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Abstract
We use a methodological framework exploiting the power of large ensembles to evaluate how well ten coupled climate 
models represent the internal variability and response to external forcings in observed historical surface temperatures. 
This evaluation framework allows us to directly attribute discrepancies between models and observations to biases in the 
simulated internal variability or forced response, without relying on assumptions to separate these signals in observations. 
The largest discrepancies result from the overestimated forced warming in some models during recent decades. In contrast, 
models do not systematically over- or underestimate internal variability in global mean temperature. On regional scales, all 
models misrepresent surface temperature variability over the Southern Ocean, while overestimating variability over land-
surface areas, such as the Amazon and South Asia, and high-latitude oceans. Our evaluation shows that MPI-GE, followed 
by GFDL-ESM2M and CESM-LE offer the best global and regional representation of both the internal variability and forced 
response in observed historical temperatures.

Keywords  Climate model evaluation · Large ensembles · SMILEs · Climate models · Forced response · Internal 
variability · Surface temperatures

1  Introduction

Observations reflect how the real-world climate system 
responds to changing natural and anthropogenic external 
forcings, as well as how the system fluctuates due to its own 
chaotic internal variability. Similarly, individual climate 
model simulations also are a combination of the simulated 
forced response in the model and its simulated internal vari-
ability. Therefore, discrepancies between observations and 
simulations may arise due to errors in the model’s external 
forcing and its simulated response to this forcing, in its inter-
nal variability, or some combination of these factors (Notz 
2015; Marotzke and Forster 2015; Suarez-Gutierrez et al. 
2017). However, these discrepancies between observations 
and model simulations may also result from the observed 
and simulated fluctuations caused by internal variability 
being in different states (Notz 2015). In this paper, we pro-
vide an evaluation of how well models capture the internal 

variability and forced response in observed surface tempera-
tures by applying a robust yet simple framework (Anderson 
1996; Hamill 2001; Suarez-Gutierrez et al. 2018; Maher 
et al. 2019) that exploits the power of single model initial-
condition large ensembles (SMILEs) from ten fully-coupled, 
comprehensive climate models.

SMILE experiments consist of many simulations of a 
single climate model under the same time-evolving exter-
nal forcings, but starting from different initial conditions. 
This experimental design ensures that the simulations in the 
ensemble differ only due to the effect of internal variabil-
ity, and allows a precise quantification of both the forced 
response, represented by the ensemble mean, and internal 
variability, represented by the ensemble’s spread of devia-
tions from this mean (Maher et al. 2019; Deser et al. 2012; 
Frankcombe et al. 2015). The sampling of internal vari-
ability is particularly important to capture low-probability 
events and events that show large deviations from the mean 
state, and is key to obtaining well-defined probability dis-
tributions (Suarez-Gutierrez et al. 2018). This is crucial not 
only to correctly capture the events at the tails of the dis-
tribution, but also to ensure that the forced response is not 
biased by an insufficient sampling of the different states of 
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internal variability (Frankcombe et al. 2015, 2018; Milinski 
et al. 2020). Thus, using SMILEs we can determine whether 
observations fall within the now better-sampled range of the 
transient spread simulated by each climate model, poten-
tially reconciling differences between model simulations and 
observations (Thorne et al. 2015; Hedemann et al. 2017). 
In the cases where discrepancies between model simula-
tions and observations remain, we can now directly attrib-
ute whether these remaining discrepancies are caused by an 
incorrect simulation of internal variability, or rather by an 
incorrect simulation of how the climate system responds to 
external forcings, without relying on assumptions to separate 
both signals in the observations (Bittner et al. 2016; Suarez-
Gutierrez et al. 2017; Smith and Jahn 2019).

Due to their experimental design, SMILEs are power-
ful tools for model evaluation that allow us to rethink and 
expand our methodologies beyond customary practices. One 
example of this is the methodological framework that we 
apply in our study. This framework (Suarez-Gutierrez et al. 
2018; Maher et al. 2019; Suarez-Gutierrez et al. 2020a, b) 
relies on the precise characterization of simulated internal 
variability in SMILE experiments, which provide well-
defined estimates of both the time-evolving forced response 
and the probability distribution of deviations from this 
mean state caused by internal variability. Also, it eliminates 
the need of filtering or detrending techniques to separate 
the effect of internal variability from the forced response 
either in the models or in observations. The evaluation of 
the adequacy of climate models in this framework is based 
on a simple approach: whether observations are distributed 
evenly across the whole spread of the ensemble, and whether 
they generally stay within the limits of this spread (Hamill 
2001; Marotzke and Forster 2015; Suarez-Gutierrez et al. 
2017, 2018; Maher et al. 2019).

In the ideal case in which real-world variability and 
forced response are perfectly simulated by a model, and 
the observational record is sufficiently long, observations 
would occur across the whole simulated ensemble spread 
with similar frequency, and the simulated ensemble spread 
would generally cover the range of observed variability. 
Thus, to determine that an ensemble adequately captures 
observations two conditions should be met: first, observed 
values should fall across the ensemble with no preferred 
frequency, and second only occasionally outside of its lim-
its. Together, these two conditions provide a robust metric 
for model evaluation, based on whether the range of well-
defined simulated climate states in an ensemble adequately 
captures the long-term trajectory and the possible deviations 
from this trajectory caused by internal variability in the real-
world climate system. Furthermore, if this is not the case, 
we can identify whether discrepancies between the range of 
the simulated climate states and observations arise because 
of an incorrect simulated forced response, or because the 

simulated internal variability in the model over- or underes-
timates the observed internal variability.

State-of-the-art model evaluation frameworks (Flato et al. 
2013; IPCC, SR15 2018) are often constrained to mean 
state comparisons, or to relying on detrended quantities and 
assumptions for filtering and isolating the observed variabil-
ity and forced response (Gleckler et al. 2008; Frankcombe 
et al. 2018; Tokarska et al. 2020). Similarly, previous stud-
ies evaluating internal variability are constrained to using 
standard deviations as a proxy (Schär et al. 2004; Lehner 
et al. 2017; McKinnon et al. 2017; Bengtsson and Hodges 
2019), thus relying on assumptions regarding the shape of 
the full probability distributions and overlooking the evalua-
tion of its higher-order moments. Here, we go beyond previ-
ous model evaluation efforts by assessing whether the whole 
simulated distribution, including its tails, agrees well with 
observations. In this sense, our framework resembles proba-
bilistic forecast verification techniques in the climate predic-
tion literature (Anderson 1996; Hamill 2001; Annan and 
Hargreaves 2010). By considering the whole spread of the 
ensemble we are able to implicitly assess the higher-order 
moments of the distribution, offering a more appropriate 
evaluation of the simulated representation of the magnitude 
and frequency of observed estimates, including when they 
are extreme (Suarez-Gutierrez et al. 2020b). Ultimately, we 
can then condense this information to determine how many 
climate models succeed at capturing the observed internal 
variability and the climate system’s response to external 
forcings over each region of the world. Thus, we provide a 
framework to assess models fitness-for-purpose, determin-
ing in which regions models can adequately simulate the 
observed climate, and why, in other regions, they cannot.

SMILEs of a large number of fully-coupled climate mod-
els have only recently become widely available (Maher et al. 
2019; Deser et al. 2020). Therefore, most previous studies 
using SMILEs to evaluate the agreement between model 
simulations and observations are based on a limited num-
ber of three or fewer SMILEs (Suarez-Gutierrez et al. 2017; 
Maher et al. 2018; Schaller et al. 2018; von Trentini et al. 
2020), and most are also limited to conventional evaluation 
methods (Maher et al. 2018; Schaller et al. 2018). Similarly, 
previous studies using evaluation frameworks that consider 
whole ensemble distributions to evaluate the agreement of 
several climate models with observations are based on multi-
model ensembles such as the Coupled Model Intercompari-
son Project (CMIP; Taylor et al. 2012), which have a limited 
number of simulations for each model and do not allow for 
a clean separation between simulated forced response and 
internal variability (Annan and Hargreaves 2010; Marotzke 
and Forster 2015). In addition, previous multi-model evalu-
ation frameworks may favour models with larger internal 
variability, since they are more likely to capture observations 
by chance (Beusch et al. 2020), thus indicating that a robust 
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multi-model comparison and evaluation of internal vari-
ability across climate models is crucial for assessing model 
performance. Here, we provide a multi-model comparison 
of the well-sampled transient internal variability and forced 
response in SMILEs from ten comprehensive, fully-coupled 
climate models from both the CMIP5 and CMIP6 genera-
tions, and the first multi-model evaluation of how well these 
models capture the internal variability and forced response 
in observations.

