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Abstract
The growth rate of atmospheric CO2 on inter-annual time scales is largely controlled by the
response of the land and ocean carbon sinks to climate variability. Therefore, the effect of CO2

emission reductions to achieve the Paris Agreement on atmospheric CO2 concentrations may be
disguised by internal variability, and the attribution of a reduction in atmospheric CO2 growth rate
to CO2 emission reductions induced by a policy change is unclear for the near term. We use 100
single-model simulations and interpret CO2 emission reductions starting in 2020 as a policy
change from scenario Representative Concentration Pathway (RCP) 4.5 to 2.6 in a comprehensive
causal theory framework. Five-year CO2 concentration trends grow stronger in 2021–2025 after
CO2 emission reductions than over 2016–2020 in 30% of all realizations in RCP2.6 compared to
52% in RCP4.5 without CO2 emission reductions. This implies that CO2 emission reductions are
sufficient by 42%, necessary by 31% and both necessary and sufficient by 22% to cause reduced
atmospheric CO2 trends. In the near term, these probabilities are far from certain. Certainty
implying sufficient or necessary causation is only reached after, respectively, ten and sixteen years.
Assessments of the efficacy of CO2 emission reductions in the near term are incomplete without
quantitatively considering internal variability.

1. Introduction

Substantial year-to-year variations in the growth rate
of global atmospheric CO2 concentrations show vari-
ations that cannot be explained by land-use changes,
fossil fuel emissions or the increase of carbon sink
capacities due to increasing atmospheric CO2 con-
centrations (Friedlingstein et al 2019, Peters et al
2017). The variations originate instead from the vari-
ability of the global carbon cycle in response to cli-
mate variability, which is inherent to the physics of
the Earth System. For instance, the variations of the
tropical land carbon sink is dominated by the El
Niño-Southern Oscillation (Jones et al 2001, Zeng
et al 2005), and the pronounced Southern Ocean car-
bon sink is susceptible to changes in atmospheric cir-
culation patterns (Landschützer et al 2015, McKinley
et al 2017). Therefore, this internal variability of the
global carbon cycle in atmospheric CO2 may disguise
the detection of potential CO2 emission reductions

in atmospheric CO2 observations. But CO2 emis-
sion reductions are required to achieve the targets
of the Paris Agreement (UNFCCC 2015). Here we
ask what the probability is that a slowdown in atmo-
spheric CO2 growth is attributable to a policy change
implementing CO2 emission reductions as the dif-
ference between Representative Concentration Path-
way (RCP) 4.5 and RCP2.6, in the face of internal
climate variability. This question becomes policy-
relevant as policy-makers assess the efficacy of CO2

emission reductions in the Global Stocktake every 5
years (Peters et al 2017, Schwartzman and Keeling
2020). Furthermore, we ask after howmany years this
policy change will cause atmospheric CO2 growth
rates to slow down for certain.

The challenge of emissions reductions verifica-
tion in atmospheric CO2 concentrations was first
outlined by Peters et al (2017). We address this
challenge by using a large ensemble of Earth Sys-
tem Model (ESM) simulations (Maher et al 2019).
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We integrate 100 simulations based on the code of
a single ESM with slightly perturbed initial con-
ditions that serve as different realizations of the
Earth System. Our analysis compares RCP4.5, which
is close to the pledged and current policies until
2035 (Rogelj et al 2016, Hausfather and Peters
2020), with an emission reductions scenario com-
patible with the Paris targets under RCP2.6 (figure
S4 (https://stacks.iop.org/ERL/15/114058/mmedia)).
We attribute a reduction of trend in atmospheric CO2

concentrations to CO2 emission reductions in the
comprehensive causation framework of Pearl (2000)
and Hannart et al (2016). In the context of CO2

emission reductions, necessary causation means that
a factual trend reduction would not have occurred
without a policy change. By contrast, sufficient caus-
ation implies that while a policy change may trigger a
trend reduction, this trend reduction is not certain.

