com-

peting circulations across cloud edges have been iden-

tified to induce dynamical feedbacks among clouds

(Garrett et al. 2018).

A generic prototype of cloud organization found in

idealized simulations has stimulated scientific interest

in the recent years (see reviews of Holloway 2017;

Wing et al. 2017, and references therein). Depending

on environmental conditions, isolated convective cells

start to spontaneously aggregate into bigger cloud

clusters in which most of the moisture is concentrated

(Bretherton et al. 2005; Muller and Held 2012). The so-

called convective self-aggregation can be sensitive to

several factors of physical origin, like ice microphysics

and radiation (Bretherton et al. 2005) and subgrid-scale

mixing (Tompkins and Semie 2017), or to factors of nu-

merical origin like simulation domain size and horizontal

resolution (Muller andHeld 2012). It has been speculated

that convective aggregation could be important for cur-

rent and future climate (Tobin et al. 2012; Bony et al.

2015; Mauritsen and Stevens 2015) by modifying radia-

tion and precipitation budgets. It is far from being trivial

to assess if thismechanism can play a role inmore realistic

situations where tropical deep convection develops

within a very heterogeneous environment even though

progress toward more realism has been made more re-

cently (Holloway 2017; Muller and Romps 2018).

Therefore, the current study pursues two general

goals: (i) to investigate the spatial distribution of

marine tropical deep convection in storm-resolving

(no convection parameterization) model simulations

and (ii) to identify possible analogies between the

spatial statistics of deep convective cells and statis-

tical physics approaches. For the first goal, we focus

on configurational statistics of deep convective cells

(i.e., how these cells organize in space). The so-called

pair-correlation method (e.g., Rasp et al. 2018) is

extended to allow for an application in the highly

heterogeneous ITCZ. The pair-correlation functions

can provide a spatial length scale at which the prob-

ability of cell pair occurrences is enhanced compared

to a random reference. Thus, a link to spatial in-

teraction mechanisms needed for the parameteriza-

tion of convective organization can be established.

Similarly, Tan et al. (2015) discussed the conse-

quences of temporal and spatial localization of deep

convection. They stated that statistical convection

parameterizations should account for a nonlocal in-

fluence of deep moist convection to realistically rep-

resent spatial coherence. Local random interactions

have been shown to be important for macroscopic

cloud organization (Yuan 2011; Bengtsson et al. 2013;

Khouider 2014).

Many of the most recently developed parameteri-

zation approaches have their roots in modern statis-

tical physics (e.g., Majda and Khouider 2002; Craig

and Cohen 2006; Yuan 2011). Motivated by this, the

second goal of our study is to discuss the results from

spatial statistics of cells in relation to simple statistical

physics approaches that allow for clustered cell con-

figurations. Challenges arise for describing and quan-

tifying the way how properties of the cell populations

are changed by the effects of cell interactions. For in-

stance, Craig and Cohen (2006) analyzed statistical

equilibrium fluctuations of a field of noninteracting

cumulus clouds under homogeneous large-scale forcing

in analogy to an ideal gas. As a possible route for ex-

tending the existing formulations, one could keep the

equilibrium assumption, but include effects of exter-

nal forcing and cell interactions leading to the statisti-

cal mechanics of nonuniform fluids (Henderson 1992).

Such an approach would be similar to the lattice-based

model of convective inhibition fluctuations by Majda

and Khouider (2002), who specified nearest-neighbor

interactions between active sites, and an external po-

tential depending on the grid-scale environment.

A further extension toward nonequilibrium ap-

proaches might be inevitable to cover the full wealth of

interaction mechanisms. In this way, Peters and Neelin

(2006) and Peters et al. (2009) suggested that the tropical

precipitation system undergoes a second-order phase

transition with the total column water vapor (TCWV) as

control parameter. Feedbacks in the moisture dynamics

(Craig and Mack 2013) then lead to self-organized crit-

icality. Wang (2014) further emphasized the importance

of moisture and high TCWV values for tropical cyclone

formation. Advanced multitype stochastic models typi-

cally based on Markov chain methods (Khouider et al.

2010; Peters et al. 2013; Khouider 2014; Ragone et al.

2015; Dorrestijn et al. 2015, 2016; Gottwald et al. 2016)

could have the capability to integrate elements of non-

equilibrium behavior as well as spatial coherence into

a joint framework. However, the challenge remains to

constrain the parameters that govern formation, transi-

tion and interaction mechanisms.

The structure of the paper is outlined in the follow-

ing: Large-domain storm-resolving simulations over

the tropical Atlantic are utilized to derive updraft cells

as described in section 2. Background on statistical

methods including configurational analysis and recipes

for the calculation of total and partial pair-correlation

functions are provided in section 3. In the results

section 4, we present and discuss the analysis of cell

characteristics and pair correlations. We further consider

simplified equilibrium statistics of interacting cells using

the ‘‘convective organization potential’’ introduced by
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White et al. (2018) and assess the results of this simple

model. A summary and an outlook are provided in

section 5, and an the appendix adds details about ap-

plication of the statistical model.

2. Data and object-based analysis

a. Storm-resolving simulations

We use data from simulations with the Icosahedral

Nonhydrostatic (ICON) model (Zängl et al. 2015) that
have already been presented in previous studies (Klocke

et al. 2017; Senf et al. 2018). The average horizontal

resolution on the icosahedral simulation grid is 2.5 km

without any parameterization for cumulus convection.

All of the convective mass flux is explicitly transported

at the grid scale. We refer to the simulation configura-

tion as ‘‘storm resolving’’ to remain consistent with our

previous studies. The simulations were conducted in

support of the Next-Generation Aircraft Remote

Sensing for Validation Studies II (NARVAL II) cam-

paign (Stevens et al. 2016; Klepp et al. 2015). They cover

the tropical Atlantic and parts of the adjacent continents

(cf. Fig. 1) for August 2016. Each day at 0000 UTC, a

new simulation is initialized from ECMWF analysis and

runs out to 136h. Three-hourly data from ECMWF

analysis is provided at the lateral boundaries. The first

12 h of each simulation are disregarded as spinup period

of the model. Details about the setup are further dis-

cussed in Klocke et al. (2017), where low wind condi-

tions in the ITCZ region are investigated, and in Senf

et al. (2018), where the model simulations are evaluated

against Meteosat observations.

