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More accurate quantification of model-to-model
agreement in externally forced climatic responses
over the coming century
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Separating how model-to-model differences in the forced response (UMD) and internal

variability (UIV) contribute to the uncertainty in climate projections is important, but chal-

lenging. Reducing UMD increases confidence in projections, while UIV characterises the range

of possible futures that might occur purely by chance. Separating these uncertainties is

limited in traditional multi-model ensembles because most models have only a small number

of realisations; furthermore, some models are not independent. Here, we use six largely

independent single model initial-condition large ensembles to separate the contributions of

UMD and UIV in projecting 21st-century changes of temperature, precipitation, and their

temporal variability under strong forcing (RCP8.5). We provide a method that produces

similar results using traditional multi-model archives. While UMD is larger than UIV for both

temperature and precipitation changes, UIV is larger than UMD for the changes in temporal

variability of both temperature and precipitation, between 20° and 80° latitude in both

hemispheres. Over large regions and for all variables considered here except temporal

temperature variability, models agree on the sign of the forced response whereas they dis-

agree widely on the magnitude. Our separation method can readily be extended to other

climate variables.

https://doi.org/10.1038/s41467-020-20635-w OPEN

1Max Planck Institute for Meteorology, Hamburg, Germany. 2 School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria,
Australia. 3 ARC Centre of Excellence for Climate Extremes, Monash University, Melbourne, Victoria, Australia. 4 Bureau of Meteorology, Docklands, Victoria,
Australia. ✉email: nicola.maher@colorado.edu

NATURE COMMUNICATIONS |          (2021) 12:788 | https://doi.org/10.1038/s41467-020-20635-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20635-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20635-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20635-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20635-w&domain=pdf
http://orcid.org/0000-0003-3922-9833
http://orcid.org/0000-0003-3922-9833
http://orcid.org/0000-0003-3922-9833
http://orcid.org/0000-0003-3922-9833
http://orcid.org/0000-0003-3922-9833
http://orcid.org/0000-0002-9596-4368
http://orcid.org/0000-0002-9596-4368
http://orcid.org/0000-0002-9596-4368
http://orcid.org/0000-0002-9596-4368
http://orcid.org/0000-0002-9596-4368
http://orcid.org/0000-0001-9857-9900
http://orcid.org/0000-0001-9857-9900
http://orcid.org/0000-0001-9857-9900
http://orcid.org/0000-0001-9857-9900
http://orcid.org/0000-0001-9857-9900
mailto:nicola.maher@colorado.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Identifying whether different climate models agree in their
response to external forcing is important for assessing con-
fidence in future projections1. However, in practice, climate

projections are often made using a multi-model ensemble2,3,
where assessing this agreement can be difficult. Part of the pro-
blem arises because under the same forcing scenario, projections
from two different model runs can differ because of internal
variability, as well as differences in the forced response to external
forcing in the models. The other part of the problem arises
because climate models are not all independent, with many
models sharing components and code1,4–6. This reduces the
effective number of degrees of freedom of an ensemble containing
such models, which can in turn lead to both an overestimate of the
statistical significance of projected changes and overconfidence1,7.
Here, we quantify how model-to-model differences and internal
variability contribute to the uncertainty in projections of tem-
perature and precipitation and their temporal variability, without
relying on the assumptions of previous methods.

The contribution of internal variability to the uncertainties in
projections tends to be larger on short timescales and smaller
spatial scales, while model-to-model differences in the response to
external forcing play a larger role on longer timescales and over
larger domains8–13. In addition, the relative roles of these two
uncertainties depend on the quantity considered9,10,13 and the
location investigated1, making it non-trivial to draw general-
isations about which uncertainty dominates. Quantifying the role
of internal variability in a multi-model ensemble such as CMIP2,3

is difficult due to the limited number of simulations available for
each model. Partitioning has previously been achieved by using
statistical methods to estimate the forced signal9,10 or by using a
long pre-industrial control to estimate internal variability14,15.
However, these methods are limited as they make some ad hoc
assumptions in their estimates of the forced response and cannot
account for changes in internal variability itself13,16. Indeed,
Lehner et al.13 recently demonstrated that the regional errors in
the partitioning of uncertainty can be as large as 50% using the
traditional approaches.

Methods to account for the lack of independence of the climate
models include institutional democracy7, the ensemble-mean
performance17 and multi-family ensembles1; these methods are
used to weight models when making projections. Other methods
determine weights using a combination of model performance in
comparison to observations and the similarity of each model’s
response18–20. These methods are, however, not immune to the
role of internal variability21, and the same model can have sub-
stantially different weights, depending on which ensemble
member is used22. In general, community consensus appears to
be that there is no one-size-fits-all approach to model indepen-
dence and performance weighting, and that the method used
must be application dependent5.

Confidence in model projections has been characterised using a
variety of methods. Some demonstrate the percentage of models
that agree on the sign of the change1,23, with others additionally
including the agreement on no change1,24. Some investigate the
signal-to-noise ratio25, while others use statistical significance
levels under the assumption of model independence1. When the
last Intergovernmental Panel on Climate Change (IPCC) report
investigated these different methods, they found that their
assessment of confidence did not agree23. When considering
temperature, precipitation and their temporal variability, studies
have usually used the percentage of models that agree on the sign
of the change to assess confidence, with different thresholds used
in different studies, ranging from 67 to 90%26–29. While excep-
tions exist1, model independence is not usually included in these
estimates of confidence, although some studies exclude models
that are shown to perform poorly30.

In many previous projections, including most of the last IPCC
assessment, only one ensemble member per model is used
(r1i1p1)23. The choice to use a single member, to use all members
or to take the ensemble mean of those models that have more
than one member can be somewhat arbitrary, with no clear
consensus on which method is best nor on how this affects
confidence. As such, currently, there is no best practice for how to
deal with such a multi-model ensemble5. More recently, Merri-
field et al.22 proposed a weighting scheme that can deal with a
multi-model ensemble that includes many ensemble members
from some models. This provides a new opportunity to include all
members of a multi-model ensemble in the estimate; however,
this, and previous model weighting methods can also only be
applied to the multi-model ensemble mean, and cannot be used
to assess the relative roles of model-to-model differences and
internal variability in causing the ensemble spread.

