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Abstract. Theories of the origin of microseisms have in the past generally been ex- 
pressed in terms of the Green functions of the elastic systems considered. An alternative 
approach based on spectral transfer functions and the local energy-balance equation of 
the seismic field is proposed. The method enables a rigorous analysis of the statistical 
aspects of the problem, which could be treated only approximately and under restrictive 
conditions in terms of the far-field representations used previously. Three suggested 
origins of microseisms are considered: (1) the action of ocean waves on coasts, originally 
proposed by Wiechert; (2) atmospheric pressure fluctuations, as suggested by Gherzi, 
Scholte, and others; and (3) nonlinear interactions between ocean waves as proposed by 
Longuet-Higgins. In all cases appreciable microseisms are generated only by Fourier 
components of the random exciting fields that have the same phase velocities as free 
modes of the elastic system. The effect of pressure fluctuations associated with turbulence 
in the atmosphere is found to be negligible. The theory for Wiechert's and Longuet- 
Higgins' mechanisms is in good agreement with recent measurements by Haubrich et al. 

INTRODUCTION 

A number of mechanisms have been proposed •o explain •he origin of •he 
continuous background noise on seismic records in •he range from abou5 2 •o 20 
seconds commonly known as microseisms. Wiechert [1904] a•ribu•ed microseisms 
•o •he action of surf on coasts. Gherzi [1924], Scholte [1943], and o•hers assumed 
•ha• •hey were generated by pressure fluctuations in •he a•mosphere. Longuet- 
Higgins [ 1950] showed that an unattenua•ed second-order pressure term found by 
Miche[ 1944] in standing wave patterns was capable of generating microseisms in 
deep ocea.ns in which the effect of •he a•tenuated first-order pressure field is 
normally negligible. The evidence from •he large amoun• of literature on the sub- 
ject is not alwa,ys conclusive, although most of the recent work indicates that the 
majority of observed microseisms can be explained either by Wiechert's or 
Longuet-ttiggins' theory (for summaries, see Gutenberg [1958] and Darbyshire 
[1962]). 

One of the difficulties in determining which mechanism is responsible •or 
observed microseisms by a cvnclusive quantitative comparison wi•h •heory has 
perhaps been that most of the theoretical analysis has been formulated in •erms 
of •he classical response of a given elastic system to • discrete form vf excitation, 
i.e. in •erms of •he Green function. This me•hvd does no• lend i•se,lf readily •o •he 
study of • microseismic field that is generated by • continuous random •orcing 
field. Here •he goal oœ •he •nalysis is nv• •he evaluation o,• •he seismic respo•nse 
to a given discrete excitation but rather •he derivation of relations connecting the 
functions that describe the statistical properties of the seismic field and the 
generating field. In mos• applications, these are •he power spectra. In principle, 
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it is possible to derive from the Green function representation of the seismic field 
and integral expression relating the covariance functions of the seismic field and 
the generating field, and then to transform to the power spectra. However, this 
method is tedio,us and has not been carried through rigoro•usly, the statistical 
aspect of the problem having been treated hitherto, if at all, by approximate 
methods and o,nly for large distances from a finite generating area. 

The aim of the present analysis is therefore to introduce an alternative ap- 
proach to the pro,blem based at the outset on statistical representations and 
methods. We shall consider first the simplest case of the response o.f a layered 
elastic ha•lf-spa. ce to a random pressure field that is homogeneous and stationary. 
The field can be assumed to be associated either directly with pressure fluctua- 
tions in the atmo,sphere o,r with nonlinear gravity-wave interactions. The response 
in this case is found to be nonstationary owing to the resonant excitation of free 
modes of the elastic system. The spectra of the modes grow linearly at a rate 
proportional to the three-dimensional spectral density (with respect to fre- 
quency and wave number) of the exciting pressure field at the corresponding 
resonant points. This is a generalization of Phillips' [19'57] result (in the form 
given by Hasselmann [ 1962b ] ) for the rate of growth of a gravity-wave, spectrum 
under the a, ction of a homogeneous, stationary pressure field. Although the 
idealized case o,f an infinite, ho,mogeneous, and stationary pressure field is not 
directly applicable to the real situation, the analysis immediately yields the lo,cal 
rate of energy transfer from the pressure field to the seismic field in the too.re 
general case of a random pressure field that is quas:i-stationary and quasi-homo- 
geneous. The spatial and temporal variation of the seismic spectra in this case 
can then be o,btained by integrating the differential cquatio,n representing the 
local energy balance of the spectrum under the influence of radiative energy con- 
vection and the energy input from the pressure field. The concept of a local energy 
transfer and energy balance as against the far-field representations obtained by 
Green functio,n methods enables the determina.tion of the microseismic field 

arbitrary positions within or outside the generating area. Refractive effects can 
also be accounted for in a straightforward manner. Perhaps the main advantage 
of the method, ho,wever, is that it leads to a clearer understanding o,f the physical 
nature of the proposed generating mechanisms. 

It is found tha,t appreciable microseisms are generated only by the com- 
ponents of the pressure spectrum that have the same phase velocit. ies as free 
seismic waves. Hence only the high phase-velocity range of the pressure spectrum 
is important for the problem. It follows from this that Scholte's [1943] evaluation 
of the amplitude ratios of ocean waves and seismic waves generated by a periodic 
point source acting on the surface of a fluid layer over an elastic half-space is not 
relevant for the relative intensities of ocean waves and microseisms generated by 
random pressure fluctuations. For a random pressure field the ocean waves are 
generated by relatively slow pressure components in resonance with free gravity 
waves, whereas the seismic waves are generated by very high phase-velocity com- 
ponents. Scholte's ratio is valid only if the spectral densities in both regions of the 
pressure spectrum are the same, which is not to be expected. It follows further that 
the nonlinear pressure term found by Miche [1944] is significant not only because 
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it extends to the bottom of a deep layer of fluid but also because it is associated 
with very high phase velocities capable of exciting seismic wa.v.es (in fact, it can 
be seen that the former property is a direct consequence of the latter). In a simi- 
lar manner, nonlinear interactions in the atmosphere also resul5 in pressure com- 
ponents with very high horizontal phase velocities. An estimate of the microscisms 
generated by a turbulent atmospheric boundary layer, however, indicates that 
atmospheric pressure fluctuations are generally negligible. 

For the case of microseisms approaching a beach the analysis has to be 
modified slightly, since the generating field can no lo,nger be assumed •o be ap- 
proximately homogeneous. However, the microseisms are again found to be 
generated primarily by pressure components •ha.t have the same phase velocity 
as free seismic waves. Pressure components with these phase velocities are 
produced by modulatio,n of the low phase-velocity bottom-pressure field as gravity 
waves pass •hrough shallow water of variable depth. Whereas •he effectiveness of 
the nonlinear interactions increases with frequency, the genera,tion of microscisms 
by waves approaching a beach is found to decrease rapidly with frequency. Both 
theories are fo,und •o be in satis. fac•o.ry agreement with recent measurements by 
Haubrich et al. [1963]. 

1. THE GENERATION OF SEISMIC WAVES BY RANDOM 
PRESSURE FLUCTUATIONS 

Homogeneous, stationary pressure field. Consider the response of a system 
consisting of a finite number of homogeneous elastic layers over an elastic half- 
space under the influence of a random pressure field p acting on the free surface of 
the system. The case in which the uppermost layer is a fluid is included. We as- 
sume that the pressure field is homogeneous and stationary, so that it can be 
represented as a Fouricr-Stieltjcs integral 

p(x, t) - fff dP(k, co) exp [i(k.x q-cot)] dk dco (1.1) 
where x -- (xx, x2) is the horizontal coordinate and k the corresponding wave 
number. The power spectrum of p is then 

where cornered brackets denote ensemble means. The compressional and shear 
waves generated by the pressure component dP(k, co) exp [i(k.x + cot)] in each 
layer v can be represented by displacement potentials d(I,• exp [i(k.x q- cot)] and 
d•P, exp [i(k-x q- cot)], where 

2 

dq•v = dBve ik"x• + dC•e.-•,, • k•' ] co k • 
(1.2) 

d,r• = dD•e •'"" q- dEve '-•'"" k•"= •- - k • 
• /•v 2 

and a•, • •re the compressional- and shear-wave velocities, respectively, in the 
v•h layer. The d•splacements are 

ds, = V (d(I,• exp [i(k.x q-cot)]) q- • X k • X n(d,Pv exp [i(k.x q- cot)]) (1.3) 
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where n is the unit vector in the direction of the vertical coordinate xs, which is 
measured upward from the free surface of the system. Let us denumerate all 
amplitudes dB, - dE• and denote them simply by the vector (dAi). The amplitudes 
are determined by the boundary conditions at the interfaces and at infinity, which 
yield a linear system of equations (see, e.g., Haskell [1953] and Ewing, Jardetzky, 
and Press [1957]) 

b•idA• = d•(dP/mo• •) (1.4) 
Since the' external pressure enters only in a single boundary condition at the free 
surface, only one component of the vector (di), say the first, is nonzero. We set 
d• = 1. The inclusion of the factor p•-•0 -2 (where p• is the density of the upper- 
most layer) in the right-hand side of (1.4) then yields a matrix bi• that is nondi- 
mensional and depends only on the phase velocity o•/k of the pressure component. 

