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Abstract

Regional climate predictions for the next decade are gaining importance, as

this period falls within the planning horizon of politics, economy, and soci-

ety. The potential predictability of climate indices or extremes at the

regional scale is of particular interest. The German MiKlip project

(“mid-term climate forecast”) developed the first regional decadal prediction

system for Europe at 0.44� resolution, based on the regional model COSMO-

CLM using global MPI-ESM simulations as boundary conditions. We analyse

the skill of this regional system focussing on extremes and user-oriented var-

iables. The considered quantities are related to temperature extremes, heavy

precipitation, wind impacts, and the agronomy sector. Variables related to

temperature (e.g., frost days, heat wave days) show high predictive skill

(anomaly correlation up to 0.9) with very little dependence on lead-time,

and the skill patterns are spatially robust. The skill patterns for

precipitation-related variables (e.g., heavy precipitation days) and wind-

based indices (like storm days) are less skilful and more heterogeneous, par-

ticularly for the latter. Quantities related to the agronomy sector

(e.g., growing degree days) show high predictive skill, comparable to tem-

perature. Overall, we provide evidence that decadal predictive skill can be

generally found at the regional scale also for extremes and user-oriented var-

iables, demonstrating how the utility of decadal predictions can be substan-

tially enhanced. This is a very promising first step towards impact-related

modelling at the regional scale and the development of individual user-

oriented products for stakeholders.
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1 | INTRODUCTION

Short-term climate predictions for the next 1–10 years are
gaining importance in the climate science community
(e.g., Meehl et al., 2009). These so-called decadal predic-
tions can also be of high value for impact modellers and
decision makers in politics, economy and society (Vera
et al., 2010; Meehl et al., 2014). Within the Coupled
Model Intercomparison Project Phase 5 (CMIP5; Taylor
et al., 2012), a set of globally coordinated climate model
experiments has been consolidated, comprising simula-
tions for the recent past, decadal simulations and climate
change projections. Based on this experience, decadal
predictions also play an important role in the Decadal
Climate Prediction Project (DCPP) as part of CMIP6
(Boer et al., 2016; Eyring et al., 2016).

Since 2007, the number of studies assessing the pre-
dictive skill of decadal systems has strongly increased
(cf. Meehl et al., 2014). While most studies focus on the
global scale (e.g., Kim et al., 2012; Müller et al., 2012,
2014; Doblas-Reyes et al., 2013; Bellucci et al., 2015;
Kadow et al., 2016), some studies also investigate indices
at the regional scale (e.g., Kruschke et al., 2016;
Moemken et al., 2016). Overall, the global warming trend
enables a certain predictability by itself, especially for
temperature-related climate indicators. On decadal time-
scales, this climate trend is of the same order of magni-
tude as the climate variability of global mean
temperatures (Flato et al., 2013; Hartmann et al., 2013;
Chen and Tung, 2018). On the regional scale, the vari-
ability might be even stronger and therefore could pro-
vide additional predictability. Specifically, the North
Atlantic has been identified as a hot spot of decadal pre-
dictability (Sutton and Hodson, 2005; Latif and
Keenlyside, 2011; Müller et al., 2012; Kadow et al., 2017).
This predictability arises from the long-term variability
pattern of the Atlantic Meridional Overturning Circula-
tion (AMOC; Matei et al., 2012) and the Atlantic Multi-
decadal Variability (AMV; Zhang et al., 2019). Most
global decadal prediction systems provide a high hindcast
skill for the AMV Index as well as North Atlantic sea
surface- and 2 m-temperatures up to 9 years ahead
(Doblas-Reyes et al., 2013; Bellucci et al., 2015). A strong
potential for skilful decadal predictions has also been
identified for Europe (Feldmann et al., 2019; Reyers
et al., 2019). For example, Ghosh et al. (2017) provided
evidence that an increased heat flux due to higher sea
surface temperatures in the North Atlantic is triggered by
the positive phase of the AMV. This mechanism induces
a wave-like response in the sea-level pressure field and
blocking-like situations downstream over Europe, thus,
leading to changes in temperature and precipitation.
These mechanisms are regionally and seasonally

dependent, leading to different levels of predictive skill
for different climate indicators for Europe and inducing a
lead-time dependency of skill.