Model-to-model differences and internal variability can now be
better quantified using a single model initial-condition large
ensembles (SMILEs)12,13. SMILEs are based on individual climate
models that are run many times from differing initial
conditions16,31–33. At any point in time, the range of a quantity in
each SMILE can be used to quantify the model’s internal varia-
bility, while the mean across the ensemble provides an unbiased
estimate of each individual SMILE’s response to external for-
cing16. While single SMILEs have now been used in many stu-
dies31, a new archive of SMILEs will allow comparisons across
multiple models33. Importantly, this archive can be used to assess
the confidence in projections under increasing greenhouse gas
emissions, which is particularly important for variables such as
temperature and precipitation, due to their potential impacts on
people and ecosystems34.

In this study, we use six SMILEs to show that under strong
forcing, model-to-model differences between simulated twenty-
first-century changes are almost always larger than the internal
variability of temperature and precipitation. For temporal tem-
perature and precipitation variability, the internal variability in
the projections is larger than the model-to-model differences in
the extratropics, with model-to-model differences either similar
in magnitude or larger than the internal variability elsewhere on
the globe. We show that the sign of the projected change agrees
for much of the globe, while models disagree on the magnitude of
the projected change.

Results
Separating the forced response and internal variability. Using
six SMILEs, we estimate the contribution of model-to-model
differences and internal variability in causing uncertainty in the
projections of future climate under strong forcing. We calculate
the projected change in an individual ensemble member: the
forced response both in each individual SMILE and across the six
SMILEs, which is an estimate of the response due to external
forcing alone, and the uncertainty in projections due to model-to-
model differences in the forced response (UMD) and internal
variability (UIV). These quantities can be described for tempera-
ture (T) and using the following equations:

The projected change in T in a single ensemble member (e) of a
single SMILE (s) is

ΔTs;e ¼ ð�Ts;e;21C � �Ts;e;20CÞ ð1Þ

where Ts,e is temperature from a single ensemble member and the
overbar indicates a time average over 2050–2099 from RCP8.5
(21C) and over 1950–1999 from the historical simulations (20C).
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The forced response in T in a single SMILE (s) is calculated as
the ensemble mean of the projected change

ΔTs;F ¼
1
es

Xes

e¼1

ΔTs;e ð2Þ

where es is the ensemble size for each individual SMILE.
The multi-ensemble-mean forced response in T for the six

SMILEs is the mean across the six individual SMILE ensemble
means

ΔTF ¼
1
n

Xn

s¼1

ΔTs;F ð3Þ

where n is the number of SMILEs.
The spread in ΔT across a SMILE (s) due to internal variability

is calculated as the sample standard deviation of the projected
change across the ensemble members of the SMILE:

σðΔTsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

es � 1

Xes

e¼1

ðΔTs;e � ΔTs;FÞ2
vuut ð4Þ

An estimate of the uncertainty in ΔT due to internal variability
can be expressed as an average of the internal variability across
the six SMILEs:

U IV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

s¼1

σ2ðΔTsÞ
s

ð5Þ

The variance of the forced response is estimated using

σ2FR ¼ D2 � E2 ð6Þ
where D2 is the sample variance of the ensemble means calculated
as follows:

D2 ¼ 1
n� 1

Xn

s¼1

ðΔTs;F � ΔTFÞ2 ð7Þ

and E2 is included to offset the contribution of internal variability
to the variance of the ensemble means (see Rowell et al.35 for
further details) and is equal to the average value of σ2(ΔTs)/es
across the six ensembles. This term is discussed in more detail in
“Methods”. This offset is expressed as

E2 ¼ 1
n

Xn

s¼1

σ2ðΔTsÞ
es

ð8Þ

The uncertainty in ΔT due to model differences can be quantified
as the square root of the variance of the forced response:

UMD ¼
ffiffiffiffiffiffiffiffi
σ2FR

q
ð9Þ

In this study, we will investigate the externally forced response
of annual-mean temperature (T), annual-mean precipitation (P),
annual-mean temporal temperature variability (Tσ) and annual-
mean temporal precipitation variability (Pσ). The equations for P
can be found by replacing T with P in Eqs (1)–(9). To compute Tσ
first, we remove the forced response in T by removing the
ensemble mean at each timestep. We then calculate Tσ in each
ensemble member as the sample standard deviation over the time
period 2050–2099 from RCP8.5 and the sample standard
deviation over the time period 1950–1999 from the historical
simulations.

The projected change in Tσ in a single ensemble member (e) of
a single SMILE (s) is

ΔTσ;s;e ¼ ðTσ;s;e;21C � Tσ;s;e;20CÞ ð10Þ
where Tσ,s,e,21C indicates the time period 2050–2099 (21C) and
Tσ,s,e,20C is from the period 1950–1999 (20C).

The forced response in Tσ in a single SMILE (s) is

ΔTσ;s;F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
es

Xes

e¼1

ðTσ;s;e;21CÞ2
vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
es

Xes

e¼1

ðTσ;s;e;20CÞ2
vuut ð11Þ

Here, the standard deviation is calculated individually for each
time period as the square root of the ensemble-mean variance
before the difference between the two time periods is calculated.
The multi-ensemble mean forced response in Tσ for the six
SMILEs is

ΔTσ;F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

s¼1

1
es

Xes

e¼1

ðTσ;s;e;21CÞ2
" #vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

s¼1

1
es

Xes

e¼1

ðTσ;s;e;20CÞ2
" #vuut

ð12Þ
Here, the individual standard deviation is calculated for each time
period as the square root of the multi-ensemble-mean variance of
the six SMILEs. The equations for σ(ΔTσ,s), and UIV and UMD for
Tσ can be found by replacing ΔT with ΔTσ in Eqs. (4)–(9). The
equations for Pσ can be found by replacing Tσ in Eqs. (10)–(12),
and ΔT in Eqs. (4)–(9) with ΔPσ. Discussion on Eqs. (10)–(12)
can be found in “Methods”.

We utilise a new archive of SMILEs (Supplementary Table 1;
Deser et al.33), which consists of the following six models:
CanESM232, CESM-LE31, CSIRO-Mk3-6-036, GFDL-CM337,
GFDL-ESM2M38 and MPI-GE16. The six SMILEs have different
numbers of ensemble members. The smallest ensemble has 20
members, while the largest has 100. The estimate of the internal
variability of the forced response obtained from each SMILE is
found to be a model quantity that is not related to the ensemble
size, i.e., having a larger ensemble does not increase the
magnitude of the estimate of internal variability (see Supplemen-
tary Note 1 for discussion and Supplementary Figs. 1–4). We find,
however, that smaller ensemble sizes do result in greater
uncertainty in the magnitudes of both the forced response and
internal variability of the forced response in our analysis. The
ensemble size needed is larger for changes in temporal variability
than mean-state changes in agreement with previous work39,40.
An in-depth analysis of the uncertainties caused by the varying
ensemble sizes of the SMILEs used in this study can be found in
Supplementary Note 1.