The solution of (1.4) is 

dA• = (B• ,/D)(dP/p•o/) (1.5) 

where D = 10,)I, and B• is the subdeterminant matrix of (b•i). 
For the eigenfrequeneies •o• (k), •o2(k), •os(k), ..- , for which D = 0, the ampli- 

tudes become infinite. The number of eigenfrequeneies at a given wave number 
depends on the layer model. The first mode approaches the Rayleigh wave of the 
elastic half-space as k -• 0. If the propagation velocities increase with the layer 
depth, as they normally do, the eigensolutions represent waves trapped in the 
upper layers that are totally reflected at the free surface and at an interface lower 
down and that interfere eonstruetively. The response of the system near the 
eigenfrequeneies can be obtained by expanding the determinant D in a Taylor 
series in •o a about the eigenfrequeney •o, (the matrix (b•) is even in •o)' 

D = D.'½' - co.') + -.. 

Thus for co = • oo,, = 

where 

D.' = (OD/&o=)(k, 

B•idP 
= , , q- -.- (1.6) dA• (co • - co.•)D. o•oo• 

Equation 1.6 corresponds to the response of an undamped linear oscillator of 
eigenfrequency •0, to a force of frequency •0. It can be shown generally [Hasselmann, 
1962b] that the response of undamped linear systems to stationary random forces 
is nonstationary, the energy of the eigensolutions increasing linearly at a rate 
proportional to the spectral density of the excitation at the resonance frequency. 
In particular, if y is the solution of the equation 

(d'/dt')y q- 0' COo y = r(t) 

for an undamped linear oscillator, in which r(t) is a stationary (not necessarily real) 
random function, then for large t the power spectrum of y is given by 

F•½) = *rt2ff-•••ø) {$½ q- •Oo) q- $½ - •Oo)} q- const (1.7) 



GENERATION OF MICROSEISMS 181 

where Fr(w) is the power spectrum of r. (Since y(t) is nonstationary, it is meaning- 
ful to speak of the spectrum of y only if the relative rate of increase of •y[• is sm•11, 
i.e. (d•y•/dt)(wo•y[•) -• • 1. T•s condition follows from equation 1.7 for l•rge t.) 

Because of (1.7) we obtain from (1.6) 

I 
•(B•,)'t 

= • 20•,(D.,)%.• {8(w - w.) + 8(w + w.)} F,(k, w) • + co•t (1.8) 
TMs for large t the spect•m F•,(k, •) = IdA,(k, w)]'/(• dw) is concentrated 
entffely on the dispersion su•aces w= = w.=(k) in kw space. Since F•, is the spec- 
t•m of a real variable, it satisfies the relation F•, (k, w) = F•,(-k, - •) and can 
hence be uNquely represented by the set of two-dimensional spectrum F•, (•) (k) 
obtaNed by projecting the negative branches w • 0 of the dispersion surfaces on to 
the k plane: 

--•+A• 

F•,("'(k) = 2 f F•,(k, •) • (1.9) 
The definition (1.9) ensures that only waves of the nth mode traveling in the 
po•tive k direction contribute to the spectrum F•, • (k) at k. 

In terms of F•, • (k), equation 1.8 can be written 

OF•,(•(k)/Ot = T•,(•F•(k, - •) (1.10) 
where the transfer function 

= (1.11) 
We note that the left&and side of (1.10) refers to a singular, two-dimensional 
spectral distribution on the dispersion sugace w = -w,(k), whereas the right- 
hand side involves the three-dimensional spectral density of p on the surface. 

Equation 1.10 is analagous to Phillips' [1957] expression for the rate of growth 
of ocean waves excited by random pressure fluctuations. In his original paper, 
PhilSps' result is fo•ulated in terms of an autocorrelation integral of the pressure 
fluctuations. It is shown in Hasselmann [1962c] that this can be reduced to an ex- 
pression of the form (1.10) by introducing the three-dimensional pressure spectrum 
and sepamtNg components of opposite propagation directions. In a sense, (1.10) 
incNdes PNllips' result, since in the case in which the uppermost medium is a 
fluid the su•ace gravity waves are some of the normal modes of the system, g 
gravitational effects are included [Eckart, 1960]. Equation 1.7 (of which equation 
1.10 is simply a stmightfo•ard generalization) also plays a basic role in the theory 
of the nonlNear energy transfer in a gravity-wave spectrum [Hasselmann, 1962a, 
1963a, b] and probably enters in a similar manner in a number of problems in- 
voNNg the random energy transfer to undamped free modes. 

The energy equation. In place of the spectra and transfer functions of the 
displacement potentials we can substNute in (1.10) the corresponding functions 
F• ("• and T• ("• of any •near field variable u, such as the vertical and horizontal 
displacements s• and s• of the free sugace or (g the uppermost medNm is a fluid) 
of the sold at the fluid-sold interface. 
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Of particular interest are the spectrum F, (•) (k) and transfer function 
of the total energy of the nth mode per unit horizontal area. Equation 1.10 then 
becomes the equation for the energy balance of the nth mode and can be generalized 
to the case normally encountered in practice in which the parameters of the wave 
guide and the mean properties of the pressure field are only approximately constant. 
Since the spectrum F e in this case is a gradually varying function of position and 
time, the local energy balance is determined not only by the energy input from 
the external pressure field but also by the divergence of the inhomogeneous con- 
vective energy flux associated with the spectrum. We can interpret the spectrum 
Fe(•)(k, x) as the energy distribution in four-dimensional phase space 
(11, 12, ki, k2) Of a large number of statistically independent wave groups whose 
dimensions are large in comparison to their wavelength. Since each wave group 
preserves its energy as it propagates independently along a path • = •:(t), the 
convective energy flux in phase space is •F•. Thus the general equation for the 
energy balance of the nth mode is 

OFe (n) 0 (n)) (n) F ß Ot •- • (•F• = Te •(k, -- O•n) (1.12) 
Now the propagation paths of wave groups satisfy the well-known Itamiltonian 
equations 

k i = 

where o• = •2 (n• (k, x) is the (spatially dependent) dispersion relationship of the 
nth mode. Since the divergence of •' vanishes, (1.12) can be written 

OF• (n) OFe (n) OF• 
Ot • •i OXi • •i Oki -T•(n)F•(k'--•2 (1.13) 

The time derivative OF•/Ot will generally be negligible, since the time required 
for seismic waves to traverse the pressure field is normally small in comparison 
with the time scale of variations in the mean pressure field. In the absence of 
external forces, equation 1.13 yields Longuet-Higgins' [1957] result that the spec- 
trum remains constant along •he propagation path of a wave group. The equiva- 
lence of this result with Liouville's theorem was pointed out by Dorrestein [1960]. 

The case o[ no re[vaction. Equation 1.13 becomes particularly simple if the 
refractive term •(OF•("•JOk•) vanishes. The analogous energy-balance equation 
for a gravity-wave spectrum for this case has been considered by Lebel and Gelci 
[1959], Hasselmann [1960], and Gro•es and Melcer [1961]. Since the group velocity 
vn = i remains constant, (1.13) can be readily integrated: 

t 

F,•n)(k, x, t) - Te(n'(k) • F•(k, Xo •- (t' -- tO)Vn, t') dt! + o 

where 

In (1.14) the functions 

("'(k, Xo, to) (1.14) 

Xo ---- X- ¾n(t- tO) 

(•) and T. (n) ca[l again be replaced by the correspond- 



GENERATION OF MICROSEISMS 183 

s(e) 

Fig. 1 

ing functions for any variable u. It is important to note, however, that this is not 
permissible in the general equation 1.13, since the proportionality factor relating 
the spectra and transfer functions of different variables depends on k and there- 
fore cannot be taken before the derivatives if k varies along the propagation rays. 

As an example of the solution 1.14, we consider the simplest case in which 
F•(k, -w•) is constant within a certain generating area and zero outside (Figure 1). 
If PoP•P•. is the ray corresponding to the wave number k, the spectrum F• (•) (k) 
grows linearly from its initial value, which we assume to be zero, at P0 to a maximal 
value (s/v•)T•(•)F•(k, -•) at the point P• where the ray leaves the generating 
area (where s is the distance from P0 to P•), and then remains constant along the 
rest of the ray P•P•. In terms of the spectrum •(•)(w, •) = F• (•) (k)(k/v•) with 
respect to frequency w and the propagation direction •, which is more convenient 
for experimental purposes, 

•(•.•,.• (w, O) = s(O)•',,"•>(w).F,,(k,, - co) (1.15) 
where 

•'•,('•) (w) = (k/v,•2)T, ('•) (k,•) (1.16) 

and ks is the wave number corresponding to w and 0 for the nth mode. 
For large distances from the storm area the spectrum is practically unidirec- 

tional and can be adequately described by the one-dimensional frequency spectrum 
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Fig. 2. Top: Dispersion curves for the first three modes of a fluid layer over an elastic half- 
space. Bottom: Ratios of the transfer functions •c-) for the two-layer system to the transfer 
functions T c•) for the Rayleigh wave of the elastic medium alone. The layer parameters corre- 

spond approximately to the media water and granite. 

According to (1.15), this is given by 

(1.17) 

where A is the area of, and R the distance from, the generating region. 
Equation 1.17 can also be obtained from the asymptotic expansion of the 

Green function by deriving an integral relation between the covariance functions 
of the pressure and seismic fields and then transforming to the spectral representa- 
tions. The relation between •.(") and the asymptotic response 

G,(r, t) = Y•, (a•"'/X,/•')e '<"{""-•"> + ... 

of the variable • to a pressure field p = •(x)e -•"• acting at the origin (see, e.g., 
Ewing, Jardetzky, and Press [1957]) is found to be •.(") = (2;r ] a= (") I) 2. 

In Figure 2 the transfer functions • (") •") and •(") for the first three 
modes are shown together with the dispersion curves for the case of a fluid over an 
elastic half-space. The elastic constants correspond approximately to water and 
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granite. The vertical and horizontal displacements refer to the solid at the fluid- 
solid interface. The transfer functions are divided by the transfer functions 

= = 0.460 
•,f = • 'x,,(a•/fl•)p•-•'fl• -s x,,(•) = 0.214 

2 --1 •.r • .x.(a•/•) -•;' ,(V•) = 1.30 

for •he Rayleigh mode of •he solid half-space in order •o bring ou• •he s•rong 
amplification due •o •he wa•er layer. Thus •he frequency dependence of •he •ransfer 
functions P• has •o be •aken in•o accoun• when considering absolute values. 

