
1.  Introduction
Over the last two decades, seasonal climate predictions have evolved from a scientific research topic into 
full-fledged operational systems. Today, seasonal prediction systems are most operationally run at large 
weather centers like ECMWF (European Center for Medium-Range Weather Forecasts), see Johnson 
et al. (2019) or the British Met Office (MacLachlan et al. 2015), issuing real-time seasonal forecasts. Thirteen 
global producing centers (GPC's) currently submit their long-range forecasts to the World Meteorological 
Organization WMO lead center in South Korea (https://www.wmolc.org/). Since 2011, the German Meteor-
ological Service Deutscher Wetterdienst (DWD), Universität Hamburg (UHH) and the Max Planck Institute 
for Meteorology (MPI-M) have been developing a system for seasonal climate prediction (Baehr et al., 2015). 
Since October 2016, the German Climate Forecast System (GCFS) operationally produces seasonal predic-
tions, which are published every month at DWD's homepage. In 2017, DWD became the 13th GPC of the 
WMO's multimodel ensemble for long-range seasonal forecasts.

At the Max Planck Institute, the Earth-System Model (MPI-ESM; Giorgetta et al., 2013; Mauritsen et al., 
2018) is developed. MPI-ESM is tuned over many model-years under pre-industrial conditions (referring 
to climate conditions of 1850), until it is decided that the best match of the known state of the Earth's 
climate system is found while keeping the balance of the atmosphere's radiation (Mauritsen et al., 2012). 
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This balanced model state serves as a basis for any study on introduced anthropogenic changes within the 
following centuries. With increasing model resolution, a challengingly long computational time is required 
to achieve an equilibrium model state.

At Universität Hamburg, assimilation and ensemble generation methods are developed for the use in GCFS. 
DWD adapts and maintains the whole system for operational performance and issues the seasonal forecasts.

In the following, we will describe the configuration of the two versions GCFS1.0 and GCFS2.0, analyze both 
systems concerning the representation and prediction skill of the North Atlantic Oscillation (NAO), the El 
Niño Southern Oscillation (ENSO), surface temperature and geopotential height at 500 hPa and compare 
them with the focus on differences in the model climate and the respective hindcast skill. We will discuss 
GCFS' strengths and weaknesses and possible approaches for the future development and conclude with 
our main findings.

2.  Configuration of the Operational Systems
2.1.  The Seasonal Forecast System

Performing forecasts with a climate model requires the development of an appropriate workflow. This in-
cludes the provision with initial conditions from reference data, the selection of suited methods of assimila-
tion, as well as the generation of an ensemble and the production of hindcasts and forecasts. As an example, 
Figure 1 sketches the workflow of the seasonal forecast system GCFS2.0 from the generation of the initial 
conditions to the hindcast and forecast ensembles. This figure and a simple description of the system can 
also be found under https://www.dwd.de/EN/ourservices/seasonals_forecasts/project_description.html. 
These tasks will be explained in the following subsections. Details about the two Earth System Model con-
figurations are provided and discussed afterwards, summarized in Table 1.

2.2.  Assimilation

Continuous nudging is used to bring the model's state close to the (re)analyzed state of the climate system. 
This means a separate simulation runs continuously over the years and months under nudging conditions. 
Its restart files produced at the end of each month serve as the initial conditions for the retrospective (so-
called hindcasts) and current forecasts. The model's atmosphere is nudged towards vorticity, divergence, 
temperature, and mean sea level pressure of the (re)analysis data. The model's ocean is nudged towards 
temperature, salinity, and sea ice. The methods are the same as described in Baehr et al. (2015). Assimilation 
for both versions starts in 1979. Data requirements for initial conditions differ for hindcast and real-time 
forecast.

For the hindcast production both GCFS1.0 and GCFS2.0 use ERA-Interim (Dee et al., 2011) as the atmos-
pheric initial conditions. For real-time forecasts, initial conditions are taken from the analyses of the ECM-
WF weather forecast model IFS.