For the methods used in this study to perform best, we would
ideally use a set of SMILEs that are independent and cover the
current range of global coupled climate models available. The
SMILEs used in this study were picked due to their availability
and their minimum ensemble size of 2033 and because two
previous studies showed that they cover the range of the CMIP5
models well12,13. While it can be difficult to assess whether
models share pieces of code, it is possible to assess whether they
share components, such as the ocean or atmosphere6. Although
two of the SMILEs (GFDL-ESM2M and GFDL-CM3) share the
ocean, sea-ice and land components, and have a similar
atmospheric model, and a third (CSIRO-Mk3-6-0) uses an older
version of the same ocean when assessing precipitation biases
over Southern Asia, it has been shown that all three of these
models behave independently41. Differences between GFDL-
ESM2M and GFDL-CM3 are also investigated by Lehner et al.13.
They find that the models behave differently for global and
British Isles annual decadal mean temperature and global annual,
Sahel summer and Southern European Summer decadal mean
precipitation, although they behave more similarly in the
Southern Ocean for decadal annual-mean temperature. The rest
of the SMILEs do not share any components6. Here, given the
two SMILEs that share components have been shown to behave
differently for a range of variables, we treat each SMILE as
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independent so as not to decrease the number of SMILEs; this
independence assumption is validated later in the study where the
three aforementioned models do not cluster together for the
quantities considered.

While uncertainties in the estimation of the forced response
and internal variability exist due to the varying ensemble sizes
and the availability of models in the large-ensemble archive, the
use of SMILEs allows us to simply estimate both the internal
variability and the forced response more accurately than can be
done with single runs or much smaller ensembles. This means
that UMD and UIV can be easily calculated. Importantly, using
SMILEs has the advantage that we can more accurately assess the
role of each uncertainty in projections of temperature and
precipitation temporal variability themselves. Δs,F and σ(Δs) are
shown for each individual SMILE in Supplementary Figs. 5–8.

Mean-state projections in the SMILEs. We first use the six
SMILEs to illustrate the forced response in temperature (ΔTF,
Fig. 1a). We find that the land surface is projected to warm more
than the ocean, the Arctic has the largest projected temperature
increases and the areas with the smallest warming are the
Southern Ocean and the North Atlantic warming hole in agree-
ment with the previous work23,29,42,43. By using SMILEs, we are
able to precisely quantify the magnitude of UIV and UMD (Fig. 1b,
c). In general, UMD is the largest over land, the high-latitude
oceans and the tropical Pacific. The largest magnitudes of UMD

are found in the Arctic and over the Southern Ocean. The
magnitude of UIV does not vary much across the globe. We can
also assess the importance of UMD by comparing UMD and UIV

and computing the percentage of the combined variance of the
two quantities due to UMD (Fig. 1d). Where UIV is of a similar
magnitude to UMD, an individual SMILE could cover the uncer-
tainty in UMD itself. In these regions, even if the models agree on
the projected change, the range of changes that could be observed
is considerable due to the large UIV. Conversely, UMD is most
important where these model-to-model differences are much
larger than UIV (Fig. 1d, red regions). We find that for ΔT, UMD is
larger than UIV in almost all areas of the globe, except the Eastern
Australian coastline where the two contributions are of similar
magnitude.

We next consider precipitation (Fig. 2). We find, similar to
previous work23,26, that ΔPF shows a large increase in the tropical
Pacific, a decrease over North-Eastern South America and Southern
Africa, a decrease over most of the subtropical Southern Hemi-
sphere and an increase over most of the high latitudes in both
hemispheres. We again precisely quantify the uncertainties and find
that for ΔP, UMD is the largest between approximately 20°S and 20°
N, while UIV is the largest in the Western tropical Pacific, and very
small in the high latitudes. Elsewhere across the globe, UIV is
generally homogeneous in magnitude. We find that UMD is larger
than UIV in most regions of the globe, with small areas where the
two uncertainties are of similar magnitude or UIV is larger. Overall,
for both long-term mean-state projections of ΔT and ΔP, UMD

dominates across most of the globe. These results confirm the
general results from previous studies, which have shown that UMD

is much more important than UIV on longer timescales for both ΔT
and ΔP9,10,13. This additionally tells us that by understanding why
the externally forced responses differ and improving model-to-
model agreement in those same responses in the future, we can
reduce the uncertainty in long-term projections for these variables.

Variability projections in the SMILEs. While previous studies
have used estimates to partition uncertainty into UMD and UIV for
temperature and precipitation projections9,10,13, they have been
not been able to quantify these uncertainties in the temporal
variability. In this section, we fill this gap by partitioning the
uncertainties as in Figs. 1 and 2 for ΔTσ and ΔPσ. The forced
response in temporal temperature variability itself (ΔTσF

, Fig. 3a)
is qualitatively in agreement with previous work27,29,44,45,
showing a general increase over the Southern Hemisphere land
masses and Africa, an increase over the Northern Hemisphere
subtropical land surface and a decrease over the Northern
Hemisphere high latitudes and the Southern Ocean. We find that
UIV for ΔTσ is the largest over the Arctic, the Northern Hemi-
sphere high-latitude land surface the Southern Ocean near the
continent edges, parts of Australia and the tropical Pacific
(Fig. 3b). UMD is the largest over the high-latitude oceans, the
tropical Pacific and in patches over the land surface. When
considering the relative magnitudes of the uncertainties (Fig. 3d),

Fig. 1 Long-term projections of the mean-state temperature response to external forcing (ΔT) and the associated uncertainties. a–d The six
single model initial-condition large ensembles (SMILEs), and e, f CMIP5 multi-model ensemble using the atmospheric sub-ensemble method (A-CMIP5;
see “Methods” for details) for the period 2050–2099 (RCP8.5 forcing) as compared to 1950–1999 (historical forcing). a, e Multi-ensemble-mean forced
response (ΔTF), b, f uncertainty due to internal variability (UIV), c, g uncertainty due to model-to-model differences (UMD) and d, h percentage variance
contribution of UMD to the sum of UMD and UIV.
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UIV is often larger or the same magnitude as UMD. In the tropics,
the two uncertainties are of similar magnitude or UMD is larger.
Elsewhere UIV is larger, except in the Southern Ocean near the
Antarctic continent and in patches of the Northern Hemisphere
high-latitude oceans, where UMD is larger than UIV.