In the following, we consider a subdomain over the

tropical Atlantic as indicated in Fig. 1. Deep convec-

tion is characterized by high, positive mass flux

regions. Mass flux, in general, is one of the key com-

ponents of convective parameterizations (Arakawa

2004). From the simulated mass flux profiles, the

vertically integrated mass flux M5
Ð
dz rw is calcu-

lated, where r is the air density and w denotes the

vertical velocity. An example of a simulated M field is

also given in Fig. 1 and a more detailed view is pro-

vided in Fig. 2. Large positive values of M indicate

strong upward motion in deep convective cores; neg-

ative M values appear for pronounced downdrafts,

which are usually connected to convective precipita-

tion processes. In the following analysis, M is abbre-

viated as ‘‘mass flux’’ to simplify notation. The

positive and negative parts of M are examined sepa-

rately. The areas covered by upward and downward

motion are denoted by A1 and A2, respectively,

covering 32% and 68% of the Atlantic domain for the

scene in Fig. 1. Taking the areal integral ofM overA1

gives the total mass lift

M
tot,1

(t)5

ð
A1

dxM(x, t), (1)

which is the volume integral of the total upward-directed

vertical momentum. In that way, Mtot,1 can be directly

associated with the magnitude of the ascending branch

of the tropical circulation. For the scene in Fig. 1, we

have Mtot,1 5 4.5 3 1014kgms21, and Mtot,2 5 24.3 3
1014 kgms21 for the downward counterpart. Thus, not

surprisingly, upward motion is mainly compensated by

a downward mass transport in the surrounding regions.

(The time series of Mtot,1 is shown in Fig. 4a.) Around

75% of the temporal variance in Mtot,1(t) is induced by

multiday variability. On shorter time scales, Mtot,1(t)

shows a pronounced diurnal cycle with a minimum at

0100 UTC and a maximum at 1800 UTC.

FIG. 1. Overview of the full ICON simulation domain and the analyzed subdomain in the

tropical Atlantic (marked by a black bounding box). The field inside the bounding box is an

example of the vertically integrated mass flux M originating from a simulation initiated at

0000 UTC 16 Aug 2016 after 24 h into the forecast.
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b. Cell definition

Our aim is to identify updraft cells that contribute to a

certain fraction f of the total mass lift Mtot,1. Consid-

ering the instantaneous M field, we see that spatial in-

tegration over areas

A
f
5 fx:M(x, t).M

thresh,f
(t)g, (2)

which contain values larger than a certain threshold,

gives the fraction

f 5

ð
Af

dxM/M
tot,1

(3)

of the total mass lift that is realized by the chosen up-

draft areas. For small f, only the most intense updraft

cores are selected. For f close to one, the full upward-

directed mass-flux field is recovered. ConsideringM and

f to be given, Eq. (3) provides an implicit formula from

which Mthresh,f(t) can be derived. Keeping f fixed over

time leads to a time-dependent threshold, a route that

we will choose for our analysis. Conversely, a constant

Mthresh leads to a cell population that has varying rela-

tive contribution to the instantaneous Mtot,1.

For the scene in Figs. 1 and 2, the relative fraction

was set to f 5 0.5 (i.e., 50% of the total mass lift), and

the resulting M threshold is at 1231 kgm21 s21. Grid

boxes with larger M values only cover 1% of the

Atlantic domain. The mass-flux distribution is skewed

(not shown). Half of the downward mass transport is

enclosed by the 2135 kgm21 s21 contour, which has a

smaller magnitude and covers a larger area fraction of

14%. This asymmetry is a common feature of circu-

lations induced by deep moist convective motions

(Stevens 2005). Selecting f 5 0.5 for the whole anal-

ysis period, the time series of Mthresh,50% results (also

shown in Fig. 4a). In general, it follows the curve of the

total mass lift. For instance, lower threshold values are

obtained in situations where the ascending circulation

is weak.

The cell identification is done on M fields via a

threshold-based segmentation algorithm. The algorithm

is similar to the one described in Senf et al. (2018),

but here applied to M fields with variable thresholds

Mthresh,f(t) in contrast to brightness temperatures with a

fixed threshold. In a nutshell, a binary map is generated

by setting grid points to one (zero) for M values above

(below) the considered threshold. The binary field

is separated into distinct objects in two steps. First,

contiguous subregions of category ‘‘one’’ are labeled

with different cell indices where only connections be-

tween nearest neighbors sharing the same grid edge are

FIG. 2. Detailed view of (a) the vertically integrated mass flux field M and (b) the cell label field derived from

threshold-based segmentation. The same scene as in Fig. 1 is shown for a small subregion (indicated in Fig. 3)

with a side length of 275 km. The color scale in (a) is linear within the range between2102 and 102 kgm21 s21 and

logarithmic outside. The threshold for segmentation is chosen to be M 5 1231 kgm21 s21, cell sizes decrease

with increasing label numbers, and cells with diameters smaller than 20 km have been removed from the final result

[light gray regions in (b)].
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considered (four-connectivity). Second, subsequent

object erosion is used, which removes cell parts that are

located close to the cell edges. The remaining field of

eroded objects defines the marker positions from

which a watershed segmentation is started. The wa-

tershed algorithm can be interpreted as a rising water

level and fills all areas above the selected threshold

with a certain label value starting from the individual

marker positions. As a consequence, different objects

now could have a common interface. This interface is

also assessed in the second step. If an interface length

of two objects is greater than 50% of the size of one

of the considered objects, then the two objects are

merged. This split-and-merge procedure was invented

for situations in which rather circular-shaped anvils

start to touch each other (Senf et al. 2018). Due the

very irregular shape of updraft objects (see Fig. 2), this

procedure is rather inactive and differences in the

segmentation results due to the second step (i.e.,

compared to a standard connected compound method)

are rather small.

A set of different properties is derived for each cell i;

the most important ones are the center-of-mass posi-

tions xi, the equivalent diameters Di as diameters of

area-equal circles of area ai, and the cell-integrated

upward mass lift values mi. The cell-average mass flux

wi 5 mi/ai can be interpreted as total column ascent

speeds when divided by the typical total air mass load

of
Ð
dzr’ 104 kgm2. The wi also provides a measure of

how efficient a convective cell is transporting mass in

the vertical. For the object-based analysis, we filter the

cell set for Di . 20 km, which corresponds roughly to

the effective model resolution (Dipankar et al. 2015;

Bley et al. 2017). Due to this size filter, a significant part

of updraft cores is excluded from our current analysis.