Ocean initial states for GCFS1.0 are provided by 3D ocean temperature and salinity of the ECMWF ocean 
reanalysis ORAS4 (Mogensen et al., 2012) and sea ice concentration from the National Snow and Ice Data 
Center NSIDC (Fetterer et al., 2002). As reanalysis data are usually not available close to the forecast start 
date, a special product, the near real-time analysis system ORAS4, provided data for GCFS1.0 forecasts.

Pragmatical considerations for sea-ice data in terms of availability and consistency led to the choice of 
ORAS5 data (Zou et al., 2017) for all oceanic variables in GCFS2.0. ORAS5 now also provides the near re-
al-time data for GCFS2.0 forecasts.

To start the assimilation run for GCFS2.0 in its very beginning at 1979, we use the decadal assimilation with 
MPI-ESM-HR from the German decadal climate prediction project MiKlip (Pohlmann et al., 2019; Polkova 
et al., 2019). The decadal MPI-ESM-HR assimilation begins in 1960, accordingly GCFS2.0 starts in 1979 with 
an ocean and a land surface already adapted to permanently nudged atmospheric and oceanic conditions.
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2.3.  Ensemble Generation

Ensemble members are generated by applying perturbations both to atmosphere and ocean. In the ocean, 
the ensemble is initialized through bred vectors in all vertical levels (Baehr & Piontek, 2014). The initial 
ensemble is generated by applying the lagged-day initialization. This means that every member starts on a 
different day of the preceding month. For instance, on May 1, 1990, the 15 GCFS1.0 members start with con-
ditions taken from days between 1 and 30 April. At the end of this first GCFS1.0 hindcast (April 30, 1991), 
the ocean restart files of these ensemble members serve as perturbations on the assimilation for the next 
May hindcast. After approximately two years the bred vectors have lost their memory of the initial lagged 
perturbations (Baehr et al., 2015). With the increase of GCFS2.0's ensemble size to 30, the duration of every 
individual hindcast and forecast (and therefore the breeding time) is reduced to 6 months.

Within the atmosphere we apply a simple perturbation of a physical parameter: the perturbed horizontal 
diffusion coefficient is imposed on vorticity, divergency and temperature at the uppermost level at 0.01 hPa. 
It forces slightly different atmospheric conditions of the applied member. This small and simple change has 
a long known impact on the atmosphere model dynamics and was therefore the first choice for an ensemble 
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Figure 1.  Workflow of GCFS2.0 seasonal forecasts.
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generation. The perturbation value varies every fifth member in the hindcast ensemble and every tenth 
member in the forecast ensemble of GCFS2.0.

2.4.  Hindcasts

Hindcasts provide necessary climate statistics for the climate forecasts and the assessment of the mod-
el's predictive skill in both deterministic and probabilistic scores. This means that for each of the 12 start 
months of a year, an ensemble prediction is performed for at least 25 - or more - years of the recent past. 
Hindcast production inherently consumes a large amount of computational resources.

In GCFS1.0, the hindcast ensemble of 15 members covers the period from 1981 to 2015. The hindcast dura-
tion for each start date was 12 months.

The size of the GCFS2.0 ensemble has been increased from 15 to 30. The doubling of the ensemble size to-
gether with a higher resolution leads to a considerable increase in computational cost. Therefore, the period 
of hindcasts and the hindcast duration had to be shortened. The 30 members of GCFS2.0 hindcasts start in 
1990 and end in 2017, while performing 6 months of retrospective forecasts for each calendar month in all 
years. In this way, more than 25 years of hindcasts are achieved.

2.5.  Forecasts

The production of the forecasts starts at the beginning of every month, with the exact day depending on the 
availability of analysis data of atmosphere, ocean, and sea-ice, as explained in the subsection “Assimilation.”

GCFS1.0 forecasts ran with 30 ensemble members, having all the same start date at the first of each month, 
with a forecast duration of 1 year.

With GCFS2.0, 50 ensemble members are integrated over half a year, again all members starting on the first 
day of the month.