The narrowness of •he peaks for •he vertical disp]acemen• (or of •he coefficients 
a •': of •he Green function) has occasionally been explained as a 'resonance' effec• 
corresponding •o •he organ-pipe resonance of a column of wa•er over a rigid bottom 
a• wavelen•h •o depth ra•ios equal •o (n/2) + (1/4), n = 1, 2, -.- . I• should 
be no•ed, however, •ha• akhough •he sharpness of •he peaks is probably rela•ed 
•o •he relatively high rigidity of •he solid medium, •he response is due entirely 
•he resonan• excitation of free modes a• all frequencies, •he maximal response 
occurring for •rapped waves in •he fluid layer lha• have a fairly large angle of 
•cidence. 

The amplification is higher for •he energy •han for •he displacements, owing 
lo unequal energy pavilion in •he wave guide. Because of •he misma•ch in acoustical 
impedances of •he •wo media, •he ener• densky is considerably higher in •he 
fluid layer •han in •he solid. Fu•he•ore, •he energy density in •he fluid is con- 
s•an•, whereas in •he soUd i• decreases exponentially wi•h •he distance below •he 
•efface. Hence for wavelen•hs comparable •o or grea•er •han •he fluid depth 
•he grea•er pa• of •he wave-guide energy is in •he fluid layer. The •o•al energy per 
u• surface area is consequently higher •han for a Rayleigh wave having •he same 
frequency and mean square displacement, •he ra•io increasing wi•h frequency. 

Re]r•ti•. In considering •he relative effectiveness of microseism generation 
in •he ocean and on land, •wo bases of comparison are possible. If •he microseisms 
are compared under o•he•ise identical generating conditions for 
space wi•h and wi•hou• a fluid layer, •hen •he ra•ios of •he displacemen• spectra 
are given s•ply by •he ra•ios of •he displacemen• •ransfer functions in Fibre 2. 
On •he o•her hand, ff •he resukan• displacemen• spectra are compared a• •he 
same poskion (say on ]and), •he effects of refraction have •o be •aken in•o accoun• 
and •he ra•ios of •he spectra will be determined primarily by •he (•gher) ratios 
of •he energy •ransfer functions, since o•y •he energy spectra and no• •he dis- 
placemen• spectra remain cons•an• during refraction. In o•her words, as •he 
modes of •he fluid-solid system propagate in•o shallow wa•er, •he energy •ha• was 
i•ially s•ored in •he fluid layer is gradually •ransferred •o •he solid, which leads 
•o a resukan• increase in •he displacemen• of •he solid surface. The displacemeni 
on land is de•er•ned finally only by •he •o•al energy of •he modes. This assumes, 
of course, •ha• •he conversion of energy is gradual and continuous, so •ha• sca•ering 
effects are negligible. This is in, fac• possible only for •he firs• mode, since •he energy 
of higher modes is necessarily sca•ered as soon as •he nondimensional frequency 
wH/2•al falls below •he low-frequency cutoff (Figure 2). (However, for frequencies 
below cutoff •he higher-order modes can •o a •s• appro•ma•ion be •rea•ed 
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'leaking' modes that decay exponentially [Rosenbaum, 1960; Oliver and Major, 
1960; Phinney, 1961; Gilbert and Laster, 1962]. Equation 1.13 can then be generalized 
to these modes simply by the inclusion of a damping term.) Although the arrival 
of scattered energy from higher modes may not always be negligible, we shall 
consider here only the refractive effects for the first mode. 

The invariance of the energy spectrum with respect to refraction applies to the 
spectral density in the wave-number plane. Since the transfer function ratios in 
Figure 2 refer to the spectral density with respect to frequency and direction, the 
ratio of the displacement spectra in terms of the latter variables will be pro- 
portional not only to the ratio of the energy transfer functions but also to the ratio 
of the Jakobians O(k•, k•)/O(oo, O) = k/v• = oo/c•v• at the point of observation and 
in the generating area. Thus, if for the case shown in Figure 1, for example, we 
assume that the generating area lies in the ocean, then the spectrum of the dis- 
placements, or, more generally, of any variable u, on land is 

C 17__• 1 •e (1) (0'•)• F Y •,(•'(oo, 0•) = s(O) 5P•a(w) ca•. •-• j •(k• --w) (1 18) 
where 0• is the angle of the ray PoP,P2 after refraction, c• is the phase velocity 
of Rayleigh waves, and the index i refers to the first mode in the generating area. 
The ratio (•uR•e(•/•u (• •R)(c•v•/c• •) of the expression in braces in (1.18) to the 
transfer function •u(l• determining the response before refraction (equation 1.15) is 
the refraction coefficient (the refraction coefficient is also occasionally defined as 
the ratio of the amplitudes before and after refraction). If the spectrum is almost 
unidirectional it is more useful to define the refraction coefficient for the one-di- 
mensional frequency spectrum, which yields an additional factor dO•/dO. For a 
straight shoreline with depth contours parallel to shore, dO•/dO=c• cos O/c• cos 0•, 
where the angles are measured relative to the shore normal. Thus the refraction 
coefficient is 

cos 0 v• 7', • 7'• • 
(1 19) cos 0• c• •f •(• ' 

Since the phase velocity is higher on land than in the ocean, expression 1.19 holds 
only for 0 smaller than the critical angle 0• for which cos 0• - 0. For 0 • 0•r• 
total reflection occurs, and M• - 0. For 0 - 0•r• M• becomes infinite. The approxi- 
mation of a unidirectional spectrum is no longer valid for this angle. 

The refraction coefficients M,, and M,• are shown in Figure 3 for normal 
incidence and the same model as in Figure 2. Also shown is the ratio of the effective 
transfer function M,,T, (• to the transfer function T,, (•) for the Rayleigh wave 
of the elastic half-space. (The ratio for the horizontal component is, of course, 
the same, since the transfer function M•,T•, •1• and T• (•) both refer to Rayleigh 
waves on land.) The amplification due to the transfer of energy from the fluid 
to the solid is seen to be practically balanced by the higher group velocity on land 
for frequencies below the frequency of the peaks in Figure 2. Beyond this point, 
however, the refraction coefficients increase rapidly, so that the peak of the re- 
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Fig. 3. Refraction coefi%ients M,, and Mo• for the first mode of a fluid- 
solid system, and ratio of the net transfer functions Mo, •, (•) (including the 
effect of refraction) for the two-layer system to the transfer function •o, 
for the Rayleigh wave of the elastic medium alone. The parameters are as in 

Figure 2. 

suitant transfer function M..T.. •) is considerably broader than that of To 
The generating pressure field. We have been concerned so far solely wi•h the 

response of the elastic system as such and have no• inquired in•o the origin of •he 
exciting pressure field. We found •hat appreciable microseisms were generated 
only by pressure components tha• have the same phase velocities as trapped modes 
of the wave guide. These velocities are greater than the velocity of sound in both 
air and water (excluding the gravity-wave modes, if the uppermost medium 
is a fluid). On the other hand, the velocities of motions in the atmosphere and the 
ocean are generally well below the sound velocities of the media. Hence we must 
consider mechanisms by which the energy of these mo•ions can be converted into 
compressional waves of high phase velocity. The generation of compressional 
waves by low Mach number turbulence has been investigated by a number of 
authors [Lighthill, 1952, 1954; Moyal, 1952; Proudman, 1952]. An analogous 
mechanism by which ocean wave energy is converted into compressional waves has 
been considered by Longuet-Higgins [1950]. In our analysis we shall use a rather 
different approach which is one based on the spectral transfer functions rather 
than on the Green functions of the system. 

The mechanism by which energy is converted in•o high phase-velocity com- 
ponents is basically the same for both turbulen• and gravity-wave fields. Quadratic 
terms in the equations of motion lead •o interactions between pairs of Fourier 
components exp [i(k• .x• q- w•t)] and exp[i(ka .x,. q- war)I, producing a resultant 
'sum' componen• exp {i[(k• + k•)- x + (w• + w•)t] } (the'difference' term can be 
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regarded as a separate interaction involving the conjugate complex of one of the 
original components). The phase velocity of the resultant component is then large 
in comparison to either of the interacting components if the wave numbers k• 
and k•., but not the frequencies, are almost equal and opposite. Thus components 
of high velocity are produced if interactions occur between Fourier components 
that have almost the same wavelengths and propagation directions but different 
phase velocities. For ocean waves, where the frequencies and wave numbers are 
connected by a dispersion relation, this condition can be satisfied only by waves 
of almost the same frequency traveling in opposite directions. In atmospheric 
turbulence we shall find a continuum of frequencies associated with the interac- 
tions at a given wave number. 

In a third example we shall consider a different mechanism in which pressure 
components of high phase velocity are produced by the linear modulation of the 
bottom pressure field of gravity waves traveling through shallow water of variable 
depth. 