The motivation for this step is that characteristics of

smaller updrafts might be strongly influenced by nu-

merical diffusion effects and a structural analysis might

be inadequate. For f 5 0.5, the remaining cell pop-

ulation with Di . 20 km still contributes on average

to around 33% to the total mass lift, which also means

that 17% has been disregarded by the size filter. En-

vironmental characteristics of updraft cells are also

collected. We consider average TCWV, average sea

surface temperature (SST), and maximum convective

available potential energy (CAPE) values in the vi-

cinity of each identified cell using a box of 50 3 50 grid

points (;120-km side length). CAPE is derived from

average potential energy of a set of parcels com-

ing from the mean surface layer. These environ-

mental values already include modifications due to

the convection itself, especially for larger organized

convective systems.

3. Background on statistical methods

a. Configurational analysis

We are interested in how different updraft cells are

distributed in space and how cells are affected by their

neighbors. These aspects are investigated using con-

figurational analysis. At a given time, a set of cell

positions defines a spatial configuration. At the lowest

order, the cell configurations are characterized by

the average cell density n(x) where the explicit de-

pendence on spatial coordinates was kept to allow for

heterogeneous situations. On monthly average, up-

draft cells organize themselves into a narrow band

over the ocean (see Fig. 3a for fixed f 5 0.5) at which

n(x) shows a pronounced maximum around 900 km

north of the equator with a slight southward tilt to-

ward the west. The convectively active zone shows

longitudinal gradients of the cell density along the

ITCZ region with a maximum density of more than

30 cells per 1million km2 in the eastern part and a

vanishing number density in the western part of the

tropical Atlantic. However, this feature might be an

artifact in the storm-resolving simulations. In Senf

et al. (2018), a deficit of simulated large cold cells in

the western tropical Atlantic was identified based on

comparisons with Meteosat observations.

We are further interested in how cell pairs be-

have and therefore increase the dimensionality of

configurational space. The time-average pair number

density n(2)(x1, x2) gives the average number of pairs

having cell 1 at position x1 and cell 2 at position

x2 (see, e.g., Chandler 1987, p. 195). The function

is already four-dimensional, and thus hard to visual-

ize and to robustly estimate. Therefore, the pair

number density is decomposed into single-cell num-

ber densities and a term that accounts for pair

correlations

n(2)(x
1
, x

2
)5 n(x

1
) n(x

2
) g(x

1
, x

2
). (4)

The term g is called pair correlation function (PCF;

or radial distribution function) and is equal to one if

all cells are noninteracting. The PCF is typically plotted

against the distance between cells r 5 jx2 2 x1j to in-

vestigate the clustering behavior of cell pairs (e.g.,

Rasp et al. 2018).

In the practical application, g values are approxi-

mated by counting the actual number of neighboring

cells (at varying x1) in a certain range around a selected

target cell (at fixed x2). This absolute frequency of pairs

is then divided by the expectation value for non-

interacting cells in the same range. In mathematical

terms, we have
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Nj2(r)5
ð
R2(r)

dx
1

n(2)(x
1
, x

2
)

n(x
2
)

(5)

for the realized number of cell pairs over a range

ring R2(r)5 fx1: r2 dr/2# jx2 2 x1j# r1 dr/2g, where

dr denotes the ring width, and

N
(0)
2 (r)5

ð
R2(r)

dx
1
n(x

1
) (6)

for the reference number of cell pairs. We approximate

PCF by

g(r)’
Nji(r, tk)

i,k

N
(0)
i (r, t

k
)
i,k

, (7)

where the overbar is a shortcut for different averaging

strategies, for example, average over the configuration

{i} and then average for 1 month {k}. This illustrates that

the determination of g(r) is just a counting exercise.

Values of g(r) larger than one indicate an accumulation

of cells in a certain distance range around r, which might

be connected to an attractive force between the cells,

whereas g values smaller than one indicate cell inhi-

bition possibly due to repulsive forces between cells

within a certain distance. Figure 3c gives an illustration

of derived cell centroid positions and range rings around

the cells that are used for counting neighboring cells.

b. Construction of a reference

The PCF calculation in Eq. (7) involves a reference

pair numberN
(0)
i as function of pair distance. The PCF

can only be interpreted as probability of enhanced or

decreased pair occurrences if the reference is chosen

in an appropriate way. Any oversimplification can

introduce artificial pair correlations.

In the following, we will first discuss the main prob-

lems that arise from the incomplete knowledge of the

reference state and then provide a practical solution that

uses repeated randomization of the updraft cell posi-

tions. The three aspects being especially problematic for

the analysis of updraft cells in the tropics are as follows:

(i) Spatial heterogeneity: Applications in statistical

physics (see, e.g., Chandler 1987) as well as in

atmospheric science (Nair et al. 1998; Rasp et al.

2018) typically assume a spatially constant number

FIG. 3. (a),(b) The monthly average cell number density as gray background shadings for the subdomain shown in Fig. 1 and setting

f5 0.5. The segmented updraft cells derived from the ICON simulation (rainbow colors with black edges) in (a) are randomly rearranged

avoiding overlap in (b). (c),(d) The corresponding centroid positions are shown with black circles. Colored range rings are centered

around each cell with red colors indicating at least one neighbor cell at the highlighted distance. A ring size of 50 km has been chosen for

visualization. The white rectangle in (a) marks the region chosen for the detailed view in Fig. 2.
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density as reference. In that case, the reference pair

number is proportional to the range-ring area and

the total number of cells. For tropical convection,

this is however an invalid oversimplification as the

environment is heterogeneous and gradients in the

cell-density field n(x) are nonnegligible (see, e.g.,

Fig. 3a).

(ii) Nonstationarity: Temporal patterns, like diurnal

cycle and easterly waves, modulate the probability

for certain cell configurations (see, e.g., Machado

et al. 1993). Moreover, the meridional shift of the

ITCZ with the annual cycle limits the time range

to gather statistics.

(iii) Finite cell size: Tropical convection cells organize

into connected cloud clusters that can grow up to a

size of several hundred kilometers (see, e.g., Houze

2004). The finite size of these large cells introduces

an apparent inhibition because different cells are

not allowed to overlap [see Nair et al. (1998) for an

introduction into the problem].

To address the problems outlined above, we apply and

extend the randomization approach of Nair et al. (1998).

