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ABSTRACT

The sensitivity of the climate to CO2 forcing depends on spatially varying radiative feedbacks that act both

locally and nonlocally. We assess whether a method employing multiple regression can be used to estimate

local and nonlocal radiative feedbacks from internal variability. We test this method on millennial-length

simulations performed with six coupled atmosphere–ocean general circulation models (AOGCMs). Given

the spatial pattern of warming, the method does quite well at recreating the top-of-atmosphere flux response

for most regions of Earth, except over the Southern Ocean where it consistently overestimates the change,

leading to an overestimate of the sensitivity. For five of the six models, the method finds that local feedbacks

are positive due to cloud processes, balanced by negative nonlocal shortwave cloud feedbacks associated with

regions of tropical convection. For four of these models, the magnitudes of both are comparable to the Planck

feedback, so that changes in the ratio between them could lead to large changes in climate sensitivity. The

positive local feedback explains why observational studies that estimate spatial feedbacks using only local

regressions predict an unstable climate. The method implies that sensitivity in these AOGCMs increases over

time due to a reduction in the share of warming occurring in tropical convecting regions and the resulting

weakening of associated shortwave cloud and longwave clear-sky feedbacks. Our results provide a step to-

ward an observational estimate of time-varying climate sensitivity by demonstrating that many aspects of

spatial feedbacks appear to be the same between internal variability and the forced response.

1. Introduction

Forecasting global warming is one of climate sci-

ence’s key challenges. As the atmospheric carbon di-

oxide concentration increases, the planet’s radiation of

energy to space becomes less than its absorption of

sunlight (Arrhenius 1896). This energy imbalance, the

radiative forcing, warms the surface, setting off pro-

cesses (radiative feedbacks) that close the imbalance,

restoring the system to a new steady state. We call the

global average of the radiative feedbacks the climate

feedback [also called the climate feedback parameter

(National Research Council 1979) or the thermal damp-

ing rate (Dessler 2013)]. The total warming in response

to a given increase in CO2 is thus determined by the

resulting radiative forcing and the climate feedback

(National Research Council 1979). The rate of warming

also involves the thermal inertia of the surface, mostly

due to oceanic heat uptake (Gregory et al. 2002).

Uncertainty in the climate feedback contributes the

most to uncertainty in future warming (Otto et al. 2013;

Lewis and Curry 2015; Lutsko and Popp 2019), in part

because of the inverse relationship between feedback

and sensitivity (Roe and Baker 2007).

Directly simulating radiative feedbacks is difficult

primarily because cloud feedbacks depend on small-scale

processes (Wetherald and Manabe 1988). Alternatively,

the climate feedback can be inferred from observations,
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either by solving for it using the observed warming,

observed deep ocean heat uptake, and simulated ra-

diative forcing (Gregory et al. 2002; Otto et al. 2013)

or by analyzing how the planet’s energy imbalance

changes as the surface temperatures varies month-to-

month or year-to-year (Forster and Gregory 2006;

Murphy et al. 2009; Dessler 2010; Cox et al. 2018;

Lutsko and Takahashi 2018; Jiménez-de-la-Cuesta and
Mauritsen 2019; Libardoni et al. 2019). These obser-

vational methods often assume that the climate feed-

back is constant, but many studies have shown that

it typically changes with time in simulations (e.g.,

Murphy 1995; Watterson 2000; Senior and Mitchell

2000; Armour et al. 2013; Jonko et al. 2013; Andrews

et al. 2015). While the temperature dependence of

feedbacks can cause this to occur under sufficient (and

likely strong) warming (Meraner et al. 2013; Bloch-

Johnson et al. 2015), the change occurs even after rel-

atively small amounts of warming (e.g., Armour et al.

2013; Andrews et al. 2015; Rugenstein et al. 2016).

Since warming in different regions sets off radiative

feedbacks of different strengths, the inconstancy of the

climate feedback is likely caused by the change in the

spatial pattern of warming with time (Winton et al.

2010; Armour et al. 2013). Since the temperature pat-

tern associated with internal variability differs from the

forced response, we should expect the climate feedback

associated with each to differ (Dessler 2013; Colman

and Hanson 2017), and in fact the climate feedback

appears to vary across the historical record (Gregory

and Andrews 2016; Fueglistaler 2019). The climate

feedback may vary between historical and future

warming (Zhou et al. 2016; Armour 2017; Proistosescu

and Huybers 2017; Andrews et al. 2018), although the

importance of this effect may be modest (Lewis and

Curry 2018).

Recent modeling work has explored a new framework

in which the climate feedback is a linear combination of

radiative feedbacks associated with different regions of

the surface, weighted by the temperature change in each

region (Zhou et al. 2017; Dong et al. 2019). This assumes

that the spatial radiative feedbacks themselves are

constant, with only the map of surface temperature

change evolving. This paper explores a corollary: since

internal variability creates an ever-changing pattern of

surface temperature and top-of-atmosphere radiative

imbalance, a sufficiently long record of this variability

should exhibit the behavior of these spatial radiative

feedbacks. In this paper, we propose and evaluate a

multiple regression (MR) method to estimate the spa-

tial radiative feedbacks of six atmosphere–ocean gen-

eral circulation models from control simulations, which

we compare to existing methods for estimating

feedbacks from internal variability (section 2). We

do so in spite of the known bias in regression

methods related to stochastic variation in top-of-

atmosphere fluxes (Spencer and Braswell 2008, 2011;

Choi et al. 2014; Proistosescu et al. 2018). We test the

method by convolving the estimated spatial feedbacks

with warming patterns from forced simulations per-

formed with the respective models (section 3), assessing

themethod’s accuracy in recreating aspects of the forced

response. We discuss insights the MR method provides

into climate dynamics, such as the competing nature of

local and nonlocal cloud feedbacks (section 4), and

summarize our findings (section 5).

2. Illustrating the MR method with a
conceptual model

In this section, we present a method for predicting

spatial feedbacks from records of unforced variability

using multiple regression. We first set up a conceptual

climate model designed to illustrate the method and

capture some features of the complex climate models

discussed in section 3. This conceptual model has two

regions of equal area. In each, the change in surface

temperature (Ti) is proportional to the net energy gain

of that region, which is the sum of the net downward top-

of-atmosphere (TOA) radiative flux (Ni), the net gain

from horizontal energy transport from the atmosphere

and ocean combined (2H in region 1,H in region 2), and

additional random forcing (Fsurf,i):

c
1

dT
1

dt
5N

1
2H1F

surf, 1
, (1)

c
2

dT
2

dt
5N

2
1H1F

surf, 2
, (2)

where ci is the surface thermal inertia associated with

region i. This model can be re-expressed in terms of

anomalies relative to an initial equilibrium state, so that

we consider T 0
i ,N

0
i ,H

0, andF 0
surf, i instead of Ti,Ni,H, and

Fsurf,i. We assume that heat transport is proportional to

the temperature gradient between the two regions:

H0 5 g(T 0
1 2T 0

2): (3)

Changes in a region’s top-of-atmosphere radiative fluxes

are caused by radiative feedbacks (li,j, which represents

the influence of surface temperature in region j on the

net TOA flux in region i), radiative forcing due to

changes in a forcing agent such as an increase in CO2

(FCO2, i), and radiative forcing due to random atmo-

spheric fluctuations that occur independently of surface

temperature (FTOA,i):
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N0
1 5 l

1, 1
T 0
1 1 l

1, 2
T 0
2 1F

CO2, 1
1F

TOA, 1
, (4)

N0
2 5 l

2, 1
T 0
1 1 l

2, 2
T 0
2 1F

CO2, 2
1F

TOA, 2
: (5)

The terms l1,1 and l2,2 are local radiative feedbacks,

while l1,2 and l2,1 are nonlocal radiative feedbacks

(where our sign convention ensures that a negative

l implies a negative, stabilizing feedback).