2 � Data and methods

2.1 � Climate model simulations and observational 
data

We include SMILEs from a broad range of climate mod-
els: CanESM2 (Kirchmeier-Young et al. 2017), CanESM5 
(Swart et al. 2019), CESM(Hurrell et al. 2013; Kay et al. 
2015), CSIRO-MK3.6 (Jeffrey et al. 2013), GFDL-CM3 
(Sun et al. 2018), GFDL-ESM2M (Rodgers et al. 2015), 
IPSL-CM5A (Frankignoul et  al. 2017), IPSL-CM6A 
(Boucher et al. 2020), MIROC6 (Tatebe et al. 2019), and 
MPI-ESM (Maher et al. 2019). Each SMILE comprises of 
several simulations for one fully coupled climate model that 
differ only in their initial state, and evolve under one spe-
cific set of forcing conditions. However, the ensembles differ 
in the number of simulations included (from 20 up to 100 
members), in how sensitive the model is to increasing CO

2
 

(Equilibrium Climate Sensitivity, ECS, values of 2.4 K to 
more than 5 K), in the method used for the initialization of 
their members (from micro atmospheric perturbations to dif-
ferent initial states sampled from the control simulation), in 
the generation of forcing scenarios used (CMIP5 to CMIP6), 

and in the forcing scenario (from only historical to historical 
extended with a high emissions scenario such as RCP8.5). 
When possible, historical model simulations are extended 
with one available future forcing scenario to cover the obser-
vational record. More details can be found in Table 1, and 
in previous studies (Maher et al. 2019; Deser et al. 2020) 
and references therein. Observed surface temperature data 
from the HadCRUT4.6 (Morice et al. 2012) dataset for the 
period of 1850–2020 are used for comparison to the SMILE 
simulations.

We use a total of 481 simulations to evaluate how 
SMILEs of ten different climate models capture the internal 
variability and the response to external forcings in the Had-
CRUT4.6 observed surface temperatures. We define surface 
temperatures as the annually averaged near-surface 2 m air 
temperature anomaly over land grid cells, and sea surface 
temperature over the ocean. Global mean surface tempera-
ture (GMST) is defined as the global average of these surface 
temperatures. All simulated data are regridded to the coarser 
resolution of HadCRUT observations, and subsampled to 
grid boxes where observations are available. All data shown 
are anomalies calculated with respect to the climatological 
baseline defined by the period 1961–1990 in each ensemble 
member and observations. This approach removes potential 
mean biases in the simulations. However, it does not remove 
time or phase dependent biases in how the simulated climate 
responds to external forcing conditions arising in different 
periods. These remaining biases are referred to as biases in 
the forced response throughout the paper. Choosing a dif-
ferent reference period may lead to biases of different signs 
appearing in different periods. However, we maintain the 
period of 1961–1990 as climatological reference to ensure 
contributions from all SMILEs and the most complete obser-
vational coverage (Jones et al. 2012; Morice et al. 2012).

Table 1   Details of SMILE 
experiments included

Experiment name, number of members, simulated years used, forcing generation, forcing scenarios, 
and Equilibrium Climate Sensitivity (ECS) of SMILE experiments included in our study. All experi-
ments include historical forcing (Hist) until 2005 for CMIP5 or until 2014 for CMIP6. CMIP6 generation 
SMILEs are marked by a star in the table and in all figures. When possible, simulations are extended using 
one future forcing scenario. ECS refers to the equilibrium temperature response to the doubling of CO

2
 

(Andrews et al. 2012; Hurrell et al. 2013; Swart et al. 2019; Maher et al. 2019)

SMILE Members Years Gen. Forcing ECS Reference

CanESM2 50 1950–2020 CMIP5 Hist+RCP8.5 3.7 K Kirchmeier-Young et al. (2017)
CanESM5* 50 1850–2014 CMIP6 Hist 5.7 K Swart et al. (2019)
CESM-LE 35 1920–2020 CMIP5 Hist+RCP8.5 4.1 K Kay et al. (2015)
CSIROMK3.6 30 1850–2020 CMIP5 Hist+RCP8.5 4.1 K Jeffrey et al. (2013)
GFDL-CM3 20 1920–2020 CMIP5 Hist+RCP8.5 4.0 K Sun et al. (2018)
GFDL-ESM2M 30 1950–2020 CMIP5 Hist+RCP8.5 2.4 K Rodgers et al. (2015)
IPSL-CM5A 30 1941–2020 CMIP5 Hist+RCP8.5 4.1 K Jebri et al. (2020)
IPSL-CM6A* 31 1850–2014 CMIP6 Hist 4.5 K Boucher et al. (2020)
MIROC6* 50 1850–2020 CMIP6 Hist+SSP2-4.5 2.6 K Tatebe et al. (2019)
MPI-GE 100 1850–2020 CMIP5 Hist+RCP4.5 2.8 K Maher et al. (2019)
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In this study we evaluate climate models against one 
single observational product, HadCRUT4.6 (Morice et al. 
2012; Cowtan and Way 2014). We recommend users who 
wish to apply this framework to determine which SMILEs 
better capture observations for their variable and region of 
interest to base this evaluation on a wider range of observa-
tional products, combining point-level surface datasets and 

reanalyses with gridded statistically processed datasets such 
as HadCRUT4.

Fig. 1   Idealized examples of 
time series and rank histograms. 
Time series of idealized annual 
GMST anomalies relative 
to the period 1961–1990 by 
synthetic ensembles (color) and 
observations (black). The data 
follows normal distributions 
with different standard devia-
tions and added quadratic trend 
terms after year 1900. Lines 
represent ensemble maxima and 
minima, and shading represents 
the central 75th percentile range 
(12.5th to 87.5th percentiles). 
Percentages represent observa-
tions within the 75th percentile 
central range (gray), above the 
ensemble maximum (red) and 
below the ensemble mini-
mum (blue). Rank histograms 
represent the frequency of each 
place observations would take 
in a list of ensemble members 
ordered by ascending GMST 
values. Lines illustrate the rank 
histogram’s slope, as the mean 
rank frequency over a centered 
6-bin window for observations 
(solid lines, light colors), and 
the perfect model range, as the 
rank slopes for each ensemble 
member treated as observations 
(5th–95th percentile; dashed, 
dark colors). Crosses represent 
the frequency of minimum 
(0) and maximum (number of 
members) ranks for observa-
tions (light colors), and for the 
perfect model range (5th–95th 
percentile; dark colors). Bin 
sizes are 1 rank
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2.2 � Interpretation of our evaluation framework

Our evaluation framework determines how well models cap-
ture the internal variability and forced response in observa-
tions based on a simple metric: whether the range of well-
defined simulated climate states in an ensemble adequately 
captures the long-term trajectory as well as the possible 
deviations from this trajectory caused by internal variabil-
ity in the observations. To determine to which extent this 
evaluation metric is fulfilled, we first perform a time series 
and rank frequency analysis, here based on spatially aver-
aged quantities such as GMST, and second a spatial analysis 
to evaluate this metric at the grid cell level. The basis of the 
methodological evaluation framework demonstrated in this 
paper was first applied to evaluate European summer tem-
perature and precipitation in MPI-GE in Suarez-Gutierrez 
et al. (2018), Supporting Information Fig. S1, S2, and S3; 
and further expanded globally for MPI-GE in Maher et al. 
(2019) for annual mean temperatures, and in Suarez-Gut-
ierrez et al. (2020b) for summer maximum temperatures, as 
well as in Suarez-Gutierrez et al. (2020a) for temperatures 
over North America in six SMILEs. Here, we extend this 
framework and its theoretical justification and implications, 
and apply it to all currently available SMILE experiments. 
In this section we explain the two core evaluation analyses 
in our framework, and elaborate on their interpretation based 
on idealized and specific examples.

2.2.1 � Time series and rank frequency analysis

The times series and rank frequency analysis in our frame-
work identifies different possible model biases in capturing 
the shape and range of the observed distribution, highlight-
ing these biases with different rank histogram shapes. Here 
we illustrate these biases using synthetic data to represent 
idealized 50-member ensemble simulations and observa-
tions (Fig. 1). The time series (Fig. 1, left column) illustrate 
the temporal evolution of observations against the ensem-
ble simulations, represented by the ensemble maxima and 
minima and the central 75th percentile ensemble range. In 
these time series we also highlight three main indicators 
summarizing how observations are distributed across the 
ensemble spread: the frequency with which observations 
occur above the ensemble maxima, below the ensemble 
minima, and within the central ensemble range. This indi-
cators will be the base of the spatial evaluation analysis in 
the following section.