We next show the same breakdown for ΔPσ in Fig. 4. Similar to
previous work, ΔPσF

increases in the tropical Pacific and generally
over the globe, with regions of decreasing variability over the
subtropical South-Eastern Pacific Ocean, the subtropical Atlantic
ocean and off the coast of South-Western Australia26. Unlike
Pendergrass et al.26, we find a decrease in ΔPσF

over the
subtropical North-Eastern Pacific, as well as over Northern South
America. These differences presumably occur because we
consider annual variability, while Pendergrass et al.26 consider

seasonal and daily variability. Both UIV and UMD are the largest in
the tropical Pacific, extending into the far Eastern Indian Ocean
and over the Indonesian region. For ΔPσ, UIV is more important
than UMD poleward 20° in both hemispheres. In the tropics, UMD

is generally larger than UIV. Unlike for ΔT and ΔP, we have
shown that for temporal variability projections over long
timescales, UMD does not necessarily dominate over UIV. For
ΔTσ, UIV is generally the same magnitude or larger than UMD,
except in parts of the tropics, the Southern Ocean and parts of the
far Northern Hemisphere oceans, while for ΔPσ, UIV is larger than
UMD for most regions outside the tropics. This result has
implications for understanding the spread of projected changes,
because in these regions, improving model-to-model agreement
may only have a limited impact on the spread of projections.

Fig. 2 Long-term projections of the mean-state precipitation response to external forcing (ΔP) and the associated uncertainties. a–d The six
single model initial-condition large ensembles (SMILEs), and e, f CMIP5 multi-model ensemble using the atmospheric sub-ensemble method (A-CMIP5,
see “Methods” for details) for the period 2050–2099 (RCP8.5 forcing) as compared to 1950–1999 (historical forcing). a, e Multi-ensemble-mean forced
response (ΔPF), b, f Uncertainty due to internal variability (UIV), c, g uncertainty due to model-to-model differences (UMD) and d, h percentage variance
contribution of UMD to the sum of UMD and UIV.

Fig. 3 Long-term projections of the temporal temperature variability response to external forcing (ΔTσ) and the associated uncertainties. a–d The six
single model initial-condition large ensembles (SMILEs), and e, f CMIP5 multi-model ensemble using the atmospheric sub-ensemble method (A-CMIP5,
see Methods for details) for the period 2050–2099 (RCP8.5 forcing) as compared to 1950–1999 (historical forcing). a, e Multi-ensemble-mean forced
response (ΔTσF

), b, f uncertainty due to internal variability (UIV), c, g uncertainty due to model-to-model differences (UMD) and d, h percentage variance
contribution of UMD to the sum of UMD and UIV.
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A new methodology for multi-model ensembles. The SMILE
analysis to separate UIV and UMD was not previously possible
with an ensemble of opportunity, such as CMIP5. We overcome
this limitation by treating models with the same atmospheric
component as the same “family” (see “Methods”, Supplementary
Tables 3, and ref. 6). The analogous approach is used for models
sharing the ocean component (Supplementary Table 4 and Sup-
plementary Fig. 9). By creating these sub-ensembles, we can now
estimate the forced response and internal variability for sets of
models that share components. We note that the sub-ensembles
include both different models, which share an atmospheric
component, and multiple ensemble members from the same
model where available. The general features and patterns found
from the SMILE analysis are remarkably well captured using this
methodology (Figs. 1–4), demonstrating that this method can be
used to estimate UIV and UMD, without the need for many large
ensembles.

Differences between the SMILE analysis and the CMIP5
atmospheric sub-ensemble method used in this study could occur
for two main reasons. First, UIV could be overestimated in the
CMIP5 analysis as the models in the sub-ensembles are not the
same. This means that the uncertainty estimated as UIV contains
some of the uncertainty from UMD. Second, UMD could be
underestimated in both analyses. This could occur in the CMIP5
analysis because some of UMD is included in the estimate of UIV.
It could also occur in the SMILE analysis as all models in CMIP5
are not available in the SMILE archive.

We find that ΔTF is larger in the SMILEs than in CMIP5,
except for in parts of the Southern Ocean, the North Atlantic and
in the Arctic above Europe (Supplementary Fig. 10a). This could
occur due to the different models used in the different analyses or
due to sampling errors in CMIP5. We find that for the mean-state
projections, UIV is generally smaller and UMD is larger in the
SMILE analysis (Supplementary Fig. 11a, b, e, f), likely due to the
overestimation of internal variability in the CMIP5 analysis. We
find that the estimate of UIV for ΔT is much larger, and UMD is
slightly smaller when using CMIP5 compared to the SMILEs
(Supplementary Fig. 11a, e). For ΔP, the two methods show
differences mainly between 20oN and 20oS (Supplementary
Fig. 10e–g). UIV is again overestimated by the CMIP5 analysis
(Supplementary Fig. 11b), although the magnitude of this

overestimation is much less than for ΔT. When considering
UIV for ΔTσ, the differences between the two methods are small,
except in the far high-latitude oceans where UIV is somewhat
overestimated by the CMIP5 sub-ensembles (Supplementary
Figs. 10j and 11c). UMD for ΔTσ shows regions of both over- and
underestimation; however, this quantity is more likely to be
overestimated globally (Supplementary Figs. 10k and 11g). For
ΔPσ, the main differences between the methods are found in the
tropical Pacific (Supplementary Fig. 10m–o). For both ΔTσ and
ΔPσ, the ratio of UIV between the two methods is much closer to
one than for ΔT and ΔP (Supplementary Fig. 11c, d).

For the four quantities considered (ΔT, ΔP, ΔTσ and ΔPσ), the
two methods generally agree on whether UIV or UMD is larger
(Supplementary Fig. 10d, h, l, p). This increases confidence in our
assessment of the relative importance of each uncertainty. It also
indicates that the methodology using the sub-ensembles can
generally provide a reasonable assessment of the relative
importance of UMD and UIV to the projection uncertainty when
only a single member or small ensemble is available for some of
the models. This should prove useful for understanding
uncertainty in the CMIP6 models database that is currently
being developed if, as expected, many modelling groups only
provide a single or a small number of ensemble members for a
given forcing scenario.