2. THE GENERATION OF MICROSEISMS BY NONLINEAR 
GRAVITY-WAVE INTERACTIONS 

It has been shown by Longuet-Higgins [1950] that second-order interactions 
between two gravity waves of equal frequency and opposite propagation directions 
produce a compressional pressure wave that propagates vertically downward 
through the fluid and is thus capable of exciting elastic waves in the medium 
beneath. For a rigid bottom Longuet-Higgins found further that the gravity- 
wave interactions were equivalent to a periodic uniform pressure field acting on 
the surface of the fluid. From our analysis in the preceding section it follows that 
microseisms are produced, in fact, not by interactions between gravity-wave com- 
ponents having exactly equal and opposite wave numbers, for which the horizontal 
phase velocity of the generated compressional wave is infinite, but rather by 
interactions between waves with slightly different wave numbers that produce 
compressional waves of a finite horizontal phase velocity in resonance with a 
trapped mode of the wave guide. Since this resonance mechanism tends to be 
obscured and is difficult to evaluate exactly by the Green function method used by 
Longuet-Higgins •, we shall reinvestigate the problem in terms of the concepts 
introduced in the preceeding section with the aim of determining rigorously the 
equivalent pressure spectrum in the general case of a random gravity-wave field 
in a fluid above a layered elastic half-space. The method has the additional ad- 
vantage that the response can then be evaluated at any position in the generating 
area (as in the example considered in the last section) and not only at 
large distances. 

First-order gravity-wave field. To the first order we assume that the motion 
of the fluid is simply a superposition of incompressible gravity waves satisfying 

x In the case of a continuous wave spectrum, Longuet-Itiggins considered the interactions 
between equal and opposite wave numbers of a modified 'blurred' spectrum associated with a 
limited interaction region. I-Ie thus indirectly included interactions, between slightly different 
wave components and obtained a finite trapped-mode component at large distances. 
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the linearized equations of motion and boundary conditions for an ideal fluid of 
depth h over a rigid bottom 

V• = 0 for 

ø--•=0 at 

0--• • = 0 at x• = 0 
Ot Ox• 

O• 
0--• + g•' = 0 at x• = 0 

-h < x• < 0 (equation of continuity) (2.1) 

x• = - h (kinematical boundary condi- 
tion at the bottom) (2.2) 

(kinemarital boundary condi- 
tion at the free surface) 

(dynamical boundary condition 
at the free surface) 

(2.3) 

(2.4) 

where in accordance with the usual notation • denotes the velocity potential 
(rather than the displacement potential used in the preceding section), and •' is 
the surface elevation. We assume that the wave field is random and homogeneous 
and that the wavelengths are small in comparison to the depth. The solution can 
then be expressed as Fourier-Stieltjes integrals 

where 

,, = (gk) 

•(x, xs, t) = ff [dq•+(k)e -• q- dq:,_(k)e +•t ] exp [i(k.x) q- kxs] 

•'(x, t) -- ff [dZ+(k)e -'•t q- dZ_(k)e+'•t]e •('•'") 

(2.5) 

(2.6) 

aZ.(k) = 

= 

aZ+(k) = (aZ_(-k))* 

The spectrum of the surface elevation, defined in the same way as the spectrum 
F• (") in the preceding section to include only waves traveling in the positive k 
direction, is then 

Fr(k) = 2(IdZ+ [•')/dk (2.7) 

Second-order compressionakwave field. In the general ease of finite- but 
small-amplitude gravity waves, we assume that the potential can be expanded in 
a perturbation series • = • + ½• + ... , where the first-order term is given by 
(2.5). To determine • we shall then need to allow not only for the nonlinear terms 
in the equations of motion and the boundary conditions, but also for the effects 
of compressibility, since we have seen that the phase velocities of second-order 
Fourier components can become of the same order as the sound velocity. The 
continuity equation 2.1 then becomes (for details of the following expansions we 
refer to Lon•uet-Ho•in• [1950]) 

V• 1• (0• 0• ) 1 0 (V•)• + ... (2.8) 
where a• is the sound velocity of the fluid. 
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The boundary condition 2.2 for a rigid bottom has to be replaced by the 
three boundary conditions requiring the continuity of the normal components of 
the stress tensors and displacements at the fluid-solid interface, together with the 
equations of motion and the boundary conditions at infinity and at the remaining 
interfaces of the layered elastic half-space. Since we have assumed that the first- 
order gravity-wave motion is negligible at the bottom of the fluid, these equations 
are linear and homogeneous to the second order. We refer to them as (2.9). 

The boundary conditions 2.3 and 2.4 at the free surface become 

0• 0• _ 0• 0• 0• 0• 0•-+ -.. at x• = 0 Ot Oxa - Ox• Ox• Oxa Oxa • Ox3 a 

0• • • 0• + ..- at x3 = 0 Ot • g• = --•(•) -- • OtOx3 
or, after el•inating •, 

. 0• 0•+ g = ----(V•) a + --- at x3 = 0 (210) Ot • Ox3 Ot ' 

We note that the solutions of the homogeneous set of equations obtained by 
setting the right-hand sides of (2.8) and (2.10) equal to zero are the eigensolutions 
of the layered system, and that the response of the system to a pressure field p 
acting on the surface of the fluid is obtained by setting the right-hand side of (2.8) 
equal to zero and the right-hand side of (2.10) equal to -(1/•)(Op/Ot). 

The second-order term • of the velocity potential is determined from the 
second-order term of (2.8)-(2.10), i.e. by substituting •(•) and •(•), respectively, 
in the left- and right-hand sides of the equations. The solution •a can be represented 
as the sum of two functions, one of which, • ,•, is the response of the system to the 
inhomogeneous term in (2.8) and the other, •a ,•, the response to the inhomogeneous 
term in (2.10). By substituting the Fourier representation (2.5) of • in the right- 
hand side of (2.8), we readily verifiy that •.• is of the order of (c•/a•) a smaller 
than the •.•, where c, is the phase velocity of the interacting gravity waves. 
Hence the solution •a is practically determined by the term -(O/Ot)(•)•o • 
on the right-hand side of (2.10). From the above remark, this is the same as the 
response of the system to a pressure field 

p = p •(V•l)•=o • (2.11) 

acting on the free surface of the fluid. 
The equivalent pressure spectrum. Since the response of the system to a random 

pressure field has been treated in the preceding section, our problem is thus re- 
duced to the determination of the spectrum F•(k, •) of the equivalent pressure 
field (2.11). Substituting (2.5) in (2.11) we have 

f 
ß exp {i(k'+ k").x- i(s'a'+ s"a")t} (2.12) 

where s' and s" denote sign indices. Since p is quadratic in •, the spectrum F• 
will depend generally on fourth-order moments of •, and cannot be reduced to 
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simple statistical functions like the spectrum without further statistical assump- 
tions. However, as • is the solution of the linearized system, we can without 
inconsistency assume that (]91 is Gaussian. Observations and considerations of 
wave-generating mechanisms indicate that this hypothesis is reasonable. In (2.12) 
the Fourier amplitudes are then statistically independent, and the pressure spec- 
trum can be expressed in terms of the wave-height spectrum Fr: 

ß [(k'k" + k'.k")•S(k ' - k" - k)$(a' - a" + •) 

+ (k•k" - k'.k") •s(k' +k" - k)S(a' + a" - •)]•'•" (2.13) 

The gener•] expression 2.13 c•n be simplified considerably in •he r•nge of 
very high phase velocities responsible for microseism generation. It can be shown 
that the resultant phase velocity of the first expression (the d•erence interaction) 
in the square brackets is always smaller than the phase velocity of a gravity wave 
of the same wavelength. Since this is in turn smaller than the phase velocity of 
a seismic wave, the first term does not contribute to the pressure spectrum in the 
range of interest. If the resultant phase velocity (•' • a")]k' • k"] of the second 
term (the sum interaction) in the brackets is large, k • must be approximately 
equal to -k" so that a' • a". With this approximation, (2.13) reduces to 

F•(k, w) - 6• F•(k')/r(--k') dO' (2.14) 
where k' = w•/4g, and 0' is the angle of k'. 

In terms of the spectrM density it(w, 0) = Fr(k)k dk/dw = 2Fr(k)(k•/w) in 
polar coordinates, (2.14) becomes 

+w 

F•(k •) = •'•g% f ir(•/2 0)/•(•/2 = + 0) dO (2.15) 
Thus the spectrum F•(k, w) is determined by •he integral over all directions 

of the product of the spectral densities for waves of opposite propagation directions 
and the same frequency •/2. The pressure spectrum is whi•e and isotropic wi•h 
respee• to (in other words, independen• of) k. This is [o be expected, since •he 
wavelengths of the interacting components are small in comparison wi•h •he 
wavelengths of the generated mieroseisms. The mieroseisms generated by a given 
ocean wave field will, however, generally be anisotropic, since the geometry of •he 
generating area enters in •he integration of (1.1•). The response a• large distances 
from a fi•te generating area as determined by (1.20) and (2.1•) is in general 
agreemen• with •he approximate expression derived by Lon•uet-Hi•ins [1060]. 

8. THE GENERATION O• MICROSEISMS BY 
ATMOSPHERIC T•BULENC• 

By applying •he results of •he firs• seedion, •he de•er•na•ion of •he energy 
•ransfer from a•mospherie •urbulenee •o seis•e waves can be reduced, as in •he 
ease of an interacting gravity-wave field, •o •he problem of evaluating •he pressure 
spectrum a• •he free surface of •he layered elastic ha•-spaee. We assume 
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pressure fluctuations with phase velocities that are sufficiently high to generate 
seismic waves are produced by nonlinear interactions in the turbulent boundary 
layer over the surface. In the frequency range of interest (about 0.03 to 0.5 c/s) 
observations by, for example, Pano/sky and Deland [1959] indicate that the bound- 
ary layer turbulence is determined primarily by mechanical shear stresses rather 
than thermal buoyancy forces. For pressure fluctuations of high phase velocity the 
viscous forces are also small. Neglecting these terms then, the pressure field is 
determined by the equations of motion 

and the continuity equation 

(O•'/Ol) + (O/Ox•)(pu•) -- 0 (3.2) 

where p is the density, and p the variation of the pressure about the value for 
static equilibrium. Greek indices will be used to denote summation over all three 
components, whereas Latin indices and the vectors x, k, etc., refer to vectors in 
the horizontal plane as hitherto. We shall also denote the three-dimensional 
wave number later by •. We assume that the pressure and density fluctuations 
are related by the equation dp/dp = ao •', where the sound velocity ao of the atmo- 
sphere can be considered constant within the boundary layer. Equations 3.1 and 
3.2 then yield 

1 O2p V2p- (pu•u•) (3.3) ao •' Ot • Ox•Ox• 

[Lighthill, 1952]. We assume further that the flow velocities are small in comparison 
to -o. The variation of the density in the right-hand side of (3.3) is then negligible. 
For brevity, we write q = p(O•'/Ox•Ox•)(u•u•). 