2.6.  Communication of Seasonal Predictions

Seasonal predictions are provided as anomaly forecasts with respect to a defined model climate. For in-
stance, ensemble mean anomalies are created by subtracting the lead-time dependent ensemble-mean 
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Component Subcomponent GCFS1.0 GCFS2.0

Model Atmosphere/ECHAM ECHAM 6.1.06p4: T63L47 ECHAM 6.3.04p1; T127L95

Land surface vegetation/JSBACH Bulk soil moisture Five layer soil moisture

Ocean/MPIOM MPIOM 1.6.1: GR15 MPIOM 1.6.3; TP04

Coupler/OASIS3 MCT Once a day Hourly

External forcing data Historical CMIP5 1981–2005 CMIP6 1981–2014

Scenarios CMIP5 RCP 4.5 from 2006 onwards CMIP6 constant 2014 values from 2015 onwards

Ensemble generation Atmosphere Perturbation of uppermost atmospheric layer Perturbation of uppermost atmospheric layer

Ocean Bred vectors over 12 months Bred vectors over 6 months

Assimilation Atmosphere Nudging of ERA-Interim variable fields Nudging of ERA-Interim variable fields

Ocean Nudging ORAS4 and NSIDC variable fields Nudging of ORAS5 variable fields

Hindcast Period 1981–2014 1990–2017

Forecast duration 12 months 6 months

Ensemble member 15 30

Forecast Forecast duration 12 months 6 months

Ensemble member 30 50

Table 1 
Overview of GCFS1.0 and GCFS2.0 Configuration



Journal of Advances in Modeling Earth Systems

model-climate of the chosen reference hindcast period. A bias corrected forecast is obtained by adding the 
observational based climate of the same reference period to each ensemble member anomaly.

A probabilistic outlook checks how many members cluster in a defined event category. For seasonal fore-
casts, terciles out of the climatological reference period commonly define the cold/normal/warm or dry/
normal/wet events.

Seasonal forecasts are usually averaged over 3 months. The first month is discarded in most cases to ac-
count for an initialization shock so that the first forecast period starts with the second to the fourth forecast 
month, and so on. Therefore, a DJF forecast is issued in November, predicting anomalies for the upcoming 
December, January and February. Likewise, the May forecasts give the outlook for the months June, July 
and August.

To account for the moderate skill and huge uncertainty in seasonal predictions, information about the fore-
cast quality is provided along with the forecast itself. Uncertainty estimates are provided via probabilistic 
representations.

2.7.  Evaluation Metrics of Seasonal Hindcasts

A simple but instructive first measure is the difference between the reanalysis and each hindcast data set 
for a given variable. Decreasing differences between the simulations and a reference data set are usually 
considered as a success in a correct description of climate processes which is expected to result in improved 
prediction skill.

To further evaluate the predictive skill of each forecast system, deterministic as well as probabilistic meas-
ures are used.

As a conventional deterministic score we apply the Pearson correlation or so-called anomaly correlation co-
efficient (ACC) on the time series of interannual variations of the ensemble mean hindcasts averaged over 
3 months. Here, bias corrected hindcast data in cross-validation are used for the ACC. As such, the anomaly 
for each member is created by subtracting the model climatology where the corresponding member and 
year is excluded. The significance of the ACC is tested with a t-statistic. To test the significance of differenc-
es in the two ACC's we use a method described by (Siegert et al., 2017), with GCFS1.0 (rG1EI) and GCFS2.0 
(rG2EI), also taking into account the correlation between the two versions (rG2G1):
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Here, significance is tested by a two-sided test with the threshold of 2.074 for α = 2.5%.

As probabilistic measure for this study, we chose the fair ranked probability skill score RPSS (Ferro, 2014). 
The fair RPSS is calculated over all defined events or categories (usually 3) of the ensemble hindcasts. The 
RPSS shows the improvement of using probabilistic forecasts versus using a climatological value. The score 
is called fair as it is adapted to the finite ensemble size. The perfect score is 1, values below 0 denote that the 
climatology performs better than the respective hindcast ensemble. Further metrics to estimate the reliabil-
ity, resolution, and sharpness of the ensemble system are also calculated for GCFS but not shown here for 
lack of space. For more details on skill measures and scores we refer to Wilks (1995).