Global assessment of model-to-model agreement. In the pre-
vious sections, we quantified UMD and UIV and compared their
relative magnitudes. Now, we investigate model-to-model agree-
ment on the sign of the forced response in 2050–2099 as com-
pared to 1950–1999 for the same four quantities (ΔT, ΔP, ΔTσ
and ΔPσ; Fig. 5). We show SMILE agreement on the sign of the
change across the globe in colour (red for an increase and blue for
a decrease) and the CMIP5 agreement, using the atmospheric
sub-ensemble method, in stippling (dots for a decrease and plus
signs for an increase). ΔTF increases at all locations in all six
SMILEs, except the North Atlantic Ocean and two patches in the
Southern Ocean. For CMIP5, we find agreement on an increase in
ΔTF at all locations. Model-to-model agreement in ΔTσF

is more
fragmented. Small areas in the tropics and extratropics show
model-to-model agreement, such as the far-East Pacific where

Fig. 4 Long-term projections of the temporal precipitation variability response to external forcing (ΔPσ) and the associated uncertainties. a–d The six
single model initial-condition large ensembles (SMILEs), and e, f CMIP5 multi-model ensemble using the atmospheric sub-ensemble method (A-CMIP5,
see “Methods” for details) for the period 2050–2099 (RCP8.5 forcing) as compared to 1950–1999 (historical forcing). a, e Multi-ensemble-mean forced
response (ΔPσF ), b, f uncertainty due to internal variability (UIV), c, g uncertainty due to model-to-model differences (UMD) and d, h percentage variance
contribution of UMD to the sum of UMD and UIV.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20635-w

6 NATURE COMMUNICATIONS |          (2021) 12:788 | https://doi.org/10.1038/s41467-020-20635-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


there is a decrease in ΔTσF
in both the SMILEs and CMIP5 and

Central–South America where both the SMILEs and CMIP5 show
a increase in ΔTσF

. There are extended areas of model-to-model
agreement in both the SMILEs and CMIP5 showing a decrease in
ΔTσF

in the high latitudes particularly over the Southern Ocean
and the Northern Hemisphere high-latitude continental land
masses. Where there is model-to-model agreement in the
SMILEs, there is often also CMIP5 agreement, particularly in
regions where ΔTσF

decreases. This is, however, not always the
case. For example, over Northern Africa, the SMILEs show a large
region of agreement on an increase in ΔTσF

that is not found in
CMIP5.

The spatial map of model-to-model agreement on the sign of
the forced response is very similar for both ΔPF and ΔPσF

. Most
locations poleward of 40o show agreement of an increase in both
quantities. While there is some agreement between 40oS and
40 °N, areas such as most of South America and Australia show
no agreement on the sign of the change. There is model-to-model
agreement found in large areas of the ocean basins between these
latitudes. There are also some differences between the two
quantities. While there is an agreement of an increase in ΔPF in
the tropical Western Pacific, this does not occur for ΔPσF

. We also
find much more agreement in the sign of the change over Africa
in ΔPσF

than in ΔPF. For both ΔPF and ΔPσF
there is almost

always CMIP5 agreement of the same sign of change in the same
locations as the SMILE agreement. The SMILEs are thus a good

proxy for the CMIP5 archive and we use them in the following
sections to delve into the forced changes in three areas that are
policy-relevant (i.e., sections of the land surface, the Arctic and
the tropical Pacific) to illustrate how the SMILE results can
be used.

An assessment of model-to-model agreement over the land and
the Arctic. We first compute the forced response over the new
IPCC-defined regions46 for Europe, the Arctic, Australia and
South-East Asia (Figs. 6 and 7) to determine whether there is
model-to-model agreement. We consider only the land surface
for all regions, except the Arctic where we consider land, ocean
and ice. In regions where five of the six SMILEs agree on the sign
of the change, there is a high agreement (83%) in the sign of the
change. In regions where all six SMILEs agree, we have a very
high agreement.

We first investigate ΔTF in Fig. 6a, b. For ΔTF, we find very
high agreement in the sign of the change over all regions
considered. However, there is less agreement in the magnitude of
the change, which varies between 3 and 4 °C over the three
European sectors, up to 10 °C over the Arctic, and 2–3 °C over
Australia and South-East Asia. This demonstrates that for ΔTF,
we have an agreement in the sign, but not the magnitude of the
change.

When considering ΔPF (Fig. 6c, d), we find that all models
show a decrease over the Mediterranean, which ranges from a
small decrease to 0.4 mm/day. We also find that all models show

Fig. 5 Model-to-model agreement on the sign of the response to external forcing. a Mean-state temperature (ΔTF), b temporal temperature variability
(ΔTσF

), c mean-state precipitation (ΔPF) and d temporal precipitation variability (ΔPσF ). The forced response is computed for the period 2050–2099
(RCP8.5 forcing) as compared to 1950–1999 (historical forcing). Red shows agreement on an increase in each quantity, while blue shows agreement on a
decrease. White regions show <83% agreement on the sign of the change (less than five of six single model initial-condition large ensembles (SMILEs)
agree). Stippling shows where there is 79% agreement on the sign of the change using the atmospheric CMIP5 sub-ensembles (11 or more out of the
14 subsets agree), with crosses indicating an increase and dots indicating a decrease. The measures of agreement correspond to a significance level of 0.01
using a binomial distribution.
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Fig. 6 Mean-state ensemble-mean single model initial-condition large-ensemble (SMILE) projections of the response of temperature (T) and
precipitation (P) to external forcing for Europe, the Arctic, South-East Asia and Australia. Forced response over each region in each individual SMILE
(Δs,F, coloured circles) and the SMILE mean (ΔF, black circle) are shown for the period 2050–2099 (RCP8.5 forcing) as compared to 1950–1999 (historical
forcing). The panels show Δs,F and ΔF for a T over Europe and the Arctic, b T over South-East Asia and Australia, c P over Europe and d P over South-East
Asia and Australia. Error bars are computed by bootstrapping 1000 times with the matlab bootci function for the mean. We note that the error bars are very
small when compared to the model-to-model differences and are not visible in the figure. Regions are the Mediterranean (MED), Central Europe (CEU),
Northern Europe (NEU), Arctic (ARO), Southern Australia (SAU), Central Australia (CAU), Northern Australia (NAU) and South-East Asia (SEA). All
regions are defined as in Iturbide et al.46. Only the land surface is considered over all regions except ARO, where land, ocean and ice are used.