The German research consortium MiKlip
(“Mittelfristige Klimaprognosen”; www.fona-miklip.de;
Marotzke et al., 2016) developed a global decadal predic-
tion system based on the Max-Planck-Institute Earth Sys-
tem Model (MPI-ESM) and produced several hindcast
ensemble generations. In addition, MiKlip provides the
first systematic efforts to establish a regional component
of the decadal prediction ensemble for Europe, which
culminated in the dynamical downscaling of a full global
hindcast ensemble (Feldmann et al., 2019). Mieruch
et al. (2014) and Reyers et al. (2019) previously analysed
sub-samples of this regionalised hindcast set. All three
studies show added value by the downscaling approach
for basic variables like surface temperature for large parts
of Europe. Their results also indicate a reduction of bias
and an increase of reliability in the regional system com-
pared to the global hindcasts (cf. Feldmann et al., 2019).
Other efforts used statistical-dynamical downscaling for
selected quantities like wind energy potentials
(Moemken et al., 2016) and wind gusts (Haas
et al., 2016). Both studies indicate predictive skill for
Europe, especially for the first years (1–4) after
initialisation, related to variations in the frequency of
westerly weather patterns.

Mean temperature and mean precipitation are the
most commonly analysed variables in decadal hindcast
studies (e.g., Doblas-Reyes et al., 2013; Bellucci
et al., 2015). The MiKlip decadal prediction website
(www.fona-miklip.de/decadal-forecast/decadal-forecast-for-
2019-2028/) offers operational global decadal predictions
of mean temperature. However, such general products
are of limited value for potential users outside the sci-
ence community, like stakeholders in civil services, gov-
ernments or economy (Lemos et al., 2012; Hackenbruch
et al., 2017; Schipper et al., 2019). Recent user-oriented
projects (e.g., the EUPORIAS project for seasonal predic-
tions; Buontempo et al., 2018) suggest that user needs
are rather specific across different sectors, and that indi-
vidual prediction products are highly needed to enable
applicability in the “real world.” Building on these con-
clusions, some efforts within MiKlip focussed on the
needs of private companies and public authorities. While
developing individual products for different sectors
remains the aim, specific climate indices or extremes
related to the basic climate variables temperature, pre-
cipitation, and wind at regional resolution are needed as
an intermediate step (cf. Copernicus Climate Change
Service [C3S]; Buontempo et al., 2019).

In this study, we analyse the predictive skill of the
regional MiKlip system focusing on extremes and climate
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indices related to temperature, precipitation, wind or
connected to the agronomy sector. Thus, we aim to iden-
tify potential fields of application for regional decadal
predictions. Thereby, our work extends previous regional
studies like Feldmann et al. (2019) and Reyers et al. (2019).
Methods and datasets are described in Section 2. Section 3
focusses on the results, while a summary and discussion
concludes this paper in Section 4.

2 | DATA AND METHODS

2.1 | Data and variables

We analyse the second MiKlip ensemble generation
“baseline1” (Pohlmann et al., 2013a), which features the
Max Planck Institute for Meteorology Earth System
Model in Low-Resolution mode (MPI-ESM-LR; Giorgetta
et al., 2013). Baseline1 combines anomaly initialisation in
the ocean (using ORA-S4 ocean reanalysis [Balmaseda
et al., 2013]) and full-field initialisation in the atmosphere
(with ERA40 [Uppala et al., 2005] and ERA-Interim [Dee
et al., 2011]), as described in Pohlmann et al. (2013b).
The ensemble comprises 10 decadal simulations for each
annual starting year of the period 1960–2017. The indi-
vidual ensemble members are generated using a 1-day-
lagged initialisation (Müller et al., 2012; Romanova
et al., 2018).

The global hindcasts are dynamically downscaled to
the EURO-CORDEX domain (Giorgi et al., 2009; see
Figure S1) using the regional climate model COSMO-
CLM (CCLM; Rockel et al., 2008) at a spatial resolution
of 0.44�. The downscaling is applied to all baseline1
ensemble members for all starting dates in 1960–2017,
resulting in the identical number of 5,800 simulation
years (58 starting dates × 10 years × 10 ensemble mem-
bers) as for the global ensemble. A thorough evaluation
of the regional decadal prediction system focussing on
the basic variables temperature, precipitation, and wind
speed can be found in Reyers et al. (2019) and Feldmann
et al. (2019).

For the evaluation of temperature and precipitation
related indices, we use the observational dataset E-OBS
(V14; Haylock et al., 2008) with daily temporal resolution
at a regular 0.5� grid. For wind-related variables, no
gridded observational dataset is available for Europe.
Thus, we use a CCLM simulation with ERA40 and ERA-
Interim boundary conditions as reference. For this simu-
lation, CCLM is applied in the same setup as for the
downscaling of the decadal prediction system
(cf. Feldmann et al., 2019).