In its original formulation, cells have been approxi-

mated by circles to treat the finite-size problem and re-

inserted at new random positions without overlap to

generate a reference population. This randomization

strategy can already deal with a temporally changing

total number of cells and thus partially addresses the

nonstationary problem. As a first extension, our method

draws new cell positions from an inhomogeneous cell

distribution. We utilize the smooth, monthly average

cell density field n(x) (see, e.g., Fig. 3a). This still ignores

coherent spatial patterns connected to temporal vari-

ability like tropical waves—a limitation that cannot be

solved here. As second extension, the circle approxi-

mation of Nair et al. (1998) is relaxed and each cell

is individually cutout and reinserted preserving its size,

shape and orientation. In the random rearrangement

procedure, we start with the largest cells and sub-

sequently proceed to smaller ones. All cells are ran-

domly inserted under the condition of no overlap and a

predefined minimal edge-to-edge distance. If this con-

dition is not fulfilled, new cell positions are drawn and

the insertion procedure is repeated until successful.

All intrinsic cell characteristics, ai, mi, and wi, are pre-

served with the cells. A realization of a randomized cell

field is shown in Figs. 3b and 3d. In total, 20 realizations of

randomized cell populations are computed. The different

realizations are analyzed in the same fashion as their

unmodified counterparts. Ensemble average values are

used to approximate the characteristics of the reference

population (e.g., the reference number of cell pairs).

c. Partial pair correlations

A further extension to the standard pair-correlation

method is developed to assess the dependency of PCF

on cell characteristics. For the sake of simplicity, we

apply a categorization of cell properties using a pre-

defined set of bins and then apply the calculation of

so-called partial PCFs to the different category combi-

nations. This is very similar to the analysis of multi-

component systems in statistical physics where each

category corresponds to a different component (see,

e.g., Chandler 1987). For instance, using cell diameter as

categorization variable and selecting diameter bins that

correspond to small, medium-size and large cells, the

multicomponent system would consist of three cate-

gories. The computation of partial PCFs would only

involve a subset of cell pairs, where the target cell has

to belong to one category (e.g., small size) and only

neighboring cells from a second category (e.g., large

size) are counted within a certain range around the

selected target cell. Analyzing all possible category

combinations, a matrix of partial PCFs (3 3 3 for our

example) is constructed where the diagonal terms

result from a connection of pairs with same categories

and the off-diagonal terms give the cross-category

connections. The reference number of cell pairs for

the partial PCFs is determined with the same ran-

domization procedure described above. This ignores a

possible dependence of the reference number density

on the categorical variable, an effect that is discussed

later in the next section.

4. Results and discussion

a. Cell characteristics and pair correlations

We start with a discussion of the properties of a sim-

ulated updraft cell population that contributes to 50%of

the total mass lift (i.e., setting a fixed f 5 0.5). The re-

sulting cell size distributions dN/dD, defined here as

total number of cellsN in a certain diameter interval dD,

show rather scale-free behavior across a size range be-

tween 20 and 200 km (Fig. 4b). This is in good agreement

with previous studies of size distributions of clouds

(Machado et al. 1992, 1993; Wood and Field 2011) and

precipitation cores (Peters et al. 2009; Peters and Neelin

2006) over tropical oceans. Fitting a function of the

shape dN/dD ; D2b, a power-law exponent b of larger

than 3 arises. Due to the short range of spatial scales, the

slope is uncertain and we cannot exclude that the size

distributions are governed by a different functional

dependency. Figure 4b also illustrates that the average

aspect ratios [defined as ratio between minor and

major axis of an equivalent ellipse, i.e., (Di/Dmax,i)
2 with
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maximum cell dimension Dmax,i] significantly decrease

for increasing size with larger updraft cells being more

elongated than smaller ones. For the largest cells with

Di . 100km, the major axis is 4–5 times larger than an

area-equivalent minor axis.

Figure 4c shows the relative contribution of each

specified diameter interval (logarithmic spacing) to the

total mass lift. This relative contribution is increasing

with decreasing cell size meaning that relatively more

mass is lifted by small cells. As already indicated by the

steep distribution slope, a significant contribution to

the mass lift comes from cells below the chosen analysis

limit of 20 km. For even smaller cells, the relative

contribution to the total mass lift is decreasing (not

shown). This signature, however, might result rather

from numerical smoothing than being a physical effect.

It therefore remains open at which scales the domi-

nant contribution to the tropical mass lift and thus the

forcing of the upward-directed tropical circulation is

realized. This is in contrast to the scaling behavior of

cold cloud coverage analyzed in Senf et al. (2018) for

the same simulations in which the largest convective

cloud clusters dominated the total cold cloud coverage.

The cell-average mass fluxes remain rather constant

for cell diameters between 20 and 100 km (also Fig. 4c).

These mass-flux values can also be interpreted as a

cell-average efficiency for vertical mass transport. For

larger cells, we find a much higher statistical uncer-

tainty about the functional behavior indicated by the

much larger standard errors. If the final drop of average

mass-flux values at large diameters is not a statistical

artifact (which cannot be excluded), then these cells

would possess a lower average efficiency for vertical

mass transport. In this scenario, a size of 100 km would

mark a transition point where changes in the cell-

internal convective organization lead to larger up-

draft regions with on average lower ascent rates,

a pattern typically found in mesoscale convective sys-

tems (Moncrieff 1992; Houze 2004).

Monthly averaged number distributions in depen-

dence of different environmental properties are shown

in Fig. 5. Peak values are found for maximum CAPE

around 1400 J kg21, for SST around 301K, and for

TCWV at 59mm. Furthermore, variability of the size

distributions is increased in the peak regions. Figure 5

also provides number distributions of the reference cell

FIG. 4. (a) Time series of total upwardmass liftMtot,1 (black line) and the thresholdMthresh,50% (blue line). The gray vertical line marks

the time shown in Figs. 1–3. (b),(c) Cell characteristics conditioned on a certain property range (x values) also derived for f5 0.5. Each cell

configuration (in total 313 245 744) is considered separately and statistics are averaged thereafter. Symbols (connected by lines) denote

monthly mean statistics and error bars indicate standard errors of the monthly average values. (b) The cell number size distribution

(CNSD, black) and the cell aspect ratio (blue). The gray shading behind the black line indicates a set of linear least squares fits that used

different random CSND realizations calculated from a normal distribution using CSND mean and standard error. Outliers have been

removed prior to the linear fit. (c) The relative contribution of each diameter interval to the total updraft mass lift (black) and the cell-

average mass flux (blue). All blue curves have a separate y axis on the right side of each plot.
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populations that arise from random rearrangement (see

section 3b). In the randomization procedure, we only

took the time-average spatial cell densities into account

ignoring temporal fluctuations. From Fig. 5, it is appar-

ent that updraft cells have been partly reinserted in

more unfavorable environments with largest deviations

for TCWV. This clearly shows the limitations of a time-

constant reference cell density and the importance of

temporal fluctuations of TCWV and CAPE.