We go beyond approaches in previous studies
(Tebaldi and Friedlingstein 2013, Peters et al 2017,
Marotzke 2019, Samset et al 2020, Schwartzman and
Keeling 2020) by comprehensively diagnosing atmo-
spheric CO2 variability in an ESM, which is com-
patible with the terrestrial and oceanic carbon sinks
variations. The recently formalized emissions reduc-
tions verification of Schwartzman and Keeling (2020)
uses an autoregressive model based on the observed
carbon imbalance and a different statistical frame-
work. While Tebaldi and Friedlingstein (2013) only
focus on causation in a necessary causation sense,
we here complete the probabilistic setting by ask-
ing also about sufficient causation. We compare two
RCP scenarios in a single-model framework; formally
only internal variabilitymay undermine the detectab-
ility of CO2 emission reductions. Assessing the con-
tribution of our quantitative results against struc-
tural model uncertainty and imperfections is left for
future study.

From a policy-maker’s perspective looking into
the near-term future, necessary and sufficient causa-
tion of CO2 emission reductions slowing down atmo-
spheric CO2 trends deal with two different questions
(Pearl 2000, Hannart et al 2016):

1. Will a policy change towards CO2 emission
reductions suffice to slow down atmospheric
CO2 growth? Other factors, such as a weaken-
ing uptake by the natural carbon sinks, may
induce an increase in atmospheric CO2 growth
despite policy measures. From the viewpoint of
a pathway without CO2 emission reductions,
the uncertainty in this question is based on
sufficient causation.

2. Would a factual atmospheric CO2 growth slow-
down have occurred even without the policy
change? This question asks whether the policy
change was necessary to achieve the policy goal.
From the viewpoint of a factual pathway of

CO2 emission reductions and a factual slow-
down, the uncertainty in this question is based
on necessary causation.

Based on this causation framework, we obtain
probabilities that a policy change causes atmospheric
CO2 trends to decline. However, this causation may
be far from certain depending on the time-scale
assessed. Should CO2 emission reductions not soon
lead to reduced atmospheric CO2 growth trends, we
might face a debate analogous to the warming hiatus
debate (Lewandowsky et al 2015, Fyfe et al 2016)
about why CO2 rises faster despite falling emissions.
Therefore, scientists need to communicate the role of
internal variability to policy-makers and the public
(Deser et al 2012).

Marotzke (2019) shows the uncertain effect of
emission reductions on global mean surface tem-
perature (GMST) 15-year trends. As atmospheric
CO2 drives the forced GMST signal, the emissions
reduction signal should become detectable earlier
in atmospheric CO2. Analyzing the effect of indi-
vidual climate forcers, Samset et al (2020) confirms
that anthropogenic CO2 has the highest potential for
emission reduction detection.

In our study, we also ask after how many years
internal variability can still obscure the identification
of CO2 emission reductions in atmospheric CO2. In
other words, how long does it take until certainty
arises in causation? This is a distinctly different ques-
tion than the classical time-of-emergence of anthro-
pogenic signals, which asks on which timescales the
climate change signal emerges from natural variabil-
ity (McKinley et al 2016).Here, we ask onwhich time-
scales a forcing change induced by this policy change
causes a climate response considering sufficient and
necessary causation (Marotzke 2019). These time-
scales of CO2 emission reduction detection might be
longer than the periodicity of the Global Stocktake
in which policy-makers will assess the efficiency of
mitigation measures.

2. Methods

2.1. Causation attribution framework
To identify whether CO2 emission reductions cause
a reduction in atmospheric CO2 growth, we apply
the concept of event causation (Pearl 2000, Hannart
et al 2016, Marotzke 2019). We use the scenario
RCP2.6 as implementing CO2 emission reductions
and RCP4.5 for the near-term future without CO2

emission reductions (for a detailed justification see
section 2.2). Taking a decline in atmospheric CO2

growth as an effective consequence of CO2 emission
reductions policy, we define a reduction in the lin-
ear trend in global atmospheric CO2 concentration as
the policy goal, comparing the period before emission
reductions started with the period afterwards. While
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this response is expected as the forced response aver-
aged over all realizations, the trend of single ensemble
members could potentially increase due to internal
variability. For a five-year trend period and a scen-
ario separation in 2020, compatible with the switch
fromRCP4.5 to RCP2.6, we hence compare the trends
2016-2020 and 2021–2025. The fraction of responses
in a given scenario s yields the probability of trend
reduction PRCPs. The two scenarios serve as either the
real world, labeled as factual, or the alternative world,
labeled as counter-factual. The probabilities of trend
reduction can be translated into a probability P{S,N}

that the trend reduction is caused by the policy change
(Pearl 2000, Hannart et al 2016):

