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ABSTRACT

Two zero-order bulk models (ZOMs) are developed for the velocity, buoyancy, and moisture of a

cloud-free barotropic convective boundary layer (CBL) that grows into a linearly stratified atmosphere. The

models differ in the entrainment closure assumption: in the first one, termed the ‘‘energetics-based model,’’

the negative and positive areas of the buoyancy flux are assumed to match between the model and the actual

CBL; in the second one, termed the ‘‘geometric-based model,’’ the modeled CBL depth is assumed to match

different definitions of the actual CBL depth. Parameterizations for these properties derived from direct

numerical simulation (DNS) are employed as entrainment closure equations. These parameterizations, and

hence the resultingmodels, are free from the potential singularity at finite wind strength that has been amajor

limitation in previous bulk models. The proposed ZOMs are verified using the DNS data. Model results show

that the CBL depths obtained from the energetics-based model and previous ZOMs correspond to the height

that marks the transition from the lower to the upper entrainment-zone sublayer; this reference height is few

hundred meters above the height of the minimum buoyancy flux. It is also argued that ZOMs, despite their

simplicity compared to higher-order models, can accurately represent CBL bulk properties when the relevant

features of the actual entrainment zone are considered in the entrainment closures. The vertical structure of

the actual entrainment zone, if required, can be constructed a posteriori using the available relationships

between the predicted zero-order CBL depth and various definitions of the actual CBL depth.

1. Introduction

Bulk, or integral, models of a convective boundary

layer (CBL) have been developed over the last few de-

cades to parameterize bulk properties such as the CBL

depth, the inversion strength, and the entrainment fluxes

in atmospheric models whose grid spacings are much

larger than the dynamically relevant scales of CBLs

(Haltiner andWilliams 1980; Suarez et al. 1983; Ayotte

et al. 1996). Equally important, bulk models have

broadly been used to investigate the sensitivity of the

evolution of CBLs to changes in environmental condi-

tions (Pelly and Belcher 2001; De Roode et al. 2014),

and even to study process interaction (Naumann et al.

2017). Nonetheless, uncertainties still remain in some

key aspects associated with the surface and entrainment

closures. The work presented here focuses on the en-

trainment closure and is motivated by challenges iden-

tified in previous work, namely, the lack of agreement

on the minimum complexity of the bulk model that is

necessary to accurately represent sheared CBLs (Pino

et al. 2006; Liu et al. 2016) and a singularity in the en-

trainment closure that can appear at finite wind strength

(Driedonks 1982; Conzemius and Fedorovich 2004; Liu

et al. 2018). In this work, we address these two issues.

Bulk models are classified based on their degree of

complexity in the representation of the transition layer

between the mixed layer and the free atmosphere. The

simplest is the zero-order model (ZOM) (Lilly 1968)

in which the transition layer is considered as an in-

finitesimally thin layer with discontinuous variations

of velocity, buoyancy, and moisture. Alternatively, the

first-order model (FOM) (Betts 1974) and higher-order

models (Deardorff 1979) have been proposed, arguing

that the transition layer between themixed layer and the

free atmosphere plays a key role in the dynamics of
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the CBL, and therefore, a better representation of the

transition layer is required to accurately reproduce CBL

bulk properties (Mahrt and Lenschow 1976; Sullivan

et al. 1998; vanZanten et al. 1999; Kim et al. 2003). These

models consider the transition layer as a layer of finite

thickness with, respectively, linear and high-order

polynomial variations of velocity, buoyancy, and mois-

ture. Although the dependence of entrainment-zone

properties on the entrainment-zone Richardson num-

ber, already shown by Mahrt and Lenschow (1976),

might suggest that one needs at least the FOM to ade-

quately represent the effect of entrainment in sheared

CBLs, recent work has found no substantial differences

between the overall ability of the ZOM and FOM

to predict sheared CBL bulk properties (Pino et al.

2006; Conzemius and Fedorovich 2007). Nonetheless,

Conzemius and Fedorovich (2007) found that the FOM

largely mitigates—though not completely removes—the

singularity of the ZOM at finite wind strength. Because

of this advantage, they argued that the FOM is superior

to the ZOM. Following this line of argumentation and

also the necessity of predicting the finite thickness of the

transition layer for some applications, most recent work

made the effort to further develop a FOM (Sun and Xu

2009; Huang et al. 2011; Gentine et al. 2015; Liu et al.

2016). In this paper, we show that the infinitesimal

transition-layer representation of the ZOM is sufficient

to precisely reproduce bulk properties in the cloud-free

sheared CBL, as long as the entrainment closure ap-

propriately represents the local effects of wind shear on

entrainment. If required, the actual finite thickness of

the transition layer can be constructed a posteriori at the

top of the predicted zero-order CBL depth using either

the relationships between the zero-order CBL depth

and various actual CBL depths provided in Haghshenas

and Mellado (2019) or the transition-layer parameter-

izations proposed in previous work (Pino et al. 2006;

Kim et al. 2006; Liu et al. 2016). (By the term ‘‘actual

CBLs,’’ we explicitly mean atmospheric CBLs or three-

dimensional simulations of them.)

The second aspect that we address here is the singu-

larity in the entrainment closure that can appear at finite

wind strength in previous bulk models. A parameteri-

zation for the entrainment-flux ratio, defined as the

negative of the ratio of a buoyancy flux at the CBL top to

the surface buoyancy flux, is commonly used as the en-

trainment closure in the integral equations. This pa-

rameterization, also referred to as the entrainment

parameterization or the entrainment equation, is de-

veloped by either a local analysis of the turbulence ki-

netic energy (TKE) budget (Zeman and Tennekes 1977;

Tennekes and Driedonks 1981; Driedonks 1982) or an

integral analysis of the TKE budget (Boers et al. 1984;

Batchvarova and Gryning 1994; Conzemius and

Fedorovich 2006b). Previous entrainment parameteri-

zations suffer from a potential singularity at finite wind

strength, which is a major long-standing limitation of

previous zero-order and first-order models (Driedonks

1982; Conzemius and Fedorovich 2004; Liu et al. 2018).

This singularity arises when the entrainment parame-

terization is derived in the idealized framework of the

bulk models and the CBL depth is used in the scaling of

the shear production at the CBL top in the local TKE

approach (see, e.g., Tennekes and Driedonks 1981), or

is used in the scaling of the integral of the negative

buoyancy flux in the integral TKE approach (see, e.g.,

Boers et al. 1984). This is physically inconsistent with the

observation that, under strong-wind-shear conditions,

the entrainment zone, defined as the region of negative

buoyancy flux at the boundary layer top, is characterized

by a local length scale that is different from the CBL

depth (Zeman and Tennekes 1977; Kim et al. 2003; Pino

and Vilà-Guerau De Arellano 2008; Haghshenas and

Mellado 2019). Applying this local length scale in the

integral analysis of the TKE budget, Haghshenas and

Mellado (2019) derived nonsingular parameteriza-

tions for different CBL properties. In the present

work, we exploit these parameterizations to develop

nonsingular zero-order bulk models for the velocity,

buoyancy, and moisture.

We structure the paper as follows. After describing

the formulation in section 2, we summarize the deriva-

tion of the set of equations in the zero-order bulk model

and briefly discuss the closures used in previous work in

section 3. In section 4, we introduce two new entrain-

ment closure equations and develop two ZOMs based

on them. Evaluation of the proposed models is done

in section 5 by comparing their predictions with data

from direct numerical simulation (DNS). In section

6, we compare the predictions of the proposed ZOMs

with those of previous work, and numerically and

analytically investigate the potential singularity ob-

served in the previous entrainment parameterization

in section 7. One of the developed models is then

used in section 8 to address the dependence of the

sheared CBL on environmental conditions. We fi-

nally summarize these results and draw conclusions

in section 9.

2. Formulation

We consider a cloud-free CBL forced by a constant

and homogeneous buoyancy flux at the surface B0

growing into a linearly stratified dry free atmosphere

with a Brunt–Väisälä frequency N0 (Fig. 1). The back-

ground profile of buoyancy is
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b
bg
[N2

0z , (1)

where z is the vertical distance from the surface.

Henceforth, the subscript ‘‘bg’’ denotes background and

the symbol [ indicates a definition. The buoyancy is

approximated as b ’ g(uy 2 uy,0)/uy,0, where uy is the

virtual potential temperature and uy,0 is its constant

reference value obtained by extrapolating the linear

variation of uy in the free atmosphere toward the sur-

face. The CBL develops over an aerodynamically rough

surface with constant surface roughness z0. In addition,

we consider a barotropic case, which implies that the

wind strength in the free atmosphere U0 is constant

with height, and we consider the limit of zero Coriolis

parameter.