As boundary conditions we assume that the pressure waves generated by the 
forcing field q are totally reflected at the bottom of the atmosphere and are dis- 
sipated without reflection in the upper atmosphere. For glancing incidence it is 
known that total reflection of compressional waves can occur at high altitudes, but 
this is improbable for the small angles of incidence associated with compressional 
waves whose horizontal phase velocities are as high as those of seismic waves. The 
first condition implies that the lower boundary of the atmosphere is rigid, or, 
from (3.1), 

Op/Ox• = 0 at x• = 0 (3.4) 

(This is not, of course, in contradiction with our evaluation of the microseismic 
field as the necessarily nonrigid response of the layered elastic half-space to the 
pressure field at xs = 0. The condition 3.4 implies weak coupling between the 
atmosphere and the elastic system.) The second condition is equivalent to the 
Sommerfeld radiation condition. 

We assume that the random function q(x, xs, t) is homogeneous with respect 
to x, but not x•, and stationary. The covariance function 

R• = (q(x,x•, t)q(x + •, xs , t + 
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then depends on the four variables •1, •, x3, x3 and the time lag r. In analogy to 
the case of a random function that is homogeneous with respect to all variables, we 
define the generalized spectrum S• as the Fourier transform of R•: 

+co 

, (•)• ... R•(•,x•,•', •) 

ß exp /-i(k-•/q- k•x• q- k•'x•' q-wr)} d/• dx3 dx•' dr (3.5) 
In terms of the Fourier-Stieltjes representation 

Sq - (dQ(k, k3, co) dQ(-k, k3', -co)) dk dka dk3' dw (3.7) 
Besides the representation 3.6, it will be convenient to use the Fourier-Stieltjes 
representation 

q(x,x•, t)= f ... f d•(k,x•,w)exp {i(k.x q-cot)}, (3.8) 
where 

dQ(k, k3, w) - • d•)(k, x•, •) expl-ik•x3] dx• (3.9) 
(note that dQ is a fourth-order and d•) a third-order differential) and, similarly 

p(x, x•, t)= f... f d•(k, x•,•)exp [i(k-x • •t)] (3.10) 
The pressure spectrum at x• = 0 is given by 

•(k, •) = ([•P(k, o, •)I •) & aw (3.11) 

Substituting (3.8) and (3.10) in (3.3), the solution to (3.3) that satisfies the ap- 
propriate boundary conditions at x• = 0 and x• = • is found to be 

x•, - - sin [ks • (x.• - xa')] d•j(k , w) dxs' 0 •33- • x3! 
2•i dQ(k, k •, w) 3 

-- dk•. k• • cos 
where the vertical wave-number component k• • satisfies the 'resonance conditions' 

ka = • •- accordingly as w • 0 (3.12) 
Thusatxa = 0 

-2ri• dP½, O, w) = d• :• dQ½, k• 
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According to (3.7) and (3.11) the pressure spectrum at •s = 0 is then 

F•(k, •o) - •. S•(k ks ' -ks ' •o) (3.13) 
3 • • 

Equation 3.13 can be compared with •he response for an exciting field that is 
s•ationary and homogeneous wi•h respect •o all variables. As in •he derivation of 
(1.10), it can be shown that in •his case •he response is nonstationary, •he spec- 
trum increasing asymptotically as 

F•(k, •) = 2ks./k., •/• {F•(k k' w)+ F•(k --ks ' w)} (3 14) • +k •) ' •, , , . 
where F•(k, ks, w) is the normal spectral density of a homogeneous, stationary 
field q. The growth of F• is due to the resonant excitation of free pressure waves, 
the growth rate being proportional to the spectral density of the excitation at the 
corresponding resonant values of the wave number and frequency. The two terms 
on the right-hand side of (3.14) correspond to the two possible propagation di- 
rections of a free compressional wave with given values of w and k. 

The relation between (3.13) and (3.14) is clarified when we consider the case 
of a field q that is almost homogeneous and stationary, so that the spectrum F• 
can still be •pproximately defined, but is of finite, although large, extent L in the 
xs direction. It can be shown from (3.5) that for this field 

L 

&(k, •, -•, •) • • F•(k, •, •) (•.1•) 
The equivalence of (3.13) and (3.14) then follows when we observe that the time t 
for waves to traverse the generating area is L(k • + ks") •/• '- • /ao•s and that re- 
fiection at the lower boundary doubles the amplitudes and thus quadruples the 
spectrum of the pressure waves. Hence (3.13) is the generalization of (3.14) repre- 
senting the resonant excitation of free pressure waves to the case in which the 
random field is inhomogeneous in one direction. For k • • = 0 the pressure spectrum 
is infinite. In this case the waves propagate horizontally and remain continually 
in the propagation region, so that no stationary solution exists. This is of no conse- 
quence for the present problem, however, since the horizontal phase velocity of 
these components (=ao) is too small to excite seismic waves. 

There remains the more di•cult problem of expressing the generalized spec- 
trum S• in terms of known statistical properties of the flow field. If we divide the 
turbulent velocity field into a mean field (u•) = •(xs) and a fluctuating com- 
ponent u•', the exciting field q can be written 

q= (q)+ q' 

= (q) + • {u.%' - (u.'u/) + •.u•' + u.%} (•.16) 
Ox 

Since the term (q) does not contribute to the spectrum we have 

S• = k•k•k•'k•'S•(k, ks, ks', •) (3.17) 

where k• • = -k•, k• • = -k• for the indices i and 2, and S• is the (generalized) 
cross spect•m of the components T• and T• of the fluctuating part 

T.• = p[u.'u•' -- (u.'u•') + a.u•' + u.'a•] (3.18) 
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of the Reynolds stress tensor. The cross spectrum is defined as the Fourier trans- 
form of the correlation tensor of T•, 

S•- (2•)• ß 

where 

ß exp {--i(kl• -]- k3xs -]- ks'xs' -]- •o•-) d,• dxs dxs' d•- (3.19) 

(• - T,•(x, x[, t) T• (•) = T•(x + •, xs , t + •) T•5 - 

Since the frequencies and wave numbers in (3.13) correspond to free com- 
pressional waves, the wave-number components are at the most equal to cO/ao. 
For frequencies in the range from 0.2 to 3 rad/sec this corresponds to wavelengths 
from about 1 to 15 km. These values will generally be large in comparison with the 
correlation scales of the turbulent motion at the same frequencies, since the turbu- 
lent scales are determined by the much smaller characteristic velocities of the 
fluid motion rather than the sound velocity. Hence the dependence of the ex- 
ponent in (3.19) on the spatial coordinates can be neglected, and we can substitute 
in (3.17) the value of S•5 at zero wave number. 

Since T• depends on both linear and quadratic expressions of the fluctuating 
velocity components, S• depends generally both on fourth-order moments 
and on the second-order spectra of the velocity fluctuations. It follows from the 
condition of continuity, however, that the cross spectra of the velocity fluctua- 
tions vanish at zero wave number. (See Batchelor [1953] for the proof for homo- 
geneous turbulence. The generalization to our case is straightforward.) Hence 

k ,,k•k.•k • 
= 

where ks = ks', as given by (3.12), and 
2 

- 

(3 20) 

the superscripts (1) and (2) referring to the same coordinates as in (3.19). 
We note that the small correlation scale of the generating field relative to a 

seismic wavelength leads only to the coefficient C• being independent of k, 
but not, as for an interacting gravity-wave field, the spectrum itself. This is be- 
cause the generating pressure field equivalent to the gravity-wave interactions 
was isotropic, whereas the pressure field is the response to an inhomogeneous 
quadruple field. 

The further evaluation of (3.21) meets with the difficulty encountered generally 
in problems of aerodynamically generated sound' that very little is known about 
the fourth-order moments of the turbulent velocity field. To overcome this diffi- 
culty it is frequently assumed that the fourth-order moments are related to the 
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second-order moments in the same way as if the field were Gaussian. Although the 
quasi-Gaussian (or, more precisely, zero fourth cumulant) hypothesis is known to 
be inconsistent with the strongly nonlinear equations of motion and therefore 
rather questionable when applied to problems involving the detailed dynamical 
balance of the turbulent field, it may be expected to yield results here that are 
correct at least to an order of magnitude. Assuming then that 

equation 3.21 becomes 
2 

p 

- 

or, in terms of the generalized cross spectra 

1 

+• 

+ - & 

The reduction to second-order moments has not in itself immediately re- 
solved our di•culties, since measurements of the generalized spectra S• with 
respect to both wave number and frequency have not been made. •owever, a 
rough indication of the spectral distribution is given by Taylor's hypothesis, which 
states that to a first approximation the turbulent field can be assumed to be simply 
convected along with the mean stream velocity without changing its spatial 
structure. If U is the mean velocity, say in the Xl direction, the spectrum S• is 
then concentrated closely around the hyperpl•ne • + Ukx = 0 in •'k'ks'ks' 
space. The interdependence of temporal variations and spatial variations in the 
mean flow direction implied by this relation has been frequently verified experi- 
mentally. If the relation were to hold rigorously, the coe•cient C• would be 
identically zero for • • 0, since it is clearly not possible to s•tisfy Taylor's rela- 
tion by both te•s of the products in (3.23) simultaneously. •owever, Taylor's 
hypothesis can be expected to apply only approximately in our case, since apart 
from the change in spatial structure of the turbulent field the mean stream velocity 
is also not constant within the boundary layer. If we assume that the spectrum 
has a fiMte spread • = x[• about the hyperplane • + Ukl = 0, the integrand 
in (3.23) will be d•erent from zero for [•'[ > Il/x, Since we shall be interested 
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only in a minimal value of the effective lower limit •o of the integration with 
respect to •, we set x = 1, which is equivalent to the relatively safe assumption 
that the spectrum contains no Fourier components whose phase-velocity com- 
ponents in the wind direction are negative. 