2.8.  Model Configuration

The first version of GCFS1.0 was based on MPI-ESM-LR (Giorgetta et al., 2013), with an atmosphere reso-
lution of T63 (corresponding to approximately 150 km at around 50°N), 47 levels reaching up to 0.01 hPa 
and an ocean resolution of nominally 1.5° in the horizontal with 40 levels in the vertical down to approx-
imately 5,000 m (Jungclaus et al., 2013). The ocean model is connected to a dynamic and thermodynamic 
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sea-ice model. Coupling between ocean and atmosphere was set to once a day for GCFS1.0. The land and 
vegetation model JSBACH also hosts a hydrological runoff model. In GCFS1.0, MPI-ESM uses the external 
forcing like greenhouse gases, ozone, and aerosols based on phase 5 of the Coupled Model Intercomparison 
Project CMIP5 (Taylor et al., 2012) for historical data and future scenarios. Together with the prescribed 
solar irradiance these data also account for the solar cycle. Stratospheric aerosol data provide information 
about volcanoes (Giorgetta et al., 2013). The historical period within CMIP5 ended in 2005. Therefore, all 
simulations of GCFS1.0 starting from 2006 onwards used the RCP4.5 scenario for the external forcing.

The version GCFS2.0 is based on the MPI-ESM-HR (Mauritsen et al., 2018; Müller et al., 2018) with a T127 
spectral resolution in the atmosphere corresponding to approximately 70 km at around 50°N, with 95 levels 
covering the same vertical column up to 0.01 hPa and an ocean resolution of nominally 0.4° in the horizon-
tal and, similar to GCFS1.0, 40 levels in the vertical. A number of developments in the atmospheric process-
es like radiation, clouds and convection has been applied while ocean physical processes remained largely 
unchanged. A complete description of all model developments of the new and higher resolved Earth-Sys-
tem Model is provided by Mauritsen et al. (2018). We highlight here the increase of the coupling frequency 
between ocean and atmosphere, which in GCFS2.0 takes places on an hourly basis. Further, the land and 
vegetation model JSBACH in MPI-ESM-HR includes vertical soil moisture transport (Hagemann & Stacke, 
2015). For the low-resolution version MPI-ESM-LR it has been shown, that this contributes to an improve-
ment of European summer temperatures (Bunzel et al., 2017). For GCFS2.0, we use external forcing from 
phase 6 of the Coupled Model Intercomparison Project CMIP6 (Eyring et al., 2016), where the historical 
period has been extended until 2014. Scenario data were not ready for use for MPI-ESM-HR before mid-
2018, therefore the external forcing has been set constant starting in 2015 up to present time. Table 1 gives 
an overview of both systems.

To give an idea of the different model behavior purely due to the changed model configuration and phys-
ics, Figure 2 shows biases of 2 m temperature of the two climate model versions CMIP5 MPI-ESM-LR and 
CMIP6 MPI-ESM-HR with respect to ERA-Interim for the time range 1990–2014 obtained from historical 
experiments. The so-called historical experiments are uninitialized model simulations, starting from 1850 
until 2014, where the model climate is controlled by the changing external fields like greenhouse gases, 
aerosol and ozone. Displayed are ensemble means from the 10 member ensemble for December/January/
February DJF in Figure 2 (top) and June/July/August JJA Figure 2 (bottom).

Over land, the warm bias of the Amazon basin is considerably reduced in the CMIP6 model version, which 
we attribute to the improved soil moisture behavior. Seasonal differences also show up, for instance the 
reduced cold boreal summer bias in northern Russia and northern Africa in the new and higher resolved 
model system. The bias pattern over northern America also changes between the model versions and the 
two different seasons, but no clear error reductions are visible there. Europe exhibits a cold bias in the 
CMIP6 version for DJF and JJA, while the CMIP5 version produced a warm DJF bias. The European cold 
JJA bias is slightly reduced in the CMIP6 version. Another cold bias region is visible in the North Atlantic. 
The pattern remains similar between the two versions and appears to be stronger in winter. The two ocean 
grids GR15 and TP04 (see Table 1) have a very similar resolution setting over the North Atlantic. Therefore, 
there is no visible effect of an improvement due to a better resolved ocean at the ocean surface. As shown 
in Gutjahr et al.  (2019), the MPI ocean model can represent the pathway of the North Atlantic Current 
much better at even higher horizontal eddy resolving resolution including improved physics with regard to 
vertical mixing.