The background profile of specific humidity is

q
bg
[ q

bg,0
2 g

q
z , (2)

where gq $ 0 is the lapse rate, and qbg,0 is the back-

ground specific humidity at the surface obtained by ex-

trapolating the linear variation of specific humidity in

the free atmosphere toward the surface. In addition, we

assume that the surface kinematic flux of specific hu-

midity, Fq,0 $ 0, is constant and homogeneous.

a. Governing equations

The set of governing equations comprises the con-

servation equations for mass, momentum, energy, and

moisture in the Boussinesq approximation. Under the

assumptions of statistical homogeneity in the horizontal

directions, no subsidence, and neglecting condensation

and radiation, and in the limit of zero Coriolis parame-

ter, the horizontally averaged equations for streamwise

kinematic momentum u, buoyancy b, and specific hu-

midity q read

›hui
›t

52
›t

x

›z
, (3a)

›hbi
›t

52
›B

›z
, (3b)

›hqi
›t

52
›F

q

›z
. (3c)

We have chosen the streamwise coordinate x aligned

with the wind in the free atmosphere, so that the mean

wind in the spanwise direction is zero. The variables tx,

B, and Fq are, respectively, the mean vertical fluxes of

streamwise kinematic momentum, buoyancy, and spe-

cific humidity. Angle brackets denote averaging along

horizontal planes. Formulating the system in terms of

buoyancy and moisture instead of temperature and

moisture facilitates the study of the sensitivity of mois-

ture properties to changes in environmental conditions.

The reason is that this formulation along with the line-

arization of the equation of state mathematically cause

the moisture to become a passive scalar, meaning that

changing moisture without changing buoyancy does not

alter the CBL dynamics (Mellado et al. 2017). The en-

ergy variable (e.g., potential temperature or static en-

ergy) can be recovered from the buoyancy, the specific

humidity, and the linearized equation of state.

b. Dimensional analysis

In the limit of a high Reynolds number and once the

initial conditions have been sufficiently forgotten, the

dynamics of the sheared CBL is completely governed by

the control parameters {B0, N0, U0, z0} and the inde-

pendent variables {z, t}, where t represents the time.

We focus on the quasi-steady (equilibrium) entrainment

regime under which CBL properties evolve on time

scales much larger than the large-eddy turnover time,

FIG. 1. Vertical profiles of different properties in the conceptual framework of the zero-order bulk model. The parameters

defining the problem are the kinematic surface fluxes B0 and Fq,0, the lapse rates in the free atmosphere 2N2
0 and gq, the wind

velocity in the free atmosphere U0, the surface-drag coefficient CD, and the background specific humidity at the surface qbg,0. The

sketch depicts two different moisture regimes: entrainment-drying regime [u,u(0)
cr ] and surface-moistening regime [u.u(0)

cr ],

where u is the flux-ratio parameter defined in Eq. (6), and u(0)
cr is its critical value whose analytical relationship is provided

in Eq. (26).
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and the profiles of various properties, when appropri-

ately normalized, behave approximately self-similarly

(Fedorovich et al. 2004). Hereafter, we will use the term

‘‘quasi-steady regime’’ for simplicity.

The system in the quasi-steady regime, hence, de-

pends on two nondimensional parameters: a reference

Froude number,

Fr
0
[

U
0

N
0
L

0

, (4)

and a normalized surface roughness, z0/L0. Here L0 is

the reference Ozmidov length defined as

L
0
[

 
B

0

N3
0

!1/2

, (5)

which provides a relevant measure for the thickness of

the upper region of the entrainment zone in the shear-

free and sheared CBL (Garcia and Mellado 2014;

Haghshenas and Mellado 2019).

Statistical properties of moisture in the quasi-steady

regime depend on three parameters {Fq,0, gq, qbg,0}

in addition to the aforementioned nondimensional

parameters. Mellado et al. (2017) have shown that

moisture statistics can be conveniently analyzed by

the nondimensional parameter

u[
2F

q,0

F
q,0

1F
q,1

. (6)

The parameter Fq,1 is a reference scale for the en-

trainment flux of the specific humidity and is defined as

F
q,1

[g
q
B

0
N22

0 5 (g
q
L

0
)(N

0
L

0
) , (7)

which can be interpreted as the product of a moisture

variation gqL0 and a velocity scale N0L0 in the upper

region of the entrainment zone. The quantity u is a

flux-ratio parameter that varies, by definition, be-

tween 0, which corresponds to the pure-drying regime,

and 2, which corresponds to the pure-moistening

regime.

We express the dependence of statistical properties on

time in terms of the nondimensional variable zenc/L0.

The variable zenc is the encroachment length scale (Lilly

1968; Carson and Smith 1975) defined as

z
enc

(t)[

�
2N22

0

ðz‘
0

[hbi(z, t)2N2
0z] dz

�1/2

, (8)

where z‘ is the height sufficiently far above the CBL top

so that the integral is approximately independent of z‘.

The integral analysis of the buoyancy equation in the

limit of a high Reynolds number yields

z
enc

/L
0
5 [2N

0
(t2 t

0
)]1/2 , (9)

where t0 is a constant of integration, which quantifies the

dependence on the initial buoyancy profile.

The logic behind using zenc/L0 instead of tN0 to

represent the state of the CBL development is that it

facilitates the comparison between atmospheric mea-

surements and results from numerical simulations

conducted with different initial conditions. Notice that

the encroachment length scale provides a measure for

the depth of the mixed layer in shear-free and sheared

CBLs growing into a linearly stratified atmosphere

(van Heerwaarden and Mellado 2016; Mellado et al.

2016; Haghshenas and Mellado 2019), and it can be

easily calculated from the mean buoyancy profile, ob-

tained from atmospheric measurements or numerical

simulations, according to Eq. (8).

For typical midday conditions of the sheared CBL

over land, one finds N0 ’ 0.006–0.018 s21, B0 ’ 0.001–

0.01m2 s23, U0 ’ 0–20ms21, z0 ’ 0.01–0.1m, gq ’ 0–

0.002 gkg21m21, Fq,0 ’ 0.03–0.1 g kg21m s21, and zenc
’ 500–2000m (Conzemius and Fedorovich 2006a; Garcia

and Mellado 2014; Mellado et al. 2017), which yields the

parameter space Fr0’ 0–85, z0/L0’ (0.05–5)3 1023 and

zenc/L0 ’ 5–50. The parameter u can change between its

theoretical limits, 0 and 2.

3. Zero-order bulk model

In this section, we summarize the derivation of ZOM

equations for a barotropic CBL without the Coriolis

force, and we discuss the basic form of previous sur-

face and entrainment closures and their corresponding

limitation and uncertainty as needed for the discussion

in the following sections. Further details of the deri-

vation of the equation set and closures can be found,

for example, in Fedorovich (1995) and Conzemius and

Fedorovich (2006b).

a. Derivation of zero-order model equations

The set of zero-order model equations is derived by

approximating the actual properties with the ZOM

properties, by vertically integrating Eq. (3) from the

surface z 5 0 up to a height that is slightly above the

CBL depth z5 h(0) 1 « and taking the limit «/ 0 after

the integration, and by evoking basic assumptions of the

zero-order representation of the CBL vertical structure.

This analysis yields

d

dt
[Du(0)h(0)]5 (u

(0)

*
)
2
, (10a)
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d

dt

"
N2

0(h
(0))2

2
2Db(0)h(0)

#
5B

0
, (10b)

d

dt

2
4gq

(h(0))2

2
2Dq(0)h(0)

3
552F

q,0
. (10c)

The superscript ‘‘(0)’’ indicates the zero-order bulk

model, and we use a prefix ‘‘zero-order’’ to distinguish

quantities in the model from those in the actual CBL.