Nonlocal radiative feedbacks (Rugenstein et al. 2016;

Zhou et al. 2017; Po-Chedley et al. 2018; Dong et al.

2019) are changes in a region’s top-of-atmosphere flux

that occur due to changes in surface temperature

elsewhere, independent of local surface temperature

changes. For example, in Fig. 1, regions 1 and 2 represent

the convecting and subsiding branches of an overturning

cell respectively. Surface warming in region 1 propagates

vertically, warming region 1’s free troposphere, and then

horizontally into the free troposphere of region 2, in-

creasing H0. Region 2 now has a warmer troposphere,

which radiates more, decreasing N0
2. The resulting hori-

zontal advectionmay also increase the humidity of region

2’s free troposphere, increasing N0
2. Assuming region 2

has a subsidence-induced boundary layer inversion, its

low cloud cover could also increase, causing a further

decrease in N0
2. All of these changes in N0

2 occur inde-

pendently of any changes inT 0
2, and conspire tomake l2,1

positive or negative.

We note that an increase in H0 will also increase T 0
2

directly [Eq. (1); Feldl and Roe 2013b]. While this latter

effect is connected to nonlocal radiative feedbacks in

that both occur due to horizontal fluxes of heat and

moisture, the two effects are different, and can disagree

in the sign of the resulting surface warming, as demon-

strated by the above example. While the influence ofH0

on surface temperature is important for understanding

the evolution of the spatial pattern of warming, in this

paper we are focused only on the influence of surface

temperature on TOA radiative fluxes, and so we focus

on nonlocal radiative feedbacks.

Suppose that region 1 has a weak positive local feedback,

l1,1 5 0.5Wm22K21, and a stronger negative nonlocal

feedback, l2,1 5 22Wm22K21, so that the combined

feedback from region 1 is l1 = 21.5 Wm22 K21 (red solid

line, Fig. 2b). We also assume that the surface temperature

of the subsiding region 2 has no net effect onTOAfluxes, so

that l1,2 5 l2,2 5 l2 5 0Wm22K21 (gray solid line in

Fig. 2b). We assume that region 2’s thermal inertia is much

larger than region 1’s, representingmore ocean heat uptake

in this region (see the appendix for details).

We define the global climate feedback l to be the

dependence of the globally averaged net TOA flux on

the globally averaged surface temperature, that is

l(t)5
›N

›T
(t)5�

�
L
dT

dt
(t)
�

dT

dt
(t)

, (6)

where T5

�
T1

T2

�
, L5

�
l1, 1 l2, 1

l1, 2 l2, 2

�
, and a bar over a

quantity indicates the global average of that quantity.

We do not have to use an anomaly for N because N is 0

in equilibrium. Note that even though the spatial feed-

backs L are constant, the global feedback l can change

with time because of the evolving spatial pattern of

warming (dT/dt)(t).

We perform two 5000-yr experiments: a ‘‘control’’ ex-

periment, where all variations inT0
control(t) andN

0
control(t) are

due to random forcing at the surface

�
F0
surf(t)5�

F 0
surf, 1(t)

F 0
surf, 2(t)

��
and TOA

�
FTOA(t)5

�
F 0
TOA, 1(t)

F 0
TOA, 2(t)

��
, and

an ‘‘abrupt43’’ experiment in which the time series

T0
abrupt43(t) andN

0
abrupt43(t) also respond to an initial

step forcing akin to a quadrupling of CO2 concentra-

tion (FCO2, 15FCO2, 25 8Wm22).

For the abrupt43 simulation, the climate feedback

l5 ›N/›T 0 changes significantly around year 20. We

therefore define two forced feedbacks, l43,early and

FIG. 1. A schematic representation of the conceptual model used

in section 2, consisting of an overturning cell with a convecting

region (region 1) and a subsiding region (region 2). Warming of the

surface temperature T1 has nonlocal effects: it increases the hori-

zontal heat transport H, and it changes properties of the atmo-

sphere aloft in region 2 that affect its net top-of-atmosphere

radiative flux, N2, for instance by warming its free troposphere,

increasing its lower tropospheric stability, and therefore increasing

its low cloud cover. The dependence ofN2 on T1 (holding T2 fixed)

is an example of a nonlocal radiative feedback.
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l43,late, which are the slopes of the linear regressions of

Nabrupt43(t) against T
0
abrupt43(t) taken over years 1 to 20

and years 21 to 5000 respectively (Fig. 2c). Before

these regressions are taken, we average each annual

time series (gray dots) over roughly exponentially in-

creasing time periods (colored dots). The change in

feedback between the periods is Dl43 [ l43,late 2
l43,early.

We seek a method to predict l43,early, l43,late, and

Dl43 given T0
control(t) and N0

control(t) (internal variability)

and T0
abrupt43(t) (the spatial pattern of warming). The

simplest method would be to regress annual averages

of Ncontrol(t) against Tcontrol(t) to get the resulting re-

gression slope lcontrol (the slope of the blue line in

Fig. 2a) and to assume that l43,early 5 l43,late 5 lcontrol
(Forster and Gregory 2006; Murphy et al. 2009;

Dessler 2010). We call this the ‘‘global’’ method

because it uses information about changes in global

surface temperature only.

The radiative feedbacks associated with temperature

change induced by random forcing (i.e., Fsurf and FTOA)

differ from those induced by uniform greenhouse forc-

ing (FCO2
) (Dessler 2013; Colman and Hanson 2017;

Proistosescu et al. 2018). Our conceptual model illus-

trates how this can arise from spatial variation. Since the

thermal inertia in region 2 is larger, most of the tem-

perature variability occurs in region 1, so that lcontrol is

weighted toward the feedbacks associated with this re-

gion (lcontrol ’ l1,1 1 l2,1). The spatial pattern of

warming in the forced response is initially dominated by

region 1 as well, once more because it has the lowest

thermal inertia. As a result, the global method predicts

l43,early well (see Figs. 2c,d). However, the global

method always predicts Dl4x 5 0, as it assumes a con-

stant l. Since warming moves to region 2 over time and

l1,21 l2,2. l1,11 l2,1, Dl43 is positive. As a result, the

global method underpredicts the warming of the

abrupt43 simulation by about 1.5 K (Fig. 2c). To

FIG. 2. Two experiments are performed with the conceptual model in Eq. (1): (a),(b) an unforced ‘‘control’’

simulation and (c),(d) a forced ‘‘abrupt43’’ simulation. Values of N vs T 0 from each experiment are given by the

black dots in (a) and (c), representing annual averages for the control simulation and exponentially increasing

averages for the abrupt43 simulation. The global method assumes that the slope of the regression in (a) (blue line)

gives the slope of the black dots in the lower left panel, underestimating the increase in this slope over time [blue

lines andmarkers in (c),(d)]. The localmethod regressesN0
i againstT

0
i to estimate li for both regions [dotted lines in

(b)], which leads to an overestimate of the combined feedback associated with region 1 [l15 l1,11 l2,1, dotted red

line in (b)], and therefore an overestimate of the feedback early on [orange lines and markers in (c),(d)]. The MR

method, given sufficient years to regress over, correctly estimates all spatial feedbacks [dashed lines in (b)], ac-

curately predicting the feedbacks and its change with time [green lines and markers in (c),(d)].
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address this shortcoming, we need a method that ac-

counts for the spatial variation of feedbacks.