• In a currently pledged policy pathway (factual
RCP4.5 world) without CO2 emission reductions
in near-term, we ask in advance whether CO2

emission reductions (a policy change towards
the counterfactual RCP2.6) would be sufficient to
cause a reduction in atmospheric CO2 trends. The
probability PS means how likely a policy change
would be sufficient to cause a reduced trend:

PS =
PRCP2.6 − PRCP4.5

1− PRCP4.5
. (1)

In our case of CO2 emission reductions, PS is
important when answering questions whether the
policy goal of reduced atmospheric CO2 growth
will be achieved from the perspective of a planner.

• Considering CO2 emission reductions in RCP2.6
as the factual where in retrospect atmospheric CO2

trends have indeed declined and no CO2 emis-
sion reductions in RCP4.5 as the counter-factual
world, the probability PN that the policy change
was necessary to cause the trend reduction is:

PN = 1− PRCP4.5
PRCP2.6

. (2)

In our case of CO2 emission reductions, PN is
important when answering questions whether the
policy goal would not have been reached without
the policy change.

• Combining the two aforementioned, PNS describes
the probability that the policy change is both neces-
sary and sufficient to cause the respective trend
reduction:

PNS = PRCP2.6 − PRCP4.5. (3)

This strongest causation probability PNS means
how likely a reduced trend would occur in case of
a policy change and would not occur without.

These probabilities hence describe probabilities
that trend reductions over a given trend length are
caused by the policy change, but how long do these
trends need to be in order to be virtually certain that
CO2 emission reductions caused them?To answer this

question, we define Time to Detection of CO2 emis-
sion reductions in a causation sense D{S,N} as the trend
length around CO2 emission reductions start in 2020
for which P{S,N} > 99%, using the probability fram-
ing of Mastrandrea (2010). This time-scale marks
the maximum range of influence of internal variab-
ility over changes in the forced signal due to a policy
change.

2.2. Choice of scenarios
We identify RCP2.6 as roughly compatible with the
Paris targets (vanVuuren et al 2011). Compared to the
pre-industrial control, MPI-ESM Grand Ensemble
warms by 1.4± 0.2 ◦C in RCP2.6 and 2.2± 0.2 ◦C in
RCP4.5 until the end of the century (Suarez-Gutierrez
et al 2018, Maher et al 2019). Anthropogenic CO2

emissions in RCP2.6 are increasing until 2020; after
2020, emissions are expected to decrease by 2%
per year in RCP2.6 until 2030 (figure S3). By con-
trast, RCP4.5 has similar anthropogenic CO2 emis-
sion levels as RCP2.6 until 2020 and continues amod-
erate emissions increase until 2040 with a 1% per
year increase until 2030 (figures S3, S4). This scen-
ario was designed to reach a forcing stabilization at
the end of this century (Thomson et al 2011) at about
3 ◦C warming. Although RCP8.5 is closer to the most
recently recorded combined land-use and fossil-fuel
emissions, we choose RCP4.5 as a reference scenario,
because the differences between RCP4.5 and repor-
ted emissions until 2018 originate in land-use change
whereas fossil-fuel emissions match (figure S3). More
importantly, the levels of projected fossil-fuel emis-
sions based on current and pledged policy until 2035
parallel RCP4.5 (Rogelj et al 2016, Hausfather and
Peters 2020).