To estimate the added value of initialisation, an
ensemble of seven regional uninitialized simulations

(historicals) is used as reference. This ensemble was
implemented by applying the same dynamical downscal-
ing approach to a set of global historical runs. The global
uninitialized ensemble uses the same MPI-ESM model
version and setup as the global hindcasts. The runs are
started from a pre-industrial control simulation and con-
sider, among others, aerosol and greenhouse gas concen-
trations for the period 1850–2005 (e.g., Müller
et al., 2012). Note that only the first seven (out of 10)
hindcast ensemble members are used to ensure a fair
comparison to the available uninitialized simulations.

Based on the collection of potential user needs within
MiKlip, a promising first step towards the development
of individual user products is the analysis of different
extremes and user-oriented variables. Most variables are
defined in the “Expert Team of Climate Change Detec-
tion Indices” (ETCCDI; Van Engelen et al., 2008; Zhang
et al., 2011). The complete set of analysed variables/indi-
ces is given in Table 1. We focus here only on a subset, as
some indices are closely linked to each other and/or
already discussed in other studies (e.g., Moemken
et al., 2016; Feldmann et al., 2019).

2.2 | Data processing and skill metrics

All datasets used in this study are processed in the same
way to enable comparability (Figure 1). First, yearly time
series for all indices/variables are derived for hindcasts,
historicals, and observations. In the next step, the raw
hindcast time series are recalibrated against observations
using the Decadal Climate Forecast Recalibration Strat-
egy (DeFoReSt) developed within MiKlip by Pasternack
et al. (2018). DeFoReSt accounts for three features char-
acteristic for decadal datasets: lead- and start-year-
dependent unconditional and conditional bias, as well as
ensemble dispersion. With this aim, DeFoReSt combines
the parametric drift correction by Kruschke et al. (2016;
lead-time dependency) and the non-stationary model
drift correction of Kharin et al. (2012; start-year depen-
dency). The method uses first-order polynomials (linear
trend) to capture start-year-dependent errors as well as
third-order polynomials for lead-year dependency. In
addition, Pasternack et al. (2018) implemented a para-
metric adjustment of the conditional bias and the ensem-
ble spread by using third- and second-order polynomials,
respectively. A cross-validation is included in DeFoReSt.
More details can be found in Pasternack et al. (2018).
Please note that the approach is univariate. Thus, all indi-
ces are calculated prior to recalibration.

The performance of the regional system is evaluated
following the verificationmethods by Goddard et al. (2013)
and Feldmann et al. (2019). Skill scores are calculated for
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all 4-year periods from lead-time years 1–4 (LT1-4) to
LT7-10, to account for the lead-time dependence of the
decadal hindcast skill following the DCPP protocol. All
lead-times cover the identical analysis period 1967–2016.
This is achieved by shifting the respective starting dates for
the calculation, that is, from decades 1966–2012 for LT1-4
to decades 1960–2006 for LT7-10 (see also Paxian
et al., 2019; their Figure 2). We apply two types of skill
scores: the Anomaly Correlation Coefficient (ACC) to

estimate the overall skill, and the Ranked Probability Skill
Score (RPSS; Wilks, 2011; Ferro, 2014) as measure for the
reliability. The ACC is a measure for the relationship
between the ensemble mean of the hindcasts/historicals
and observations, ranging from −1 (perfect anti-correlation)
to 1 (perfect correlation). A positive RPSS (perfect score
1) indicates that the hindcasts have a higher probability
to predict an observed category than a reference dataset,
and vice versa for negative RPSS. Both skill metrics use

TABLE 1 List of indices, which show decadal predictive skill. Indices marked with asterisks are discussed in detail in this study

Index Basic variable Definition Reference

Frost days (FD)* Minimum
temperature TN

Annual count of days with TN < 0�C Van Engelen et al. (2008)

Heatwave days (HWDS)* Maximum
temperature TX

Annual count of days with
TX > 90th percentile of May-Oct

Fischer and Schär (2010), Zhang
et al. (2011)

Ice days (ID) Maximum
temperature TX

Annual count of days with TX < 0�C Van Engelen et al. (2008)

Summer days (SU)* Maximum
temperature TX

Annual count of days with
TX > 25�C

Van Engelen et al. (2008)