The ‘‘local’’ method is a commonly used method

[Boer and Yu 2003b; Crook et al. (2011); see the local

method in Feldl and Roe (2013a), Brown et al. (2016),

and Trenberth et al. (2015)] for estimating spatial

feedbacks. In this method, we construct llocal 5�
l1, local

l2, local

�
where li,local is the result of regressing

N0
i, control(t) against T

0
i, control(t). Taking the dot product of

llocal with T0
abrupt43(t) then provides an estimate of

N0
abrupt43(t) that we can use to estimate l43,early, l43,late,

and Dl43.
This method assumes all radiative feedbacks are local,

while allowing for the nonlocal effects of heat transport

(Feldl and Roe 2013b). However, if there are nonlocal

radiative feedbacks, then the local method can miss or

conflate their effects. In region 1, estimates of l1,local
tend toward l1,1 5 0.5Wm22K21 (dotted red line,

Fig. 2b), missing the negative nonlocal feedback l2,1.

Since the early period is dominated by warming in re-

gion 1, the local method overestimates l43,early (where

‘‘overestimating’’ implies that the estimate of l43,early is

more positive than the true value, even if both are

negative, resulting in an overestimate of the sensitivity).

On the other hand, T 0
2 tends to be positively correlated

with T 0
1, due to heat transport, while T 0

1 tends to be an-

ticorrelated withN0
2 because l2,1 is negative. As a result,

the local method predicts that l2,local is negative (dotted

gray line, Fig. 2b), even though T 0
2 has no net influence

on N. Since T 0
2 contributes more to warming over time,

the local method incorrectly predicts a more negative

feedback (Figs. 2c,d). Similar discrepancies can occur

when local feedbacks are used to diagnose feedbacks in

GCMs, which may explain instances when the local

method fails to predict feedback changes properly (Rose

et al. 2014). We need a method that includes nonlocal

feedbacks while accounting for correlation between

temperature in different regions.

We propose a multiple regression method (MR

method), which estimates the local and nonlocal feed-

backs associated withN0
i (i.e., the influence ofT

0
1 and T 0

2

on N0
i) by regressing N0

i, control(t) against both regions

simultaneously:

N0
i, control(t)5 l

i, 1,MR
T 0

1, control(t)1l
i, 2,MR

T 0
2, control(t)

1F
TOA, i

:
(7)

In least squares multiple regression, li,j,MR is the same

as the slope of the regression of N0
i, control(t)* against

T 0
j, control(t)*, where the star indicates that each time se-

ries is the residual after regressing against the surface

temperatures in all non-j regions (see the appendix).

This removes the effect of correlations between surface

temperature in different regions giving spurious

feedbacks, as with l2,local above. Multiple regression

has been used to estimate other surface temperature-

dependent feedbacks from internal variability, although

not radiative feedbacks (Liu et al. 2008; Li et al. 2012;

Li and Forest 2014; Liu et al. 2018). The dashed lines in

Fig. 2b show that, given sufficient time, theMRmethod

predicts the local and nonlocal feedbacks in each re-

gion, so that when we multiply the full matrix of esti-

mated spatial feedbacks LMR 5

�
l1, 1,MR l1, 2,MR

l2, 1,MR l2, 2,MR

	
by

T0
abrupt, 43(t) to estimate Nabrupt43 (t), the resulting

estimates l43,early, l43,late, and Dl43 are accurate

(Figs. 2c,d). Therefore, for this example, the MRmethod

is able to account for the difference in climate feedback

between internal variability and the forced response.

Random fluctuations in N influence T via planetary

energy gain at the same time that T influences N via

radiative feedbacks. As a result, T will tend to lag N

with a positive correlation, while N will lag T with a

negative correlation, so that regressions taken without a

lag will be biased toward 0 (Spencer and Braswell 2008,

2011; Choi et al. 2014; Proistosescu et al. 2018). This

issue does not occur for random forcing at the surface,

which only affects N indirectly through radiative feed-

backs. Therefore, themore stochastic forcing that occurs

at TOA (FTOA) as opposed to the surface (Fsurf), the

more the regression of N versus T will overestimate the

true radiative feedback. For the example in Fig. 2, Fsurf,1

and Fsurf,2 are white noise with variance 20W2m24,

while FTOA,1 and FTOA,2 are white noise with variance

5W2m24. Figure S1 in the online supplemental material

shows a case where these variances are 10 and 15W2m24

respectively, with the result that all three regression

methods overestimate l43,early and l43,late, while under-

estimating Dl43. In other words, given sufficient random

TOA forcing, regression estimates of spatial feedbacks

will be biased. We consider this bias in discussing our

results in the next section.

It should be mentioned that Proistosescu et al. (2018)

model ENSO variability as a distinct additional mech-

anism by which N and T mutually influence each other,

which similarly leads to overestimates of l from regression-

based methods. As part of their model, they assume that

T influences N with a lag of about three months. Since

this is beyond the time scale of most atmospheric pro-

cesses, we assume that this feedback propagates in part

through the ocean, so that the atmospheric component

may still operate through the same spatial feedbacks

that operate under other forms of variability and under

the forced response (e.g., it could occur due to a ‘‘trop-

ical atmospheric bridge’’ mechanism; Klein et al. 1999).
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3. Using the MR method on AOGCMs

To test the methods discussed above on atmosphere–

ocean general circulation models (AOGCMs), we

use simulations from LongRunMIP, an archive of

fully coupled millennial-length simulations of com-

plex climate models (Rugenstein et al. 2019). We

chose the six models with millennial-length control

and abrupt43 simulations for which we have monthly

output. Details of these models and simulations

are given in Table S1 in the online supplemental

material.

We alter the three methods from section 2 to reflect

the more complex nature of AOGCMs:

d CO2 forcing can lead to atmospheric changes that are

independent of surface warming. These ‘‘adjustments’’

to forcing occur mostly within the first year (e.g.,

Gregory and Webb 2008). We remove this year from

our analysis, redefining our early period to be years

2 to 20.
d For AOGCMs, there are more than two regions with

distinct behaviors. Dividing our models into n regions,

Eq. (7) becomes

N0
i(t)5 l

i, 1,MR
T 0
1, control(t)1 l

i, 2,MR
T 0
2, control(t)1 . . .

1 l
i, n,MR

T 0
n, control(t)1F

TOA, i
,

(8)

giving a system of n equations

N0(t)5LT0(t)1F
TOA

, (9)

where L is a matrix of feedbacks li,j. Each equation

in this system has n 2 1 degrees of freedom, so n

must be smaller than the length of the control

simulation, and preferably much smaller given the

significant spatial correlation of surface tempera-

ture. For simplicity, we divide the surface equally

in latitude and longitude, although this may miss

features of the climate system. Since our control

simulations last at least 1000 years (Table S1), we

use a 158 by 158 grid, giving 288 regions (Fig. 3).
d Circulations, and therefore radiative feedbacks, change

with season. Thus, we compute feedbacks for each

season individually, first by averaging all monthly

time series into seasonal time series (where the

seasons are DJF, MAM, JJA, and SON), and then

performing a separate regression for each season

[e.g., all DJF values of N0
control(t) against all DFJ

values of T0
control(t)], creating a set of four feed-

backs. We multiply each month of T0
43(t) by the

relevant seasonal feedback, and take the annual

average to estimate N0
43(t). We compare seasonal

averages to other approaches in Tables S2 and S3.