The rank frequency analysis (Anderson 1996; Hamill 
2001; Annan and Hargreaves 2010) represents with which 
frequency the observed GMST anomalies take each place, 
or rank, in a list of ensemble members ordered by ascend-
ing GMST values for each year (Fig. 1, right column). The 
rank is 0 if the observed GMST value for a given year is 

lower than the ensemble minimum for that year, thus lower 
than each GMST simulated by all the ensemble members 
that year. If the observed value is higher than all simulated 
values for that year, the rank is n, with n the number of 
ensemble members. For a long enough observational record 
that is adequately simulated, observations should take all 
ranks with no preferred frequency, resulting in a flat rank 
histogram. By contrast, sloped rank histograms indicate that 
either the observed variability or forced response are not 
correctly simulated by the model.

To determine to which extent the flatness of the rank 
histogram and the distribution of rank frequencies can be 
affected by internal variability while still indicating an 
adequate representation of the observed distribution, we 
introduce the perfect model rank range. This perfect model 
range in the rank histograms (Fig. 1, dark dashed lines and 
crosses in right column panels) highlights the range of rank 
histogram slope fluctuations that are possible due to inter-
nal variability and to limited sample size for a model that 
perfectly captures observations. This is characterized by 
the range of rank histograms that each ensemble member 
would generate if it was treated as the observations (90% 
confidence range, 5th–95th percentiles). Thus, if the actual 
rank frequency slope from observations occurs substantially 
outside of this range for any given rank, we can robustly 
determine that the distribution in the model deviates from 
the observed distribution beyond what can be explained by 
internal variability, for the given sample size of the ensemble 
and observational record length, and therefore the ensemble 
does not capture observations adequately.

We exemplify this analysis here using synthetic data rep-
resenting idealized model ensembles and observations with 
different ranges of internal variability and forced response, 
as characterized by the standard deviation in their distribu-
tions and the added quadratic trend terms. For comparison, 
we include an idealized case where the model perfectly cap-
tures observations, with both the ensemble and observations 
drawn from the same identical distribution (Fig. 1a). For 
this case of a model that perfectly captures observations, we 
find that observations are indeed well distributed across the 
ensemble spread, and occur outside of the ensemble limits 
only occasionally. This is then illustrated by a rank histo-
gram shape that, although not completely flat, is well within 
the perfect model range. Note that this 90% confidence range 
may also be matched or marginally exceeded by chance even 
by perfectly-performing ensembles.

Beyond the perfectly-performing ensemble, we illus-
trate four types of individual model biases: forced response 
underestimation (Fig. 1b), forced response overestimation 
(Fig. 1c), variability underestimation (Fig. 1d) and vari-
ability overestimation (Fig. 1e) in the model compared to 
observations. Lastly, we also include one example of the 
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combined effect of two biases: variability overestimation and 
forced response underestimation (Fig. 1f).

For the under- and overestimated forced response exam-
ples we see, as expected, diverging warming trends in the 
ensembles and observations, resulting respectively in dispro-
portionately high maximum or minimum rank frequencies, 
and in sloped rank histograms (Fig. 1b, c). We also see that, 
due to the choice of reference climatological period of 1961-
1990, models that misrepresent the forced response exhibit 
sign-changing biases for different periods. This translates 
into observations clustering around the ensemble minimum 
in the early record, versus clustering around the ensemble 
maximum in the late record, or vice versa, in these cases 
(Fig. 1b, c). It is important to note that, in practice, this 
forced response does not only reflect the warming effect of 
increasing concentrations of green house gases, but also the 
cooling effect of atmospheric aerosols, which exhibit high 
inter-model differences and could play a role in masking or 
amplifying these time-dependent biases in different models 
(Kiehl 2007; Tokarska et al. 2020).

In contrast, for the next two examples, although models 
and observations evolve in time in a similar manner, they 
exhibit systematically different distributions due to the mis-
representation of internal variability. For an ensemble that 
underestimates the internal variability in observations, we 
find that the ensemble fails to capture the more extreme 
observations at the tails of the distribution. This leads to 
too high frequencies for both minimum and maximum ranks 
occurring simultaneously, resulting in a concave rank histo-
gram shape and observations occurring beyond the ensem-
ble limits with disproportionately high frequency (Fig. 1d). 
For an ensemble that overestimates internal variability we 
find the opposite shape, with too high mid-rank frequencies 
resulting in a convex rank histogram shape (Fig. 1e). In this 
case, observations cluster in the central 75th percentile range 
of the ensemble for 90% of the time, and the ensemble simu-
lates events that are systematically more extreme than those 
observed. Note that this variability evaluation refers to the 
overall variability in annually averaged temperatures, and 
not to the degree of variability arising on specific timescales. 
Thus, this may overlook, for example, potential decadal to 
multidecadal variability biases in the models (e.g., such as 
those identified in England et al. 2014 and McGregor et al. 
2014). Such biases in simulated internal variability on dif-
ferent timescales could be assessed with a time series and 
rank frequency evaluation based on moving decadal aver-
aged temperatures or temperature trends in the correspond-
ing timescales.

Lastly, we exemplify a model with a simultaneous over-
estimation of the internal variability and underestimation of 
the forced response. In this case, we find a diverging tempo-
ral evolution in the warming rate in observations compared 
to the ensemble, that is still covered by the large simulated 

variability range in the ensemble spread. This translates into 
a sloped rank histogram with too high frequency for low 
ranks (Fig. 1f). These two biases could be most robustly 
disentangled by repeating the rank frequency analysis for 
separate periods with different forced response contributions 
(i.e. earlier record, climatological reference period, and late 
record), or potentially by shifting the climatological refer-
ence period. For this bias combination we find that obser-
vations do not fall outside of the ensemble limits beyond 
what can be explained by internal variability, as opposed 
to the case of a model with overestimated forced response 
and similar internal variability (as in the individual example 
in Fig. 1c). This occurs due to the large internal variability 
in the ensemble, which is sufficient to capture the range of 
observations adequately despite the underestimation of the 
forced response. However, even if the indicators of the fre-
quency of observed anomalies beyond the ensemble limits 
do not highlight a bias in this case, this bias can be robustly 
identified by the rank frequency analysis. The rank histo-
gram for this example is outside of the perfect model range, 
and indicates that observations are not evenly distributed 
across the ensemble and indeed not adequately represented, 
highlighting the usefulness of the rank frequency analysis 
on more complex cases.

Note that all of these sample biases are based on normally 
distributed data. For non-normally distributed variables, 
sloped rank histograms could also indicate a discrepancy 
between the shape or skewness of the tails of the simulated 
and observed probability distributions.

2.2.2 � Spatial evaluation analysis

The next line of analysis in our evaluation framework is 
to summarize these concepts to evaluate how different the 
ensembles capture the variability and forced response in 
observations at the grid cell level. We illustrate the interpre-
tation of this spatial evaluation based on selected examples 
for the 50-member CanESM5 ensemble (Fig. 2).

First, we evaluate how often observed surface tempera-
tures occur outside the ensemble limits in each grid cell. For 
a model that perfectly captures observations, how frequently 
observations could occur, by chance, outside of the ensemble 
limits depends inherently on the size of the ensemble. For 
a 50-member ensemble, 1-in-50 year events occur on aver-
age every simulated year, indicating that observations may 
exceed this limit on average roughly twice per century, or 
2% of the time, due to the effect of internal variability alone 
(Fig. 1a). For the smallest ensemble considered here of 20 
members, observations could exceed this limit by chance 
roughly 5% of the years on average, even for a model that 
perfectly captures observations.

These frequency estimations are based on averages over 
idealized, infinitely long records. The observational record 
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used in our study has a maximum length of roughly 170 
years, and is restricted to much shorter lengths over certain 
locations (Morice et al. 2012). Therefore, how frequently 
observations fall outside of the ensemble can be affected 
substantially by internal variability, with up to twice as 
high frequencies as the averaged estimates even for a per-
fect model and a complete record (Fig. 1a), and more so for 
relatively shorter periods. To allow for a simpler comparison 
across ensembles of different sizes and simulation lengths, 
as well as across regions with different observational cover-
age, we use a fixed and slightly permissive frequency thresh-
old of 10%. Thus, we define regions where models show 
a biased representation of observations when at least 10% 
of the observations lie below the ensemble minimum (blue 
shading in Fig. 2, top panel) or above the ensemble maxi-
mum (red shading in Fig. 2, top panel).

For the cases when observations occur both below and 
above the ensemble limits beyond this 10% threshold across 
the whole simulation length, this indicates that the model 
does not sufficiently capture the observed variability (e.g., 
Fig. 1d). When observations occur during specific periods 
mostly above the ensemble limits, and mostly below dur-
ing another period, it indicates a sign-changing bias, with 
the model under- and overestimating the forced response 
respectively over these different periods (e.g., Fig. 1b and c). 
Note however that, depending on the length of such periods, 
this type of fluctuation may also occur as a result of differ-
ent phases of low-frequency variability modes in observa-
tions, as well as from a changing response to aerosol forc-
ing. Observations may also occur only above or only below 
the ensemble limits in some years across either the whole 
simulation length, pointing to a bias in the shape of the prob-
ability distribution, or concentrated during specific periods, 
pointing to a bias in the response to external forcings.