For • in the range from 0.2 to 3 rad/sec spectral measurements by a number 
of authors indicate that the lower integration limit •o • lies within the inertial 
subrange for most of the boundary layer. Priestley [1959] concludes from several 
independent measurements that the lower cutoff frequency •c of the inertial 
subrange for the one-dimensional frequency spectrum at the height xs is given 
approximately by the relation •cxs/U • 5. Thus for • = 1 rad/sec, say, and 
U = 10 meters/sec, the contribution to the integral 3.23 will lie within the Kol- 
mogoroff inertial subrange for turbulence above about 50 meters. Since the bound- 
ary layer thickness is of the order of 1 km, it can be expected that most of the 
contribution to C• will come from turbulence in the inertial subrange. According 
to Kolmogoroff [Batchelor, 1953] the turbulence in this range is determined solely 
by the local dissipation e(xs) and is quasi-homogeneous and isotropic relative to a 
system moving with the local mean stream velocity U(xs). It is thus possible to 
estimate C•s by using the simplifications associated with the isotropy of the 
field and applying dimensional analysis. The zero fourth cumulant hypothesis 
is then no longer strictly necessary, provided that all interactions still occur 
within the inertial subrange, since the detailed statistical structure of the turbulent 
field is not relevant for a dimensional argument. On carrying through the analysis, 
however, the contribution to the coe•cient C• from the turbulence at a height 
xs is found to be proportional to (e(xs)) 7/2. Since the greater part of the dissipation 
in a turbulent boundary layer takes place in the lower part of the constant stress 
layer close to the boundary (see, e.g., Townsend [1956] for general boundary layer 
flow and Priestley [1959] for the dissipation profile of an atmospheric boundary 
layer), it appears that C• is determined primarily by the turbulent field close 
to the surface, where, because of the smaller scale of the turbulence, it can no 
longer be assumed that •c• lies in the inertial subrange. This suggests an alternative 
dimensional argument, however, for the turbulent field in the lower part of the 
boundary layer is determined solely by the shear stress •0 at the boundary. (More 
precisely, this is so in the logarithmic region of the velocity profile outside the 
very thin sublayers in which the viscosity and/or the roughness parameter enter 
as additional independent parameters.) If C• depends only on the turbulent 
field in this part of the boundary layer it can be a function only of • and •0, and is 
hence of the form 

2 8 --5 

C•(•) = •p u. • (3.24) 

where u, = %/•/p is the frictional velocity and q• is a constant that we can expect 
to be of the order of i within, perhaps, 2 orders of magnitude. Equation 3.24 
can be expected to be valid as long as the distance 5U/o• is still within the region 
of the boundary layer controlled by the wall stress. 

No account of the tensor character of C• has been taken in (3.24), but 
probably the only term of importance in (3.20) is the one involving the vertical 
components. Since the phase velocities of seismic waves are several times larger 
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than the velocity of sound in air, the angles of incidence of atmospheric com- 
pressional waves that have the same horizontal phase velocity as seismic waves 
are small. Hence the wave-number component k• r in (3.20) is considerably larger 
than the horizontal components, so that the dominant term in the sum is 
C3333(co)k3" • C3•(co)(co2/ao•). With this approximation we thus have finally 

= ao u, co (3.25) 

As a numerical example we consider the microseisms generated on land by a storm 
of area 1000 X 1000 km • at a distance of 2000 km at sea. We assume a wind 

speed of 30 meters/sec, a drag coefficient U,•/U •' of 0.0012, which can be taken 
as a plausible extrapolation of Deacon's [1962] values obtained at lower wind 
velocities, and the same two-layered haft-space as in section 1 with a water depth 
of 5 km. Then for a frequency co = 0.57 rad/sec corresponding to the maximum 
of the net transfer function ratios in Figure 3, we find from (1.17), (1.19), and (3.25) 

f,,(•)(co) = •1.2.10-øf sec 

Since the observed spectra of microseisms generated by storms are generally 
of the order of 1 to 10 • sec, we conclude that, despite the indeterminancy of the 
constant • and the approximations involved in deriving (3.25) from (3.20), the 
generation of microseisms by atmospheric turbulence is generally negligible. 

4. TItE GENERATION OF MICROSEISMS BY OCEAN WAVES 
IN SHALLOW WATER 

The problem of evaluating the microseisms generated by the bottom pressure 
field of ocean waves traveling through shallow water can conveniently be divided 
into two parts. First, we consider the response of a layered elastic hag-space to a 
random surface pressure field that is stationary and homogeneous in one direction, 
say x•, but of limited extent in the direction x•. A pressure field of this type is 
produced if waves of a random homogeneous sea pass through a limited shallow 
water region in which the depth contours run parallel to the x• axis. We then 
evaluate the pressure field for a given ocean wave spectrum and bottom topography. 
The analysis will be carried through explicitly only for the case of waves approach- 
ing a beach of constant slope, but other cases, corresponding to waves traveling over 
submerged bars or shelves, will also be considered briefly. 

The response to an inhomogeneous, random, bottom pressure field. A pressure 
field with the stated statistical properties can be represented as a Fourier-Stieltjes 
integral 

p(x, t) = f dP(k, co)e '•'•+•'• (4.1) 

where the generalized pressure spectrum is 

S•(k I kS k2t, CO) __ ,,(alP(k1, ke, co) dP(-kl, ke t, -co)) ' ' dk• dk• dk[ dco 

If u(x, t) is any linear variable representing the response of the elastic system 
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(e.g., a component of the displacement at the free surface) to the pressure field p, 
we then have 

u(x, = f exp {i[(k.x) q- o•t]} (4.3) 
where the Fourier components of u and p are linearly related, 

d U(k, a•): Lu(k, a•) dP(k, •) (4.4) 
with 

L•(k, •): (L(-k, -•))* (4.5) 

The factor L. becomes infinite at the eige•requencies •.(k). The singularity 
can be expressed in terms of the transfer function T. introduced in section 1. 
Comparing (1.6) and (1.11) (in which we can replace the potential function by 
the variable u), we find 

• '• • (4.6) L•(k, •) • • • .e for • •a 

where $• is •n undetermined phase f•ctor. 
According to (4.4) the cov•ri•nce function 

R•(•i, x•, x•', •) • (U(Xl • •1, x•, t • 9U(Xl, x•', t)) 

-- f f (dC(kl, k2, •) dC(--kl, k 2' --•))cxp [i(kl• 1 • k2x 2 • k '-' • •T)] .... • 2 •2 

is then 

Ru(•ly X 2 X ! 7') --- f ... f Lu(kly k2, O.•)Lu(--kl, k2 ! --(M)S•(kl/ k2y k2/'l (M) • 2 • • 

ß exp [i(kl•l + k2x2 + k2'x2' + •T)] dkl dka dka' d•, (4.7) 

For large values of xa and xa' the rapid oscillation of the exponential term prac- 
tically eliminates all contributions to the integrals with respect to ka and ka' except 
in the immediate neighborhood of the singularities of the factors L•. The contribu- 
tion from the singularities depends on how the integration paths in the complex 
ka and k¾ planes are indented around the singularities. This question can be settled 
in the usual manner by introducing an artificial damping coe•cient that is then 
allowed to approach zero. We find, allowing for (4.5) and (4.6), 

where 

ff 2 •1' (k2,nr)%n4 (kl. • k2, n )Sp(kl, k2, n ,• --k2,nv**• 
ß A exp [i(k,•, •- k2 r(x2 -- x2') •- •*)] dk, d• 

A = ?:.•or --- -- kl 2 > 0 • Cn2 < 0 
where c. is the phase velocity of the nth mode for given (M 1 and kl, and 

ka.• • = --sign (•) %/(•a/c• a) -- k• • 

(4.s) 
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is the second wave-number component of the mode. It has been assumed in (4.8) 
that • and •' are both positive; for negative • and • the term • (•,. - •') in 
the exponent changes sign. Since for large • and •' the covariance function R. 
depends only on the difference coordinates, • is homogeneous and stationary (to 
moments of second order) and can hence be represented by a normal power spec- 
trum F.(k, •). On comparing (4.8) with the relation 

(u(x• + •, x• + •, t + •)u(x•, x•, t)) = ff F•(k, •) exp [i(k-• + •)] & d• 
connecting the covariance and spectral functions for a homogeneous, stationary 
variable u we find 

2 

2 an 

According to (4.9) the spectrum is concentrated entirely on the eige•requency 
2 2 

surfaces w = w• (k) and can thus be expressed, as in section 1, in terms of the 
two-dimensional spectra F• (•) (k) or [•(•)(% a). We find 

[2•w•v• T•(•)(k)S•(k• ka -ka -•) for ka > 0 
F•(•'(k) = ] k•c• • ' ' ' (4.10) for ka < 0 

[2•w .v• • 

•(•'(•, O)= • koaC•S •("'(•)S•(k•, ka,-ka,-•) for [0• < •/2 (4.11) for •/2 < [0[ < • 

where the wave-number components on the right-hand side of (4.11) refer to the 
nth mode at the frequency • and the propagation direction 0, measured from the 
ß a axis. 