While seasonal averaging tends to reduce the error

in the MR method, the qualitative behavior of the

different methods is not affected by the choice of

time averaging.

Figures 3 and 4 show N versus T 0 of the control and

abrupt43 simulations of the six models respectively.

FIG. 3. Plots of N vs T 0 for control simulations of six coupled atmosphere–ocean general circulation models (see Table S1 for details).

We use the simulations to estimate spatial feedbacks using the global, local, and MR methods. We regrid simulations to 158 3 158 grids,
giving 288 regions.
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Figure 4 also shows N estimated using the three

methods, assuming that each estimate starts with the

true value ofN at year 2. The solid lines in Fig. 4 are local

regressions of N against T 0 performed using LOESS

(locally estimated scatterplot smoothing; Cleveland and

Devlin 1988; see the appendix for more detail). We can

use the slopes of these lines mapped against the time

series of T to estimate feedbacks as a function of time

(lines in Fig. 5).

Although there is a range of feedback values between

models, all six forced simulations have a feedback that

gets less negative with time (black lines), consistent with

past results for similar models (Andrews et al. 2015).

The MRmethod (green lines) matches or overestimates

the feedback value, with this error tending to decrease

with time. This error can range from ;1Wm22K21 for

the early years of CESM1.0.4 and GISS-E2-R (i.e., at

least half of the feedback strength itself) to roughly 0 for

HadCM3L. The MR method correctly predicts that the

feedback gets less negative with time, although for

some of the models it underestimates the magnitude of

the change.

The global method (blue) overestimates the early

feedback. Since the global method is agnostic about the

pattern of surface warming, the predicted feedback is

mostly constant except for small differences due to

changes in the seasonal distribution of warming and in

seasonal feedbacks (e.g., the early years of HadCM3L).

As a result, as the true feedback increases with time, it

becomes more positive than the global estimate for half

the models. For some models, this allows the global

method to more accurately forecast the equilibrium

warming than the other methods, albeit due to com-

pensating errors in the early and later periods (i.e.,

CESM1.0.4 and MPI-ESM1.2 in Fig. 4).

The local method (orange) predicts a positive feed-

back for all models except GISS-E2-R, implying a cli-

mate unstable to external forcing, and does not predict

the increase in feedback with time seen in all models.

The dots in Fig. 5 represent estimates of l43,early and

l43,late (feedbacks before and after year 20; see the

appendix for details).We visualize the estimates of these

feedbacks and their difference using a scatterplot (black

dots in Fig. 6), as in Fig. 2d. The global andMRmethods

perform similarly for l43,early and l43,late, while the MR

method gets closer to accurately predicting Dl43, con-
sistent with the discussion around Fig. 4 and reflected

by the root-mean-square errors in Table 1 (for feedback

values for all models and components, see Tables

S7 and S8).

The terms N0 and l can be expressed as the sum of

shortwave (SW) and longwave (LW) terms, which can

FIG. 4. N vs T 0 for abrupt43 simulations of the same six GCMs from Fig. 3 (black dots). Colored dots show estimates of Nabrupt43(t)

made using the spatial feedbacks inferred from each model’s control simulation and its spatial pattern of warming [T0
abrupt43(t)] using the

three methods described in the text; year one is not included in any method. Larger dots represent averages taken over exponentially

increasing periods. Smaller gray dots show all years. Solid lines show local regressions using LOESS. Global estimates for GISS-E2-R do

not appear because it is nearly identical with MR estimates.
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be separated in turn into clear-sky (fluxes recalculated as

if no clouds were present) and cloud terms (the residual

of total and clear-sky terms; cloud feedbacks defined this

way may include changes in cloud masking rather than

in clouds themselves; Soden et al. 2004).

Examining these components individually shows that

the error in l43,early in the MR and global methods is

due primarily to SW cloud feedbacks (red markers in

Figs. 6a and 6b). Both theMR and global methods have

smaller errors in l43,late (Figs. 6d,e), but for the MR

method this is caused by a reduction in the error in SW

cloud, while for the global method this is due to off-

setting errors in the SW and LW cloud feedbacks (see

also Table 1). Cloud feedbacks are similarly the cause

of the local method’s large overestimation, while the

local method outperforms the other methods at pre-

dicting the primarily local SW clear feedback (Table 1).

Note that the global method has a relatively small error

for the LW clear feedback, consistent with Lutsko and

Takahashi (2018). The increase in feedback with time

(Dl43) and the variation in this increase between

models is driven by the SW cloud feedback (Figs. 6g–i).

The MR method has the smallest error in estimating

Dl43, with this error tending to be an underestimate.

Figures S2–S5 show feedback time series plots for all

component fluxes.

All methods examined contain some degree of error.

We can find the geographic source of these errors by

looking at the true and estimated normalized change in

N0
43 (multimodel mean in Fig. 7; errors in the multi-

model mean and for individual models in Figs. S6–S8),

calculated by taking the finite difference in N0
43(t) be-

tween the first and last part of the indicated time period,

where each part contains similar amounts of warming

(see the appendix). The difference is normalized by the

global temperature change, allowing intermodel com-

parison. For the global method, we make this estimate

by regressing N0
control(t) against T

0
control(t) [the ‘‘global’’

method in Feldl and Roe (2013a) and the ‘‘local con-

tribution’’ in Boer andYu (2003a,b), Crook et al. (2011),

Zelinka et al. (2012), and Andrews et al. (2015)] and

using this as the predicted normalized change in N0
43.

The MR method does quite well at recreating the

multimodel spatial pattern of TOA flux change, both for

net and component fluxes (Figs. S9–S12), with the ex-

ception of regions south of 308S and the North Atlantic.

The MR method also overestimates the change in these

regions in individual models (Figs. S6–S8). The error in

these regions has contributions from all component

fluxes, foremost the SW cloud feedback (for multimodel

mean component flux errors, see Figs. S13–S17). For all

periods, models, and fluxes except for SW clear sky

(which is primarily a local feedback), the MR method

outperforms the other two methods when scored by the

area-weighted root-mean-square error (Table 2; for com-

parison with annual or monthly approaches, see Table S3;

FIG. 5. True and estimated abrupt43 feedbacks as a function of time calculated using slopes of the local re-

gression from Fig. 4 (solid lines). Vertical dotted lines show the division between the early (2–20 yr) and late (21 yr–

end) periods. Dots show true and estimated values of l43,early and l43,late. Feedbacks get more positive over time

for all models. The MR and global methods initially overestimate feedbacks. TheMR estimate increases with time

as well, while the global method predicts a roughly constant feedback. The local method greatly overestimates the

true feedback for all models except GISS-E2-R. Figures S2–S5 give the same plot for component fluxes.
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for values for individual models, see Table S4; for details

on the error metric, see the appendix). Specifically, the

global method has large compensating errors, espe-

cially in the tropics, and the local method overesti-

mates the change almost everywhere (Figs. S6–S8).

There are several potential explanations for the MR

method’s overestimate for TOAfluxes south of 308S and
over the North Atlantic. These may be regions where

there is significantly more stochastic forcing at TOA

than at the surface, resulting in a similar overestimation

to that discussed in section 2 and shown in Fig. S1.