Second, we identify the regions where observed surface 
temperatures do not sufficiently cover the ensemble range 
and do not occur across the whole ensemble spread. For this, 
we determine where observations cluster within the central 
range of the simulated ensembles too frequently (corre-
sponding to the central colored bounds between the 12.5th to 
87.5th percentiles in Fig. 1). Ideally, for perfectly simulated 
internal variability and forced response, i.e., observations 
that occur across the ensemble with no preferred frequency 
and exhibit a flat rank histogram, observed values would 
lie within the central 75th percentile bounds of the ensem-
ble (12.5th–87.5th percentiles) around 75% of the time. We 
highlight regions where the models overestimate internal 
variability compared to observations when observations 
occur in the central ensemble bounds more than 80% of the 
time (e.g., Fig. 1e). This bias indicates that the simulated 
distribution is systematically wider than the distribution of 
observed values, and that extremes at the tails of the simu-
lated distribution are systematically more extreme than those 

observed. Note that this type of bias can only be robustly 
identified for periods when both the simulated and observed 
distributions are centered around a comparable mean state, 
and when evaluated over a period long enough to sufficiently 
cover the observed range of internal variability up to multi-
decadal scales.

Lastly, the white regions represent the areas where none 
of these biases occur to a substantial degree. This means 
that in these white areas the ensemble captures observations 
adequately, with less than 10% of all observations occurring 
either above or below the ensemble limits, and less than 
80% of all observations clustering within the central 75th 
percentile range of the ensemble. In these areas the models 
simulate a mean forced response and deviations from this 
mean that are comparable to those in observations for the 
whole length of their simulations (e.g., Fig. 1a). Thus, the 
total fraction of area where each model exhibits an unbiased 
representation of observations gives us an overarching rank-
ing for our evaluation of which models most adequately cap-
ture the forced response and internal variability in observed 
surface temperatures.

Here we exemplify the different behaviors that arise in 
our evaluation with time series at the grid cell level (Fig. 2a-
d) for annual mean surface temperatures at four locations 
(marked a-d in Fig. 2, top panel). These points are located, 
respectively, over the Southern Ocean (Fig.  2a), South 
America (Fig. 2b), the North Atlantic (Fig. 2c) and Europe 
(Fig. 2d).

Over the southern ocean, red and blue hatching indicates 
that observations occur both above and below the ensemble 
with too high frequencies (Fig. 2a). This behavior is caused 
by too little variability over that region in CanESM5, and 
potentially also by insufficient interannual sampling in the 
observations for some periods. Similarly, in the South Amer-
ican point observations also occur both above and below 
the ensemble limits with too high frequencies (Fig. 2b). 
However, in this case this is caused by observations that 
are warmer than the model simulations during the 19th and 
20th centuries, but colder in recent decades (Fig. 2b). This 
indicates that, while the model captures the variability range 
adequately, it overestimates the forced warming over this 
region.

Over the North Atlantic we find a region of substantially 
overestimated variability in CanESM5 compared to obser-
vations (Fig. 2, top panel). Over this area, CanESM5 simu-
lates surface temperature probability distributions that are 
systematically wider than observed, and simulated extreme 
anomalies are up to more than 2 ◦ C higher than the observed 
maxima, with observations clustering in the central ensem-
ble range (Fig. 2c). In contrast, over Europe we find that 
CanESM5 does not exhibit any of the considered biases to a 
substantial degree (Fig. 2d). This is reflected by observations 
that occur with no preferred frequency across the whole 
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simulated spread, including at its limits, but only occasion-
ally beyond them (Fig. 2d). This indicates that CanESM5 is 
able to adequately capture both the forced response changes 

and internal variability range in annual surface temperatures 
in the historical record over Europe.

Fig. 2   Evaluation of internal variability and forced response in annual 
mean surface temperatures. Illustration of the evaluation of annual 
surface temperature (ST) anomalies at the grid-cell level in CanESM5 
simulations compared to HadCRUT4 observed anomalies globally 
(top panel; same as top left panel in Fig. 5) and in four different grid 
cells (a–d). Red shading represents where observations are larger 
than the ensemble maximum; while blue shading represents where 
they are smaller than the ensemble minimum, both for more than 10% 
(light color) or 20% (dark color) of the time. Gray hatching represents 
where observations cluster within the 75th percentile bounds of the 
ensemble (12.5th to 87.5th percentiles) more than 80% (light color) 

or 90% (dark color) of the time. Dotted areas represent where obser-
vations are available for less than 10 years, and therefore excluded 
from our analysis. Frequencies are normalized to percentage. Panels 
a–d show ST time series simulated by CanESM5 (colored) against 
HadCRUT4 observed anomalies (black circles) for the period 1850–
2014 for four grid-cells. Colored lines represent ensemble maxima 
and minima, shading represents the ensemble spread within the 75th 
percentile bounds (12.5th to 87.5th percentiles). Anomalies are rela-
tive to the period 1961–1990. Model output data are regridded to 
match the observational grid
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Note that this spatial evaluation may result in non-signifi-
cant results at the grid-cell level due to the decreased signal-
to-noise ratio and potential differences in observational cov-
erage. We recommend a combination of this spatial analysis 
with the time series and rank frequency analysis in the previ-
ous section based on averages over multiple grid-cells for a 
more robust evaluation over the regions of interest.

3 � Results

3.1 � Global time series and rank histogram analysis

Global mean surface temperature (GMST) is arguably not 
only the most prominent and policy-relevant metric of cli-
mate change, but also one of the most robustly and exten-
sively observed variables in the climate system. These 
reasons make GMST the ideal variable for our evaluation. 
GMST fluctuates around its long-term transient forced 
response due to internal variability, as all other variables 
in the climate system. Therefore, it is not appropriate to 
expect observations to match one single model simulation 
nor the ensemble mean at any given time. Ideally, for a 
model that adequately captures both the internal variability 
in the observed climate system and its response to exter-
nal forcings, observations should occur across the whole 
ensemble spread of simulations with uniform frequency, 
and mostly within the ensemble limits.

To test whether models meet these two criteria of ade-
quacy in capturing observations we perform time series 
and rank frequency analyses for GMST anomalies in the 
ensembles compared to HadCRUT4.6 (Morice et al. 2012) 
observations (Figs. 3 and 4). We consider GMST anoma-
lies with respect to the climatological reference period of 
1961–1990. The rank frequency analysis (Anderson 1996; 
Hamill 2001; Annan and Hargreaves 2010) represents 
with which frequency these observed GMST anomalies 
take each place in a list of ensemble members ordered 
by ascending GMST values for each year (Figs. 3 and 4, 
right columns). For rank 0, the observed GMST value for 
a given year is lower than each GMST simulated by all the 
ensemble members for that year; while for rank n, with n 
the number of ensemble members, the observed value is 
higher than all simulated GMST values. For a long enough 
observational record that is adequately simulated, GMST 
observations should take all ranks with no preferred fre-
quency, resulting in a flat rank histogram. By contrast, 
sloped rank histograms indicate that either the variability 
or forced response in GMST observations are not correctly 
simulated by the model.

From the time series analysis we can readily determine 
that GMST observations generally occur within the range 
simulated by the ten models in our study (Figs. 3 and 4, 

left column). We find that the largest discrepancies occur in 
recent decades, with substantially higher simulated forced 
warming responses compared to observations for the mod-
els CanESM2, CanESM5, GFDL-CM3, and IPSL-CM5A. 
In contrast, CESM-LE, GFDL-ESM2M, IPSL-CM6A and 
MPI-GE show the best overall agreement with observations 
throughout the length of their simulations. CanESM2 and 
CanESM5 show substantially higher warming signals during 
recent decades than those observed, but are able to capture 
the observed evolution of GMST for most of the observa-
tional record adequately (Figs. 3 and 4). Due to the choice of 
climatological reference period (1961–1990), some models 
show simulated GMST warming responses similar to those 
observed in recent decades, but GMST anomalies that are 
generally higher than observations during the 19th and 20th 
centuries. This is the case for CSIRO-MK3.6 (Fig. 4) and 
MIROC6 (Fig. 3), indicating that these models exhibit less 
forced warming than observed over the last century.

Lastly, GFDL-CM3 and IPSL-CM5A show discrepancies 
during both early and recent periods; with GMSTs that are 
either higher or lower than those observed during the twen-
tieth century, and substantially higher during the twenty-
first century. This indicates a misrepresentation of historical 
forced warming throughout the length of the simulations. We 
repeat this evaluation for the period of 1950–2014 common 
to all SMILEs, shown in the Supplementary Information 
(SI) Fig. S.1 and S.2, to account for the different simulation 
lengths and the different percentage of this length covered by 
the climatological reference period across different models, 
and find comparable results for model performance. Ide-
ally, longer simulation lengths that extend further into the 
past and a common climatological reference period in the 
earlier preindustrial period of the late 19th century would 
be preferred to identify biases in the forced response more 
robustly across different models.