In the above-described comparison under the
causal theory framework, we compare trends before
and after this policy change to assess causality of this
policy change on changes in trends with respect to the
period before the policy change. This policy change
is assumed to happen in one scenario (RCP2.6),
and not in the other one (RCP4.5). Therefore, we
require simulations under mostly identical forcing
before this policy change. We assume that this policy
comes into effect as implemented by the RCP scen-
arios (Meinshausen et al 2011). We identify the com-
bination of RCP2.6 vs RCP4.5 with a scenario split in
2020 as suitable scenario comparison. This scenario
combination and timing also describes the present
quest aiming for an at most 2 ◦C warmer world with
net emissions reduction of 3% per year over 10 years.

Comparing RCP2.6 with RCP8.5 would be
another possible combination. However, RCP8.5
entails higher fossil-fuel CO2 emissions than recently
observed and much higher levels than what cur-
rent policies pledge for until 2035 (Rogelj et al 2016,
Hausfather and Peters 2020). Furthermore, RCP2.6
and RCP8.5 separate at a time when emissions in
RCP2.6 still grow. This would make the definition
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of climate event as trend reduction awkward, if our
goal is to investigate the effect of policy on possible
trend reductions. Therefore we compare RCP2.6 and
RCP4.5 and include the comparison against RCP8.5
in the supplementary material.

2.3. Large-ensemble simulations
The Max-Planck-Institute Earth System Model
(MPI-ESM) Grand Ensemble comprises 100 mem-
bers started fromdifferent initial conditions branched
off a pre-industrial control simulation (Maher et al
2019). MPI-ESM contains comprehensive terrestrial
and oceanic carbon cycle sub-models, which cap-
ture the dynamics of the global carbon cycle (Ilyina
et al 2013, Schneck et al 2013, Li and Ilyina 2018).
The Grand Ensemble is based on a model version
close to the CMIP5 version (Giorgetta et al 2013).
To our knowledge this is the largest ensemble of
comprehensive climate models available up to date
(Branstator and Selten 2009, Kay et al 2014, Rodgers
et al 2015, Kirchmeier-Young et al 2016, Frankignoul
et al 2017, Stolpe et al 2018). Its statistics have proven
to be useful in investigating internal variability in the
Southern Ocean carbon sink (Li and Ilyina 2018) and
enable a 1% resolution for climate event probabilities
(see section 2.1). From the year 2006 onward, the 100
historical simulations are extended under RCP2.6
and RCP4.5 (Meinshausen et al 2011, Taylor et al
2011). The Grand Ensemble simulations are forced
with a scenario-dependent prescribed atmospheric
CO2 concentration, aerosols, non-CO2 greenhouse
gases and land-use change (Meinshausen et al 2011,
Taylor et al 2011).

2.4. Diagnostic atmospheric CO2 concentration
CO2 concentration-driven simulations do not repres-
ent a variable atmospheric CO2 concentration tracer.
To quantify the expected variations in global atmo-
spheric CO2 concentration that are compatible with
variations of the global land and ocean carbon sinks,
we diagnose a virtual tracer of global atmospheric
CO2 based on the changes due to internal variabil-
ity of the land and ocean carbon sinks in atmospheric
CO2 [figure S2]. The global residual CO2 flux Gi,s is
the difference of CO2 flux Fi,s of the each ensemble
member i to the ensemble mean of CO2 flux Fs:

Gi,s =
∑
global

(Fi,s −
1

M

M∑
m=1

Fm,s) (4)

where M= 100 is the number of ensemble mem-
bers and i the number of a single ensemble mem-
ber and s the scenario. The ensemble mean Fs is
subject to all forcings (anthropogenic fossil-fuel CO2

emissions, non-CO2 emissions, land-use change, aer-
osols) on CO2 flux, but no internal variability. The
remaining residual shows the variations of CO2 flux
around neutral flux only due to internal variability.
The forced atmospheric CO2 signal f s is scenario

s-dependent and generated by a simplified climate
model fed with emissions from integrated assessment
models (Meinshausen et al 2011) incorporating the
strengthening of the carbon sinks with higher CO2

concentrations and land-use CO2 emissions. This
internal variability component of time-accumulated
global CO2 flux is then superimposed on the smooth
atmospheric CO2 forcing f s and defines internally
varying diagnostic global atmospheric CO2 concen-
tration XCO2,i,s:

XCO2,i,s(t) =
t∑
t ′

Gi,s(t
′) · ppm

2.124PgC
+ fs. (5)

We assume that the internal variability of the global
carbon cycle to be driven by climate variability. This
ignores the short-term effects of atmospheric CO2

variability on CO2 flux as in all concentration-driven
simulations. Explicitly, for diagnostic atmospheric
CO2, we use as forcing f s the concentration scenarios
generated by the simplified climate model and not
directly the CO2 emissions generated by the integ-
rated assessment models. This assumes that the emis-
sion scenarios from the integrated assessment model
roughly match the resulting concentration scenarios
from the simplified climate model (figure S9). The
hereby diagnosed variations of global atmospheric
CO2 capture the observed global atmospheric CO2

variations (figures 1, S7; Spring and Ilyina (2020)).
For a detailed method description and verification
in emission-driven simulations, see Supplementary
Information section S1.

2.5. Method limitations
The generalisability of our results strongly depend on
the strength and timing of the CO2 emission reduc-
tions underlying the two compared scenarios, where
causation probabilities P{N,NS} are even more sens-
itive than the probabilities of reducing atmospheric
CO2 trend PRCPx in scenario x. Here, we present one
special case of CO2 emission reductions as the dif-
ference between RCP4.5 and RCP2.6 representing a
net 3% annual emission reductions until 2030. There
is an active debate whether RCP4.5 (argued for by
Hausfather and Peters 2020) or RCP8.5 (argued for by
Schwalm et al 2020) tracks the current anthropogenic
CO2 emissions pathway best. Also the attribution
probabilities are contingent uponwhether the climate
model simulates realistic magnitudes of internal vari-
ability (Marotzke 2019). Furthermore, our attribu-
tion method focuses only on one observable vari-
able under internal variability, although atmospheric
CO2 is the most important indicator for CO2 emis-
sion reductions. Lastly, we use the atmospheric CO2

concentration prescribed to MPI-ESM generated by
the simplified climate model based on CO2 emis-
sion scenarios from the integrated assessment model
and not the CO2 emissions from the integrated
assessment models themselves to calculate diagnostic

4
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Figure 1. The difference in diagnostic atmospheric CO2 concentration between CO2 emission reductions scenario RCP2.6
(green) and currently most likely scenario for the near-term RCP4.5 (red) appears after the start of CO2 emission reductions in
2020 (vertical dashed gray line). Both scenarios are detrended with the combined scenario mean forcing, see the otherwise
identical figure S4 without detrending. Individual ensemble members are shown in faded colors. The forced response (solid green
and red) in atmospheric CO2 follows the prescribed atmospheric CO2 forcing derived from the a simplified climate model with
emissions from integrated assessment models (Meinshausen et al 2011). The variation of global mean (black) and Mauna Loa
(gray) atmospheric CO2 observations by NOAA/ESRL (Dlugokencky and Tans 2019), mostly fall within the ensemble standard
deviation (dotted green and red).

atmospheric CO2 Meinshausen et al (2011). While
this is consistent with the forcing applied to the
the climate system in MPI-ESM, this leads to small
differences between in the compatible emissions of
concentration-drivenRCPs and actual CO2 emissions
as discussed by Jones et al (2013) and demonstrated
for MPI-ESM (figure S9).

3. Probability of CO2 emission reductions
causing changes in atmospheric CO2
growth trend

We first assess the frequency distributions of five-
year trends in atmospheric CO2. These distributions
over the period 2016-2020 in RCP2.6 and RCP4.5
are nearly indistinguishable (figures 1, 2(a) and (d)).
The most recent 2015–2019 observations-based
estimate for global atmospheric CO2 (Dlugokencky
and Tans 2019) trend is in the upper tercile and
thereby captured by our model (figures 2(a) and (d),
S7). Comparing the distributions before and after
CO2 emission reductions onset in 2020 in RCP2.6,
we find overlapping distributions with a tendency
towards lower trends after CO2 emission reduc-
tions (figures 2(a) and (b)). The ensemble mean
responds to CO2 emission reductions with a decrease
in trend of 1 ppm over 5 years. The trend reduces
in 70 ensemble members, resulting in PRCP2.6 =
70% (figure 2(c)). This implies that with a 30%

probability, atmospheric CO2 growth will strengthen
despite emissions reductions. In RCP4.5, the dis-
tributions of atmospheric CO2 trends before and
after 2020 look similar because the emissions rise
steadily. Hence, only roughly half of the ensemble
members show a reduced trend, with PRCP4.5 = 48%
(figure 2(d)–(f)).