Fig. 7 Mean-state ensemble-mean single model initial-condition large-ensemble (SMILE) projections of the response of temporal temperature
variability (Tσ) and temporal precipitation variability (Pσ) to external forcing for Europe, the Arctic, South-East Asia and Australia. Forced response
over each region in each individual SMILE (Δs,F, coloured circles) and the SMILE mean (ΔF, black circle) are shown for the period 2050–2099 (RCP8.5
forcing) as compared to 1950–1999 (historical forcing). The panels show Δs,F and ΔF for a Tσ over Europe and the Arctic, b Tσ over South-East Asia and
Australia, c Pσ over Europe and d Pσ over South-East Asia and Australia. Error bars are computed by bootstrapping 1000 times with the matlab bootci
function for the mean of Eq. (10) (see “Methods”). Regions are the Mediterranean (MED), Central Europe (CEU), Northern Europe (NEU), Arctic (ARO),
Southern Australia (SAU), Central Australia (CAU), Northern Australia (NAU) and South-East Asia (SEA). All regions are defined as in Iturbide et al.46.
Only the land surface is considered over all regions except ARO, where land, ocean and ice are used.
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an increase in ΔPF over Northern Europe, with all models
showing a magnitude of 0.3 mm/day, except GFDL-CM3, which
increases by almost 0.6 mm/day. ΔPF in the Arctic sector also
increases in all models with a range of possible magnitudes
(0.2–0.5 mm/day). South-East Asia also has an increase in ΔPF in
all models, with relative agreement on the magnitude of the
change in all models, except MPI-GE. Over Central Europe, all
models except MPI-GE show an increase or no change. This is
also true for Northern Australia, where all models except CSIRO
show an increase or no change. We find that the models agree on
either a small decrease or no change in ΔPF over Southern
Australia, with no agreement over Central Australia.

We find model-to-model agreement on a small increase or no
change in ΔTσF

over the Mediterranean and a small decrease or
no change in ΔTσF

over Central Europe (Fig. 7a, b). All models
show a decrease in ΔTσF

over Northern Europe, with all models
decreasing by about 0. 2 °C, except CSIRO, which decreases less.
There is either no change or an increase in all models over
Southern Australia. We find no model-to-model agreement in the
sign of ΔTσF

over the Arctic, Central and Northern Australia and
South-East Asia (Fig. 7a, b).

Finally, we consider ΔPσF
(Fig. 7c, d). All changes in ΔPσF

over
Europe are relatively small (<0.08 mm/day). We find agreement
of the increases over Central and Northern Europe, and the
Arctic. Over Northern Europe, the magnitude is around 0.04 mm/
day in all models, and all models show the same increase over
Central Europe except GFDL-CM3. There is no agreement over
the Mediterranean and Southern Australia, but the changes are
small, so this could indicate agreement of limited change. There is
also no agreement over Central and Northern Australia; however,
in this case, the differences in magnitude are larger. Finally, over
South-East Asia, all models agree on an increase in ΔPσF

except
CSIRO, which shows a decrease.

In general, when all models agree on the sign of the change bar
one, the outlying model is CSIRO, with MPI-GE being the outlier
for ΔPF over Central Europe. However, when all models agree on
the magnitude of the change, except one, the outlying model is
most often GFDL-CM3. We more often find agreement over
Europe and the Arctic than the Australian and South-East Asian
regions, with Central and Northern Australia showing the least
agreement overall.

An assessment of model-to-model agreement in the tropical
Pacific. In this section, we examine tropical Pacific projections. In
this region, climate models largely agree on projected El Niño-like
warming associated with a slowdown of the Walker circulation in
the future47–49. However, a recent study argues that a La Niña-like
warming is physically consistent and occurs in at least one climate
model50. Furthermore, the earlier assessments47–49 were based on
analyses of multi-model ensembles of opportunity (CMIP3,
CMIP5), with only one ensemble member from each model. This
begs the question of whether the degree of agreement was over-
stated due to a lack of independence in the models considered by
chance due to the phase of the internal variability sampled. Using
the six SMILEs, we can now delve into where the models agree,
and determine which differences are truly due to UMD.

Figure 8a, c shows the forced response in the tropical Pacific
temperature gradient. While both ΔTF and ΔPF robustly increase
in the tropical Pacific, the gradient across the tropical Pacific does
not change consistently across the SMILEs. The SMILE mean
shows no change. Four of the SMILEs show an increasing
gradient (El Niño-like warming), although this is minimal in two
of them, while two show a decreasing gradient (La Niña-like
warming). This suggests that there may have been overconfidence
in the warming gradient response, which could be due to the use

of too many models that are not independent. On the other hand,
it may be that the models used to develop the SMILEs we have
analysed do not accurately represent the majority of CMIP3 and
CMIP5 climate models. Our results nevertheless indicate that we
should not necessarily assume El Niño-like warming and the
associated increase in strength of the Walker circulation is
correct. Equivalently, our results lower the confidence we have in
this aspect of the projections.

Projections of the forced change in the El Niño Southern
Oscillation (ENSO) itself in a warming world have become more
confident in the recent decade, with many studies showing an
increase in ΔPσF

in the Central-to-Eastern Pacific and a decrease
in the far-Western Pacific28,51. In addition, a recent study has
demonstrated a robust increase in ENSO Eastern Pacific ΔTσF

30.
However, changes in ENSO can be difficult to assess due to the
high internal variability. Indeed, another recent study has shown
that a large part of the CMIP5 spread can be replicated using a
single SMILE, suggesting that a lot of what has been previously
identified as model-to-model differences may just be large
internal variability52.

Figure 8b, d shows the forced response of ΔTσF
and ΔPσF

over
the full, far West, West, Central and Eastern tropical Pacific. Only
the far-Western Pacific and the Eastern Pacific show high model
agreement for ΔTσF

, with five models showing a decrease in both
regions. This result is at odds with a recent study that shows a
more likely increase in ENSO variability in the future30. This is
likely due to the consideration of different regions, seasons and
metrics; however, it suggests that there is still more work needed
in this region to reconcile these results. Projections of ΔPσF

show
more agreement, with five of the six models agreeing on an
increase or no change in the West, East and Central Pacific. The
far-West Pacific shows no model agreement. These results agree
well with previous work that finds a more robust increase in the
Central and East Pacific than the West28. These results can also be
seen in Fig. 5, which shows model-to-model agreement of a
decrease in ΔTσF

in the far West and East of the tropical Pacific
and an increase in ΔPσF

in the Central-to-Eastern tropical Pacific.
Previous studies have usually investigated the austral summer

season as this is when the largest ENSO variability occurs. When we
investigate this season (December, January and February, Supple-
mentary Fig. 12), we find no agreement in any region for ΔTσF

and
now only agreement in the East and Central Pacific for ΔPσF

. When
investigating ENSO, it is important to use models that represent
ENSO processes well. Three separate studies30,53,54 have consis-
tently suggested that GFDL-ESM2M and CESM-LE represent
ENSO well. However, these two models only agree on the forced
response in ΔTσF

and ΔPσF
, in the far-West Pacific, showing that

good performance in simulating the past does not necessarily
translate into consistent projections of the future change and
highlighting that more work needs to be done in this region to truly
understand the future projections from different models.