Equations 4.10 and 4.11 are analogous to expression 3.13 derived in the pre- 
ceding section for the pressure response to an inhomogeneous forcing field in a 
homogeneous medium. 

(However, (4.10) and (4.11) hold only for ka•a >> 1, whereas it was possible 
to derive (3.13) on the immediate boundary of the generating region. The restric- 
tion k• >> 1 in the general case of a layered medium is due to branch points 
occurring in the function L..) 

The botto• pressure field for •aves approach•as a coastaat-slope beach. We 
turn now to the evaluation of the generahzed pressure spectrum S• for the case in 
which the pressure field is generated by shallow water gravity waves. The con- 
dition for the existence of an appreciable bottom pressure field in a fluid of depth 
H(•H/s = 0(1)) ensures that the influence of the fluid layer on the propagation 
prope•ies of seismic waves in the layered elastic ha•-space beneath is negligible 
(•H/a << 1, where a is a characteristic propagation velocity of the layered medium), 
provided that •/S >> 1. Since this is true for frequencies in the range considered, 
we can neglect the effect of the water layer in determi•ng the seismic response 
and consider the bottom pressure field to be acting directly on the free surface of 
the layered elastic ha•-space. 

We assume that in deep water the ocean wave field is homogeneous and can 
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thus be represented by the two-dimensional spectrum Fr(k ) or fr(w, 0) introduced 
in section 2. For the prese. nt purposes it will be convenient to introduce further 
the spectrum 

/Pr(k•, w) = Fr(k)(2k•/wk•) = It(w, O)/k• (4.12) 

with respect to the w•ve-number coordinate k• •nd (positive) frequency. For the 
transformation 4.12 to be unique, we •ssume that Fr(k) = 0 for k• • 0, so that 
for • free w•ve k• is u•quely determined by w• •nd kl. The general c•se is obtained 
by superimposing on Fr(k) • complementary spectrum •r(k) which is zero for 
k• • 0. For simplicity we set •r = 0. The Fourier-Stieltjes representation corre- 
sponding to the spectrum •r is then 

•(x, t) = ff dZ(k•, •) exp [i(k•x• + k• • x• + wt)] (4.13) 
where k• • is the second w•ve-number component of the free gravity w•ve that 
h•s the frequency w •nd w•ve-number component kl •nd 

•(•, •) •[•Z(•, --•)[•} = dk• • (4.14) 
We •ssume that the depth contours of the water l•yer •re p•mllel to the x• •xis. 
Then the Fourier component dZ(k•, •) exp [i(k•x• • k•x• • •t)] gives rise to a 
bottom pressure field with the s•me periodicity in the x• direction •nd in time. 
The pressure •mplitude in (4.1) is thus 

where 

dP(k, •) = dZ(k•, o•)K(k, o•) dk• (4.15) 

I f+• ik K(k, •o) -- • Po(x•)• "' dx•. (4.16) 
and Po(x•) exp [i(k•x• -k •ot)] is the bottom pressure field of • w•ve train that in 
deep w•ter h•s unit •mplitude, frequency •, •nd w•ve number k = (k•, k•'). 
Equations 4.2, 4.15, •nd 4.14 then yield 

S•(k•, k•, -k•, -•) = •r(k•, •.) [K(k•, k•, -•)]• (4.17) 
Since the w•velengths of microseisms •re large in comparison with the w•velengths 
of gravity w•ves, the seismic w•ve-number component k• in (4.17) is sm•ll in 
comparison to the component k • • • w.•/g of the gravity wave that h•s • w•ve- 
number component k• •nd frequency w.. Hence Fr(k•, •) is to • close •pproxim•- 
tion the spectral density •t no•l incidence, •nd, from (4.12), 

S•(k•, k•, -k•, •) • fr(.., 0: O) • IK(k•, k•, -•) • (4.18) 

where the angle of incidence 0 is measured •s in section I from the normal to the 
depth contours. 

To evaluate K(k, -•) we need to determine the bottom pressure field Po 
for a h•rmo•c gravity w•ve •t normal incidence. For •n •rbitmry depth profile 
this represents • difficult hydrodynamical problem. If we •ssume, however, that 
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the relative change in depth within a distance of the order of a wavelength is small, 
it is known that to a good approximation the wave field can be treated locally as 
though the depth H were constant, the variation of the amplitude with x2 being 
determined then from the condition that the energy flux = (amplitude) 2 X group 
velocity remains constant. Thus •or a wave of unit amplitude in deep water we 
have, for normal incidence, 

•'(x, t) = Z(x:)e 's(•:'+'•" (4.19) 
where 

•s/•, = •, (•.•o) 

Z(x•) = v•-•o/v (4.21) 

Vo = g/2o• is the group velocity in deep water, and the local wave number k• and 
group velocity v are determined from the dispersion relationship 

• = (gk• ta• k• TM 

The amplitude of the bottom pressure is then •gZ/cosh (k•H) [Lamb, 1932], so that 

Po(x•) = [pgS/•/(2•)•/• cosh (k•H)]e TM (4.22) 

The energy argument determines the amplitude Z (x•) only within an undetermined 
phase factor that varies slowly in comparison with the phase function S(x•). 
S•ce the wave-number component k• in (4.18) is associated with a free seismic 
wave, the phase factor in the integrand of (4.16) also varies slowly in comparison 
to S(x•) and can consequently be neglected within the approximation of the 
analysis. Transforming to S as integration variable, we thus have 

pgS/• e's .dS (4.23) •(•" •/' -•) = •:(•)• •. c• (•)• 
where the superscript s has been introduced on the left-hand side of the equation 
to denote wave-number components associated with seismic waves. 

For the case in which the depth varies linearly with x•, 

H = -H'x• (x• • O, H' • O) 

we find that ff we introduce the nond•ensional variable y = k•H equation 4.23 
can be written in the form 

where 

I f:• e•S v(H') = • {tanh y(cosh y)-•[tanh y -]- y(1 - tanh • y)]-•/•} dS 
and the variables S and y are connected by 

(4.2•) 

(4.25) 

H' •yy -- i -• y tanh y (4.26) tanh y 
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Although the wave amplitude Z becomes infinite at the shoreline x.,. = 0, the 
integrand in (4.25) remains bounded and indeed approaches zero as S •/•' ,',,, x2 ß 
Hence w•ve breaking need not be invoked as •n essential p•rt of the generating 
mechanism, •lthough we sh•11 find that it m•y be expected to influence the results 
numerically. 

The computed function I•(H')I •' is shown in Figure 4. Perhaps the most 
striking feature is the increase of ]•(H')I •' with H' for sm•11H', •s it c•n h•ve been 
expected intuitively that the energy of the microseisms increases with the area 
of shallow w•ter in which the gravity w•ves generate bottom pressure fluctuations. 
It is •pp•rent from the •bove •n•lysis, however, that the excitation of seismic 
w•ves is due primarily to the modulation of quasi-harmonic pressure w•ves, which 
spreads the pressure spectrum over •11 w•ve numbers, including, in p•rticul•r, 
the range of extremely sm•11 w•ve numbers that is •1one effective in microseism 
generation. Thus the increase of [•(H')[ • with H' is due to the stronger modulation 
associated with more rapid changes in depth. 

For sm•11 H' (which is the only c•se for which the •pproxim•tions of our 
analysis are valid) the function I.H')[ can be determined explicitly by expanding 
(4.25) and (4.26). According to these equations • is of the form 

o 

v(H') = f_ e 'stk(SH') dS 
where for small x •(x) -- (x•/•'/4•')(1 H- a•x H- a•.x • -Jr' '"). Hence 

d,S = ." (4.27) 



204 K. HASSELMANN 

.04 

1)2 

o 
2 4 6 

Fig. 5. Amplification due to waves breaking in the idealized case of a sharp cutoff So/2,r wave- 
lengths from shore. 

From (4.11), (4.18), (4.24), and (4.27) we •hen have finally 

(4.28) 

In the case of the Rayleigh mode of an elastic half-space, the displacement transfer 
functions are proportional to o• (section 1), so that •(R• (o•, 0) •-• o•-s•;(•, 0). The 
strong dependence on o• favors the generation of low-frequency waves, which may 
have been a contributing factor for the intense 27-second-period microseisms of 
gravity-wave origin described by Oliver [1962], and explains generally why surf 
microseism correlations with a one-to-one frequency ratio are apparently best ob- 
served in the low-frequency regions of the spectrum [0•iver and Ewing, 1957]. 

We have ignored so far the effects of wave breaking. Although these can 
clearly not be described adequately by a linear theory, an estimate of the influence 
on the coefficient K can be obtained by considering the extreme case in which the 
linear theory is assumed to be applicable up to a distance So/2•r local wavelengths 
from the shore, at which point the waves are assumed to break and dissipate 
instantaneously. In place of the function I•/(H')I 2 given by (4.27), we then have 

(4•r)• •, dS (4.29) 
The function I,•&(H')I•/H ' is shown in Figure 5 in dependence on the distance 
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(in local wavelengths) from shore of the breaking point. It is seen that for a sharp 
cutoff two to three w•velengths from shore ]VSo (H')[ •' is •bout 10 times •s l•rge 
•s the v•lue [v(H')] •' •t So = 0. This v•lue should be t•ken •s • liberal upper limit, 
however, •s the re•l situation probably lies, if •nything, closer to the c•se of no 
breaking •t •ll th•n the extreme situation considered here. 