In the Southern Hemisphere, a warm bias is visible around the coast of Antarctica for both model versions 
and both seasons. The bias is slightly reduced in the CMIP6 version, as cloud errors have been alleviated 
(compare with Figure B6 in Mauritsen et al. (2018)) and possibly as well due to the higher resolution which 
was also shown in Müller et al. (2018), there Figure 2. Still, sea-ice around Antarctica is not well represent-
ed, particularly too little ice in summer (not shown).

Although some of these biases can be addressed during data assimilation, most will re-emerge in the sea-
sonal hindcasts and forecasts.

Another striking features of the CMIP6 version for both seasons are the much warmer tropical oceans com-
pared to the reanalysis and the reduced cold tongue in the tropical Pacific in Figures 2b and 2d. Although 
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this error pattern has not disappeared completely, it is much smaller for the DJF months than for the JJA 
months.

An issue with the ocean mixing has been reported in Mauritsen et al. (2018). A “bugfix” was implemented 
and tuned already for the low resolution version CMIP6 MPI-ESM-LR, but for the high resolution version 
MPI-ESM-HR it was decided to leave out this further tuning connected with the ocean correction. To inves-
tigate the impact of the ocean code correction onto the new MPI-ESM-HR climate for seasonal forecasts an 
experiment was set up. Here, MPI-ESM-HR is run for approximately 100 years under pre-industrial control 
conditions with correct ocean mixing in order to allow a spin-up for the ocean. Afterwards, a historical 
experiment simulates the time range from 1850 up to 2014. However, the comparison between the original 
historical run and the bug-fixed version did not show the desired result of a cooler tropical belt. The revised 
ocean mixing in MPI-ESM-HR revealed a small improvement (not shown here) but no change of error 
pattern in the tropical Pacific similar to the change seen in Figure 2. Except for Arctic regions, temperature 
differences between these two MPI-ESM-HR versions remain mostly below 1 K and are hard to recognize. 
The reason for the tropical warm bias is thus suspected to derive from the revised atmospheric parameter-
izations in radiation and cloud cover. Required diagnostics and tuning experiments are currently beyond 
available resources.
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Figure 2.  Difference of the 2 m temperature between the historical experiment of CMIP5 MPI-ESM-LR (left) and CMIP6 MPI-ESM-HR (right) to ERA-Interim 
for DJF (top) and JJA (bottom) between 1990 and 2014.
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3.  Comparison of GCFS1.0 and GCFS2.0 Hindcasts
3.1.  Comparison Setup

With May and November we use two of the 12 start months to investigate the hindcast performance of 
the two forecast systems. To have a common hindcast period of GCFS1.0 and GCFS2.0 the reference time 
of 1990–2014 is chosen. We focus our assessment on temperature and geopotential fields. Mean sea level 
pressure is used for the evaluation of the NAO prediction. The reference dataset is the ERA-Interim reanal-
ysis except for the evaluation of the Niño3.4 regions, where the NOAA Optimum Interpolation Sea Surface 
Temperature Version 2 NCEP OIv2 is used.

3.2.  JJA Mean State and Hindcast Skill

We present the mean state of the models by looking at the vertical structure of the atmosphere as well as 
at the surface and the level of 500 hPa. We consider the ensemble mean and time mean of the respective 
3 month hindcasts over the time period of 1990–2014.

Figure 3 visualizes in a latitude-height-plot the bias of temperature of GCFS1.0 (left) and GCFS2.0 (right) 
with respect to ERA-Interim. The vertical and the latitudinal temperature structure in the two panels is 
quite different. In stratospheric levels around/above 35 km a dipole feature of the boreal summer strato-
spheric temperature bias of GCFS1.0 (Figure 3a) is visible. This feature is weakened in GCFS2.0 (Figure 3b), 
where a higher vertical resolution exists, a new ozone data base for CMIP6 is used and the non-orographic 
gravity waves are newly tuned. However, the middle atmosphere is characterized by a cold bias in the North-
ern Hemisphere summer and a strong warm bias in the Southern Hemisphere winter. The comparison 
shows that the tropospheric cold bias in the lower layers in GCFS1.0 during the JJA months is reduced in 
GCFS2.0, revealing almost a bias-free Southern Hemisphere. Still, the extra-tropical cold biases in 200 hPa 
indicate a wrong position of the tropopause in both versions. In the GCFS2.0 Northern Hemisphere, a con-
siderable warm bias in the middle troposphere extends from the northern polar latitudes into the tropics. 
The maximum of the positive bias is placed above the North Pole while in the lowermost layers the cold bias 
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Figure 3.  Temperature differences of (a) GCFS1.0 ensemble mean and (b) GCFS2.0 ensemble mean to ERA-Interim of JJA hindcasts during 1990–2014.
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of the Arctic remains. The warm bias Northern Hemisphere region is accompanied by a positive humidity 
bias (not shown here).