Maximum temperature summer
(TASMAX)*

Maximum
temperature TX

Summer (May-Oct) mean of daily TX

Tropical nights (TR) Minimum
temperature TN

Annual count of days with
TN > 20�C

Van Engelen et al. (2008)

Wet days (RR1) Precipitation
amount RR

Annual count of days with RR
≥1 mm

Van Engelen et al. (2008)

Heavy precipitation days
(R10mm)*

Precipitation
amount RR

Annual count of days with RR
≥10 mm

Van Engelen et al. (2008)

Very heavy precipitation days
(R20mm)

Precipitation
amount RR

Annual count of days with RR
≥ 20 mm

Van Engelen et al. (2008)

Flood index (RM7P80) Precipitation
amount RR

80th percentile of 7-day running
mean of RR

Flood index (RM7P95)* Precipitation
amount RR

95th percentile of 7-day running
mean of RR

Simple daily intensity index
(SDII)

Precipitation
amount RR

Annual mean precipitation amount
at wet days

Van Engelen et al. (2008)

Surface wind speed Oct–Mar
(SFCWIND)*

Surface wind speed
V

Winter (ONDJFM) mean of daily V

Storm days Oct–Mar
(SFCWIND98W)*

Surface wind speed
V

Winter count of days with V > 98th
percentile

Wind energy potential (EOUT) Surface wind speed
V

Eout=cp 1
2ρπR

2v380m Reyers et al. (2015), Moemken
et al. (2016)

Growing degree days (GDD)* Mean temperature
TG

GDD=
POct

Apr
TG−10�Cð Þ McMaster and Wilhelm (1997),

Fraga et al. (2016)

Growing season length (GSL)* Mean temperature
TG

Number of days between first
occurrence of at least 6 consecutive
days with TG > 5�C and first
occurrence of at least 6 consecutive
days with TG < 5�C after July first

Van Engelen et al. (2008)

Heating degree days (HD) Mean temperature
TG

Annual sum of 17�C – TG, only for
TG < 17�

Van Engelen et al. (2008), Feldmann
et al. (2019)
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climatology and the regional historical ensemble as ref-
erence, following the DCPP protocol (Boer et al., 2016).
Other widely used benchmarks for evaluating the skill of
dynamical model forecasts are persistence forecasts,
linear regression and statistical models (e.g., Meehl
et al., 2016; Suckling et al., 2017). However, most results
shown in our study focus on climatology as this is the
most common (and comprehensible) reference for users
of climate information.

The forecast and hindcast verification suite (Kadow
et al., 2016) of the MiKlip Central Evaluation System
(CES; www-miklip.dkrz.de) provides all tools for skill
assessment. The use of CES makes the results shown here
comparable to most of the other MiKlip results
(e.g., Pohlmann et al., 2013b; Marotzke et al., 2016;
Feldmann et al., 2019). The ACC is calculated using the
MurCSS plugin (Murphy-Epstein decomposition and
Continuous Ranked Probability Skill Score; Illing
et al., 2014), while the calculation of RPSS is performed
in the ProblEMS plugin (Probabilistic Ensemble verifica-
tion for MiKlip using Specs Verification; www-miklip.
dkrz.de). To remove systematic climatological biases,
both tools calculate anomalies (ICPO, 2011). The signifi-
cance of results at the 95% level (Goddard et al., 2013) is
determined using a block-bootstrapping (here 500 times)
with a random re-sampling of the time series with
replacement.

3 | RESULTS

3.1 | Temperature-related variables

The mean near-surface temperature shows a high predic-
tive skill in decadal hindcasts, both on the global and the
regional scale (cf. Doblas-Reyes et al., 2013; Meehl