The zero-order fluxes of buoyancy, kinematic momen-

tum, and specific humidity at the CBL top are related to

the zero-order increments of these properties at the

CBL top and the growth rate of the CBL depth as

2B
(0)
h 5Db(0)

dh(0)

dt
, (11a)

2t
(0)
x,h 5Du(0)

dh(0)

dt
, (11b)

F
(0)
q,h 5Dq(0)

dh(0)

dt
. (11c)

These equations are derived by vertically integrat-

ing Eqs. (3) over the height from z 5 h(0) 2 « up to

z 5 h(0) 1 « and taking the limit « / 0 after the in-

tegration. In addition to the three fluxes introduced

above, the unknown variables are h(0), u
(0)

*
, Du(0) (or

alternatively the mixed-layer velocity u
(0)
ml 5U0 2Du(0)),

Db(0) (or alternatively the mixed-layer buoyancy

b
(0)
ml 5N2

0h
(0) 2Db(0)), and Dq(0) (or alternatively the

mixed-layer specific humidity q
(0)
ml 5 qbg,0 2 gq h

(0) 1
Dq(0)). Therefore, two more equations are required to

close the system of equations.

b. Surface closure equation

Previous work has often considered the surface-drag

relationship

(u
(0)

*
)
2
5C

D
(u

(0)
ml )

2
, (12)

as the surface closure equation (see, e.g., Boers et al.

1984; Garratt 1992). The parameter CD is the surface-

drag coefficient, which is derived from the Monin–

Obukhov similarity theory as a function of the surface

roughness, Obukhov length, and surface-layer depth

[see Garratt et al. (1982) for a review]. This functional

relationship for the CBL that grows over an aero-

dynamically rough or smooth surface is explained in

detail in appendix A for completeness. A constant value

for the surface-drag coefficient is, however, usually

taken for simplification (Flamant et al. 1999; Kim et al.

2006; Conzemius and Fedorovich 2007), in which case

the dependence of CBL properties on the normalized

surface roughness z0/L0 (cf. section 2b) translates into a

dependence on the surface-drag coefficient CD.

c. Entrainment closure equation

Previous work has often developed a parameteriza-

tion for the entrainment-flux ratio as the entrainment

closure equation. The basic form of this parameteriza-

tion in previous work reads

2
B

(0)
h

B
0

5

2
411A

 
u
(0)

*

w
(0)

*

!335 C
1

11C
T
Ri21

t 2C
P
Ri21

GS

, (13)

which is derived by either a local analysis of the TKE

budget (Zeman and Tennekes 1977; Tennekes and

Driedonks 1981; Driedonks 1982) or an integral analysis

of the TKE budget (Boers et al. 1984; Batchvarova and

Gryning 1994; Conzemius and Fedorovich 2006b), as-

suming that, respectively, the local or bulk energetics in

the model and in the actual CBL match. The variable

w
(0)

*
[ (B

0
h(0))1/3 (14)

is the convective velocity scale (Deardorff 1970), and

the variables

Ri
t
[

Db(0)h(0)

(w
(0)

*
)
2
1A(u

(0)

*
)
2

(15)

and

Ri
GS

[
Db(0)h(0)

(Du(0))2 1 (Dy(0))2
(16)

are the bulk Richardson numbers associated, respectively,

with the accumulation term and the entrainment-zone

wind shear.

The parameters C1, CT, CP, and A are empirical

constants. The constant C1 corresponds to the zero-

order entrainment-flux ratio in the shear-free limit and

its most commonly used value is 0.2 (see Table 1). The

constant CT corresponds to the contribution of the ac-

cumulation term, which is negligibly small with respect

to the other terms in the TKE budget equation once the

quasi-steady regime is reached. The main differences

among entrainment parameterizations in previous work

are the constants associated to wind shear effects on

entrainment, namely,CP andA, which correspond to the

contributions from the entrainment-zone and surface

wind shear, respectively, to the entrainment flux.

We note that Sun and Xu (2009) and Liu et al. (2016)

have derived the entrainment parameterization in the
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FOM framework, but we obtain their corresponding

parameterization in the ZOM framework by setting to

zero the variable that represents the thickness of the

transition layer between the mixed layer and the free

atmosphere. This approach has also been applied in

Pino et al. (2006) and Conzemius and Fedorovich

(2007). As explained in Conzemius and Fedorovich

(2007), the same assumption regarding the TKE source

and sink terms (e.g., the dissipation terms are scaled in

the same manner in both model frameworks) has been

made in previous work to derive the entrainment pa-

rameterization in ZOM and FOM. This indicates that

the empirical constants C1, CT, CP, andA have the same

physical meaning in both model frameworks.

Aside from the large uncertainty in the empirical

constants CP and A, the main limitation of the previous

entrainment parameterization is the potential singular-

ity at finite wind strength. The contribution of the

entrainment-zone shear to the entrainment flux repre-

sented by a negative sign term in the denominator of

Eq. (13) could cause the denominator to become zero

and the entrainment-flux ratio to become unbounded.

Such a singularity occurs not only under strong-shear

conditions characterized by large Froude numbers,

but also under moderate-shear conditions with initial

conditions that are far from the quasi-steady regime

(Driedonks 1982; Conzemius and Fedorovich 2004,

2007; Liu et al. 2018). As explained in the introduc-

tion, this singularity arises when the CBL depth, in-

stead of a local scale in the entrainment zone, is used

to estimate the TKE budget equation in the entrain-

ment zone. We will further discuss this singularity in

section 7.

4. Nonsingular entrainment closure equations

The work presented here focuses on the entrainment

closure equation and, following previous work, uses the

surface-drag relation as the surface closure equation [cf.

Eq. (12)]. As entrainment closure equations, we intro-

duce two new nonsingular equations by making two

different closure assumptions and by employing the

nonsingular parameterizations for different CBL prop-

erties derived in Haghshenas and Mellado (2019). In

contrast to previous work, these authors have consid-

ered the actual CBL structure instead of the bulk-model

structure, and have used the local length scale to char-

acterize the entrainment zone, which led to nonsingular

parameterizations.

a. Energetics-based closure

As the first option for the entrainment closure, we

assume that the negative and positive areas of the

buoyancy flux in the model equal the ones in the actual

CBL. This assumption is similar to that used in previous

work, where the bulk or local energetics between the

model and the actual CBL were assumed to be equal

(cf. section 3c).

Mathematically, the zero-order entrainment-flux ratio

can be written in terms of the energetics as (Conzemius

and Fedorovich 2006a)

2
B

(0)
h

B
0

5

 
A

(0)
N

A
(0)
P

!1/2

, (17)

evoking basic assumptions of the zero-order represen-

tation of the CBL vertical structure (cf. Fig. 1). Here

A
(0)
N and A

(0)
P are, respectively, the negative and positive

areas of the buoyancy flux in the zero-order model

framework.

A parameterization for the ratio of the negative and

positive buoyancy flux in the actual CBL is obtained in

appendix B using the results ofHaghshenas andMellado

(2019). This parameterization, Eq. (B4), along with

Eq. (17) and the closure assumption that the negative

and positive areas of the buoyancy flux in the actual

CBL equal the ones in the model yields

2
B

(0)
h

B
0

’ 0:21

"
11 4:5

dh(0)

dt

(Du(0))2

B
0
z
enc

#1/2
. (18)

We will refer to this entrainment closure as energetics-

based closure and to the model that uses this closure as

energetics-based model.

The energetics-based closure indicates that the shear-

free entrainment flux of buoyancy is solely characterized

by the surface buoyancy flux as the only source of tur-

bulence in this case, and that the entrainment flux of

buoyancy in the sheared CBL increases due to extra

turbulence generated by the entrainment-zone shear.

TABLE 1. Values of empirical constants in the entrainment pa-

rameterization, Eq. (13), in previous works. The last two works

have developed the entrainment parameterization for the FOM,

but, following Pino et al. (2006) and Conzemius and Fedorovich

(2007), we have obtained their corresponding parameterization for

the ZOM by setting the transition-layer thickness to zero.

Reference C1 CT CP A

Tennekes (1973a) 0.2 0 0.0 12.5

Driedonks (1982) 0.2 0 0.0 25.0

Pino et al. (2003) 0.2 4 0.7 8.0

Conzemius and Fedorovich (2006b) 0.2 0 0.4 0.0

Pino et al. (2006) 0.2 0 0.72 1.3

Sun and Xu (2009) 0.2 0 0.3 1.3

Liu et al. (2016) 0.21 0 0.43 0:05C21/2
D
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Explicitly representing the extra shear-generated tur-

bulence, which is a relevant feature of the dynamics

of actual sheared CBLs (see review in Fedorovich

and Conzemius 2008), raises the expectation that the

energetics-based ZOM, despite the simplification in

the CBL structure, should be able to faithfully rep-

resent the CBL bulk properties.