The cases where observations occur outside of the 
ensemble limits with a higher frequency than can be attrib-
uted to internal variability can result from either biases in 
the simulated internal variability or in the forced response. 
If these occurrences outside the ensemble are distrib-
uted throughout the entirety of the record, the observed 
variability is either underestimated by the model, or the 
ensemble size is too small to cover the full range of possi-
ble climate states. However, if these occurrences are clus-
tered around certain periods, this likely indicates that the 
ensemble fails to capture the observed response to external 
forcings. The former can be seen for the case of CESM-
LE, while the clustering of low ranks for observed anoma-
lies around recent decades can be seen for CanESM2 and 
CanESM5 (Figs. 3, 4). CanESM5 and CanESM2 have rela-
tively flat rank histograms, but disproportionately large 
occurrences of rank 0 during recent decades. For models 
that have higher equilibrium climate sensitivities (ECS; 
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Table  1), such as CanESM2, CanESM5, GFDL-CM3 
and IPSL-CM5A (Figs. 3, 4), the high 0-rank frequen-
cies in recent decades indicate that the ECS and forced 
warming response in these models is likely larger than in 
observations (Jiménez-de-la-Cuesta and Mauritsen 2019; 
Tokarska et al. 2020), resulting in discrepancies between 
observed and simulated GMST values.

We also find that observed GMST anomalies generally 
do not cluster in the central 75th percentile range of any of 
the simulated ensemble spreads (colored shading in Figs. 3, 
4). This indicates that the observed GMST variability is 
not systematically overestimated by any of the models in 
our study. In the case that this bias were present, a concave 

rank histogram would indicate that the ensemble overesti-
mates the observed variability and simulates wider prob-
ability distributions and events that are systematically more 
extreme than those observed (Fig. 1e). However, for shorter 
observational records, this may also occur due to the record 
not being long enough to sufficiently sample low-probabil-
ity events with long return periods at the same rate as the 
ensemble (Keller and Hense 2011; Suarez-Gutierrez et al. 
2020b).

We introduce perfect-model rank frequency tests (Data 
and Methods Sect. 2.2.1) to assess how the flatness of the 
rank histogram and the distribution of rank frequencies can 
be affected by internal variability. For this, we treat each 

Fig. 3   Time series and rank his-
tograms of annual GMST anom-
alies. Time series of annual 
GMST anomalies simulated by 
each SMILE (color) and GMST 
HadCRUT4 observed anoma-
lies (black circles) ordered by 
increasing ECS (left column). 
Lines represent ensemble 
maxima and minima, and shad-
ing represents the ensemble 
spread within the 75th percen-
tile bounds (12.5th to 87.5th 
percentiles). Rank histograms 
represent the frequency of each 
place that HadCRUT4 GMST 
observations would take in a list 
of ensemble members ordered 
by ascending GMST values 
(right column). Lines illustrate 
the rank histogram’s slope, as 
the mean rank frequency over 
a centered 6-bin window for 
HadCRUT4 observations (solid 
lines, light colors), and for the 
90% confidence perfect model 
range as the 5th to 95th per-
centile range of rank slopes for 
each ensemble member treated 
as observations (dashed, dark 
colors). Crosses represent the 
frequency of minimum (0) and 
maximum (number of members) 
ranks for observations (light 
colors), and the perfect model 
range as 5th to 95th percentile 
in frequency (dark colors). Bin 
sizes are 1 rank, except for MPI-
GE where bin size for ranks 1 to 
n-1 is 3 ranks to aid visualiza-
tion. Anomalies are relative to 
the period 1961–1990
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ensemble member as if it were the observations, and com-
pute the rank histogram of each singular ensemble mem-
ber against the new n-1 ensemble. We can then identify the 
range where the slope of the observational rank histogram 
for a model that perfectly captures observations may fluctu-
ate due to the effect of internal variability for a given model 
and simulation length. If the rank frequencies from observa-
tions occur substantially outside of this range for any ranks, 
we can determine that the distribution in the model deviates 
from observations beyond what can be explained by internal 
variability and therefore does not capture observations ade-
quately. We find that most ensembles, including CanESM2, 
CanESM5, CSIRO.MK3.6, GFDL-ESM3, IPSL-CM5A, and 
MIROC6, exceed this range due to too high rank 0 and rank 
n frequencies that are caused by biases in the forced response 
beyond what can be attributed to internal variability.

In contrast, only four ensembles offer rank histograms 
sufficiently within their perfect-model range to determine 
that they provide an adequate representation of observa-
tions: CESM-LE, GFDL-ESM2M, IPSL-CM6A, and MPI-
GE. The ensembles CESM-LE (Fig. 4) and GFDL-ESM2M 
(Fig. 3) exhibit rank histograms marginally outside of this 
range, which could happen by chance (e.g., Fig. 1a) and 
could be attributed to the relatively short simulation length 
(Keller and Hense 2011). Longer simulation lengths and 
larger ensemble sizes would be beneficial to robustly deter-
mine whether CESM-LE and GFDL-ESM2M are indeed 
capturing the observed internal variability and forced 
response in GMST adequately.

For IPSL-CM6A (Fig. 4) our results show that the rank 
histogram of observations is well within the range of devia-
tions caused by internal variability. This is also true when 
the climatological reference period is shifted to the nin-
teenth century (not shown) and when only the 1950–2014 
period is considered (SI Fig. S.2). However, the high ECS 
in IPSL-CM6A combined with the fact that observations 
occur always in the lower half of the ensemble for the last 
two decades points toward a potential forced response bias 
in the model that may be identifiable only when more sce-
nario data and future observations become available. Lastly, 
MPI-GE presents both a reasonably flat rank histogram and 
a low frequency of occurrences outside the ensemble limits 
both within the perfect-model ranges (Fig. 3). This indicates 
that, from the SMILEs considered in our study, MPI-GE 
captures observed GMSTs most adequately, performing 
well in simulating both the internal variability and forced 
response in observed GMST during the entirety of the period 
of 1850–2019.

Our findings reveal that while an overestimated forced 
warming response in several models causes the largest dis-
crepancies between observed and simulated GMSTs, internal 
variability in GMSTs is not systematically over- or under-
estimated by any of the models considered. Two of the four 

ensembles with the most adequate GMST representation, 
GFDL-ESM2M and MPI-GE, are also two of the three 
ensembles from models with the lower ECS (2.4 K and 2.8 
K, respectively; Table 1). In contrast, the other two ensem-
bles with adequate GMST representation have higher ECS, 
of 4.1 K for CESM-LE and 4.5 K for IPSL-CM6A. These 
values are well within the range of sensitivities of models 
with substantially overestimated forced warming, and indi-
cate that observed historical surface temperatures can be 
reproduced with a high-ECS model. Note however that this 
relationship between warming during the historical record 
and climate sensitivity can be substantially affected by the 
large uncertainty in aerosol cooling (Kiehl 2007; Tokarska 
et al. 2020).

3.2 � Where climate models perform well

The next aspect of our evaluation framework is to apply 
these concepts to evaluate how different climate models cap-
ture the observed variability and forced response in annual 
surface temperatures at the grid cell level (Fig. 5).In this 
analysis we highlight four different metrics to assess how 
observations are distributed across the simulated ensemble 
spread at each grid cell (Data and Methods Section 2.2.2). 
First, we evaluate how often observed surface temperatures 
occur beyond the ensemble limits, and define regions where 
models show a biased representation of observations when 
at least 10% of the observations lie below the ensemble 
minimum (blue shading in Fig. 5) or above the ensemble 
maximum (red shading in Fig. 5). Second, we identify the 
regions where observed surface temperatures do not suffi-
ciently cover the whole ensemble spread. For this, we deter-
mine that when observations cluster within the central 75th 
percentile range of the simulated ensembles (corresponding 
to the central colored bounds in Figs. 3 and 4) more than 
80% of the time, it indicates that the models overestimate 
internal variability compared to observations in the area. 
This bias implies that the simulated distribution is systemati-
cally wider than the distribution of observed values, and that 
extremes at tails of the simulated distribution are systemati-
cally more extreme than those observed. The effect of choos-
ing a more permissive threshold of 85% for this variability 
overestimation bias can be seen in SI Fig. S.3.

Lastly, the white regions represent where none of these 
biases occur to a substantial degree. This means that in these 
areas the ensemble captures observations adequately, with 
less than 10% of all observations occurring either above or 
below the ensemble limits, and less than 80% of all observa-
tions clustering within the central 75th percentile range of 
the ensemble. Thus, the total fraction of white area for each 
mode represents over how much area the models simulate 
a mean forced response and deviations from this mean that 
are comparable to observations for the whole length of their 
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simulations, and gives us an overarching ranking for our 
evaluation.