Moreover, average environmental characteristics of

cells are presented in Fig. 6. The average TCWV is sig-

nificantly higher for larger cells while SST and CAPE

seem to be rather independent of cell size showing only a

slight reduction for very large cells. Based on satellite

observations of precipitation cores, Peters et al. (2009)

showed that larger precipitating cells are found for

higher TCWV. They discussed that a rapid change in

structural cell properties is related to a critical behavior

of the tropical precipitation system when crossing a

certain TCWV threshold. Updraft cells with increasing

cell-average mass fluxes experience higher CAPE en-

vironments (see Fig. 6b), which reflects the transfer of

potential into kinetic energies. SST and TCWV slightly

increase from small to medium mass-flux values and

become rather uncertain thereafter.

As discussed earlier, several cell characteristics de-

pend on cell size and updraft strength. However, the

organizational state of tropical convection is not only

determined on a level of single cells (and therefore

influenced by its size), but also by the spatial arrange-

ment and interaction of cells. To quantify the statistics

of these aspects, we apply configurational analysis (see

section 3) and compute the average cell densities n and

PCFs for different cell categories. We start with a PCF

analysis that concentrates on a cell population that

contributes 50% to the total mass lift, that is, f 5 0.5

(see Figs. 7 and 8). Figure 7a shows the PDFs of the

meridional cell occurrences, which appear centered

around 900 km north of the equator. The width of the

cell distribution is reduced for the larger cells causing a

slightly higher peak of the PDF. The average total and

partial PCFs for different cell sizes are presented in

Fig. 7b. At a distance between 50 and 100 km, updraft

cells are 3 times more frequent than by chance. The

total PCF exhibits a peak at very short pair distances.

At this range, PCF estimates are affected by the

FIG. 5. Cell number distributions conditioned on different environmental properties: (a) CAPE, (b) sea surface temperature Ts, and

(c) total-column water vapor Qy. Black lines and symbols indicate characteristics directly derived from ICON simulations by setting

f 5 0.5. Gray curves and symbols are derived for reference cell configurations that arise due to spatial rearrangement of cells by the

randomization method. Symbols are monthly averages and standard errors are shown by error bars. The thin gray vertical lines indicate

the 16th and 84th percentiles of the simulated distributions.

FIG. 6. As in Fig. 4c, but for average environmental properties

conditioned on (a) diameter intervals and (b) cell-average mass

flux intervals. Average values of CAPE, Ts, and Qy are shown in

red, orange, and green, respectively. Separate colored y axes are

provided for each quantity. For an objective comparison, the y-axis

range expands from the 16th to the 84th percentile of the distri-

butions of environmental properties shown in Fig. 5.
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randomization strategy and the reduction could be an

artifact of the analysis method and not an indication for

real inhibition. The total PCF decays back to one

(random configuration) for large pair distances. The

partial PCFs depend on cell size and have different

peak values in the range between 50 and 100 km: 3 for

small cells, 6 for medium-size cells, and 15 for large

cells. This means that the largest cells deviate the most

from randomness.

Figure 8 compares the average partial PCFs for

different categorization variables (listed in Table 1).

In contrast to Fig. 7, the PCFs are shown on loga-

rithmic scale. We obtain increased PCF values for

cells with large diameters, mass-flux and integrated

mass-lift values. Hence, also the spatial arrangement

of stronger tropical cells deviates more from ran-

domness than the one of weaker cells. We speculate

that circulation feedbacks of the larger cell objects

induce a higher degree of organization. Moreover,

structural changes, which updraft cells experience

during their life cycle from formation to dissipation,

might also strongly impact their spatial configuration.

Future research is needed to elucidate such mecha-

nisms in more detail.

The cell identification was repeated for different

choices of f, which defines how much a certain cell

population is contributing to the total mass lift. Re-

sults are presented in Fig. 9 for f values chosen be-

tween 30% and 60%. For smaller f values, the cell

population is more strictly constrained to intense

updraft cores. Conversely, also weaker updrafts are

included when larger f values are selected, and thus

larger contributions to the total mass lift arise. The

additional analysis supports the conclusion made

earlier based on partial PCFs with a single threshold

of f 5 0.5 (see Figs. 7b and 8). The width of the cell

distributions is decreasing for more intense updrafts.

At the same time, PCF values increase, confirming

that the spatial arrangement of more intense updraft

cells deviates more from randomness. Moreover,

Figs. 9b and 9d provide further analysis of the sensi-

tivity of our results to the threshold definition in the

FIG. 7. Configurational statistics of updraft cells simulated by ICON and setting f 5 0.5: (a) average meridional

cell distributions and (b) total and partial PCFs. The statistics has been gathered for all (black), small (blue),

medium-size (yellow), and large (red) cells, separately. The solid lines give monthly averages and the error bars

show their standard error. The vertical lines and colored ranges in (a) mark the lower and upper quartiles of the cell

distribution. The gray line in (b) shows the reference pair correlation of a randomly distributed field and the gray

range between 0 and 50 km masks the highly uncertain PCF range.