We note that we obtain 2B
(0)
h /B0 ’ 0:21 in the shear-

free limit, which agrees with Liu et al. (2016) and is only

slightly larger than the value 0.2 that is commonly used

in previous work (cf. Table 1). This result indicates that

we start to determine this empirical constant with an

error of 5% or less.

b. Geometric-based closure

The CBL depth predicted by the energetics-based

model and bymodels in previous work cannot be a priori

associated to any actual CBL depth, such as the height

of the minimum buoyancy flux or the height of the

maximum buoyancy gradient. These heights differ by

approximately 100m for typical midday atmospheric

conditions over land in the shear-free limit, and might

increase to 200m under strong-shear conditions in the

barotropic CBL. This uncertainty about the CBL depth

might be relevant for the parameterization of other

processes in the CBL, for instance, cloud formation.

To reduce this uncertainty, we propose a new model

in which the zero-order CBL depth is assumed to

match different definitions of the actual CBL depth,

and then we compare the results of this model with

those of the energetics-based model and models in

previous work.

Several definitions of the actual CBL depth might

be associated with the zero-order CBL depth. Two

common definitions are the height of the minimum

buoyancy flux (Fedorovich et al. 2004; Pino et al. 2003,

2006) and the height of the maximum buoyancy gra-

dient (Sullivan et al. 1998). These heights fall within

the lower and upper entrainment-zone sublayers, re-

spectively (Garcia andMellado 2014; Haghshenas and

Mellado 2019). A third option is the height that marks

the transition between these two sublayers. Using

Eqs. (4.12) and (5.11) in Haghshenas and Mellado

(2019) as parameterizations for these heights, we

obtain

h(0)

z
enc

’ 0:941 0:25a

"
11 4:8

�
Du(0)

N
0
z
enc

�2
#1/2

, (19)

where a is a free parameter and is discussed below. We

will refer to this entrainment closure as geometric-based

closure and to the model that uses this closure as

geometric-based model. Comparing the CBL depth for

the shear-free limit obtained from Eq. (19) with those

reported in Garcia and Mellado (2014) and Mellado

et al. (2017), where the Reynolds number in simulations

was approximately 4 times larger than in Haghshenas

and Mellado (2019), shows Reynolds-number depen-

dence of less than 2% in Eq. (19).

Taking a as a free parameter enables us to consider

two different definitions of the CBL depth as the zero-

order CBL depth: a ’ 0.8 corresponds to the height

of the minimum buoyancy flux, and a’ 1.0 corresponds

to the height that marks the transition from the lower to

the upper entrainment-zone sublayer. The second term

in the right-hand side of Eq. (19) represents the local

length scale that characterizes the lower entrainment-

zone sublayer. Given that the height of the maxi-

mum buoyancy gradient is located inside the upper

entrainment-zone sublayer and that the characteristic

length scale of this sublayer differs from the one of the

lower entrainment-zone sublayer, the parameteriza-

tion for the height of the maximum buoyancy gradient

has an additional contribution to Eq. (19). This pa-

rameterization is discussed in appendix C but not in

the main text, for conciseness. We note that, however,

the height of the maximum buoyancy gradient as well

as the other actual upper depth of the CBL can be

constructed a posteriori at the CBL top obtained from

both energetics- and geometric-based models using

the relationships between the predicted zero-order

CBL depth and these actual CBL depths as explained

in appendix C.

The geometric-based closure indicates that the zero-

order CBL can be interpreted as a two-layer entity,

namely, a buoyancy-driven layer that represents the

actual mixed layer, and a buoyancy- and shear-driven

layer that represents part of the actual entrainment

zone. This is important because, as mentioned before,

the finite thickness of the entrainment zone is a relevant

feature of actual sheared CBLs (Mahrt and Lenschow

1976; vanZanten et al. 1999; Kim et al. 2003), and ex-

plicitly representing this feature as in Eq. (19) raises the

expectation that this ZOM should faithfully represent

the CBL bulk properties.

c. Closed set of zero-order model equations

The closed set of ZOM equations in nondimensional

form for the buoyancy and velocity are derived from

Eqs. (10a) and (10b) as follows:

d

dz
enc

�
Du(0)

N
0
L

0

h(0)
�
5C

D

�
Fr

0
2

Du(0)

N
0
L

0

�2
z
enc

L
0

, (20a)

Db(0)

N2
0zenc

5
h(0)

2z
enc

2
z
enc

2h(0)
, (20b)
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plus either the energetics-based closure, Eq. (18), which

can be written as

Db(0)

N2
0zenc

dh(0)

dz
enc

5 0:21

"
11 4:5

dh(0)

dz
enc

�
Du(0)

N
0
z
enc

�2
#1/2

, (21)

or the geometric-based closure, Eq. (19). Three steps

have been taken to derive the equations above. First, we

have substituted Eqs. (12) and (11a) in Eqs. (20a) and

(21), respectively. Second, we have integrated Eq. (10b)

with respect to time. Third, we have changed the vari-

able from t to zenc in all three equations above, where

d/dt5 (N0L
2
0z

21
enc)(d/dzenc) [cf. Eq. (9)]. Recall that Fr0

and CD are the nondimensional control parameters.

The ZOM equation for the moisture reads

Dq(0)

q
ref

5
h(0)

L
0

�
11

u
2

�
z
enc

h(0)

� 	2
2 1

��
, (22)

which is obtained by integrating Eq. (10c). Here u is

the flux-ratio parameter that characterizes the moisture

[Eq. (6)], and qref is the reference moisture scale

q
ref

[
F
q,0

1F
q,1

2N
0
L

0

, (23)

which is defined as a linear combination of Fq,0 and Fq,1

normalized by a velocity scale N0L0 (Mellado et al.

2017). Normalization of Dq(0) with qref instead of

Fq,0/(N0L0) or Fq,1/(N0L0) allows us to study the whole

theoretical range of the flux-ratio parameter, since qref
remains nonzero for both limits of u 5 0, which corre-

sponds to Fq,0 5 0 (pure-drying regime), and u 5 2,

which corresponds to Fq,15 0 (pure-moistening regime).

A key property to characterize the moisture is the

critical zero-order flux-ratio parameter u(0)
cr that marks

the boundary between drying and moistening regimes.

A functional relationship for u(0)
cr can be readily de-

termined from the condition dq
(0)
ml /dt5 0, which, by

definition [obtained from Eq. (10c)], corresponds to

(Mahrt 1991)

F
(0)
q,h 5F

q,0
. (24)

Substituting F
(0)
q,h fromEq. (11c) in the equation above,

and using Eq. (11a) to rewrite dh(0)/dt in the resulting

equation in terms of Db(0) and B
(0)
h yields

Dq(0)

Db(0)
52

F
q,0

B
(0)
h

, (25)

as the condition that marks the boundary between dry-

ing and moistening regimes. If the left-hand side (lhs) of

Eq. (25) is larger than the right-hand side (rhs), the en-

trainment flux of drying air is dominant and the CBL is

in the drying regime. When the lhs is smaller than the

rhs, the surface flux of moisture dominates and the CBL

is in the moistening regime. When the lhs equals the rhs,

the mean moisture q
(0)
ml remains constant in time and the

water vapor introduced at the surface is used to moisten

the entrained dry air toward the mixed-layer value.

The critical zero-order flux-ratio parameter u(0)
cr can

be written in terms of the CBL depth and the entrain-

ment rate as

u(0)
cr 5

dh(0)

dz
enc

h(0)

z
enc

� �

11
1

2

dh(0)

dz
enc

� �
h(0)

z
enc

2
z
enc

h(0)

� � , (26)

by substituting B
(0)
h , Db(0), and Dq(0) from Eqs. (11a),

(20b), and (22) in Eq. (25) and by solving the resulting

equation for u. The idea behind providing this func-

tional relationship is that it allows us to determine

whether the CBL is in the drying or in the moistening

regime. The CBL is in the moistening regime when the

flux-ratio parameter, calculated from Eq. (6), is larger

than the critical value, determined from Eq. (26), and

the CBL is in the drying regime when the flux-ratio

parameter is smaller than the critical value.

The critical flux-ratio parameter is constant in time for

the shear-free limit, when h(0) } zenc, but varies in time

for the sheared CBL, according to Eq. (26). The reason

is that the entrainment enhancement due to the wind

shear—causing the critical flux-ratio parameter to in-

crease with respect to the shear-free limit—diminishes

as the CBL grows. Therefore, the critical flux-ratio pa-

rameter decreases with time and asymptotes toward the

corresponding shear-free value. We further discuss this

behavior in section 8.