The atmospheric CO2may increasemore strongly
despite the onset of CO2 emission reductions, when
the global carbon cycle triggered by internal climate
variability releases more CO2 than CO2 emission
reductions save. For instance, this is possible when the
tropical forests react to higher temperature and less
precipitation caused by a strong El Niño event (Jones
et al 2001, Zeng et al 2005). The releasedCO2 from the
tropical biosphere persists in the atmosphere and can
overwhelm the reduction of anthropogenic emissions
(figure 1). These stronger atmospheric CO2 growth
trends despite CO2 emission reductions might occur
for trend comparisons around the CO2 emission
reductions start of up to ten years (figure 3).

These probabilities of trend reduction of the
two scenarios can be converted into probabilities
of trend reduction being caused by CO2 emission
reductions (see section 2.1). If asked in advance in
2015, the answer would be that a policy change from
RCP4.5 to RCP2.6 representing CO2 emission reduc-
tions starting in 2020 are sufficient to cause a five-
year trend reduction in atmospheric CO2 growth by
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Figure 2. Probability distributions of 5-year trends from 2016 to 2020 and 2021 to 2025 in diagnostic atmospheric CO2 in a
100-member ensemble following scenarios RCP 2.6 and 4.5: (a) trends before CO2 emission reductions start in RCP2.6, (b) trend
after CO2 emission reductions started in RCP2.6, distribution of (a) is indicated in gray contours for comparison, (c) trend
reduction over time calculated as (a)–(b). (d)–(f) as (a)–(c) but for scenario RCP4.5. PRCP2.6 marks the probability of trend
reduction over time in the CO2 emission reductions scenario, PRCP4.5 marks the probability of trend reduction over time in
RCP4.5. Vertical dashed gray lines show ensemble-mean trends per scenario. Dotted black vertical lines mark zero trends. Recent
observational atmospheric CO2 trends between 2015 and 2019 from NOAA/ESRL (Dlugokencky and Tans 2019) are shown in
solid black.

PS = 42% (figure 3). Here, this policy change works
toward a trend reduction, but the trend reduction
might also be prevented by internal variability. Asking
from a 2025 perspective looking into the recent past,
CO2 emission reductions in 2020 were necessary by
PN = 31% to cause trend reductions (figure 3). This
policy change causes the five-year trend reduction in a
necessary and sufficient sense by PNS = 22% (figure 3,
dark blue in box). These results show that CO2 emis-
sion reductions are far from certain to cause trend
reductions in global atmospheric CO2 growth when
considering five-year trends.

To estimate the time-scales when CO2 emission
reductions are virtually certain to cause reduced
atmospheric CO2 growth trends, we consider trends
calculated over different time window lengths around
the CO2 emission reductions start. As expected, the
shorter the trend-lengths considered, the more dom-
inant internal variability is. Therefore, trend reduc-
tions are less likely occurring in the CO2 emission
reductions scenario. The 3-year-trend probabilities
of trend reduction even overlap with the 50% ran-
dom forecast (figure 3). Conversely, when longer
trends are considered, the influence of the signal
of emissions change becomes stronger. CO2 emis-
sion reductions reduce atmospheric CO2 trends in
RCP2.6 virtually for certain only when consider-
ing ten-year-trends (figure 3). In contrast, trend
reductions are still possible due to internal variabil-
ity despite the absence of CO2 emission reductions
for much longer in RCP4.5 (figure 3). Note that
under RCP4.5 the annual anthropogenic CO2 emis-
sions increase very little until the 2040 s. Therefore,
a few members can still have reduced trends over

time. Consequently, PRCP4.5 does not drop to 1%
until 2042.