et al., 2014; Bellucci et al., 2015; Feldmann et al., 2019).
The main reason for this high skill is the contribution
given by the climate trend, which is more pronounced for
temperature than for wind or precipitation. In this sec-
tion, we analyse how far the skill for mean temperature
extends to other temperature-related variables, with
examples for warm and cold extremes. Feldmann
et al. (2019) could show that the predictive skill of tem-
perature in the regional MiKlip system is higher for the
warm season than for the cold season (their Figures 9
and 10). Therefore, we chose the daily maximum summer
temperature (TASMAX; Table 1) as a first example.
TASMAX is an indicator for summerly heat conditions
relevant for, for example, heat stress (Honda et al., 2007).
Figures 2a, b depict spatial ACC and RPSS plots for
TASMAX for LT2-5, using the climatology as reference.
For most of Europe, the correlation is high and signifi-
cant, reaching values close to one for the coastal Mediter-
ranean regions. However, correlations drop below 0.5 for
Scandinavia, the British Isles and Greece. The RPSS
exhibits similar spatial patterns compared to the ACC,
but with lower values. Nevertheless, RPSS is positive
everywhere except for Greece. In general, the skill scores
and the fraction of significant grid points exhibit nearly
no lead-time dependence (Figure S2). While the skill of
TASMAX is already high and significant in the raw
data, the recalibration leads to a further improvement
(Figure S3). Skill scores are much lower and less signifi-
cant when using the regional historicals as reference
(Figure S4–S8). While no added value of initialisation is
detected for the British Isles and Greece, the hindcast
initialisation improves the predictive skill for the rest of
Europe (particularly for RPSS with values up to 0.6).

The results for the so-called summer days (SU, maxi-
mum temperature above 25�C; Table 1) are shown in Fig-
ures 2c, d (ACC, RPSS). Skill scores are positive and
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significant for large parts of Southern, Central and East-
ern Europe (ACC for LT2-5 up to 0.8), while less skill is
found for Scandinavia and the British Isles. As for

TASMAX, the skill scores vary only slightly with the
choice of lead-time (Figure S2). The chosen index has
some obvious limitations: It is not meaningful in regions

FIGURE 2 Spatial distribution of ACC (first column) and RPSS (second column) for lead year 2–5 for daily maximum summer

temperature [TASMAX; (a), (b)], summer days [SU; (c), (d)], heatwave days [HWDS; (e), (f)], and frost days [FD; (g), (h)]. Reference is the

climatology. Black dots indicate significant skill at the 95% level
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where the temperatures seldom exceed the fixed thresh-
old (e.g., Scandinavia) and grid points are often marked
by missing values after recalibration. In these areas,
percentile-based thresholds and indices may be more
appropriate. Nevertheless, the recalibration is able to
increase the overall predictive skill of SU (Figure S3),
mainly by adjusting the hindcast trend to the observed
one (Figures S9–S10).

A more complex phenomenon related to warm tem-
perature extremes is heat waves. So far, we analysed the
predictive skill for the number of heat wave days per year
(HWDS; Table 1). The skill pattern of ACC (Figure 2e)
shows a North–South-gradient, similar to the spatial pat-
terns of SU: Correlations are positive, significant for
Southern, Central and Eastern Europe, and negative for
Scandinavia and the British Isles. In general, skill scores
for HWDS are lower compared to SU or TASMAX.

Finally, frost days (FD, minimum temperature below
0�C; Figures 2g, h) were also analysed as an example
related to cold temperature extremes, revealing skill for
large parts of Europe. Compared to warm temperature
extremes, skill scores are lower (ACC of up to 0.7) for
Southern, Central, and Eastern Europe, but higher (and
positive) for Northern Europe. While the ACC is signifi-
cant for large parts of Europe, the RPSS shows significant
skill only for Scandinavia and parts of Italy and Spain.

The results hint at the potential of the regional
decadal system to predict not only mean temperatures
but also the likelihood of both cold and warm tempera-
ture extremes, especially when considering the

climatology as reference. Skill scores using the historical
ensemble as reference are generally lower and less signif-
icant (Figures S4–S8). Nevertheless, large parts of Europe
exhibit an added value of initialisation, particularly for
warm temperature extremes. For all indices, the skill
scores vary only slightly with the choice of lead-time (-
Figure S2), leading to the conclusion that the skill is
mostly attributed to the forcing and not the initialisation.
Results for tropical nights (TR) and ice days (ID) are
comparable to those of SU and FD, but with an increased
fraction of missing values due to the higher thresholds
(not shown).

3.2 | Precipitation-related variables

Regarding precipitation-related variables, expectations
are generally lower than for temperature-derived parame-
ters (cp. Mieruch et al., 2014 or Reyers et al., 2019 for
mean precipitation). In this section, we focus on heavy
precipitation events, as extremes are more relevant for
stakeholders than mean values. Figure 3a shows the ACC
for heavy precipitation days (R10mm; Table 1) for LT2-5.
The skill pattern is more heterogeneous compared to
temperature-related variables. Correlations are positive
(up to 0.8) and significant for Scandinavia and parts of
Central and Southern Europe. Again, spatial patterns of
the RPSS look similar, but with slightly lower values
(Figure 3b). Similar results can be found for a percentile-
based precipitation index aiming at the identification of

FIGURE 3 Spatial distribution

of ACC (first column) and RPSS

(second column) for lead year 2–5 for

heavy precipitation days [R10mm;

(a), (b)] and flood index [RM7P95;

(c), (d)]. Reference is the climatology.