5. Validation of ZOM predictions with DNS data

We validate the ZOMs proposed in this work with the

DNS data presented in Haghshenas and Mellado (2019)

for a reference Reynolds number: Re0 [B0/(nN
2
0)5 25,

where n is the kinematic viscosity. Although this DNS

data has been used in the derivation of the entrainment

closures and therefore a good agreement between ZOM

predictions and DNS data is expected, this validation

already provides insight into how the CBL depth pre-

dicted from the energetics-based model relates to vari-

ous definitions of the CBL depth obtained from theDNS

data and used to construct the geometric-based models.

We consider the shear-free case Fr0 5 0 and the shear

case Fr05 25, which corresponds tomeanwind velocities
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in the free atmosphere of 15m s21 in typical midday

atmospheric conditions. We initialize the ZOMs using

the DNS data at zenc/L0 5 15, which corresponds to

conditions inside the quasi-steady regime. Given that

the simulated CBLs develop over an aerodynamically

smooth surface, we consider the corresponding func-

tional relationship for the surface-drag coefficient [Eq.

(A1) with z0 5 0:13n/u*] in the surface closure equation,

Eq. (12).

Figure 2 shows that the ZOM predictions agree with

the DNS data, as anticipated. In particular, Fig. 2a il-

lustrates that the CBL depths obtained from the

geometric-based model with a 5 0.8 and a 5 1, re-

spectively, collapse on top of the height of the minimum

buoyancy flux zi,f and the height that marks the transi-

tion from the lower to the upper entrainment-zone

sublayer zi,s. In addition, Fig. 2b shows that the zero-

order entrainment-flux ratio obtained from the energetics-

based model falls on top of the square root of the ratio

between the negative and positive areas of the buoyancy

flux acquired from the DNS data. All curves in Fig. 2c

approximately fall on top of each other, because the cor-

responding surface closure is the same among the models

and the deviation in the CBL depth is small (approxi-

mately 10% or less).

Interestingly, Fig. 2a also shows that the CBL depth

obtained from the energetics-based model better cor-

responds to the height that marks the transition from

the lower to the upper entrainment-zone sublayer,

rather than the height of the minimum buoyancy

flux. Concomitantly, the energetics obtained from

the geometric-based model with a 5 1.0 match with

those of the energetics-based model and the DNS

data (see Fig. 2b).

These relationships between the CBL depths rep-

resented in different ZOMs become clearer in the

shear-free limit, where the set of ZOM equations has

an analytical solution of the following form (see, e.g.,

Fedorovich et al. 2004; Liu et al. 2018):

2B
(0)
h 5C

1
B

0
,

h(0) 5C
2
z
enc

,

Db(0) 5C
3
N2

0zenc , (27)

the model coefficients satisfying the following

relationships:

C
2
5 (2C

1
1 1)1/2 and C

3
5C

1
C21

2 . (28)

One of the three model coefficients {C1, C2, C3} re-

mains free and has to be prescribed to close the system.

In the energetics-based model, we prescribe C1 5 0.21

according to Eq. (18) and obtain C2 ’ 1.19 and

C3 ’ 0.18. In the geometric-based model with a 5 1.0,

we prescribe C2 ’ 1.19 according to Eq. (19) and obtain

C1’ 0.21 andC3’ 0.18.Hence, the predictions using the

energetics-based model coincides with the predictions

using the geometric-based model based on the CBL

height that separates the lower and upper entrainment-

zone sublayers.

In contrast, the geometric-based model with a 5 0.8,

where the zero-order CBL depth matches the height of

the minimum buoyancy flux, prescribes C2 ’ 1.14 ac-

cording to Eq. (19) and yields C1 ’ 0.15 and C3 ’ 0.13.

These coefficients are different than those of the

energetics-based model. This difference helps explain

the controversy inC1 in some previous work. Fedorovich

et al. (2004) andMellado et al. (2017) estimatedC1’ 0.17

and C1 ’ 0.16 6 0.01 assuming that the zero-order CBL

depth matches the height of the minimum buoyancy

flux in large-eddy simulations and direct numerical sim-

ulation, respectively. These values are smaller than 0.2

FIG. 2. (a) Comparison of different properties of the shear-free and sheared CBLs obtained from the DNS data (lines) and the ZOMs

developed in the present work (symbols). Lines indicate the average DNS data within an interval Dzenc/L0 5 2, and shaded regions

indicate the interval of two standard deviations around that average. The variable zi,f is the height of the minimum buoyancy flux, and zi,s
marks the transition from the lower to the upper entrainment-zone sublayer. (b) As in (a), but the lines represent the square root of the

ratio between the negative and positive areas of the buoyancy flux. (c) As in (a), but the line represents the velocity jump at the CBL

top Du [ U0 2 uml, where uml is the vertically averaged mean velocity from the surface up to zi,f.
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simply as a result of the aforementioned assumption, and

not because of statistical uncertainty.

Similarly, the ZOM moisture properties in the shear-

free limit can be obtained explicitly as

Dq(0) 5C
4
q
ref
z
enc

/L
0
,

F
(0)
q,h 5C

5
q
ref
N

0
L

0
, (29)

where the model coefficients satisfy the following

relationships:

C
4
5C

2
[11u/2(C22

2 2 1)] ,

C
5
5C

4
C

2
. (30)

We obtain C4 ’ 1.192 0.17u and C5 ’ 1.42 0.2u for

the energetics-based model and the geometric-based

model with a5 1, andC4’ 1.142 0.13u andC5’ 1.32
0.15u for the geometric-based model with a 5 0.8. The

transition from drying to moistening regimes occurs for

u(0)
cr ’ 1:17 for the energetics-based and the geometric-

based models with a5 1, as obtained fromEqs. (26) and

(27). One also obtains u(0)
cr ’ 1:13 for the geometric-

based model with a 5 0.8. From the definition of

the flux-ratio parameter by Eq. (6), the condition u 5
ucr ’ 1.13–1.17 implies that Fq,0 ’ (1.3–1.4)Fq,1 at the

boundary between drying and moistening regimes in a

shear-free CBL. Hence, the reference entrainment flux

Fq,1 provides a good estimate for the actual entrainment

flux of moisture at the boundary between drying and

moistening regimes, and its definition by Eq. (7) allows

us to estimate a priori if a shear-free CBL is in the drying

or moistening regime from estimates of the environ-

mental conditions, before doing a simulation or a bulk

model analysis (Mellado et al. 2017).

6. Comparison with previous work

In this section, we compare the proposed ZOMs with

previous work to better understand the importance of the

assumptions and idealizations used in the different ap-

proaches. From the previous work presented in Table 1, we

consider only those that take into account the entrainment-

zone shear (Conzemius and Fedorovich 2006b; Pino et al.

2006; Sun and Xu 2009; Liu et al. 2016), since a consensus

has been reached in the literature that the shear-generated

turbulence in the entrainment zone, and not the one gen-

erated in the surface layer, accounts for the entrainment

enhancement in shearedCBLs (Fedorovich andConzemius

2008; Pino and Vilà-Guerau De Arellano 2008).

As reference case for the comparison among the dif-

ferent models, we choose the strongest-shear case in-

vestigated in Pino et al. (2006) and initialize the ZOMs

using the values listed in Table 1 of that work (see

Table 2). The reference Froude number and the refer-

ence Ozmidov length for the selected case are, re-

spectively, Fr0’ 41 andL0’ 34m, according to Eqs. (4)

and (5). We determine the encroachment length using

Eq. (8) and integrating the vertical profile of the mean

buoyancy presented in Fig. 2 of Pino et al. (2006), ob-

taining zenc ’ 510m. We also determine t0 ’235 s from

Eq. (9), which is consistent with the fact that the corre-

sponding numerical simulation has been started from a

very shallow initial CBL. The surface is aerodynamically

rough and we use a constant surface-drag coefficient in

the surface closure equation.