Alternatively, the spatial feedbacks that influence N0 in
these regions may be nonlinear, either in that they

change in value as the world warms (e.g., a reduction in

the strength of the SW clear feedback once sea ice melts),

or the effect of warming in different regions combines

nonlinearly, as might occur in response to circulation

changes such as a shift in the midlatitude jet; or surface

fluxes may influence N0 there independently of surface

warming. Further research is needed to diagnose this error.

In spite of this overestimate, the MR method can be

used to explain the multimodel forced TOA flux re-

sponse for roughly three-quarters of Earth using feed-

backs estimated from internal variability (see Table S5

and S6, which show the same error metrics as Tables 1

and 2, using only TOA fluxes north of 308S). We now

discuss the spatial feedbacks estimated by the MR

method, as well as some of their implications.

4. Discussion

We first test if the spatial feedbacks estimated using

the MR method exhibit behavior broadly consistent

with physically modeled feedbacks. The ith column ofL

TABLE 1. Feedback errors. Root-mean-square errors of estimates of abrupt43 feedbacks (l43,early, l43,late) and their change with time

(Dl43), for net TOA fluxes and each component flux (in Wm22 K21) and for the seasonal versions of the three methods presented in

section 2 (see the appendix for details). For annual and monthly values, see Table S2, and for fluxes north of 308S, see Table S5.

Net LW clear SW clear LW cloud SW cloud

MR Global Local MR Global Local MR Global Local MR Global Local MR Global Local

Early 0.69 0.74 2.54 0.08 0.12 0.63 0.18 0.48 1.21 0.13 0.23 0.02 0.45 0.55 1.19

Late 0.29 0.26 1.87 0.15 0.21 0.47 0.13 0.52 1.09 0.31 0.35 0.17 0.2 0.6 0.65

Change 0.44 0.73 0.78 0.12 0.17 0.22 0.08 0.11 0.18 0.19 0.13 0.17 0.39 0.57 0.64

FIG. 6. True vs estimated feedbacks for the (a)–(c) early and (d)–(f) late periods, and (g)–(i) the change between

them. Black dots give values for the net feedback, while colored markers give values of the component feedbacks,

which sum to the net feedback. TheMR and global methods overestimate the early feedback due to SW cloud (red)

feedbacks. The MR estimate of the late period in (d) has a small error across all components, while the global

estimate in (e) has a smaller net error due to offsetting errors betweenLWand SWcloud feedbacks. As in Fig. 5, the

MRmethod is able to capture some of the change in feedback, while the global method does not. The local method

greatly overestimates the net feedback, primarily due to cloud feedbacks. Numerical values of the feedbacks are

given in Table S7 and S8.
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represents the change in N0 from warming in region i.

Zhou et al. (2017) performed fixed-SST experiments

with the CAM5model where the temperature in region i

was perturbed. The top row of Fig. 8 shows spatial cloud

feedbacks for three representative regions calculated

using this approach. The bottom row shows the multi-

model and multiseason mean response for warming in

similar regions estimated by the MR method. For both

approaches, warming in the extratropics or in regions of

tropical subsidence produces cloud feedbacks that are

mostly local and positive, while warming in tropical

convecting regions has significant nonlocal feedbacks

that are mostly negative. Since the models, region sizes,

and degree of perturbation differ, the details and mag-

nitudes of the feedbacks differ. Further, the fixed-SST

method allows land temperatures to evolve freely, so

that regions that have significant nonlocal effects, like

tropical convecting regions, can cause large changes in

TOA fluxes over land (Fig. 8b). The MR method is able

to estimate land feedbacks directly, so that TOA flux

changes due to land warming are not included in these

tropical convecting feedbacks (Fig. 8e). See also Fig. 4 in

Dong et al. (2019).

The top left panel of Fig. 9 shows a map of the mul-

timodel and multimonth mean spatial feedbacks esti-

mated by the MR method: the change in N caused by

warming in each region divided by that region’s frac-

tional area (so that smaller polar regions do not have

artificially smaller feedbacks). Spatial feedbacks are

strongly negative in regions of tropical convection (e.g.,

Indonesia and Central America) and are mostly positive

over the tropical oceans in regions of atmospheric sub-

sidence as well as much of the extratropical oceans, in

keeping with the examples from Fig. 8. These strongly

TABLE 2. Spatial errors. The model-mean area-weighted root-mean-square error of estimates of the warming-normalized change in

TOA fluxes during the early and late periods of the abrupt43 simulations, and the change in pattern between these period (see the

appendix for details). All values have units of Wm22 K21. For annual and monthly versions in addition to seasonal, see Table S2, for

individual models see Table S4, and for fluxes north of 308S, see Table S6.

Net LW clear SW clear LW cloud SW cloud

MR Global Local MR Global Local MR Global Local MR Global Local MR Global Local

Early 1.02 3.41 2.77 0.33 2.29 1.02 0.7 5.23 2.15 0.82 1.09 0.71 1.05 5.15 2.25

Late 0.8 3.08 1.86 0.34 2.27 0.75 0.52 5.13 1.67 1.28 1.21 1.03 1.09 5.1 1.85

Change 0.74 1.14 1.26 0.27 0.91 0.42 0.54 0.72 0.83 0.84 0.79 0.79 1.01 1.27 1.37

FIG. 7. Multimodel mean spatial pattern of net TOA flux change associated with the (top) early and (middle) late periods, and (bottom)

the change between them, calculated by taking the finite difference across each period. Changes are normalized by the total warming in

each period, giving units of Wm22 K21. TheMRmethod is close to the true pattern except for overestimates south of 308S and during the

early period in the North Atlantic. This holds for individual flux components as well (Figs. S9–S17). The global and local methods both

have substantial errors over most of the globe. Figures S6–S8 show errors (estimates 2 true values) for the multimodel mean and

individual models.
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negative feedbacks are robust when feedbacks are re-

calculated using just the first or second half of the control

simulations (Figs. S18–S22), although outside these re-

gions there is some noise, with the sign of roughly a third

of the net feedback cells differing between the first and

second halves. The variation in the spatial pattern is largely

determined by the SW cloud feedback (bottom left panel,

Fig. 9; for all flux components, see Figs. S19–S22).

a. Local and nonlocal feedbacks

The MR method allows us to split spatial feedbacks

into local (the diagonal elements ofL, giving the influence

FIG. 8. Net cloud feedbacks associated with warming in regions circled in green estimated for CAM5 (a)–(c) by

Zhou et al. (2017) using fixed-SST experiments or (d)–(f) as a multimodel and multiseason mean using the MR

method. For perturbations outside of tropical convecting regions [in (a), (c), (d), and (f)], the effects aremostly local

and positive, while perturbations in tropical convecting regions have significant negative nonlocal effects in many

regions of Earth [in (b) and (e)]. Note that the fixed-SST experiments in (b) allow some landwarming in response to

these perturbations, while theMRmethod in (e) is agnostic about whether the surface is land or ocean, and so does

not include resulting land warming.