Discussion
We have used six SMILEs to quantify the uncertainty due to
model-to-model differences and internal variability in projections
of temperature, precipitation and their temporal variability under
strong forcing in the period 2050–2099 (RCP8.5) as compared to
1950–1999 (historical forcing). The six SMILEs have been pre-
viously shown to be largely independent or to behave indepen-
dently, and they span the CMIP5 model space well. We find that
the uncertainty in ΔT and ΔP is dominated by UMD similar to
previous studies that show that UMD tends to dominate over long
timescales9,10,13. However, for ΔTσ and ΔPσ, UMD no longer
dominates; UIV is generally larger than UMD in the extratropics,
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with UMD larger or a similar magnitude to UIV elsewhere. This
demonstrates that for temporal variability, an increase in model-
to-model agreement may not necessarily decrease the spread of
projections on long timescales, in contrast to mean-state tem-
perature and precipitation projections.

We have additionally estimated both UMD and UIV using a multi-
model ensemble of opportunity by forming sub-ensembles of CMIP5
models that have a similar atmospheric component. By imple-
menting this new method, which uses the entire CMIP5 archive, we
are able to emulate the SMILE results and consistently determine
whether UMD or UIV is the dominant source of uncertainty.

By quantifying the size of UMD and assessing the ensemble-
mean response to external forcing in each SMILE, we have more
accurately identified the extent to which models exhibit robust
differences in their response to external forcing as compared to
previous studies that used multi-model ensembles. This quanti-
fication was not possible in the previous studies, because they
were unable to tell whether the models showed different
responses due to UMD or UIV. For the tropical Pacific, we find that
there are model-to-model differences in the sign of the forced
response in both Tσ in the Central and Western tropical Pacific
and in Pσ in the far-Western Pacific, although there is more
agreement in the other regions of the tropical Pacific.

While we identify regions where there are model differences in
the sign of the forced response, we also find extended areas of
model-to-model agreement. All models agree that temperature will
increase in all regions bar the Northern North Atlantic Ocean and
parts of the Southern Ocean. We also find large areas of agreement
in both increases and decreases in precipitation and its temporal
variability and a high degree of agreement in a decrease of temporal
temperature variability in the high latitudes. When considering
model-to-model agreement in the sign of the forced change, we find
a high degree of agreement between the SMILEs and the CMIP5
atmospheric sub-ensembles, which strengthens these results.

We have assessed the degree of model-to-model agreement not
only for the sign of the change, but also for the magnitude. Even

for regions where there is a high degree of agreement on the sign
of the change, the magnitude of the externally forced change can
vary across models by up to 4 °C over the land surface for ΔTF
due to UMD alone. These model-to-model differences in magni-
tude are amplified in the Arctic where the magnitude of the
increase in ΔTF varies across the models by 10 °C in agreement
with previous studies that find large differences in temperature
projections in this region55,56.

The value of the methods used in this paper is in quantifying
the uncertainty in both the sign and magnitude of the forced
response, as well as determining the spread of what we could
observe due to internal variability in the climate system. When
using a multi-model ensemble such as CMIP5, we can reasonably
estimate the agreement in the sign of the forced change (see the
similarity between Fig. 5 and Supplementary Fig. 13); however,
we cannot partition the uncertainty into UMD and UIV, which
means we cannot identify differences in the magnitude of the
forced response nor determine how much of the multi-model
spread is due to different types of uncertainty. While some esti-
mates of the magnitude of each type of uncertainty can be made
using a pre-industrial control for mean-state quantities such as
ΔT and ΔP, this partitioning is not straightforward and involves
making assumptions. Indeed, this becomes even more difficult for
ΔTσ and ΔPσ to the point where it has not even been attempted
for these variables. By using SMILEs, we can easily partition the
uncertainty and determine what causes the CMIP5 spread for
different quantities (Fig. 9).

When considering the example of ΔT over the globe (Fig. 9, top
row), we can see that the CMIP5 distribution can be attributed to
UMD alone, consistent with the previous approaches9. For ΔTσ
over Northern Europe (Fig. 9, middle row), it becomes clear that
the opposite is true and that most of the range of different
responses in CMIP5 are due to UIV alone. In this case, the models
agree on the magnitude of the forced response; however, using
CMIP5 alone, we would not be able to identify this. Finally, the
spread in the CMIP5 estimate of South-East Asian ΔPσ is due to

Fig. 8 Projections of externally forced changes in temperature (T), precipitation (P) and their temporal variability (Tσ and Pσ) in the tropical Pacific.
Forced response over the full (160°E–260°E), East (220°E–260°E), Central (190°E–240°E), West (160°E–220°E) and far West (120°E–160°E) Pacific (all
between 5°S and 5°N) in each individual single model initial-condition large ensemble (SMILE) (Δs,F, coloured circles) and the SMILE mean (ΔF, black
circle) are shown for the period 2050–2099 (RCP8.5 forcing) as compared to 1950–1999 (historical forcing). The panels show Δs,F and ΔF for a T, b Tσ, c P
and d Pσ. Horizontal lines are shown between the East and West Pacific to illustrate the proportional change in each variable. Error bars are computed by
bootstrapping 1000 times with the matlab bootci function for the mean (see a note in “Methods” for Tσ and Pσ errorbar calculations).
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both UMD and UIV. Furthermore, we illustrate a broad con-
sistency of the SMILE results with the atmospheric sub-sampled
CMIP5, from which we would draw the same conclusions as the
SMILEs. Using both the SMILE and atmospheric sub-ensembles
in Fig. 9, we can now identify model-to-model agreement in the
magnitude as well as the sign of the forced response, and deter-
mine the range of potential observed futures due to internal
variability adding important information to the CMIP5 archive
traditionally used (Fig. 9, far-right panels).