The low causation probabilities over short time-
scales show the inability to clearly attribute reduced
atmospheric CO2 trends to a policy change from
RCP4.5 to RCP2.6 due to the large internal variability.
The longer the time-scales considered, the stronger
the two scenario pathways differ, and the attribution
probabilities rise. If PRCP2.6 > PRCP4.5 as assumed by
the response toCO2 emission reductions, PS increases
more quickly than PN when PRCP2.6 approaches 1
faster than PRCP4.5 0. Therefore, in the context of the
scenarios RCP2.6 and RCP4.5, PS > PN (Marotzke
2019). Thismeans that in our context, sufficient caus-
ation is a stronger causation facet than necessary
causation. Sufficient causation PS describes whether
the objective of reduced atmospheric CO2 trends is
met, which might be prevented by internal variabil-
ity. As soon as growth trends decline in all realizations
(PRCP2.6 = 1), also PS saturates. In contrast, necessary
causation PN describes whether the response of redu-
cing atmospheric CO2 would only have happened
in the presence of CO2 emission reductions. There-
fore, as long as trend reductions are possible even
without CO2 emission reductions, necessary causa-
tion will not be certain, that is, if PRCP4.5 > 0, then
PN < 1.

The time to detection of CO2 emission reduc-
tions D{S,N} describes after how many years this
policy change is virtually certain to cause atmo-
spheric CO2 growth trends to decline. CO2 emis-
sion reductions sufficiently cause trend reductions
after DS = 10 years and necessary cause of reduc-
tion afterDN = 27 years. We note that once sufficient

6
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Figure 3. Probabilities of trend reduction in diagnostic atmospheric CO2 between periods of varying trend length before and after
CO2 emission reductions start in 2020. PRCP2.6 (green) shows the probability of trend reduction in CO2 emission reductions
scenario RCP2.6. PRCP4.5 (red) shows the probability of trend reduction in the currently most likely scenario for the near-term
RCP4.5. PS (pale blue) show the probability that a change from RCP4.5 to RCP2.6 causes the respective trend reduction in a
sufficient causation sense. PN (blue)show the probability that a change from RCP4.5 to RCP2.6 causes the respective trend
reduction in a necessary causation sense. PNS (dark blue) shows the probability that change from RCP4.5 to RCP2.6 causes the
respective trend reduction in a sufficient and necessary causation sense. Error bars show the 1% and 99% confidence intervals
based on bootstrapping with replacement. Dotted lines show 99% confidence interval for time of virtual certainty in trend
reduction or causation (D{S,N}). Results for policy-relevant five-year trends are highlighted in the gray box.

causation is certain, PS = 1 in 2030 see (1), neces-
sary causation and causation both necessary and suf-
ficient coincide, PN = PNS; compare (2) and (3) with
PRCP2.6 = 1. Virtual certainty in P{N,NS} is hindered
by PRCP4.5 above 1%. Due to the slow increase in
emissions in the 2030 s, internal variability allows
a few members to have increasing trends. Taking a
less strict threshold of 95% certainty like in Tebaldi
and Friedlingstein (2013), we obtain DN = DNS =
16 years. This time-scale of CO2 emission reduc-
tions detection in a necessary causation sense DN

is a bit longer than the similarly defined estimate
based on IPSL-CM5A-LR (Tebaldi and Friedling-
stein 2013, table 1). Our analysis also shows that
whether this policy change from RCP4.5 to RCP2.6
can be identified as the cause of reduced atmo-
spheric CO2 trends after 10 or 16 years depends on
the causation attribute. The differently defined emis-
sion reduction detection protocol of Schwartzman
and Keeling (2020) finds a similar detection delay of
9± 4 years for comparable 2% net annual emissions
reduction.