FIG. 9. Multimodel and multiseason mean spatial feedbacks estimated by the MR method. (a) The estimated change in N caused by

warming a degree in each cell as weighted by the cell’s area. This is the sum of (b) local changes inN, which are almost uniformly positive,

and (c) nonlocal changes, which are usually negative, especially in regions of tropical convection. (d)–(f) The competing positive local and

negative nonlocal components are primarily due to the SW cloud feedback. For maps of all flux components and assessments of un-

certainty, see Figs. S18–S22. For spatial feedbacks of all methods, see Fig. S23. Compare with estimates of spatial feedbacks for CAM4 in

Fig. 5c of Dong et al. (2019).
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of warming on TOA fluxes directly overhead) and nonlo-

cal components (the off-diagonal elements of L), and to

calculate the local and nonlocal components of the map of

spatial feedbacks (middle and right columns of Fig. 9 re-

spectively). We note that the devision between local and

nonlocal feedbacks depends on grid resolution, with local

feedbacks in coarser grids incorporating more nonlocal

processes. For the grid considered in this paper, the local

feedback is positive almost everywhere, due to cloud

feedbacks (Figs. S21 and S22): in the tropics and in sub-

tropical subsiding regions, local warming reduces lower

tropospheric stability, leading to a loss of low clouds and a

positive SW cloud feedback (Klein and Hartmann 1993;

Wood and Bretherton 2006; Zhou et al. 2017; Dong et al.

2019). This result holds for each AOGCM except for

GISS-E2-R, which lacks a positive local SW cloud feed-

back (see Fig. S24 and Table S8). For most models, there

is a partially compensating negative local LW cloud feed-

back in tropical convecting regions, possibly due to an iris

effect (Lindzen et al. 2001; Mauritsen and Stevens 2015).

Outside of the tropics, there is a positive local LW cloud

feedback, possibly associated with an increase in middle

and high cloudiness as convection increases (Zelinka

et al. 2012).

Positive local feedbacks provide an explanation for

observational studies that use the local method to pre-

dict spatial feedbacks, finding that they are positive over

much of Earth and in the global mean (Brown et al.

2016; Trenberth et al. 2015). For example, the multi-

model mean feedbacks estimated using the local method

(top middle panel, Fig. S23) resemble the feedbacks in

the upper right panel of Fig. 10 in Trenberth et al.

(2015). While local method feedbacks can differ from

the local component of MR method feedbacks due to

correlation between temperature in different regions as

discussed in section 2, the observational studies provide

evidence that real world local feedbacks are substan-

tially positive. If we use the MR method to estimate the

local components of l43,early and l43,late (Table S8), we

get positive values for all models exceptGISS-E2-R. For

these models, the mean estimated local feedback is

3.37Wm22K21 for the early period and 3.13Wm22K21

for the late period (Table S8).

The MR method implies that in the absence of nega-

tive nonlocal feedbacks, five out of six of theseAOGCMs

would be unstable to radiative forcing, even accounting

for the dominant stabilizing Planck feedback. The MR

method predicts that there are strongly negative nonlocal

feedbacks coming from regions of tropical convection

(upper right panel, Fig. 9), largely due to the SW cloud

feedback (lower right panel). This is consistent with

tropical convecting regions behaving similarly to region 1

of the conceptual model from section 2: surface warming

in the convecting tropics propagates throughout the

tropical free troposphere, increasing the temperature

aloft while leaving surface temperatures alone. This in-

creases the lower tropospheric stability, and thus low

cloud cover (a negative SW cloud feedback), as well as

the troposphere’s outgoing longwave radiation (a nega-

tive LW clear feedback) (Rose and Rayborn 2016;

Andrews and Webb 2017; Ceppi and Gregory 2017;

Klein et al. 2017; Zhou et al. 2017; Dong et al. 2019).

Note that incorporating these nonlocal interactions

changes both local and total values of the LW clear

feedback, giving different values than studies that

analyze this feedback purely locally (e.g., Koll and

Cronin 2018).

For the five models with positive local components,

the average nonlocal component of the abrupt4x

feedbacks is 24.21Wm22 K21 for the early period

and 23.69Wm22K21 for the late period (Table S8), so

that the net forced climate feedback is a small residual

between competing local and nonlocal feedbacks, with

local and nonlocal feedbacks strongly anticorrelated

between different models (Table S8; the correlation

coefficient for early period non-GISS-E2-R local versus

nonlocal feedbacks is 20.96, and for late is 20.98). A

modest shift in the relative strength of these feedbacks

(e.g., due to a shift in circulation) could lead to large

changes in climate sensitivity; an increase in the local

feedback of only a third would be enough to make these

AOGCMs unstable (local and nonlocal feedbacks differ

by;1Wm22K21, which is on average roughly a third of

the magnitude of the local feedback for the non-GISS-

E2-R models). Additional research is needed to un-

derstand what mechanisms cause the anticorrelation

between local and nonlocal feedback strength, and

whether we expect this cancellation to hold in different

climate states. Given that the local/nonlocal cancella-

tion does not hold in all contexts—for example, the

nonlocal feedback’s seasonal cycle has a larger ampli-

tude and is more latitudinally constrained than the lo-

cal feedback’s seasonal cycle (Fig. S25)—it is unlikely

that this cancellation is purely a statistical artifact. Our

findings have a bearing on exoplanet research, as they

suggest that it may be harder to have a cloudy atmo-

sphere with a stable climate than previously thought

(Leconte et al. 2013), potentially reducing the chance

of finding habitable worlds.

b. The cause of the increase in climate feedback
over time

For all six models, the change in feedback with time

(Dl43) is positive, primarily because of the SW cloud

feedback, and secondarily the LW clear feedback (Fig. 4

and Table S7). The MR method gets the correct sign of
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Dl43 but underestimates this increase for each model,

once more primarily due to the SW cloud feedback

(Table S8).

We can estimate how much the change in the spatial

pattern of warming with time (Fig. 10a) contributes to

Dl43 by multiplying this change by the MR estimate of

the spatial pattern of feedbacks for each flux component

(Fig. 9; see also Figs. S18–S22). The resulting maps show

the contribution of the change in warming pattern to the

change in feedback (Figs. 10b–f).

The MR method identifies two main latitude bands

that contribute to the increase in feedback with time: the

tropics, whose convecting regions increase the SW cloud

and LW clear feedbacks [less warming in these regions

reduces the role of the strongly negative nonlocal

feedbacks discussed above, consistent with Andrews

and Webb (2017), Ceppi and Gregory (2017), Dong

et al. (2019), and Fueglistaler (2019)]; and the Southern

Ocean, which increases the SW clear feedback (due to

the delayed warming in this region leading to the de-

layedmelting of sea ice). TheMRmethod estimates that

the LW clear sky and SW cloud feedback have offsetting

negative contributions in the SouthernOcean.While the

LW clear sky offset is consistent with the total change in

the LW clear feedback being small, and with the LW

clear TOA flux change getting more negative in the

Southern Ocean due to a more strongly negative local

feedback (zonal figures in the top row of Fig. S19), the

change in the SW cloud TOA flux is too negative in this

region (lower left panel of Fig. S17), suggesting that the

SW cloud negative contribution is an error, and is likely

the reason for the MR method’s underestimate of Dl4x.
While the exact evolution of temperature patterns in

the tropics in AOGCMs may be incorrect due to cold-

tongue biases (Seager et al. 2019), our findings match

withDong et al. (2019) in that as long as the feedbacks in

tropical convecting regions are far more negative than

anywhere else, the delayed warming in regions of ocean

heat uptake will ensure an increase in sensitivity over

time. Observational evidence suggests that N depends

on tropical midtropospheric temperatures (Dessler et al.