Black dots indicate significant skill at

the 95% level
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precipitation events potentially causing floods in major
European river catchments (RM7P95; Table 1). Both the
ACC and the RPSS (Figures 3c, d) are comparable to
those of R10mm.

The regional decadal prediction system is less skilful
for variables related to precipitation than for temperature-
based indices. However, results are promising for several
European regions (e.g., Scandinavia or the Mediterra-
nean), where the hindcasts beat not only the climatology,
but also the uninitialized ensemble (Figures S4–S8). The
recalibration improves the predictive skill and reduces the
lead-time dependence for both R10mm and RM7P95
(Figures S2 and S3). Skill scores for other precipitation-
related quantities (Table 1) like very heavy precipitation
days (R20mm) or simple daily intensity index (SDII) are
similar to the results presented above (not shown).

3.3 | Wind-related variables

For wind, only a few studies focus on decadal predictabil-
ity. For example, Haas et al. (2016) and Moemken
et al. (2016) found some predictive for wind gust and
wind energy potentials over Central Europe, while
Kruschke et al. (2016) found some skill for Northern
hemispheric cyclones. Here, we extend these studies and
analyse further potentially user-relevant wind-related
variables. The first example is the mean surface wind
speed in the extended winter season (ONDJFM). This

period is of interest as, for example, the probability of
windstorms affecting Central Europe is higher than in
summer (e.g., Donat et al., 2010). The ACC for LT2-5
(Figure 4a) is positive (up to 0.6) for the Mediterranean
region, the North and the Baltic Sea, and parts of Central
Europe. However, the skill is not significant for most of
the grid points. The RPSS shows larger regions with nega-
tive skill (Figure 4b). For both skill metrics, the skill aver-
aged over Europe decreases for longer lead-times in spite
of the recalibration (e.g., LT6-9; Figure S2).

We also estimated the predictive skill of a simplified
storm severity index (e.g., Pinto et al., 2012) for the
extended winter season (SFCWIND98W; Table 1). Both
ACC and RPSS (Figures 4c, d) show positive skill scores
for the Mediterranean region, Eastern Europe and parts
of North and Baltic Sea, with highest values (ACC up to
0.8) for the Adriatic Sea. However, only the ACC values
are significant in certain regions.

In general, variables related to extreme wind speeds
are less skilful than temperature or precipitation-based
indices when using the climatology as reference. Never-
theless, some European regions show predictive skill. In
addition, wind-related variables exhibit a stronger lead-
time dependence (Figure S2). The applied recalibration
method is able to enhance the predictive skill (Figure S3)
and even turns the on average negative ACC values into
slightly positive ones. Results look different if the histori-
cal ensemble is considered. Here, both indices show a sig-
nificant added value of initialisation for several European

FIGURE 4 Spatial distribution

of ACC (first column) and RPSS

(second column) for lead year 2–5 for
winter wind speed [SFCWIND; (a),

(b)] and winter storm days

[SFCWIND98W; (c), (d)]. Reference

is the climatology. Black dots indicate

significant skill at the 95% level
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regions (like Mid-Europe or the British Isles), especially
for SFCWIND (Figures S4–S8).

3.4 | Indices related to the agronomy
sector

Finally, we analysed two indices relevant for the agron-
omy sector, namely, the length of the growing season
(GSL) and the growing degree days (GDD; Table 1). Both
parameters are based on temperature. Therefore, a cer-
tain predictive skill can be expected. Nevertheless, they
focus on different aspects compared to the variables
analysed in Section 3.1. GSL is often used to determine
which crops can be grown in a specific region. With this
climate indicator, we analyse if shifts in the timing and
length of the growing season show predictive skill on
decadal timescales. Figure 5a depicts the ACC of GSL for
LT2-5. Correlations are positive (up to 0.6) and mostly
significant for Northern, Central, and Eastern Europe.
GSL shows no skill for parts of France, Spain, and the
British Isles. RPSS values are lower and less significant,
with the negative skill extending towards Eastern and
Northern Europe (Figure 5b).