Figure 3 illustrates that, qualitatively, all considered

ZOMs appropriately represent relevant features of

sheared CBLs that have been documented in previous

observational and numerical studies (Mahrt and

Lenschow 1976; Pino and Vilà-Guerau De Arellano

2008; Haghshenas and Mellado 2019). First, the CBL

depth and the entrainment-flux ratio increase with re-

spect to the shear-free limit. Second, as time goes by

and the CBL depth grows, wind shear effects diminish,

and the CBL properties asymptote toward the shear-

free values. Last but not least, wind shear effects on

buoyancy-related properties remain constrained to the

CBL top. For instance, the entrainment-flux ratio grows

substantially (by up to 100%, as shown in Fig. 3b), while

the CBL depth increases only slightly (by up to 10%,

as shown in Fig. 3a). Note, however, that this slight in-

crease in the CBL depth implies an order-of-one change

of the actual entrainment-zone thickness.

Quantitatively, the variation in the entrainment-flux

ratio predicted by previous ZOMs is ’30%–40% (see

Fig. 3b). This variation is explained by the different

values of CP used in the models (cf. Table 1), since the

contribution of the surface wind shear to the entrain-

ment flux, represented by the empirical constant A in

Eq. (13) in Pino et al. (2006), Sun andXu (2009), and Liu

et al. (2016), is around 15%at zenc/L0’ 15 and decreases

to less than 5% at zenc/L0 ’ 25 for the case studied here.

TABLE 2. Control parameters in the strongest-shear case studied

in Pino et al. (2006) and the corresponding initial conditions for

ZOMs. Qs is the surface heat flux.

Case

Qs 5 0.1Km s21 Qy,0 5 300K B0 ’ 0.0033m s22

›Qy/›z 5 0.006Km21 5 N0 ’ 0.014 s21

U0 5 20m s21 U0 5 20m s21

z0 5 0.01m CD ’ 0.002

Initial condition

t 5 8000 s zenc ’ 510m zenc/L0 ’ 15

h(0) 5 704m 0 h(0)/zenc ’ 1.4

Du(0) 5 5m s21 Du(0)/(N0zenc) ’ 0.7

3706 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 76



This small effect of the surface contribution supports

the conclusion in recent work that the surface wind

shear affects entrainment mainly indirectly by chang-

ing the mean velocity in the mixed layer and thus

the velocity jump at the CBL top (Fedorovich and

Conzemius 2008). A very good agreement is observed

between the recent results of Liu et al. (2016) and

results of both the energetics-based model and the

geometric-based model with a 5 1.0, with only ’5%

difference in the entrainment-flux ratio. This agree-

ment indicates that the error of ZOM coefficients

derived from numerical simulations starts to be on the

order of 5% or less.

The coincidence of the results of the geometric-based

model with a 5 1.0 with those of the energetics-based

model once again indicates that the CBL depth pre-

dicted by the energetics-based model can be associated

to the actual CBL depth that marks the transition from

the lower to the upper entrainment-zone sublayer. The

CBL depth predicted from the geometric-based model

with a 5 0.8, which corresponds to the height of the

minimum buoyancy flux, is ’5% smaller than the one

obtained from the energetics-based model and the one

obtained in previous ZOMs (see Fig. 3a). This finding

helps explain the reported ’5% deviation of the zero-

order CBL depth from the height of the minimum

buoyancy flux in Conzemius and Fedorovich (2007) (see

Table 2 in that reference).

We have shown that previous works that appropri-

ately estimate the contribution of the entrainment-zone

wind shear to the entrainment flux predict the CBL bulk

properties similarly to the energetics-based model and

the geometric-based model with a 5 1. This agreement

is remarkable because Liu et al. (2016) have simulated a

variety of CBLs in middle latitudes including shear-free,

barotropic sheared, and equivalent-barotropic sheared

CBLs over an aerodynamically rough surface, while

Haghshenas and Mellado (2019) have simulated only

shear-free and barotropic sheared CBLs without the

Coriolis force over an aerodynamically smooth surface.

The observed agreement is, hence, promising in two

aspects: first, it confirms that the parameterizations

derived in Haghshenas and Mellado (2019) are in-

dependent of the surface properties, as they are ex-

pressed in terms of the velocity increment at the CBL

top. Second, it suggests that they would most likely

apply to sheared CBLs with Coriolis force and also

to equivalent-barotropic CBLs in which the velocity

varies linearly with height in the free atmosphere,

although a proof of concept is necessary to draw a

definitive conclusion.

The observed agreement between the prediction of

the present and previous models might also sound

surprising because of the differences in entrainment

closures, in particular, differences in the length scale

used to estimate the various terms of the TKE budget

equation in the entrainment zone. The reason for such

an agreement is that under weak- and moderate-shear

conditions, the CBL depth (applied in previous work)

and the local length scale of the entrainment zone

(applied in the present work) are approximately pro-

portional to each other (Haghshenas and Mellado

2019), which results in equally good predictions of the

CBL bulk properties from the present and previous

models for the moderate-shear conditions considered

in this section. Under strong-shear conditions, how-

ever, these two length scales are not proportional to

each other, and a constant fraction of the CBL depth is

not an appropriate proxy of the local length scale of the

entrainment zone. This different scaling eventually

leads to the emergence of the singularity in models

developed in previous work for strong-shear condi-

tions. The models proposed in the present work do not

suffer from this limitation.

FIG. 3. Comparison of different properties of the sheared CBL characterized by Fr0 5 41 and CD 5 0.002 obtained from ZOMs

developed in the present and previous works. Black symbols indicate the previous work that developed the ZOM, and gray symbols

indicate the previous work that originally developed the FOM, but we have obtained their corresponding ZOM by setting the transition-

layer thickness to zero.
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7. Singularity at finite wind strength in previous
work

A singularity in previous work takes place when the

denominator of Eq. (13) equals zero, that is, when

C
P
(Du(0))2 5

N2
0

2
[(h(0))2 2 z2enc] , (31)

wherein we have already taken CT 5 0 (cf. Table 1) and

substituted Eq. (20b). Under strong-shear conditions,

one can write

h(0) 2 z
enc
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enc
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11 4:8
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Du(0)
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0
z
enc
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p Du(0)

N
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, (32)

where the first approximation follows from Eq. (19)

with a 5 1, and the second approximation holds for

Du(0)/(N0zenc) * 1.0 with less than 10% error. Substitut-

ing the expression for Du(0) in terms of h(0) and zenc from

Eq. (32) in Eq. (31) and solving the resulting equation for

h(0) gives

h(0)

z
enc

’ 6:6C
P
1 1

6:6C
P
2 1

(33)

as the singularity condition. ForCP5 0.43, which is the

constant used in Liu et al. (2016), this condition yields

h(0) ’ 2zenc as the critical value of the CBL depth at

which the singularity takes place. This shear condi-

tion corresponds to Du(0)/(N0zenc) ’ 1.8, according to

Eq. (31). Such an extreme shear condition might hap-

pen during the morning in a windy day within the

quasi-steady regime, when the well-mixed CBL is still

shallow, and the velocity increment at the CBL top

is strong.

Another relevant aspect is that, even though the en-

trainment closures in previous and present work have

been derived for the quasi-steady regime, bulk models

are likely initialized in atmospheric models with condi-

tions that are far from the quasi-steady regime. This

might be problematic in models proposed in previous

work because they can also develop a singularity or

become unrealistic when the initial conditions are far

from the quasi-steady regime even in moderate-shear

conditions. This occurs when"
(Du(0))2

Db(0)h(0)

#
initial

$
1

C
P

, (34)

according to Eq. (13) with CT 5 0.

To address this issue, we evaluate our ZOMs and the

one by Liu et al. (2016) (as a representative of previous

models) with different initial velocity increments at the

CBL top, ranging from 5ms21, which corresponds to the

quasi-steady regime retrieved from Pino et al. (2006), to

8m s21 in intervals of 1m s21. Results are shown in

Fig. 4.We observe that all models smoothly relax toward

the quasi-steady solutions, with deviations on the order

of 10% in the CBL depth or less, except for Liu et al.’s

(2016) model with Du(0) 5 8m s21, which predicts un-

realistically small CBL depths (out of the shown scale).

This result illustrates that the singularity or unrealistic

resultsmight occur in previousmodels even formoderate-

shear conditions.

8. Dependence on environmental conditions of
sheared CBL properties

As discussed in the introduction, one main aim of

developing bulk models is to investigate the sensitivity

of the evolution of CBLs to changes in environmental

conditions. Having developed and verified the ZOMs,

we explicitly discuss here the dependence of sheared

CBL bulk properties on environmental conditions using

one of the ZOMs developed in this work, for the pur-

pose of illustration. We employ the energetics-based

model and scan the whole parameter space corre-

sponding to midday atmospheric conditions over land

(cf. section 2b). As indicated before, dynamical prop-

erties of the described CBL, once the initial conditions

are sufficiently forgotten and the quasi-steady regime is

reached, depend on two nondimensional parameters,

namely Fr0 and CD, and the nondimensional indepen-

dent variable zenc/L0. In addition, the nondimensional

parameter u characterizes moisture properties.