In this spatial evaluation we find that observations tend to 
occur outside the ensemble limits more frequently, and over 
larger areas, than they tend to cluster in the central range 
of the ensembles (Fig. 5). This indicates that the ensemble 
spreads of most models do not sufficiently capture the range 
of observed surface temperatures over large areas. This is 
either because they fail to capture the forced response, or 
because they insufficiently sample or underestimate inter-
nal variability on regional scales. In contrast, over smaller 
areas, some models simulate both positive and negative 
surface temperature anomalies in any given year that are 

systematically more extreme than those observed, indicat-
ing that they overestimate the observed internal variability 
in these regions. Such a clustering of the observations in 
the center of the ensembles indicates that an overestimation 
of internal variability occurs for several models over land-
surface areas in India, South East Asia, or Central North and 
South America, as well as near the sea-ice edges in high-
latitude oceans, over the North Atlantic, and over parts of the 
tropical Pacific and Indian Oceans. By contrast, observations 
occur outside the ensemble spreads with high frequency for 
all models over the Southern Ocean, and for some models 
also over the Southern Hemisphere oceans or the Maritime 
Continent.

Fig. 4   Time series and rank 
histograms of annual GMST 
anomalies, continued. Time 
series of annual GMST anoma-
lies simulated by each SMILE 
(color) and GMST HadCRUT4 
observed anomalies (black 
circles) ordered by increas-
ing ECS (left column). Lines 
represent ensemble maxima and 
minima, and shading represents 
the ensemble spread within the 
75th percentile bounds (12.5th 
to 87.5th percentiles). Rank his-
tograms represent the frequency 
of each place that HadCRUT4 
GMST observations would take 
in a list of ensemble members 
ordered by ascending GMST 
values (right column). Lines 
illustrate the rank histogram’s 
slope, as the mean rank 
frequency over a centered 
6-bin window for HadCRUT4 
observations (solid lines, light 
colors), and for the 90% confi-
dence perfect model range as 
the 5th to 95th percentile range 
of rank slopes for each ensem-
ble member treated as observa-
tions (dashed, dark colors). 
Crosses represent the frequency 
of minimum (0) and maximum 
(number of members) ranks for 
observations (light colors), and 
the perfect model range as 5th 
to 95th percentile in frequency 
(dark colors). Bin sizes are 1 
rank. Anomalies are relative to 
the period 1961–1990
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This evaluation shows that surface temperatures over the 
Southern Ocean are not adequately simulated by any of the 
models considered in our study, even with the better sam-
pling of internal variability provided by SMILEs (Fig. 5). 
Over large areas, more than 40% of the observed anomalies 
occur both above and particularly below the ensemble lim-
its for all models. The fact that observations tend to occur 
predominantly below the ensemble minimum, in combina-
tion with simulated temperatures being generally higher 
than observed in the region in recent decades (SI Fig. S.9), 
indicates that some of the discrepancies may be explained by 
models warming more and at a faster pace than is observed 
over the Southern Ocean. We find that this warming bias, 
previously identified in individual simulations in the CMIP5 
multimodel ensemble (Hyder et al. 2018), remains outside of 
the range of the better-sampled internal variability in SMILE 
experiments, and it is still present in the CMIP6 models 
considered.

In addition to this potential warming bias, an underesti-
mation of variability over the Southern Ocean may also be a 
contributing factor to these discrepancies. This could result 
from the relatively coarse model spatial resolution in all 
SMILEs considered here, which does not allow an explicit 
simulation of ocean eddies. A poor representation of ocean 
eddies can result in an underestimation of the observed vari-
ability in surface temperatures through an incorrect repre-
sentation of eddy mixing and cold water upwelling (Screen 
et al. 2009; Frenger et al. 2015). Moreover, coarse resolution 
can further affect the surface temperature mean state and 
variability through an incorrect representation of the ocean-
sea-ice interactions, wind location, deep water formation, 
and the strength and spatial variability of the overturning 
circulation of the Southern Ocean (Stössel et al. 2015; Gut-
jahr et al. 2019).

Lastly, the observational sparsity in the Southern Ocean 
region may also be a contributing factor. In-situ observations 
over the Southern Ocean are both spatially and temporally 
sparse, clustering in the austral summer months and in dif-
ferent regions over different periods (Fig. 2a). The inconsist-
ent sampling of different phases of variability in observed 
surface temperatures over the Southern Ocean may result in 
a range of observed variability that is artificially reduced, 
thus hiding even larger discrepancies than shown here. 
However, this inconsistent sampling could also result in an 
overestimation of the observed annual variability caused by 
annual averages that are biased due to unbalanced sampling 
across different seasons (Fig. 2a). Longer and better-sampled 
observational records combined with SMILEs of higher res-
olution eddy-resolving climate models may be required to 
robustly determine the source of the remaining discrepancies 
between observed and simulated surface temperatures over 
the Southern Ocean.

Our evaluation shows that the ensembles with the 
most adequate representations of surface temperatures on 
regional scales, as measured by the largest area of no sub-
stantial biases, are MPI-GE, followed by GFDL-ESM2M, 
CanESM2, CESM-LE, and MIROC6 (Fig. 5). To account 
for the effect of the double to almost triple ensemble size of 
the 100-member MPI-GE compared to the other ensembles 
considered here, we replicate this analysis for ensemble sizes 
limited to the first 30 ensemble members (SI Fig. S.4). This 
evaluation for comparable ensemble sizes still highlights a 
similar set of SMILEs as exhibiting the largest fraction of 
non-biased area, but in a now different order. The MPI-GE 
limited to its first 30 members exhibits larger areas where 
the ensemble does not sufficiently cover the range of vari-
ability in observed surface temperatures, particularly in the 
Southern Hemisphere. By limiting the ensemble size to a 
comparable range, the 30-member GFDL-ESM2M ensemble 
surpasses MPI-GE in fraction of unbiased area by roughly 
6%, and offers the largest area of adequate representation of 
surface temperatures, followed by CESM-LE and MPI-GE.

From the ensembles with the most adequate representa-
tion of observed temperatures, the one that most frequently 
overestimates the observed variability in surface tempera-
tures is the one with the fewest members, GFDL-ESM2M 
(Fig. 5). This result stands in contrast to the expectation 
that larger ensemble sizes may result in larger ensemble 
spreads. We find that whereas most of the models considered 
show similar magnitude and patterns of internal variability, 
GFDL-ESM2M shows more variability over the low and 
mid latitude land areas than most other models (SI Fig. S.5). 
This result also holds when the ensemble size differences 
are accounted for (SI Fig. S.6). GFDL-ESM2M simulates 
temperature distributions that are systematically too wide, 
with observations clustering in the center of the simulated 
distribution, over large land areas, such as India, South East 
Asia or the majority of America, but also over the oceans. 
This behavior occurs for MIROC6 and CanESM2 over rela-
tively large land-surface areas, for CESM-LE over smaller 
regions over the Indian and Pacific Oceans and the high lati-
tudes, and is even less marked for MPI-GE (Fig. 5). A more 
in-depth comparison of the patterns and magnitude of the 
simulated internal variability in different SMILEs and the 
effect of ensemble size can be found in the Supplementary 
Information (SI Fig. S.5 and S.6).

For the rest of the models evaluated, we find that observed 
annual mean surface temperature anomalies fall with high 
frequency below the ensemble minima over large regions 
(Fig. 5). This is the case particularly for CanESM2, CESM-
LE, CSIRO-MK3.6, GFDL-CM3, and IPSL-CM5A. This 
occurs over smaller areas for the CMIP6 models CanESM5, 
IPSL-CM6A and MIROC6, which show observations lower 
than the ensemble minima clustered around the Southern 
Ocean and South Atlantic. For CanESM5 and IPSL-CM6A, 
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as well as for IPSL-CM5A, observations occur above all 
ensemble members over large areas of the tropical oceans 
and the Maritime Continent. For MIROC6, observations are 
higher than the ensemble maxima over the northern polar 
regions. This behavior is not present in any other of the mod-
els considered, and may arise due to an overestimation of ice 
cover illustrated by a combination of low variability (SI Fig. 
S.5 and S.6) and a cold mean bias in recent decades (SI Fig. 
S.9) in MIROC6 over the northern polar region.