FIG. 8. Average pair correlations as function of pair distance for different combinations of cell characteristics. Similar to the analysis in

Fig. 7, f is set to 0.5 and PCFs are first calculated as averages for a certain output time. Thereafter, monthly averaging is applied (thick solid

lines) and the standard error is estimated (shading). Black curves give the total pair-correlation function of the full cell set (same in each

panel). Colored curves give the partial pair correlations as described in section 3 where the shortcuts ‘‘small,’’ ‘‘medium,’’ and ‘‘large’’

refer to a categorization based on the variables (a) diameter, (b) mass flux, and (c) integratedmass lift listed in Table 1. The uncertain data

region with pair distances smaller than 50 km has been masked.
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cell identification. Additional calculation were made

with fixedM thresholds of 3507, 2417, 1632, 1101, 759,

542, and 402 kgm21 s21. On time average, the so-

defined cell populations contribute 30%–60% (in

steps of 5%) to the total time-average mass lift. This

makes the fixed M approach comparable to the fixed

f approach. The results from the fixed M approach

is qualitatively similar to the fixed f approach. Again,

distribution widths are decreasing, and PCF values at

short pair distances are increasing for more intense up-

draft cores. The rate of PCF increase, however, seems to

be smaller in the M approach.

b. Discussion of statistical frameworks

In the following, we argue that the statistical behavior

of tropical convection shares interesting similarities with

that of ensembles of interacting particles in an external

field like a nonuniform fluid. Even if this kind of con-

siderations is a simplification, insights about the behav-

ior of updraft ensembles and its interaction with the

environmental forcing can be inferred. The similarities

are as follows:

(i) Large-scale convergence andmoisture supply to the

ITCZ zone causes the development of deep moist

TABLE 1. An overview of variables, their units, and ranges, which have been selected for categorized computation of partial pair

correlations.

Variable Name Unit Small Medium Large

D Cell diameter km (20, 30) (30, 50) .50

w Cell-average mass flux 104 kg (m s)21 ,0.3 (0.3, 0.8) .0.8

m Cell-integral mass lift 1011 kgm s21 ,9.42 (9.42, 94.2) .94.2

FIG. 9. Dependency of spatial cell characteristics on different threshold choices. The threshold time series

Mthresh,f (t) have been successively calculated for increasing, but fixed f values ranging from 30% (violet) to 60%

(yellow). (a),(c) As in Figs. 7a and 7b. (b) The width of the meridional cell distributions measured by their

interquartile range (IQR). (d) The g values at pair distances of 60 km as a function of different f values (filled

circles). Furthermore, (b) and (d) present the results of additional segmentation analysis (diamonds in lighter

colors) in whichMthresh, and not f, was set to a fixed value. The value ofMthresh was chosen such that the selected cell

population contributes a certain time-average fraction f to the total mass lift (in contrast to an instantaneous

contribution set by fixed f ).
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convection in a narrow band (Waliser and Gautier

1993), similar to an external field leading to gradi-

ents in particle densities (Henderson 1992).

(ii) Object-based approaches become increasingly im-

portant to assess the skill of cloud and precipita-

tion simulations (Gilleland et al. 2009; Ebert et al.

2013). For thesemethods, a set of objects or cells is

defined and cell property statistics are analyzed. A

certain macroscopic configuration of convective

cells can therefore be seen in analogy with a

microscopic configuration of particles. If the cells

carry properties in addition to their position, like

size or intensity, these can be considered. Then the

heterogeneous collection of cells can be interpreted

as mixture of identical particles with inner degrees

of freedom or as a multicomponent mixture.

(iii) The local interactions between deep convective

cells can organize tropical cell structures on meso-

scales. Based on simulations, this self-aggregation

behavior might result from an increased availabil-

ity of moisture close to active convective cells,

and furthermore influenced by convergence lines

in the convective outflow and downwelling air in

the far field of the convectively induced circulation

(Wing et al. 2017; Holloway et al. 2017). All these

processes depend on the distance to an active

convective core, which reveals the analogy to a

distance-dependent particle interaction potential

like the Lennard–Jones potential found in simple

fluids (Chandler 1987).

(iv) The inherent nonlinear nature of developing deep

moist convection limits its predictability. The re-

sulting stochastic behavior demands a statistical de-

scription of the convective cell ensemble (Craig and

Cohen 2006; Cohen and Craig 2006). Methods from

statistical physics of nonuniform fluids are well

suited tomeet this requirement. Furthermore, there

could be a multitude of physical origins leading to

cell interactions. Simplified statistics could provide

an effective description of the impact of underlying

mechanisms. This opens routes to approximate the

complex dynamical intertwining with simplemeans.

The major challenge lies in the identification of a

conceptual model of updraft ensembles for which a

standard statistical physics framework can be recovered.

In a closed system, the number of cells is fixed. The

spatial arrangement of cells could be either governed by

an external forcing that would induce gradients in cell

densities and/or by cell interactions, which could lead

to range-dependent changes in the cell configuration.

Both effects would act like effective forces on cells

pushing the cell ensemble into a more favorable

energetic state. This kind of behavior is rather un-

realistic for deep convective cells.

A more complex choice could be an open system. In

addition to effective forces between cells, exchanges

with a hypothetical cell reservoir could be considered.

In statistical physics terms, this would mean a transition

from canonical to grand canonical statistics. The ex-

change of cells would be then described by analogs

of chemical potentials, which also might be defined

to be heterogeneous and cell-distance dependent. In

equilibrium, such an open system would dissipate cells

with a rate similar to cell formation even for variable

chemical potentials, not leading to aggregated cell

clusters. Hence, temporal fluctuations of updraft cell

numbers could be approximately represented in such a

system, but not their spatial statistics.

A further transition to nonequilibrium systems might

be inevitable to allow the convective cell population

to be out of balance with external forcings or cell in-

teractions. For example, the cell formation might be

modeled by chemical potentials that depend on envi-

ronmental properties, like increasing formation proba-

bilities for more moist and unstable environments, also

depending on the distance to already existing cells. In

contrast, the decay of deep convective cells can be

stochastically simulated by imposed lifetime distri-

butions, which would completely decouple cell dissi-

pation from cell formation. A Lagrangian framework

could result in which an ensemble of interacting con-

vective cells at different life cycle stages is followed

in time—a method that also has potential for param-

eterization development.

Following above arguments, an accurate assessment

of temporal cell characteristics is needed in order to

model the spatial statistics of an open system of updraft

cells. This concerns (i) formation probabilities in de-

pendence of environmental factors and local cell den-

sities and (ii) a meaningful and robust representation of

cell life cycles and lifetimes. However, with the current

set of simulation data with a rather large output fre-

quency of one hour and a daily simulation restart at

0000 UTC, our analysis is restricted to temporal snap-

shots. Future research is needed to address the listed

limitations with focus on the development of ‘‘online’’

object identification and tracking capabilities. There-

fore, we analyze a closed system of interacting cells with

simplified equilibrium statistics in the following.

c. Simplified equilibrium statistics

In equilibrium statistics, a balance is assumed be-

tween different factors that aim to bring the system

toward an organized state. The task is to find a simple

representation of the balancing factors in terms of
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energy functions from which configurational charac-

teristics similar to our updraft cell population can be

reproduced. The situation is illustrated in Fig. 10: An

external forcing is mainly active in the meridional di-

rection F 5 F(y). Cells are characterized by the cen-

troid locations (and sizes) and interact with each other

via a range-dependent interaction potential V 5 V(r).