JJA hindcast temperature biases at 2 m height are displayed in Figure 4. The cold bias of Northern Hemi-
sphere land masses in GCSF1.0, which can also be seen in the previously mentioned 10 member ensemble 
of Baehr et al. (2015), is greatly reduced. However, in some regions it is replaced by a warm bias in GCFS2.0, 
for example, over North America. The error in the Amazon basin is strongly reduced in GCFS2.0, which we 
attribute to a feature of the new soil moisture parameterization. The cold tongue in the tropical Pacific, pres-
ent in GCFS1.0, completely vanished in GCFS2.0. This seems to be due to a strong impact of ORAS5-nudg-
ing. Additionally, the tropical Pacific now shows a strong warm bias in the upwelling region west of the 
South American and South African coasts. The calculation of the Gaussian weighted, globally averaged 
RMSE, separately over land and ocean, for both forecast versions is shown in Table 2. This table confirms 
that a redistribution of the error patterns results in similar RMSE values in GCFS2.0 during boreal summer.

We investigate the two systems with respect to their forecast skill in terms of ACC and fair RPSS in Figure 5. 
Figure 5a shows, that for central Europe no hindcast skill in GCFS2.0 temperature can be expected, while 
the situation is better in North America, the Mediterranean and some Asian regions, where significant 
correlation values appear, represented by dots. In the middle troposphere, the ACC for the GCFS2.0 geopo-
tential height (Figure 5b) shows negative values over Europe. Again, western US, Greenland and Central 
Asia exhibit significant positive skill outside the tropical regions.

The middle panels, Figures 5c and 5d, show the change in skill from GCFS1.0 to GCFS2.0. For the inter-
model comparison GCFS2.0 is mapped onto the coarse grid of GCFS1.0. If regions appear in reddish colors 
GCFS2.0 is superior over its predecessor GCFS1.0. With the applied method from Siegert et al. (2017) sig-
nificant patterns also appear where the difference in the two correlations (rG2EI − rG1EI) is very weak. These 
places represent regions, where the correlation between GCFS1.0 and GCSF2.0 rG1G2 is very high so that 
even small differences matter.

At the surface relevant improvements for the temperature correlation 
can be seen over Alaska, the west Siberian Plain, the Amazon and 
the western tropical Pacific region. A slight improvement is gained 
in northern Europe. At 500  hPa the correlation for the geopotential 
height is now stronger over Greenland and parts of Siberia as well as 
over parts of Antarctica. The negative skill over Europe is a pattern 
which has not changed much in comparison to GCFS1.0, but some 
significant improvements can be stated over Scandinavia.
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Figure 4.  Difference of the 2 m temperature hindcasts (a) GCFS1.0 and (b) GCFS2.0 to ERA-Interim for JJA hindcasts in 1990–2014.