3.3 � Disentangling forced response and internal 
variability biases

In this section we refine our analysis to disentangle forced 
response biases from biases in internal variability in our 
spatial evaluation. A high frequency of occurrence of 
observations outside the ensemble spread evaluated during 
the whole observational record may indicate either a bias 
in the forced response or in internal variability. To distin-
guish between these effects, we repeat this analysis both for 
recent decades (1990–2020) and for a period of the same 
length earlier in the 20th century (1950–1980; Figs. 6 and 
7). Although other effects such as differences in aerosol 
forcing and respective cooling effects in the observations 
(Kiehl 2007; Tokarska et al. 2020) and decadal to multi-
decadal variability in the observations (England et al. 2014; 
McGregor et al. 2014) may generate differences between 
these two periods and cannot be excluded without further 
analysis, we expect that biases that originate from a incorrect 
representation of internal variability are comparable between 
the two periods, whereas biases that originate from an incor-
rect representation of the forced response are period-depend-
ent. Because the forced response depends on time-changing 
external forcings, models that overestimate this response in 
recent decades may show no biases in earlier periods, or 
may show biases that change in sign, i.e., simulated tem-
perature anomalies that are lower than observed before the 
climatological reference period, and higher afterwards. Note 

however that period-depending cooling aerosol forcings in 
the models may also affect these time-changing biases, and 
could compete with the warming greenhouse gas forcing, 
leading to masked biases.

On the other hand, the cases where observations still 
occur consistently both below and above the ensemble limits 
also during these shorter periods indicate an underestima-
tion of internal variability. Ideally we would use an even 
earlier period as a proxy for pre-industrial conditions in this 
comparison. However, we restrict our analysis to the period 
starting in 1950 to ensure contributions from all SMILEs. 
Note that during these roughly 30-year periods, observations 
appear to cluster in the center of the ensembles with too high 
frequencies for more models and over larger areas, because 
these periods are not sufficiently long to identify the vari-
ability overestimation bias in annual surface temperatures 
robustly.

This period-based analysis highlights the models with 
the largest differences between these two periods as those 
most affected by biases in the forced response: CanESM2, 
CanESM5, GFDL-CM3, and IPSL-CM5A (Figs. 6, 7). 
These models showing period-dependent biases in the 
forced response also overestimate the observed warm-
ing response in GMST in recent decades (Figs. 3, 4). In 
the early period, CanESM2 and CanESM5 (Fig. 6) exhibit 
percentages of unbiased area that are comparable to those 
from other models with adequate representations of surface 
temperatures during the whole observational record, such 
as GFDL-ESM2M (Fig. 5). They exhibit some regions of 
overestimated variability, as well as observations occurring 
both above and below the ensemble limits in the Southern 
Ocean (Fig. 6). In the later period, this percentage drops 
substantially and observed temperatures are lower than 
the ensemble minima of CanESM2 and CanESM5 almost 
over all locations on the globe (Fig. 6). This drastic change 
between the two periods indicates that these two models are 
sufficiently able to capture the variability range in observed 
surface temperatures under relatively low levels of historical 
global warming, but simulate surface temperatures system-
atically higher than those observed under higher historical 
warming levels.

For CanESM5, with longer simulations starting in 1850, 
we also identify high percentages of observations that are 
warmer than all ensemble members during the late ninteenth 
and early twentieth Centuries, in particular over the trop-
ics and Southern Hemisphere oceans (not shown). There-
fore, additionally to the higher than observed temperature 
anomalies in recent decades, this model also shows lower 
than observed temperature anomalies in the early histori-
cal period, before the climatological reference period. This 
sign-changing bias behavior is also present for IPSL-CM5A 
(Fig. 7) and to some extent for CSIRO-MK3.6, GFDL-CM3 
(Fig. 6) and IPSL-CM6A (Fig. 7). With the exception of 

Fig. 5   Evaluation of internal variability and forced response in annual 
surface temperatures. Evaluation of annual surface temperature 
anomalies simulated by different SMILEs compared to HadCRUT4 
observed anomalies. Red shading represents where observed anoma-
lies are larger than the ensemble maximum; while blue shading repre-
sents where observed anomalies are smaller than the ensemble mini-
mum, both for more than 10% (light color) or 20% (dark color) of the 
time. Gray hatching represents where observations cluster within the 
75th percentile bounds of the ensembles (12.5th to 87.5th percentiles) 
more than 80% (light color) or 90% (dark color) of the time. White 
Area represents the percentage of total area included in the analysis 
that exhibits no substantial biases for each SMILE. Dotted areas rep-
resent where observations are available for less than 10 years, and 
therefore excluded from our analysis. Anomalies are relative to the 
period 1961–1990. Model output is regridded to match the observa-
tional grid
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the Southern Ocean, this indicates that in the regions where 
observations occur both above and below the ensemble 
limits for these models when analyzing the whole observa-
tional record (Fig. 5), it is due to the misrepresentation of the 
observed forced warming by the models, and not due to an 
underestimation of internal variability. For CSIRO-MK3.6, 
we find that although the percentage of white area does 
not change substantially between the two periods, the bias 
patterns change substantially from observations occurring 
mostly below the ensemble in the early period, to above the 
ensemble in the recent decades, highlighting forced response 
biases. For IPSL-CM6A, we also find high percentages of 
white areas for both periods, higher than when the whole 
observational record is considered (Fig. 5), that decrease in 
the 19th and early 20th centuries (not shown), indicating a 
potential forced response bias in the model.

The ensemble MPI-GE, and to some extend also CESM-
LE, GFDL-ESM2M, and MIROC6, exhibit similar biases for 
both periods over similar regions (Figs. 6, 7). This indicates 
that the biases for these models shown in Fig. 5 are largely 
not period-dependent, and therefore not dominated by errors 
in the forced response; but rather dominated by biases in the 
shape of the simulated probability distributions caused by 
over- or underestimations in the simulated internal variabil-
ity. Our findings highlight that most models offer a reason-
able representation of internal variability over large areas, 
although they exhibit similar biases over similar regions: 
an overestimation of the observed temperature variability 
over land-surface areas such as Central South America, 
and an underestimation of the observed variability over the 
Southern Ocean. In contrast, forced response biases occur 
over much larger areas, and are the dominating source of 
discrepancies between several models and observations also 
on regional scales.

3.4 � How many climate models adequately capture 
observations

We summarize these results to identify regions where most 
models adequately capture both the variability and forced 
response in surface temperatures for each region during the 
entirety of the observational record, versus regions where 
most models do not (Fig. 8a). We define regions where the 
ensembles capture observations adequately as areas where 
they do not show any of the considered biases to a substantial 
degree. This includes that less than 10% of all observations 

occur either above or below the ensemble limits, and less 
than 80% of all observations occur within the central 75th 
percentile bounds of the ensemble (white areas in Fig. 5). 
We find that the highest number of models that adequately 
simulate observed surface temperatures according to these 
criteria, a maximum of nine out of ten models, do so over 
the North Atlantic, Tropical Eastern Pacific, and northern 
mid to high latitude land surfaces. Over the Southern Ocean, 
none of the climate models considered in our study succeeds 
at adequately simulating surface temperatures; while fewer 
than three models offer adequate surface temperature simu-
lations over the South Atlantic or the Maritime Continent.

We repeat this evaluation again for two different peri-
ods during the 20th century (1950–1980; Fig. 8b), and 
during recent decades (1990–2020; Fig. 8c). By doing so, 
we can distinguish between models that can adequately 
capture the variability and forced response in observed 
surface temperatures under conditions comparable to a 
pre-industrial state, versus models that do so under higher 
atmospheric concentrations of greenhouse gases. We find 
that substantially fewer models offer adequate simulations 
of surface temperatures in recent decades compared to 
both 1950–1980 (Fig. 8d), and to the whole observational 
record (Fig. 8a). This indicates that the overestimated 
forced warming response in several models substantially 
reduces the number of models that adequately simulate 
surface temperatures at regional scales, particularly over 
Northern Europe or the North Atlantic and Pacific Oceans 
(Fig. 8d). To a lesser extent, we also find that the number 
of models that capture the observed surface temperature 
increases over the South Atlantic, Southern Ocean and the 
sea-ice covered regions around Antarctica in recent dec-
ades (Fig. 8d), likely due to recent observational sampling 
improvements in these areas. In contrast, a similar number 
of models simulate surface temperature adequately during 
both periods over the South Atlantic, Indian and Southern 
Oceans, and South Asia. Our results show that there is no 
region of the globe where all models offer an adequate 
simulation of the internal variability and forced response 
in observed annually averaged surface temperatures for the 
entire observational record.