All the interaction terms sum up and contribute to each

particle’s energy. It might also be reasonable that the

interaction only occurs for a certain range involving a

smaller set of neighboring cells.

For further calculations, we investigate a further

simplified setup that we use in a toy model. We con-

sider a system that experiences an external forcing of

the form

F(y)5
(y2 y

0
)2

2s2
, (8)

where y0 is the meridional offset and the parameter

s determines the width of the quadratic forcing poten-

tial. For a formulation of size-dependent cell interac-

tions, we analyze the so-called ‘‘convective organization

potential’’ (COP) introduced by White et al. (2018) as

object-based organization metric. It was defined as

V
COP

(r
ij
;D

i
,D

j
)5

D
i
1D

j

2r
ij

, (9)

where rij 5 jxi 2 xjj. It might go far beyond the initial

intention of White et al. (2018) to use COP directly as

cell interaction potential, but we explore this idea and

investigate the effect of such a potential on the spatial

configuration. For application, VCOP is scaled with a

negative factor to obtain an attractive potential (i.e.,

V 5 cVCOP). The scaling factor c is essentially a free

tuning parameter that scales the magnitude of the pair

correlation maxima. The interaction potential is further

discretized for small, medium-size, and large cells (see

ranges in Table 1). In the near-distance range up to

50 km, we introduce a repulsive potential to simulate the

inhibition of the finite-size cells. The resulting functions

V are shown in Fig. 11a. Larger cells exhibit a more

negative interaction potential that has its negative peak

close to the inhibition distance. A larger inhibition en-

ergy is used for larger cells, which however does not

matter for the qualitative behavior.

The functions F and V are utilized in a so-called

Monte Carlo algorithm (see the appendix for further

details) to simulate the configuration characteristics

of an equivalent canonical system. A fixed number of

50 cells has been chosen for the same domain as given in

Fig. 1. This average cell number arises in the configu-

ration with f 5 0.5. We distribute the cells across the

different size categories such that we have 30 small cells,

15 medium-size cells, and 5 large cells. This corresponds

to a power-law size distribution with a slope of about 3.

Using the parameters s 5 300 km and c 5 21.1, we

obtain the average spatial cell densities n and pair cor-

relations g presented in Figs. 11b–d. The meridional cell

density is symmetric around y0 5 900 km. The width of

the cell density is reduced for larger cells. This reduction

shows the imprint of a stronger mean-field forcing of the

larger cells. In general, a mean-field forcing arises be-

cause the external forcing pushes the cells close enough

together to make the interaction more effective. This

effect then leads to an additional accumulation of cells

close to the peak of the external forcing. Thus, a stronger

mean-field effect causes a reduction of the cell density

width (seen in Figs. 11b and 11c). In addition, the mean

field of cells makes the cell population more resistant

against changes, like fluctuations, in the external field.

The parameters s and c have been selected to arrive at a

width reduction similar to the one observed for the re-

alistic ICON simulations. However, the physical origin

of this effect in the ICON simulations is unclear. Could

there be a similar effect in nature by which the in-

teraction between convective cells impacts the average

cell density?

Moreover, total and partial pair correlations derived

from the simple toy model (shown in Fig. 11d) possess

some similarities with their more realistic counterpart

shown in Fig. 7b. The total pair correlation function

shows values around two between 50- and 100-km dis-

tance. Due to the greater cell interactions, the partial pair

correlations are larger for larger cells reaching 7 for the

largest cell category. Compared to their counterparts

from the ICON simulations (see Fig. 7b), the modeled

pair correlation values are however significantly lower.

FIG. 10. Sketch of a canonical view of an interacting ensemble of

tropical deep convective clouds in the ITCZ.
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Using a different setup with stronger attraction, s 5
350km and c 5 21.2, the quantitative agreement be-

tween the pair-correlation calculations becomes much

better with the disadvantage that the earlier-discussed

width reduction is then overestimated (not shown).

Hence, we see that several interesting configurational

characteristics obtained from the ICON simulations are

also described by the toy model based on equilibrium

statistics, but also its limitations become apparent.

5. Conclusions and outlook

Deep moist convection is one of the most important

phenomena of tropical meteorology (Stevens 2005).

Over the oceans, large-scale convergence leads to the

formation of a relatively narrow, convectively active

band setting up a highly heterogeneous environment for

newly forming convection (Waliser and Gautier 1993).

Interactions across a vast range of scales introduce

complexity in the tropical dynamics (Moncrieff et al.

2012). The scientific understanding of interactions

mechanisms in the tropical belt and the impact of mul-

tiscale processes on Earth’s climate is however limited

(Bony et al. 2015). This motivates the present study in

which we focus on pair correlations and spatial statistics

of tropical deep convection in a marine environment.

Storm-resolving simulations using the ICON model

with a horizontal grid spacing of 2.5 km and explicitly

resolved convection have been examined over a large

domain covering the tropical Atlantic. Marine deep

convective cells have been analyzed based on simula-

tion data for one boreal summer month. Threshold-

based segmentation and object analysis methods have

been applied to simulated mass flux fields. Internal and

environmental properties of updraft cells have been

characterized. Furthermore, the spatial arrangement of

cells has been investigated with the help of a pair-

correlation technique, which counts the number of pair

distances for a certain spatial configuration and com-

pares this to a carefully chosen reference. Improve-

ments over existing methods have been developed that

take the heterogeneity of the convectively active re-

gion over the tropical oceans and the complex shapes

and sizes of updraft cells into account.

Based on the object-based analysis of updraft cells,

the following main conclusions can be formulated:

(i) The number size distributions of simulated updraft

cells possess a rather scale-free behavior in the

analyzed size range between 20 and 200 km. Larger

cells are more elongated than smaller cells and

form in moister environments. In contrast, average

CAPE and SST do not differ significantly across the

cell size range.