We consider the case {Fr0 5 41, CD 5 0.002} at

zenc/L0 5 40 as reference state and vary one non-

dimensional parameter at a time. The model is always

initialized with the initial condition provided in section

6. Because this initial condition is not the exact one

corresponding to the quasi-steady regime for all the

parameter space, we illustrate the CBL properties at

zenc/L05 40, which is sufficiently beyond the initial state

of the CBL development, zenc/L0 5 15 (cf. Fig. 4). This

assures that the initial conditions have been sufficiently

forgotten, and the discussed data are in the quasi-

steady regime.

Although the validation of the proposed ZOMs

against DNS data has only been done up to Fr0 5 25, we

consider up to Fr0 5 60 in this parametric study. We

have already seen in section 6 that the proposed ZOMs

compare favorably with previous work where Fr0 is sub-

stantially larger than 25. To the best of our knowledge,
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the largest Froude number considered in previous work

is 63 in Conzemius and Fedorovich (2006a). Even under

this strong-shear condition, these authors report a well-

mixed profile of buoyancy and velocity in the mixed

layer, and accordingly, the independence between en-

trainment properties and surface properties. This ob-

servation suggests that the proposed closures should

remain valid even for such a strong-shear condition, al-

though further analysis should be done to draw a de-

finitive conclusion.

a. Buoyancy

The dependence of the normalized buoyancy and

buoyancy flux on Fr0, CD, and zenc/L0 are provided

graphically in Fig. 5. This dependence is very small for

the buoyancy and buoyancy flux within the mixed layer.

The dependence is, however, on the order of one for the

entrainment-flux ratio and the buoyancy increment at

the CBL top. This behavior illustrates one of the main

features of the barotropic CBL, namely, wind shear ef-

fects on the CBL structure and buoyancy-related prop-

erties remain localized at the CBL top.

We also observe that, with increasing zenc/L0, the

entrainment enhancement due to wind shear diminishes,

and hence, wind shear effects on CBL properties reduce

and we approach the shear-free limit (cf. section 5). The

CBL depth and the mixed-layer buoyancy reduce, re-

spectively, by ’7% and ’1%, and the entrainment-flux

ratio decreases by ’25% over the interval of zenc/L0

shown in Figs. 5a and 5b.

Wind shear effects on CBL properties, as expected,

grow when the reference Froude number or the surface-

drag coefficient increase, because both nondimensional

parameters directly and indirectly lead to the larger

velocity increment at the CBL top. The CBL depth and

the mixed-layer buoyancy increase, respectively, by

’20%and’4%and the entrainment-flux ratio grows by

’125% for the interval of Fr0 shown in Figs. 5c and 5d.

For the case Fr0 5 60, CD 5 0.002 and zenc/L0 5 40, the

independent variable Du(0)/(N0zenc) is approximately

0.8, which is much below the critical condition to ob-

serve the singularity in previous ZOMs. Further analysis

(not shown) indicated that the critical condition,

Du(0)/(N0zenc)’ 1.8, takes place, for instance, for Fr05 80

andCD5 0.005 in the early state of theCBLdevelopment.

The effect of Fr0 and CD on the CBL evolution differs

in that the CBL depth grows with CD asymptotically

toward a finite value (see Figs. 5e and 5f), whereas the

growth of the CBL with Fr0 is unbounded (see Figs. 5c

and 5d). The reason is that growing CD with fixed Fr0
causes wind shear effects to emerge earlier (at a smaller

zenc/L0) because the velocity increment at the CBL top

increases fast. Wind-shear effects are, however, limited

since the reference Froude number, or equivalently the

velocity in the free atmosphere, is fixed.

b. Moisture

To address the dependence of moisture properties of

the sheared CBL on environmental conditions, we first

consider u 5 0, which corresponds to the pure-drying

regime. Figure 6 shows graphically the dependence of

the normalized moisture and moisture flux on Fr0, CD,

and zenc/L0. There are two features worth mentioning in

this figure. First, given that the free atmosphere is dry

and the wind shear enhances entrainment, the CBL

dries more when the Froude number or the surface-drag

coefficient increases (see Figs. 6c and 6e). The entrain-

ment enhancement due to the wind shear, however, di-

minishes as the CBL grows, and hence, the sheared CBL

dries less as zenc/L0 increases (see Fig. 6a). Second, wind

shear effects on the mixed-layer specific humidity, q
(0)
ml ,

are much larger than their effects on mixed-layer

buoyancy, b
(0)
ml (cf. Figs. 5 and 6). The reason is thatu5 0

corresponds to Fq,05 0, that is, there is no surface flux of

moisture but only the entrainment flux, so the entrain-

ment enhancement due to the wind shear is more rele-

vant in the moisture field than in the buoyancy field.

Figures 7a and 7b illustrate graphically the depen-

dence of moisture bulk properties on the flux-ratio pa-

rameter for Fr0 5 41, CD 5 0.002, and zenc/L0 5 40.

FIG. 4. Temporal evolution of the zero-order CBL depth obtained from different ZOMs with different initial conditions.
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For u & 1.2, the entrainment flux of drying air is larger

than the surface flux of moisture, causing the CBL to

dry. The surface flux becomes equal to the entrainment

flux for u ’ 1.2 (Fig. 7b); this condition corresponds to

the boundary between drying to moistening regime. For

u* 1.2, the surface flux ofmoisture is dominant over the

entrainment flux of drying air that causes the CBL to

moisten.

The crossover value, u(0)
cr ’ 1:2, for the considered

sheared CBL is slightly larger than u(0)
cr ’ 1:17 for the

shear-free limit, since entrainment of dry air increases

with the wind shear. Figure 7c illustrates this behavior

more clearly, as the critical flux-ratio parameter is en-

hanced with increase of the Froude number. This en-

hancement, however, diminishes as the CBL grows.

9. Summary and conclusions

Two zero-order bulk models (ZOMs) with different

entrainment closures have been developed for a cloud-

free barotropic convective boundary layer (CBL) that

grows into a linearly stratified atmosphere. In the first

one, the negative and positive areas of the buoyancy flux

were assumed to match between the model and the ac-

tual CBL. In the second one, the CBL depth was the

variable chosen to match between the model and the

actual CBL. Nonsingular parameterizations for these

properties derived from direct numerical simulation

(DNS) in Haghshenas and Mellado (2019) have been

employed as the entrainment closure equation in each

model. We referred to these models as energetics- and

geometric-based models, respectively. The proposed

ZOMs have been verified by comparing their predic-

tions with the DNS data.

Under moderate-shear conditions, predictions from

previous ZOMs that appropriately estimated the con-

tribution of the entrainment-zone shear in the entrain-

ment closure equation agree well with predictions of the

energetics-based model. Under strong-shear conditions,

however, previous ZOMs can develop a singularity at

finite wind strength that has often been reported as a

major limitation for their use. Increasing the complexity

of the bulk model to the first-order or higher-order

models does not remove this singularity as long as the

CBL depth is used to estimate the various terms of the

TKE equation in the entrainment zone. The proposed

FIG. 5. Contour plots of (top) the normalized zero-order buoyancy and (bottom) its zero-order vertical flux as a function of the normalized

distance from the surface and the remaining variables and parameters: (a),(b) zenc/L0, (c),(d) Fr0, and (e),(f) CD.
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ZOMs in the present work are free from this potential

singularity because they consider the local length scale

of the entrainment zone, instead of a fraction of the CBL

depth, when estimating the various terms of the TKE

budget equation. We discussed the potential singularity

in the entrainment closure equation of previous work

analytically and numerically. Using the parameteriza-

tions for different CBL properties, we have shown that

FIG. 6. Contour plots of (top) the normalized zero-order specific humidity and (bottom) its zero-order vertical flux for the condition

u 5 0 (pure-drying regime) as a function of the normalized distance from the surface and the remaining variables and parameters:

(a),(b) zenc/L0, (c),(d) Fr0, and (e),(f) CD.