4 � The importance of robustly evaluating 
internal variability

By combining SMILE experiments with our rank-based 
evaluation framework we can for the first time determine 
whether the range of well-sampled internal variability in a 
model is adequate, or rather an under- or overestimation of 
the variability in observations. Therefore, our framework 
allows us to determine, more robustly than ever before, 
to what extent the range of events that are possible under 

Fig. 6   Evaluation of internal variability and forced response in sur-
face temperatures for different periods. Evaluation of annual surface 
temperature anomalies simulated by different SMILEs compared to 
HadCRUT4 observed anomalies as in Fig. 5, for the period of 1950–
1980 (left column) and 1990–2020 (right column), except for CMIP6 
SMILE CanESM5, which ends in 2014. Anomalies are relative to the 
period 1961–1990
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specific climatic conditions in a model represents the 
range of events that would be possible in the real world, 
including low-probability extreme events. This is use-
ful not only for evaluating the reliability of the range of 
events in future projections; but also to robustly determine 
the likelihood of events that have occurred in the past, 
either under real-world or alternative forcing conditions. 
This makes evaluations such as ours crucial for further 
improving upon current detection and attribution efforts. 
Ultimately, we can now determine which model ensembles 
simulate an internal variability that is closest to the inter-
nal variability in the real world, thus providing us with 
a choice of simulated proxies for the unobservable real-
world internal variability. In turn, this allows us to improve 
our understanding of the real-world internal variability by 
studying these proxies in a setting with the cleanest and 
most robust analysis of this signal currently possible.

An important highlight of our evaluation is that while 
the forced response in annual surface temperature varies 
widely across models, most SMILEs present fairly similar 
patterns and magnitudes of internal variability. They show 
larger variability over land than over the oceans, and in the 
Northern Hemisphere than in the Southern Hemisphere. 
IPSL-CM5A exhibits the highest variability, followed by 
GFDL-CM3 and GFDL-ESM2M. MIROC6 exhibits the 
lowest variability over the high latitudes, while exhibit-
ing a mid- and low-latitude variability range comparable 
to other ensembles. Furthermore, both variability as well 
as performance in representing the range of observed 
temperatures increase when including more ensemble 
members for all models, indicating that 30 members is 
not sufficient to offer fully saturated ensemble spreads, 
even for relatively low variability magnitudes such as for 
annually averaged surface temperatures. However, we do 
not find a relationship between larger ensemble sizes and 
larger internal variability across models; and the largest 
ensemble, MPI-GE, does not exhibit the largest variability 
when its 100 available ensemble members are included. 
This means that, beyond certain quasi-saturation limits, 
increasing ensemble size does not necessarily increase the 
range of internal variability. Therefore, our results indicate 
that internal variability appears to be a model property 
independent of ensemble size, beyond a certain number 
of ensemble members.

5 � Conclusions

Using a robust yet simple model evaluation framework, we 
assess how climate models represent the internal variabil-
ity and response to external forcings in observed histori-
cal temperatures. With this methodological framework, we 
can exploit the power of SMILE experiments to determine 
whether real-world observations are well distributed within 
the now well-sampled range of climate states simulated 
by each model. This allows us to attribute discrepancies 
between model simulations and observations to either biases 
in the simulated forced response or in the simulated internal 
variability, without the need to separate both signals in the 
observations. Thus, we can now determine whether com-
prehensive climate models capture the long-term trajectory 
of the climate system, as well as the range of possible fluc-
tuations from this trajectory caused by internal variability 
in any given region and time period. Such an evaluation, 
both in terms of a model’s forced response and range of 
internal variability, allows us to assess model performance 
more robustly than ever before, and thus to appropriately 
select which models are the best fit for different analysis in 
different regions of the globe, for studying current and past 
climate states, as well as future climate projections (Krinner 
and Flanner 2018).

Our evaluation of global mean surface temperatures 
shows that while some models fail to capture the long-
term response to external forcing, none of them sys-
tematically under- or overestimate the range of internal 
variability in GMST. Most models show good agreement 
between the ranges of simulated and observed GMST, but 
several models show warming signals substantially higher 
than observed during recent decades. Thus, our findings 
indicate that these models, namely CanESM2, CanESM5, 
GFDL-CM3, and IPSL-CM5A, overestimate recent forced 
warming (Jiménez-de-la Cuesta and Mauritsen 2019; 
Tokarska et al. 2020) beyond the range of plausible fluctu-
ations caused by internal variability. From all SMILEs, the 
100-member MPI-GE offers the most adequate representa-
tion of both the internal variability and forced response in 
observed GMST during the entire historical record, fol-
lowed by IPSL-CM6A, CESM-LE, and GFDL-ESM2M. 
Two of the models that capture GMST most adequately, 
GFDL-ESM2M and MPI-GE, are also two of the three 
models with the lowest ECS values. In contrast, CESM-LE 
and IPSL-CM6A illustrate that models with a much higher 
ECS can still adequately capture the observed historical 
surface temperatures.

Using our evaluation framework we can directly identify 
regions where models under- or overestimate internal vari-
ability, as well as where they exhibit regional biases in the 
forced response compared to observations. Models capture 

Fig. 7   Evaluation of internal variability and forced response in sur-
face temperatures for different periods, continued. Evaluation of 
annual surface temperature anomalies simulated by different SMILEs 
compared to HadCRUT4 observed anomalies as in Fig.  5, for the 
period of 1950–1980 (left column) and 1990–2020 (right column), 
except for CMIP6 SMILE IPSL-CM6A, which ends in 2014. Anoma-
lies are relative to the period 1961–1990
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the range of observed temperatures adequately over land in 
the Northern Hemisphere; while capturing this range less 
adequately near the sea ice edges and over the Southern 
Ocean. Observations occur outside the ensemble limits over 

most of the globe, and in particular over the Southern Hemi-
sphere oceans. In contrast, observations cluster in the central 
bounds of the ensembles indicating overestimated variabil-
ity over similar regions for most models: the sea ice edges 

a 1850–2020

b 1950–1980 c 1990 – 2020

d 1990–2020 minus 1950–1980

Fig. 8   Number of models that adequately represent observed surface 
temperatures. Number of models that adequately represent the com-
bined effect of internal variability and forced response in annual sur-
face temperature HadCRUT4 observed anomalies for the period of 
a 1850–2020, b 1950–1980, and c 1990–2020, and d the difference 
between the number of models in 1990–2020 minus in 1950–1980. 

We consider that models capture observations adequately when less 
than 10% of all observed anomalies fall either above or below the 
ensemble limits, while less than 80% of all observed anomalies fall 
within the central 75th percentile bounds of the ensemble, for each 
grid cell. Dotted areas represent regions where observations are avail-
able for less than 10 years
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near the poles, and the low and middle latitude land-surface 
areas. Our findings show that observations tend to occur 
outside the ensemble limits more than they tend to clus-
ter in the central bounds of the ensembles. This means that 
models fail to capture observations due to forced response 
biases or underestimated variability more frequently, and 
over larger areas, than they overestimate this variability due 
to simulated extremes that are systematically more intense 
than those observed. Therefore, simulated annual surface 
temperature extremes are less likely biased due to models 
overestimating their intensity, and more likely biased due to 
models underestimating their intensity and misrepresenting 
forced changes.

On regional scales, the ensembles MPI-GE, GFDL-
ESM2M, MIROC6, and CESM-LE capture the observed 
variability and forced response in historical surface tem-
peratures most adequately, both in early as well as in recent 
periods. This indicates that, according to our evaluation met-
rics, MPI-GE, GFDL-ESM2M, and CESM-LE are the most 
adequate ensembles to investigate future projections of sur-
face temperatures both globally averaged and globally at the 
grid-cell level. Our results show that the 100-member MPI-
GE offers a representation of the range of observed tempera-
tures that is adequate over larger areas than the 30-member 
GFDL-ESM2M and 35-member CESM-LE; however, the 
performance of all three ensembles is comparable when 
limiting ensemble size to the first 30 members. Over the 
North Atlantic, Tropical Eastern Pacific, and northern mid- 
to high-latitude land areas we find the highest number of 
models that adequately simulate observed surface tem-
peratures, a maximum of nine out of ten models. Over the 
Southern Ocean, none of the models considered succeeds at 
adequately capturing observed surface temperatures; while 
fewer than three models do so over the South Atlantic or the 
Maritime Continent. In recent decades, fewer models offer 
adequate simulations of surface temperatures than compared 
to earlier periods. This occurs due to the overestimation of 
the recent forced warming in some models which also occurs 
at regional levels, and indicates that climate projections from 
these models would likely also overestimate future warming 
beyond what can be explained by internal variability.

Our novel perspective on model evaluation provides 
new ways of testing the performance of climate models. 
Consequently, it also offers new confidence in histori-
cal simulations and projections for the long-term climate 
response to changing forcing in the future, as well as on 
the simulated range of fluctuations around that response. 
We can now robustly yet simply determine which models 
best capture the real-world climate, and assess whether 
models under- or overestimate the forced response and 
internal variability in observed variables. The robustness 
of our framework comes from the unique experimental 
design of SMILE experiments. Its simplicity comes from 

fully exploiting the tools that the climate science commu-
nity has available, taking our methodologies away from 
previously necessary assumptions and limitations and 
towards the next generation of climate model evaluation.
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