2018; Ceppi and Gregory 2019; Fueglistaler 2019),

FIG. 10. (a) The multimodel mean change in the pattern of warming between the abrupt43 early and late period,

showing a shift toward regions of deep ocean heat uptake. (b)–(f) Multiplying this pattern byMR-estimated spatial

feedbacks gives an estimate of each grid cell’s contribution to the change in feedbackwith time,Dl43. Although the

resulting patterns are patchy, there are positive contributions from tropical convecting regions via the SWcloud and

LW clear feedbacks, and from regions of Southern Ocean sea ice in the SW clear feedback, as shown by the

accompanying zonal averages. The LWclear feedback has a compensating negative term from the SouthernOcean,

so that its total estimated contribution to Dl43 is smaller than the SW cloud feedback’s (e.g., Fig. S2 vs Fig S5).
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supporting our argument that a reduction in the share of

surface warming occurring in the tropical convecting

regions that set these temperatures likely influences

Earth’s sensitivity.

5. Conclusions

The global climate feedback, one of the key parame-

ters in determining future climate change, is inconstant

in part because radiative feedbacks vary spatially. The

MR method estimates these spatial feedbacks from

records of internal variability, and improves upon

existing methods for doing so by incorporating both lo-

cal and nonlocal radiative responses to surface warming.

For the six atmosphere–ocean general circulation models

studied, the spatial feedbacks estimated by the MR

method applied to the pattern of surface warming

recreate the spatial pattern of top-of-atmosphere flux

response to forcing more accurately than existing

methods, as well as providing better estimates of the

change in feedback with time. The method consis-

tently overestimates the change in TOA flux over the

Southern Ocean and North Atlantic, and so overesti-

mates the sensitivity. The method finds that that there

are significant negative nonlocal feedbacks associated

with regions of tropical convection, and that the re-

duction in the share of warming that occurs in these

regions over time contributes to an increase in the

global feedback with time in these models, consistent

with recent studies (Andrews and Webb 2017; Ceppi

andGregory 2017; Dong et al. 2019; Fueglistaler 2019).

The MR method finds that five of the six AOGCMs

have strongly positive local cloud feedbacks countered

by strongly negative nonlocal cloud feedbacks. These

positive local feedbacks may explain why studies that

use local regressions to estimate spatial feedbacks from

observed internal variability find that they are on aver-

age positive (Brown et al. 2016; Trenberth et al. 2015).

While the AOGCMs exhibit an anticorrelation between

local and nonlocal feedbacks, a small relative shift in the

balance between these feedbacks could cause large

changes in sensitivity, and such shifts may be relevant for

paleoclimate or future warming. Given the large mag-

nitudes associated with these local and nonlocal cloud

feedbacks, it may be harder for cloudy exoplanets to

have stable atmospheres, reducing the chances of finding

habitable worlds.

Spatial feedbacks estimated from observations could

potentially improve warming forecasts and serve as

emerging constraints on AOGCMs. The success of the

MR method for most fluxes and regions of Earth (with

the important exception of Southern Ocean cloud

feedbacks) suggests that many of the spatial feedbacks

at work under global warming are observable under

internal variability. Challenges remain to applying the

MRmethod to observations. We would need to reduce

the information necessary to fit our statistical model to

be less than the length of the satellite record; to remove

changes in forcing from records of top-of-atmosphere

fluxes; and to account for systematic biases in the ob-

servations themselves. We would also need to account

for regions of Earth and states of the climate where the

MR method is biased, such as for Southern Ocean

cloud feedbacks. Furthermore, since spatial feedbacks

are just one link in the coupled energy balance of the

climate, we would need complementary theory to

complete the forecast of future warming, particularly

its spatial pattern. Still, our results suggest that the

processes that will determine the sensitivity in both the

near and far future may be observable today.
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APPENDIX

Data and Methods

a. Data/code access

ForLongRunMIPdataaccess, visit http://www.longrunmip.

org/. This paper’s code is available at https://github.com/jsbj/

spatial.

b. Matrix and vector notation

Note that in the main body of the text, time is treated

as continuous, so that time series are written as functions
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[e.g., T(t) is the evolving spatial pattern of warming].

Since the appendix documents the calculations we have

employed, it treats time as discrete, and so time is in-

stead treated as an additional dimension (e.g., T is the

evolving spatial pattern of warming). Therefore, a vec-

tor in the main body of the text refers to a spatial pat-

tern, while a vector in the appendix refers to a time

series of a scalar value (such as a global average).

c. Conceptual model

The conceptual model is a system of stochastic dif-

ferential equations:

c
1

dT 0
1

dt
5N0

1 2H0 1F
surf, 1

,

c
2

dT 0
2

dt
5N0

2 1H0 1F
surf, 2

,

whereH0 5 g(T 0
1 2T 0

2) and

N0
1 5 l

1, 1
T 0
1 1 l

1, 2
T 0
2 1F

CO2, 1
1F

TOA, 1
, (A1)

N0
2 5 l

2, 1
T 0

1 1 l
2, 2
T 0

2 1F
CO2, 2

1F
TOA, 2

: (A2)

The thermal inertia ci is defined as mircp, where r and

cp are the density and specific heat of ocean water

respectively, and mi is an equivalent mixed layer

depth; m1 is 50m, and m2 is 1000m. FCO2, 15FCO2, 2

are both 0Wm22 (8Wm22) for the control (abrupt43)

simulation. l1,1 5 0.5Wm22K21, l2,1 5 22Wm22K21,

l1,2 5 l2,2 5 0Wm22K21, and g 5 2Wm22K21. The

terms Fsurf and FTOA are white noise processes. In the

example shown in Fig. 2, the variance of Fsurf,1 and Fsurf,2

is 40Wm22 and the variance of FTOA,1 and FTOA,2 is

5Wm22, while for the example in Fig. S1, the variance of

Fsurf,1 and Fsurf,2 is 10Wm22 and the variance of FTOA,1

and FTOA,2 is 15Wm22.

d. The multiple regression method

Suppose that we have a time series of surface tem-

peratures and TOA radiative fluxes of the Earth, real or

simulated, where the surface of Earth is regridded into

ngrid (288) regions, and where we have ntime years of

monthly observations. For each season s (1# s# 4), we

can define an ntime 3 ngrid matrix Tm, where the element

in row i and column j, Ti,j,s, is the surface temperature in

region j during season s of year i. We can also define a

matrix of anomalies, T0
s, where

T0
s 5
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To estimate the spatial feedbacks associated with a

TOA radiative flux of type f (where f is one of net, LW

clear, SW clear, LW cloud, or SW cloud) and season s,

we first define an ntime 3 ngrid matrix of anomalies R0
f , s,

which is analogous to T0
s above (N from themain body of

the text is Rnet). We can fit the statistical model defined

in Eq. (9) using least squares to solve for seasonal spatial

feedbacks (Lf,s):

L
f , s

5

266666664

l
f , 1, 1

l
f , 1, 2

. . . l
f , 1, ngrid

l
f , 2, 1

l
f , 2, 2

. . . l
f , 2, ngrid

..

. ..
.