FIG. 7. Contour plots of (a) the normalized zero-order specific humidity and (b) its zero-order vertical flux as a function of the

normalized distance from the surface and the flux-ratio parameter u, defined by Eq. (6), for the sheared CBL characterized by Fr05 41,

CD 5 0.002, and zenc/L0 5 40. (c) Contour plot of u(0)
cr as a function of Fr0 and zenc/L0 with CD 5 0.002.
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the singularity takes place under strong-shear conditions

when the sheared CBL depth becomes nearly 2 times

larger than the encroachment length scale, or equiva-

lently when Du(0)/(N0zenc), as the independent variable

that characterizes wind shear effects, equals 1.8. In ad-

dition, we have shown that considering initial conditions

far away from the quasi-steady regime also leads to the

singularity or unrealistic results in the models proposed

in previous work even for moderate-shear conditions.

We have also explained how the different zero-order

CBL depths relate to actual CBL depths, which might

become important when the bulk model is intended to

include more complexity like cloud formation. We de-

veloped the geometric-based model to precisely address

this issue. We considered three options for the CBL

depth in the geometric-based model, namely, the height

of theminimum buoyancy flux, the height that marks the

transition from the lower to the upper entrainment-zone

sublayer, and the height of the maximum buoyancy

gradient. These heights differ by few hundred meters

under typical midday atmospheric conditions over land.

Predictions of the geometric-based model suggested

that the CBL depths in the energetics-based model

and also models in previous work correspond better

to the height that marks the transition from the lower

to the upper entrainment-zone sublayer, rather than

the height of the minimum buoyancy flux. This find-

ing helps explain the approximately 5% deviation of

the zero-order CBL depth from the height of the

minimum buoyancy flux reported in Conzemius and

Fedorovich (2007).

An important conclusion of this study is that the zero-

order bulk model, despite its simplicity, can appropri-

ately represent bulk properties of sheared CBLs,

meaning that a finite transition layer between the mixed

layer and the free atmosphere is not explicitly required.

This is because the relevant shear-induced features of

the actual entrainment zone are considered in the en-

trainment closure. If needed, the vertical structure of the

actual entrainment zone of the sheared CBL can be

constructed a posteriori using the zero-order CBL depth

predicted from any of the ZOMs and using the re-

lationships between the zero-order CBL depth and

various actual CBL depths provided in Haghshenas and

Mellado (2019).
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APPENDIX A

The Surface-Drag Coefficient

The surface-drag coefficient is a complicated function

of the aerodynamic roughness length of the surface z0,

the surface-layer depth hs1, and the Obukhov length

LOb. Such expression is derived from theMonin–Obukhov

similarity theory as (see, e.g., Garratt et al. 1982)

C
D
5

k2

[ln(h
sl
/z

0
)2c

m
(h

sl
/L

Ob
)]2

, (A1)

where k is the von Kármán constant, and hs1 is usually

considered as 10% of the CBL depth (Tennekes 1973b).

Here we consider the height that separates the lower

from the upper entrainment-zone sublayer as the CBL

depth. The function cm(hs1/LOb) is the Businger–Dyer

(Kansas) formulation defined as (see, e.g., Grachev

et al. 2000)

c
m
(h

sl
/L

Ob
)5 2 ln

�
11 x

2

�
1 ln

�
11 x2

2

�
2 2 tan21x1p/2 , (A2)

where x 5 [1 2 16hs1/LOb]
1/4. For the aerodynamically

smooth surface in which the viscous sublayer is deeper

than surface roughness protuberances, the surface

roughness is proportional to n/u* (Hinze 1975). Our

analysis provides evidence that the surface roughness in

the weakly to strongly unstable CBL with the Reynolds

number considered in Haghshenas and Mellado (2019)

is well obtained by z0 ’ 0:13n/u* (see Fig. A1a). The

obtained proportionality constant is in a good agree-

ment with the one corresponding to the canonical

channel flow (Pope 2000).

APPENDIX B

Parameterization for the Area Ratio of the Negative
and Positive Buoyancy Flux in the Actual CBL

To derive the parameterization for the area ratio of

the negative and positive buoyancy flux, we consider Eq.

(5.4) of Haghshenas and Mellado (2019):
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ðz‘
zi,0

[hb0w0i
c
2 hb0w0i]dz;

ðz‘
zi,0

�
2hu0w0i›hui

›z

�
dz, (B1)

which implies that the shear-generated turbulence

within the entrainment zone accounts for the entrain-

ment enhancement in sheared CBLs. Here zi,0 is the

reference height at which the buoyancy flux becomes

zero. Subscript c denotes the shear-free limit, primes

indicate turbulent-fluctuation fields, and w is vertical

velocity. In agreement with previous work, the negative

area of the buoyancy flux in the shear-free limit is scaled

by the convective scales as2
Ð z‘
zi,0

hb0w0ic dz ’ 0:02B0zenc,

where the coefficient of proportionality is obtained from

the DNS data. Thus, the area of the negative buoyancy

flux in sheared CBLs can be approximated as

2

ðz‘
zi,0

hb0w0i dz ’ 0:02B
0
z
enc

1 c
1
w

e
(Du)2 , (B2)

using Eq. (B1) and the well-known scaling argument for

the integral of the shear production term (see, e.g.,

Boers et al. 1984). Here we [ dzi,f/dt is the growth

rate of the CBL depth, where zi,f is the height of the

minimum buoyancy flux. To avoid the poor statistical

convergence associated with determining we by tak-

ing the time derivative of zi,f, we use the approxi-

mation provided in Haghshenas and Mellado (2019)

as we ’ (zi,f/zenc)dzenc/dt. The DNS data support the

ansatz in Eq. (B2) and show c1 ’ 0.09.

The fact that wind shear only modifies the vertical

structure of the entrainment-zone indicates that the

positive area of the buoyancy flux in sheared CBLs,

consistent with shear-free CBLs, is scaled asðzi,0
0

hb0w0i dz ’ 0:46B
0
z
enc

, (B3)

where the coefficient of proportionality is obtained from

the DNS data. The parameterization for the area ratio

then reads as

2

ðz‘
zi,0

hb0w0i dzðzi,0
0

hb0w0i dz
’ 0:0441 0:2

w
e
(Du)2

B
0
z
enc

. (B4)

We obtain a value ’0.044 for the area ratio in the

shear-free limit that corresponds to the zero-order

entrainment-flux ratio ’0.21 in the shear-free limit,

according to Eq. (17) (see Fig. A1b). Figure A1c

supports the derived parameterization for the area

ratio in the sheared CBLs with DNS data, show-

ing that the dependence of this parameterization on

the Reynolds number and also the dependence of the

proportionality coefficient c1 on the choice of the

reference definition of the CBL depth in we is smaller

than the achieved statistical convergence. This sensi-

tivity analysis allows us to consider Eq. (B4) as the

entrainment closure in the energetics-based model,

regardless of knowing a priori to which definition

of the actual CBL depth, the modeled CBL depth can

be associated.

APPENDIX C

Geometric-Based Model Corresponding to the
Height of the Maximum Buoyancy Gradient

As explained in the main text, one can also develop a

geometric-based model with the modeled CBL depth

chosen to be equal to the actual height of the maximum

buoyancy gradient. The corresponding closure equation

reads (Haghshenas and Mellado 2019)

FIG. A1. (a) Temporal evolution of the surface-drag coefficient in sheared CBLs from theDNS data with Re05 25 and different Froude

numbers. (b),(c) Verification with the DNS data of the parameterization for the area ratio of the negative and positive buoyancy fluxes,

respectively, for the shear-free and sheared CBLs. Lines and symbols indicate the average within an interval Dzenc/L0 5 2, and shaded

regions indicate the interval of two standard deviations around that average. Here zi,0 is the zero-crossing height, zi,f is the height of the

minimum buoyancy flux, zi,s marks the transition from the lower to the upper entrainment-zone sublayer, and zi,g is the height of the

maximum buoyancy gradient.
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.

Term I in Eq. (C1) corresponds to the depth of the

actual mixed layer, term II corresponds to the thick-

ness of the lower entrainment-zone sublayer, and term

III corresponds to half of the thickness of the upper

entrainment-zone sublayer. Even though employing

the geometric-based model with the aforementioned

closure is straightforward, it is more convenient to use

those two geometric-based models explained in the

main text and construct the height of the maximum

buoyancy gradient from the results of those models and

Eq. (C1). It is also noted that the actual upper height

of the CBL, where the buoyancy flux is ’15% of the

minimum, can also be constructed a posteriori using

Eq. (C1) by multiplying the third term by 2.
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