GDD addresses the integrated temperature over the
summer half-year and is a frequently used measure for
describing and predicting the growth and development
processes of various crops. In general, the predictive skill
is much higher for GDD than for GSL. Both ACC and
RPSS (Figures 5c, d) show high positive (up to 0.9 for

ACC) and significant values for Southern, Central, and
Eastern Europe. Except for Scandinavia, the spatial pat-
tern is comparable to TASMAX. This region exhibits
partly negative skill scores, especially for RPSS and lon-
ger lead-times.

The regional decadal prediction system provides
promising results for parameters relevant for the agron-
omy sector (see also heating degree days [HD] in
Feldmann et al., 2019). Skill scores are comparable to
both mean and extreme temperatures, irrespective of the
applied reference dataset (Figures S4–S8). Additionally,
the skill scores show practically no lead-time dependence
when averaged over Europe (Figure S2). In contrast to
other presented variables in this study, both GSL and
GDD do not seem to benefit from the applied rec-
alibration (Figure S3).

4 | SUMMARY AND DISCUSSION

In this study, we assess the potential for decadal predict-
ability for user-oriented variables and extremes using the
regional MiKlip decadal prediction system. This effort
extends previous work, which focussed on basic variables
(Feldmann et al., 2019; Reyers et al., 2019). The main
conclusions are (see also Figure 6):

• All temperature-related indices show high-predictive
skill (mean ACC for Europe up to 0.8) for all lead-
times, indicating that skill extends beyond mean

FIGURE 5 Spatial distribution

of ACC (first column) and RPSS

(second column) for lead year 2–5 for

growing season length [GSL; (a), (b)]

and growing degree days [GDD; (c),

(d)]. Reference is the climatology.

Black dots indicate significant skill at

the 95% level

E1952 MOEMKEN ET AL.



temperature. The skill patterns are spatially robust and
often significant (Figure 6). In general, the predictive
skill is higher for variables related to summer and high
temperatures (in line with Mieruch et al., 2014;
Feldmann et al., 2019). The predictive skill of
TASMAX is comparable to that of daily mean tempera-
ture (Feldmann et al., 2019). The variables SU and
HWDS address more heat-related aspects, and show
high predictive skill from Central to Southern Europe,
where the MiKlip system might provide useful infor-
mation on the expected heat stress for a given period.
Notably, HWDS, which indicates the likely duration of
heat waves, hints at the potential for valuable climate
information for users. The skill of SU and HWDS is
lower for the British Isles and Scandinavia, where a
lower number of hot days and thus lower heat stress is
generally found, making this type of climate informa-
tion less valuable. For cold extremes, FD shows a lower
but still significant predictive skill for most of Europe
(Figure 6). This information might be valuable, for
example, for de-icing activities (Schipper et al., 2019).

• As expected, results are more mixed for precipitation-
based parameters: The spatial skill patterns are more
heterogeneous and the skill scores are generally lower
(mean ACC for Europe up to 0.3; Figure 6). This is in
line with findings by Mieruch et al. (2014) and Reyers
et al. (2019) for mean precipitation in a sub-sample of
the full-regional MiKlip ensemble. The selected indices
(R10mm and RM7P95) address more extreme precipi-
tation events and might thus be useful to users, as such
events may, for example, trigger floods in large river
catchments.

• Skill patterns are spatially diverse and often not signifi-
cant for the analysed wind-related indices. Skill scores

are highest for Southern and parts of Eastern Europe,
but generally lower compared to both temperature and
precipitation (mean ACC for Europe up to 0.1;
Figure 6). Reyers et al. (2019) found similar results
(with lower values) for mean wind speed in a sub-
sample of the regional system. This is in partial contra-
diction with previous studies on wind energy poten-
tials and wind gusts (Haas et al., 2016; Moemken
et al., 2016), which had found higher predictive skill
for Central Europe with statistical-dynamical
approaches and for shorter lead-times (LT1-4). How-
ever, their results exhibited a pronounced lead-time
dependence.

• Results look promising for indices connected to the
agronomy sector, as skill scores are high and often sig-
nificant for large parts of Europe (mean ACC up to
0.75; Figure 6). The skill patterns are comparable to
those of temperature extremes. Indicators like GDD
are calculated as integrals over longer periods and
might therefore compensate potential timing errors in
the annual cycle. Such integrated indices might thus
provide more robust information than threshold-based
indices.