1 ..
.

l
f ,ngrid, 1

l
f ,ngrid, 2

. . . l
f ,ngrid,ngrid

377777775
5 (T0T

s T
0
s)

21
T0T
s R

0
f , s: (A3)

Seasonal feedbacks are used in section 3, but section 2

uses an annual version, in which case instead of a set of

four seasonal feedback matrices, only one feedback

matrix estimated using the above Eq. (A3), with the

difference that the time series are annual averages. The

‘‘monthly’’ approach in section 1.2.1 of the SI is the same

as the seasonal approach in Eq. (A3), except instead of 4

regressions, 12 are performed, with all time series being

monthly averages sampled every 12 months. The ‘‘all

months’’ approach instead performs only one regres-

sion, just like the annual approach, except that monthly

average time series are used instead of annual averages

(the logic being that even though months may have

different properties, there may be an advantage in

maximizing the data available to fit a regression).
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e. Estimating the forced response

1) FORCED FEEDBACKS

Suppose that we have a ntime,abrupt43-yr-long abrupt43
simulation of aGCM for which we have spatial feedbacks

estimated from a control run. We then define an early

period (years 2 to 20) and a late period (years 21 to

ntime,abrupt43). The true feedbacks lf,p for the abrupt43
simulation during each period p (where p is early or

late) are defined as the slope of the least squares fit of

the linear regression of the time series of globally

averaged TOA flux anomalies of type f from the

abrupt43 simulation (R0
f , abrupt4x), against the globally

averaged surface temperature anomalies from the

abrupt4x simulation T0
abrupt43:

l
abrupt43, f , p

5
fT0

abrupt43gp � fR
0
f , abrupt43gp

kfT0
abrupt43gpk

2
, (A4)

where the curly brackets denote that the time series are

averaged over exponentially longer periods, with annual

averages for the first decade increasing to centennial

averages by the simulation’s end, and the p subscript

denotes whether values from before or after year 20 are

used. Note that R0
f , abrupt43 and T0

abrupt43 are vectors with

as many entries as years in the abrupt43 simulation

(1000 yr).

We can make estimates of these feedbacks using the

MR method by first estimating the abrupt43 simula-

tion’s TOA radiative flux of type f for each month of the

year m by multiplying the surface temperature time

series of that abrupt43 simulation for that month,

T0
m, abrupt43(an ntime,abrupt 43 3 ngrid matrix) by the spa-

tial feedbacks for that month’s season:

R̂0
f ,m, abrupt43 5T0

m, abrupt43Lf , s(m)
(A5)

We usemonths instead of seasonal averages because our

seasons do not start in January, and this approach allows

us to have annual averages that start in January. These

monthly time series R̂0
f ,m, abrupt43 can then be turned into

annual averages R̂0
f , abrupt43, and then global averages

R̂0
f , abrupt43, allowing us to estimate the feedbacks for

period p by performing the same least squares fit

as above:

l̂
abrupt43, f ,p

5
fT0

abrupt43,pg � fR̂0
f , abrupt43,pg

kfT0
abrupt43, pgk2

: (A6)

2) SPATIAL PATTERNS OF TOA FLUX CHANGE

We quantify the normalized spatial pattern of TOA

radiative flux change of flux type f across a period p by

taking a finite difference approach, taking the mean

value of R0
f , abrupt43 during two parts of the period and

subtracting the first part from the second (where the

divisions for the early period are years 2–6 and 7–20,

and the divisions for the late period are 21–170 and

171–ntime,abrupt4x, with both divisions chosen to allow

for substantial warming in each period), and then di-

viding this by the average change in the globally aver-

aged surface temperature between these two periods:

DR0
f , abrupt43,p 5

266664 �
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where tstart,p and tend,p are the first and last years in pe-

riod p, respectively, where tmid,p is 6 for the early period

and 170 for late period, whereR0
f , abrupt43, i, j is the element

in the ith row and jth column of R0
f , abrupt43, and where

Tabrupt43,i is the ith element in Tabrupt43. Finite differ-

ence is used instead of regressing values against a global

average because the presence of local and nonlocal

feedbacks causes nonlinear relationships between N0
i(t)

andT 0
i(t) [orT

0(t)], which would lead to biased estimates

of change from a linear regression.

f. Errors

We calculate two types of errors: feedback errors

(Table 1 and Table S2), and spatial errors (Table 2 and

Table S3). We add a subscript g to our feedbacks and

spatial patterns of TOA flux change to signify that they

4136 JOURNAL OF CL IMATE VOLUME 33



belong to the GCM g, where g is one of CCSM3,

CESM1.0.4, GISS-E2-R, HadCM3L, IPSL-CM5A, and

MPI-ESM1.2. The feedback error is given by the root-

mean-square error:

«
feedback, f ,p

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
GCMs

�
g2GCMs

(l̂
f , abrupt43,p, g

2 l
f , abrupt43,p, g

)2
s

,

(A8)

where nGCMs is 6, the number of AOGCMs. The spatial

error is measured by taking the area-weighted root-

mean-square error of the spatial estimate

«
spatial, f , p

5
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vuuuuuuut ,

(A9)

whereai is the areaof the ith grid cell. For the spatial errors in

the main body of the paper, this is taken on multimodel

mean values of Db~R0
f , abrupt43,p, i and D~R0

f , abrupt43,p, i. For

the same calculation for individual models (Table S4 and

Figs. S6–S8 in the supplemental materials), values for each

model are used instead.

g. Other methods to calculate feedbacks

We consider two other methods for deriving spatial

feedbacks, estimating abrupt4x feedbacks, and estimating

spatial patterns of TOA flux change.

1) THE GLOBAL METHOD

The seasonal version of the ‘‘global’’ method used in

the main body of the paper is estimated using the least

squares fit on this regression:

l
global, f , s

5
T0
s �R0

f , s

kT0
sk2

, (A10)

where Ts and Rf,s are globally and seasonally averaged

time series of control simulation surface temperature

and TOA flux f respectively, sampled every fourth sea-

sonal value so that all elements of the time series are

from season s. The four seasonal feedbacks are used to

recreate estimates of the global averaged time series

Rf,abrupt43, which in turn is used, as above, to estimate

abrupt4x feedbacks. Once more, different averaging of

the control time series and groupings of regression

equations can be used to make the annual, monthly, and

all months versions of this method featured in Tables

S3 and S4.

The normalized spatial pattern of TOA flux change

can be found by first estimating the ‘‘local contribution’’

(Boer and Yu 2003a,b; Crook et al. 2011; Zelinka et al.

2012; Andrews et al. 2015), using Eq. (1), but replacing

the time series vector R0
f , s with the spatial time series

matrix R0
f , s from above, and replacing the single feed-

back lglobal,f,s with the spatial vector of feedbacks,

lglobal,f.

2) THE LOCAL METHOD

The ‘‘local’’ method assumes the statistical model

R0
i(t)5 l

local, i
T 0
i (t)1 «(t) for each region i: (A11)

Spatial feedbacks are estimated using least squares:

l
local, f

5

2666664
l
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l
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..

.

l
local, f ,ngrid

37777755

266666666666666664
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T0
ngrid

�R0
f ,ngrid
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ngrid

jj2

377777777777777775
, (A12)

where T0
i and R0

f , i are the ith rows of T0 and R0
f respec-

tively. We can then generate estimates of R0
f , abrupt43 as

above. We apply these estimates to Eqs. (A6) and (A7)

to estimate forced global feedbacks and spatial patterns

of TOA flux change.

h. Local regression

We use LOESS (i.e., locally estimated scatterplot

smoothing; Cleveland and Devlin 1988) to take local

regression of scatterplots of N versus T 0. LOESS

uses a weighted regression of a certain number of

nearest neighbors, in our case 30. Full details can be

found in the code for this paper listed above and in the

LocallyWeightedRegression.jl Julia package (https://

github.com/juliohm/LocallyWeightedRegression.jl).
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