The partitioning of model uncertainties into UMD and UIV has
important implications. UMD is in principle reducible and
quantifying it has implications for model development as well as
understanding confidence in our projections. By contrast, quan-
tifying the irreducible UIV is important for adaptation purposes,
because people need to know the range of outcomes they have to
prepare for. The methods presented in this study will remain
important as we move to the next generation of climate models.

Methods
Models used. We use six SMILES in this paper. The SMILEs are CanESM232,
CESM-LE31, CSIRO-Mk3-6-036, GFDL-ESM2M38, GFDL-CM337 and MPI-GE16

(details in Supplementary Table 1 and Supplementary Figs. 5–8, Deser at al.33). We

additionally use all ensemble members from CMIP5 that were available for both
historical and RCP8.5 scenarios. For our analysis, we use precipitation (in CMIP5,
pr) and surface temperature (in CMIP5, ts) fields (see Supplementary Table 2). We
then consider the change between the period 2050–2099 as compared to
1950–1999 using annual-mean data from each model. When considering temporal
variability, the data were detrended before calculations. The SMILEs were
detrended by removing the ensemble mean at each grid point for each individual
month from each ensemble member before the annual means were computed.
CMIP5 ensemble members were linearly detrended at each grid point for each 50-
year period separately after annual means were computed. Annual means and
temporal variability were calculated, then all data was remapped using conservative
mapping to a 1° grid before additional analysis and intercomparison.

Calculation of UIV and UMD. Equations (6)–(8) are similar to those used by Rowell
et al.35. The correction term (Eq. (8)) occurs because the variance of the ensemble
means is a biased estimate of UMD as it still contains an element of internal
variability. The larger the ensemble size, the smaller this bias becomes and the
smaller the correction term becomes. We include this correction due to the lim-
itation of including some smaller ensembles. We find that the correction term is
negligible for T and P and regionally important for (Tσ) and (Pσ) (Supplementary
Fig. 14).

Calculation of Tσ and Pσ. In Eq. (10), we take the difference between standard
deviations. This is done because we are interested in the difference in temporal
variability between the two time intervals. This differs from the classical statistical

Fig. 9 The added value of using single model initial-condition large ensembles (SMILEs) and the CMIP5 atmospheric sub-ensembles over a multi-
model ensemble. a, d, g SMILE projections, with individual coloured dots representing each SMILE and the SMILE mean shown in the black dot; uncertainty
due to internal variability (UIV) is shown in the coloured error bars with the bootstrapped error on the mean shown in the small black error bars
(1000 samples using matlab bootci). Note that in most cases, the small black error bars are too small to be seen. b, e, h Atmospheric subset sub-ensemble
projections are shown in the red dots, with the blue dots representing sub-ensembles with only one ensemble member and the black dot the mean taken
over all of the sub-ensembles. c, f, i CMIP5 multi-model ensemble projections shown for all available ensemble members (red dots), the first member
(r1i1p1, blue dots) and the ensemble mean (black dot). Shown for the externally forced response of (a–c) mean-state temperature (ΔT) global mean, d–f
temporal temperature variability (ΔTσ) over Northern Europe (NEU) and g–i temporal precipitation variability (ΔPσ) over South-East Asia (SEA). The
percentage of models that agree on the sign of the change for CMIP5 is shown in the title of the CMIP5 panels. Only the land surface is used for NEU and
SEA. Projections are shown for the period 2050–2099 (RCP8.5 forcing) as compared to 1950–1999 (historical forcing). See a note in “Methods” for Tσ and
Pσ SMILE errorbar calculations.
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approach as the difference is not based on random variables, but the difference of
physical climate parameters in the temporal dimension. When calculating the
forced change in temporal variability in Eq. (11), the approach is similar to Eq.
(10). However, we need to first calculate the mean internal variability in each time
interval. Therefore, we use the square root of the ensemble-mean variance to
compute the mean temporal variability in each interval for the entire ensemble. To
calculate the multi-ensemble-mean change in Eq. (12), the approach is similar.
First, we compute the ensemble-mean variance for each SMILE in each time
period. We then average the ensemble-mean variance across the six SMILEs. We
then find the multi-ensemble-mean temporal variability in each time period by
taking the square root of the multi-ensemble-mean variance.

CMIP5 sub-ensemble calculations. The CMIP5 models were subset into groups
of models that shared an atmosphere component6. These subsets are shown in
Supplementary Table 3. The calculation of UMD and UIV was completed by treating
these groups as small sub-ensembles and completing the same calculations as for
the SMILEs described in the “Results” section. We note that the second correction
term for UMD is not used in these calculations. Here UMD is calculated as

UMD ¼
ffiffiffiffiffiffi
D2

p
ð13Þ

where D2 is the sample variance of the ensemble means as shown in Eq. (7).
We tested this sub-ensemble approach using both the atmosphere and ocean

components and found similar results (Supplementary Fig. 9). We also tested
whether this result could just occur from any type of data subset, by creating
random sub-ensembles. We find that the random approach does not work
(Supplementary Fig. 9).

Land, Arctic and Pacific calculations. Pacific boundaries are as follows: full (160°
E–260°E), East (220°E–260°E), Central (190°E–240°E), West (160°E–220°E) and
far-West (120°E–160°E) Pacific (all between 5°S and 5°N). The land and Arctic
boxes are defined as in Iturbide et al.46. For the boxes over land, the ocean is
masked using regridded masks on a 1° grid to only include the land surface. Each
model is masked using its own separate mask. The Arctic Ocean region (ARO) is
not masked, neither are the global changes shown in Fig. 9. When aggregating
variability over the different regions, we average the variance and take the square
root, similar to ref. 26. We note that bootstrapping is completed on the mean of Eq.
(10), not Eq. (11). We tested whether this approach changes the results, by com-
puting the mean of Eq. (11) and find limited differences. This is exemplified by the
fact that the means are surrounded by the bootstrapped estimates.

Data availability
The data that support the findings of this study are openly available at the following
locations: MPI-GE, https://esgf-data.dkrz.de/projects/mpi-ge/, all other large ensembles
(CanESM2, CESM-LE, CSIRO-Mk3-6-0, GFDL-ESM2M and GFDL-CM3); http://www.
cesm.ucar.edu/projects/community-projects/MMLEA/ and CMIP5, https://esgf-node.
llnl.gov/search/cmip5/. Derived data supporting the findings of this study are available at
http://hdl.handle.net/21.11116/0000-0007-4AFD-A.

Code availability
The code used to both process the data and create the figures for this paper can be
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