(ii) The relative contribution to the total domain-

integrated mass lift is increasing with decreasing

FIG. 11. Configurational statistics of theMonte Carlo simulations of a canonical ensemble of interacting cells in a

heterogeneous environment: (a) cell interaction potentials, (b)meridional cell distributions, (c) distributionwidths,

and (d) the total and partial pair correlations for small (blue), medium-size (yellow), and large (red) cells. The plots

in (b) and (d) are comparable to Figs. 7a and 7b. The distribution width in (c) has been derived from the

interquartile range (IQR) of the meridional cell distributions and is plotted for ICON simulations (circles) and for

the simple Monte Carlo model (squares).
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cell size and a significant contribution comes from

cells smaller than 20km. As this is already below the

effective model resolution, it remains unanswered

at which scales the dominant contribution to the

upward-directed tropical circulation is found.

(iii) Strongest updrafts with the highest mass flux are

predominant in the highest-CAPE environments.

Indications are found that cells larger than 100km

have smaller cell-average mass fluxes. This might

relate to changes in the efficiency of vertical mass

transport due to changes in the cell-internal organi-

zation state.

(iv) Comparing simulated cell distributions as function

of environmental properties to reference distribu-

tions based on time-average conditions, it is found

that temporal fluctuations in TCWV have a large

impact on deviations of the spatial distribution of

updraft cells.

(v) With a pair-correlation analysis it was shown that

tropical updraft cells, which contribute to half of

the total mass lift, possess 3 times the probability

to occur at pair distances between 50 and 100 km

relative to random arrangement. This clustering

effect is larger for larger and stronger updrafts

indicating that dynamical feedbacks could have

an impact on the configurational state of tropical

convection.

An analogy between tropical cells and different ap-

proaches from statistical physics has been discussed. It

was argued that an appropriate description of an open

system of updraft cells would need a nonequilibrium

approach in which cell formation is decoupled from

cell dissipation. With the lack of reasonably accurate

estimates of cell life cycle properties and their de-

pendencies, this approach has to be postponed, and

simplified equilibrium statistics based on a closed system

of interacting cells, similar to a nonuniform fluid, has

been explored. Using a quadratic function for exter-

nal forcing and the area- and distance-dependent in-

teraction potential of White et al. (2018), several

configurational characteristics of the more complex cell

population can be recovered, especially the larger pair

correlations for bigger cells. Stronger interactions of the

larger cells induce a more pronounced mean-field effect

causing a reduction of meridional cell density width. An

at least qualitatively similar reduction is also found in

the more realistic ICON simulations, which opens room

for speculations of a possible connection between the

strength of convective aggregation and the average

width of the convectively active zone.
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APPENDIX

Equilibrium Model of Interacting Updraft Cells

We start with a basic statistical physics description of a

closed equilibrium system: for a canonical ensemble, the

probability P(N)
y to findN particles at a certain energetic

state Ey is determined by the Boltzmann distribution;

that is,

P(N)
y 5Q21 exp(2bE

y
) , (A1)

when the system is in equilibrium with an external heat

reservoir (Chandler 1987). However, distributions can

have a similar form for stationary nonequilibrium sys-

tems that are driven bymaterial or energy fluxes (Haken

2004). The variables b and Q denote the inverse tem-

perature and the canonical partition function. The total

system’s energy Ey for a certain configuration y is in

general the sum of total kinetic energy due to particle

motion and the potential energy from interaction be-

tween particles and/or an external field as well as inner

degrees of freedom. For ideal gases of structureless par-

ticles, the potential energy terms vanish and only kinetic

energy contributes to the distributional characteristics

of the particle ensemble. In the case of classical fluids in

an external field, the system’s potential energy is only

a function of the configuration spaceX5 {x1, . . . , xN} for

N particles, and a factorization of the distribution in

momentum and configuration space applies. Hence, the

configurational distribution functions obey

P(N)(X)5 Q̂21 exp[2E
tot
(X)] , (A2)
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where the total potential energy Etot of the particle

system is measured in thermal energy units, and where

Q̂ denotes the configurational partition sum. A certain

energy configuration depends on the vector of all par-

ticle positions where the subscript y is replaced by the

explicit dependence on 2N-dimensional X in Eq. (A2).

Next, the statistical toy model and its setup is de-

scribed. We apply a so-called off-lattice Metropolis

Monte Carlo algorithm that is implemented after

Landau and Binder (2000). It is assumed that N cells

form a canonical Gibbs ensemble and are distrib-

uted according to Boltzmann [see Eq. (A2)]. We only

consider a constant cell number that is estimated from

the average ICON cell characteristics. We ignore the

kinetic energy contributions (i.e., only looking at po-

tential energies and configurational space). Therefore,

we define that each cell i at position xi experiences forces

by an external potential from Eq. (8) and interaction

forces induced by the presence of all other cells from

u
i
(X)5

1

2
�
j 6¼ i

V(jx
i
2 x

j
j) , (A3)

where cell-interaction potential V(r) is based on

Eq. (9). The full potential energy of each cell is Ei 5
F(xi) 1 ui(X) and the total potential energy of the cell

configuration is Etot 5�iEi.

In the Monte Carlo algorithm, the following sequence

is repeated (see, e.g., Landau and Binder 2000, p. 184):

First, an arbitrary cell i is shifted by some random

amount Dxi. Second, the total difference in potential

energy DEtot is calculated. Finally, the resulting change

in probability due to cell shift is compared to a uniformly

distributed random number Z and accepted if

exp(2DE
tot
)$Z . (A4)

The above sequence assures that cell configurations

are distributed according to Eq. (A2) and is repeated

for a certain number of iterations

The Monte Carlo algorithm is run in ensemble mode;

that is, Nens 5 1000 independent sets, each having N

interacting cells, are run forward in time. The trial dis-

placements Dxi are automatically scaled to yield an av-

erage rate of 30% at which Eq. (A4) is accepted. We

perform a spinup run of theMonte Carlo ensemble using

105 trial displacements. Thereafter, 20 iterations with

103 trial displacements are carried out for each run.

After each iteration, meridional cell distributions and

partial pair number counts are calculated and saved. For

the computation of the reference needed for the calcu-

lation of pair correlations, we run a similar setup, but

with attraction terms originating from Eq. (9) switched

off. Furthermore, the external potential is estimated

from the attractive runs to allow for a fair comparison.

Otherwise, it cannot be ensured that the meridional cell

distributions are equal for the attractive and the refer-

ence run. The results of the 20 iterations of the attractive

and noninteracting runs are averaged for each ensemble

member and ensemble mean values and standard de-

viations are computed and shown.
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