The bottom pressure field ior waves passing over a submerged bar. The higher 
v•lue of K in the c•se of • sharp cutoff •s compared to the c•se in which the pressure 
field extends continuously to the shore line illustrates •g•in the importance of 
modulation. It m•y be expected generally that • we•kly modulated gr•vity-w•ve 
field without singularities of •ny form will be considerably less effective in generat- 
ing microseisms th•n either of the •bove c•ses. As •n example that c•n be •ssumed 
characteristic for w•ves p•ssing over • submerged symmetrical bar we consider 
the c•se in which (4.23) is of the form 

K(k,', k•', -- •,,) = /•g/• ff; e dS 
where/• = (1/2•-)(v•/Vo)•/•k•..•/k•..o, the subscripts • and 0 referring to values of 
the group velocity and wave number in deep water and over the center of the bar, 
respectively, and a is a dimension representing the width of the bottom pressure 
field in wavelengths. Equation 4.29 yields for this case 

]K] 2= (•g/•22•-a•e -" (4.30) 

which can be compared with (4.24) and (4.27). For a constant-slope beach the 
characteristic width in wavelengths of the bottom pressure field is of the order of 
(H•) -•. Hence for bottom pressure fields several times wider than a gravity wave- 
length, we conclude that, on account of the exponential term in (4.30), the con- 
version of energy to seismic waves is considerably more effective for waves ap- 
proaching a beach than for waves passing over a submerged bar. The same con- 
clusion is found for waves passing over a smooth shelf rather than a bar. Since the 
average slope of the edges of continental shelves is of the order of 4 ø to 5 ø [Shepard, 
1948], it seems improbable that these could be the source of microseisms, as has 
occasionally been suggested. 

5. COMPARISON WITH MEASUREMENTS 

It has long been observed that ocean waves and microseisms •re closely 
correlated, and numerous measurements have confirmed either a 2 to i or I to 1 
frequency relationship between the spectra (see, e.g., Gutenberg [1958] or Darby- 
shire [1962]). However, until recently few observations were sufficiently com- 
plete to permit a quantitative comparison with the theory. The most detailed 
measurements to date are probably those of Haubrich et al. [1963]. In a series of 
measurements extending over six days the authors found sharp peaks at the same 
frequency in both the gravity-wave and microseismic spectra, and also a strong, 
slightly broader peak at the double frequency in the microseismic spectrum. All 
peaks showed a progressive shift to higher frequencies consistent with the linear 
dispersion of ocean waves generated in a far-distant, short-lived storm (Figure 6). 
The close agreement between the peak frequencies indicates that the microseisms 
were generated locally, the double-frequency peak presumably being due to 
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Fig. 6. Dispersive variation in frequency of the spectral peaks of seismic 
and ocean wave records. The straight lines for the primary frequency (PF) 
and double frequency (DF) correspond to the theoreticM gravity-wave 
dispersion from a distant source of short duration (from Haubrich et al. 
[1963]; a few peaks not relevant to the present discussion have not been 

included). 

interactions between the incoming swell and waves reflected from the coast. From 
the time of origin of the waves (May 12) and the arrival times of the waves, the 
distance of the storm was found to be 11,500 km. The recording stations for the 
ocean waves and microseisms were situated close to each other on the south 

California coast. From previous ocean wave measurements [Munk et al., 1963] the 
authors suspected a source in the Ross Sea region near 150øW, 60øS. 

The peak spectral densities for successive measurements, and hence increasing 
frequencies, are shown in Figure 7. The theoretical curves shown for primary- 
and double-frequency microseisms were calculated from the smooth curve drawn 
•hrough the ocean wave points. Although measurements of the complete ocean 
wave and microseismic spectra are presented by Haubrich et al., the theoretical 
analysis was carried through only for the peaks, as i• was doubtful whether the 
background microseismic spectrum was due entirely to local wave effects. The 
simple two-layer model of Figures 2 and 3 was taken as the layered elastic half- 
space. According to field studies by ,Shot and Raitt [1958] this should be a reason- 
able approximation in the area concerned, although a multilayer model would 
perhaps be more satisfactory. The calculations were based further on the following 
data and assumptions: 

Double •requency. The primary peaks of both ocean wave and seismic spec- 
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Fig. 7. Experimental and theoretical values of the maximal values of the 
peaks observed along the dispersion curves of Figure 6 (from Itattbri½l• 

½t at. [1963]). 

tra were found to be very narrow; Haubrich et al. give a ratio of Q = 14 for 
the peak frequency to peak width at the half-power points for both spectra. 

From the dispersion behavior of gravity waves it follows that the duration 
of the storm which generated the ocean waves was of the order of Q-• X the travel 
time of the waves. Similarly, the extent of the generating region in the propagation 
direction was of the order of Q-• X the distance traveled by the waves. Assuming 
the lateral and longitudinal dimensions of the storm to be of the same order, the 
angular spread of the ocean waves at the recording station is then found to be 
11500/QR sin (1150/R) • 8 ø, where R -- 6370 km is the radius of the earth. 
For a source in the Ross Sea region the angle of incidence of the beam relative to 
the shore normal at the observing station is about 30øS. According to Munk et al. 
[1963], the energy reflection factor for waves in the frequency range concerned is 
approximately 0.2. For a narrow beam imperfectly reflected at an irregular coast, 
geometrical reflection cannot be expected to hold exactly, and it was consequently 
assumed that the angular spread of the reflected waves about the reflected mean 
incident ray was of the order of the rms variation of the shore normal, which was 
taken as 20 ø . The spectral distributions with respect to frequency and direction 
were assumed to be Gaussian in the neighborhood of the peaks. These assumptions 
determine the local state of the sea at the recording station, so that the spatial 
distribution of the equivalent pressure spectrum representing the ocean wave 
interactions can be evaluated from (2.15). 

As was shown by I-Iaubrich et al., the effective width of the interaction region 
is limited in the direction of the incident beam by a relative shift in the peaks of 
the incident and reflected wave spectra owing to the different travel times of the 
waves. The width of the interaction region is of the order of (2Q) -• X storm 
distance • 400 km. Since the incident beam is not normal to shore, the dispersive 
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shif• of the peak also limits the interaction region in the direction parallel to shore 
to a distance of the same order of magnitude. These dimensions are large in com- 
parison with a seismic wavelength, which in the frequency range concerned is of 
the order of 25 km. Hence the equivalent pressure field can be regarded as quasi- 
homogeneous, and •he microseisin spectrum can be determined by integrating the 
general energy-balance equation 1.13. 

The continental borderland off the Californian coast has an average depth of 
approximately 1 km for a distance of 300 km offshore, and then i• drops sharply 
to a depth, including the sedimen• layer, of 5 km [Shot and Ra•tt, 1958]. For a 
double frequency of 0.1 cps the nondimensional frequency a•H/2•ra• is then 0.007 
on the continental borderland and 0.33 in deep water (a• = 1.5 km/sec). According 
to Figure 3 the net amplifications due to the water layer are thus 1.3 and 17, re- 
spectively. Since the offshore width of the interaction region is 400 X (cos 30 ø) = 
350 kin, most of the interaction region lies on the shelf. However, because of the 
higher amplification in the deep water, •he interactions there are still appreciable. 
For • G•ussi•n shaped pe•k with Q = 14, we find th• the ratio of the contributions 
from the shelf and the ocean is approximately i: 2. This result, however, depends 
rather strongly on the value of Q and the actual spectral distribution on the flanks 
of the peak. For higher values of Q the contribution from the ocean rapidly becomes 
negligible, whereas for lower values of Q, as would be associated with waves gener- 
ated by a nearby storm, the contribution from the ocean is dominant. This ex- 
plains why the onset of microseismic activity on the east coast of the United 
States is frequently found to coincide with the passage of a cold front from the 
continental shelf to deeper water, the peak frequency of the microseisms depend- 
ing on the depth of the ocean at the position of the front. 

Primary frequency. The analysis in the preceding section of microseisms 
generated by ocean waves approaching a constant-slope beach was based on the 
model of a perfectly straight shoreline. The model can be assumed suitable for 
the case of a fairly broad wave beam at small angles of incidence, but is rather 
unsatisfactory for the present case of a narrow beam at a finite angle of incidence, 
because the model yielded a rate of microseisin generation proportional to the 
spectral density at zero angle of incidence (equation 4.18), which in the present 
case is practically zero. Some conversion into seismic energy can nonetheless be 
expected, owing to the modulation of the bottom pressure field in the parallel-to- 
shore direction on account of irregularities of the coastline. Although the generaliza- 
tion of the analysis required to include this effect is straightforward, it is difficult 
to determine the relevant properties of the coastline explicitly. It was therefore 
assumed that to a first order the irregularities of the coastline can be accounted 
for by an equivalent broadening of the incident wave beam. As in the case of the 
reflected beam, it was assumed that the beam width was of the same order as the 
rms variation of the shore normal (which we had taken as 20 ø) and that the angular 
distribution was Gaussian. 

The restriction of the theory to a large distance from shore is also not satisfied 
in the present case. The seismic recorder was about 16 km inland, which corresponds 
approximately to 1/3 of a seismic wavelength at a frequency of 0.05 cps. However, 
for the simple model of an elastic half-space assumed here, the exact response could 
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be computed without difficulty, yielding a mean correction factor in the frequency 
range concerned of 1/3. With a measured mean beach slope of 0.01 at the recording 
station, good agreement with experiment was then obtained by attributing a 
correction factor of 3 to wave breaking, consistent with the rough estimate of the 
previous section. 

From the nature of the assumptions required to supplement the experimental 
data it is clear that the agreement between the experimental and theoretical curves 
in Figure 7 is significant only to an order of magnitude. The general trend of the 
curves, however, together with the wide range of spectral densities involved, 
indicates a satisfactory agreement between theory and experiment. 
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