• The majority of the discussed indices show a negligi-
ble lead-time dependence in their predictive skill
(Figure 6), especially after recalibration. Feldmann
et al. (2019) concluded that in some regions there is a
superposition of skill due to (a) the initialisation in
the first years and (b) the long-term climate trend
in later years (their Figure 5). Particularly for
temperature-based indices, the high skill originates
mainly from the strong trend and neither from the
represented variability nor from the initialisation (see
Figures S9–S10).

(a) ACC (b) RPSSFIGURE 6 Skill scores averaged

over Europe divided by index and

lead-time: (a) ACC, and (b) RPSS.

Reference is the climatology. Black

dots indicate the area fraction of

significant grid points: No marker if

less than 25% are significant, small

dots if 25–50% are significant,

medium-sized dots if 50–75% are

significant and large dots if more

than 75% are significant
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• The applied recalibration approach is generally able to
improve the skill of the regional decadal prediction
system. The level of improvement depends on the vari-
able and region. This is in line with results by
Feldmann et al. (2019) for the surface temperature at
the regional scale. On the global scale, DeFoReSt
improves the prediction skill for the surface temperature
(Pasternack et al., 2018) as well as the GPCC drought
index (Paxian et al., 2019). Regarding the different com-
ponents of the recalibration method, the hindcasts seem
to benefit mostly from the adjustment of their trend
towards the observed one (Figures S9–S10).

• The focus on the climatology as reference is the most
common choice in climate services. In general, skill
scores are lower and less significant when considering
historical simulations as reference (Figures S4–S8).
Nevertheless, several indices analysed here (e.g.,
SFCWIND or RM7P95) show a clear added value of
initialisation for various regions in Europe. Future
work could extend the current study by using other
widely used references as, for example, persistence
forecasts or statistical models (e.g., Suckling
et al., 2017).

We conclude that the regional MiKlip decadal pre-
diction system has potential for several user-oriented
variables and climate extremes (Figure 6). The predic-
tive skill depends on both the variable and the region.
While the temperature-based indices are skilful for
most of Europe, significant predictive skill for
precipitation- and wind-related variables is limited to
certain European regions. These regions include Scan-
dinavia and large parts of the European coastal areas
for precipitation-based indices, and the Mediterranean
and parts of Eastern Europe for wind extremes. The
regional differences affect the applicability of the
decadal prediction system. Nevertheless, keeping these
limitations in mind, the MiKlip system can provide
valuable information for users outside the science com-
munity, for example, decision makers in politics, econ-
omy or society. Potential areas of application for
temperature extremes are the health sector (action
plans to reduce mortality), the humanitarian risk reduc-
tion (forecast-based financing to reduce effects of
events) or the IT sector (heat dependent server outages,
cooling systems). For precipitation extremes, fields of
application may be the hydrology sector (water man-
agement) or inland shipping (river water levels), while
the predictability of wind extremes might be important
for forestry (removal of storm damages) or insurance
companies (wind damages to buildings).

Our results illustrate in general terms how the utility
of decadal predictions can be enhanced substantially with

little additional effort. It is often not necessary to drive an
impact model with climate-model output to establish the
predictive skill for a climate-impact variable. Instead, it
suffices to establish the skill for a climate index that is
empirically known to relate to important applications
(Table 1). This strategy may well require defining climate
indices that are not a priori obvious from a climate-
physics standpoint. But once an index is established,
investigating its predictive skill from an existing suite of
climate predictions is straightforward.

The development of custom-tailored (user-driven)
indices that show decadal predictive skill and the devel-
opment of more specific user products in close coopera-
tion with individual stakeholders is strongly needed
and has already started within MiKlip and other pro-
jects (e.g., Falloon et al., 2018; Paxian et al., 2019). How-
ever, it has to be differentiated between analysing the
predictive skill of user-oriented variables and the actual
applicability of information from decadal predictions.
In order to create valuable information based on
decadal predictions, that is, the information is inte-
grated in the established workflow of stakeholders,
their features need to be specified from the users' (and
not the scientific) point of view (Buontempo et al.,
2019). These features include beneficial skill measures,
prediction types (ensemble mean, probabilistic predic-
tions), temporal or spatial requirements (lead-time, ref-
erence period, temporal aggregation, area of interest),
reference datasets, and information formats (numerical,
graphical, text). To succeed in identifying what drives
the interest of potential users in the rather unknown
field of decadal predictions, work must focus on cooper-
ative communication, mutual understanding, and trust
building between users and scientists. Nevertheless, the
present work is an indispensable first step towards
pushing the science of decadal predictability to actual
“real world” applicability.
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