4. Summary and conclusions

In the context of potential future CO2 emission
reductions, we ask whether atmospheric CO2 growth
trend reductions in the near term can be attributed

to a policy change. We focus on one specific pathway
of CO2 emission reductions interpreted as a policy
change from scenario RCP4.5without near-termCO2

emission reductions to emissions reduction scenario
RCP2.6 designed to achieve for the Paris targets
representing 3% net annual CO2 emission reductions
until 2030.We apply a causation framework compris-
ing two perspectives of policy elaboration (Hannart
et al 2016, Marotzke 2019). We diagnose atmospheric
CO2 variations compatible with the natural carbon
sinks variations and compare growth trends of atmo-
spheric CO2 before and after the onset of CO2 emis-
sion reductions in 2020 in RCP2.6. While 5-year
trends reduce in 70% of all realizations in the CO2

emission reductions scenario RCP2.6 (consequen-
tially implying increasing trends despite of CO2 emis-
sion reductions by 30%), there is 48% probability of
trend reductions in RCP4.5. This translates into CO2

emission reductions from RCP4.5 to RCP2.6 being
sufficient to cause a five-year trend reduction before-
hand by 42% and in hindsight necessary by 31%. The
probability that this policy change is both necessary
and will suffice to bring the desired outcome con-
sidering five-year trends is only 22%. These prob-
abilities are far from certain for up to a decade. It
takes ten or 16 years of CO2 emission reductions from
RCP4.5 to RCP2.6 to virtually certainty cause a trend
reduction in a sufficient or necessary causation sense,
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respectively. Communicating these probabilities in a
clear manner is challenging but needed to inform
policy-makers about the impact of internal variabil-
ity on CO2 emission reduction causation in the Earth
system (Deser et al 2012, Hannart et al 2016, Howe
et al 2019).

The five-year Global Stocktake following the Paris
Agreement (UNFCCC 2015) makes the five-year
internal variability highlighted in this study especially
relevant for policy-makers. This study demonstrates
the inherent uncertainty in near-term atmospheric
CO2 projections. As a partial solution to this chal-
lenge, initialized ESM-based prediction systems can
reduce this uncertainty by predicting natural vari-
ations of the global carbon cycle. Global oceanic CO2

flux is predictable for two to three years (Li et al
2019, Lovenduski et al 2019) and global atmospheric
CO2 variations have the potential to be predicted
for up to three years in advance (Spring and Ilyina
2020). These multi-year ESM-based predictions of
the global carbon cycle thereby bring added value
about the expected natural variations of atmospheric
CO2 to policy-makers in the Global Stocktake process
(UNFCCC 2015).

Our analysis shows that it is crucial to have real-
istic expectations of the efficacy of climate policy in
the near term (Marotzke 2019, Samset et al 2020).
Also Schwartzman and Keeling (2020) find a detec-
tion delay of up to a decade in a different approach.
Even if anthropogenic emissions begin to decline
after 2020, there still remains a substantial prob-
ability that atmospheric CO2 trends will not have
declined five years afterwards. In this case, the effects
of CO2 emission reductions on other iconic climate
variables, such as global mean surface temperature,
very likely get delayed even longer (Marotzke 2019).
The likelihood of this happening is substantial. For
instance, there is a three-out-of-ten chance that atmo-
spheric CO2 rises even stronger in the five years after
CO2 emission reductions started compared to before.
Assuming the evolution of the RCPs (Meinshausen
et al 2011) and the magnitude of internal variabil-
ity in the global CO2 fluxes in MPI-ESM-LR, such
increasing atmospheric CO2 growth trends despite
CO2 emission reductions from RCP4.5 to RCP2.6
are possible for up to a decade. Although this ana-
lysis relies on only a single model, internal variabil-
ity may disguise CO2 emission reductions efforts in
the Earth System for a couple of years. Should this be
the case, climate science should explain the observed
atmospheric CO2 evolution honoring internal vari-
ability. Policy makers should rather be informed by
initialized predictions about the internal variabil-
ity in the near-term evolution of atmospheric CO2

(Betts et al 2018, Spring and Ilyina 2020). Evaluation
of CO2 emission reduction efficacy from an atmo-
spheric CO2 perspective needs to take internal vari-
ability, and therefore longer than 5-year trends, into
account.
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