Forecast system RMSE [K] land RMSE [K] ocean

GCFS1.0 0.95 0.55

GCFS2.0 0.97 0.55

Table 2 
Gaussian Weighted Globally Averaged RMSE of 2 m Temperature for JJA



Journal of Advances in Modeling Earth Systems

The difference in the probabilistic measure RPSS between the two model systems is shown in the bottom pan-
els of Figure 5, again for temperature on the left in Figure 5e and geopotential height on the right in Figure 5f. 
As before, the red-colored regions highlight the domains where the probabilistic hindcasts of GCFS2.0 for 
all event categories are better than the GCFS1.0 ensemble. The differences between the systems are stronger 
at the surface than in 500 hPa. GCFS2.0 probabilistic hindcasts have improved over the North and Baltic sea 
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Figure 5.  Top panel: Anomaly correlation coefficient (ACC) of hindcasts for June, July, August with respect to ERA-Interim during 1990–2014: (a) 2 m 
temperature and (b) geopotential height at 500 hPa pressure level. Dots represent significant values at α = 5%. Middle panel: the difference of ACC skill 
between GCFS1.0 and GCFS2.0 for (c) 2 m temperature and (d) geopotential height at 500 hPa. Dots represent significant values at α = 2.5% derived from 
Equation 2. Bottom panel: difference of GCFS1.0 and GCFS2.0 for the Fair Ranked Probability Skill Score RPSS for (e) 2 m temperature and (f) geopotential 
height at 500 hPa.
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and its surroundings, in the Sahel zone and again over the Amazon region. Degradation is seen for the central 
tropical Pacific, tropical Atlantic and the Indonesian Archipelago. For geopotential height at 500 hPa proba-
bilistic hindcasts are now slightly worse around the tropics, while the North Atlantic shows neutral to slightly 
improved behavior. The structure and hindcast skill of one of the prominent European summer features, 
blocking, is shown in Figure 6. Blocking is diagnosed from daily values of geopotential height at 500 hPa of 
the hindcasts started in May by using a combination of two methods based on Tibaldi and Molteni (1990) and 
Barriopedro et al. (2010). The ERA-Interim reanalysis (Figure 6a) shows that the European blocking has its 
maximum over northern Scandinavia. The region where events are present for more than 15% of the summer 
days during the considered time range extends from Greenland to the Ural Mountains and from Spitsbergen 
down south to Poland and Ukraine. Please note, we compare the seasonal frequency of summer blocking 
events but not their correct timing during the summer. While the general shape and the location of the central 
core of European summer blockings match quite well between reanalysis and forecast systems, the extension 
and especially the amplitude of GCFS2.0 blockings (Figure 6 b) are smaller. Panels c) and d) of Figure 6 show 
the ACC of the two versions with dots representing significant values at the 5% significance level. In gener-
al, GCFS2.0 better describes the northern and western blocking events, while GCFS1.0 performed better in 
south-eastern Europe. Over central Europe, the situation is not improved by GCFS2.0. The underestimation 
of this phenomenon is, however, not unexpected, as blocking processes are known to evolve properly only at 
horizontal grid resolutions of about 40 km as shown in, for example, Jung et al. (2012). A further reason of 
the underestimation of blocking could arise from the cold bias in the North-Atlantic, as has been described for 
winter blockings by Scaife et al. (2011). This cold bias is considerably reduced in GCFS2.0 but still present. The 
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Figure 6.  Analysis of blocking frequency in JJA during 1990–2014 for (a) ERA-Interim reanalysis, (b) GCFS2.0 ensemble mean, (c) ACC for GCFS1.0 vs. ERA-
Interim, and (d) ACC for GCFS2.0 vs. ERA-Interim. Dots represent significant values at the 5% significance level.
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ocean resolution of 0.4° of GCFS2.0 is still not high enough to resolve the processes the North Atlantic current 
and to place it at the correct position in the North Atlantic.

3.3.  DJF Mean State and Hindcast Skill

As before, the ensemble and time means of GCFS1.0 and GCFS2.0 are compared by using the corresponding 
ERA-Interim period of December, January and February (DJF) 1990–2014, computed from the November 
start date. The year is related to the start of the season, namely December.

Again, we show first the vertical structure of the temperature differences in Figure 7 for the DJF period. 
For GCFS1.0 (Figure 7a), a strong cold bias is seen in the upper troposphere extending with weaker values 
up into the stratosphere. In the GCFS2.0 troposphere (Figure 7b), the cold bias is considerably reduced. In 
tropical and subtropical latitudes, a minor warm bias is now present, with the maximum at the tropopause.

The middle atmosphere of the GCFS1.0 Southern Hemisphere is overly warm up until 35 km, while above 
a strong cold bias is visible. In contrast, the winter stratosphere in the Northern Hemisphere at the same 
height appears to be too warm. This dipole structure is strongly reduced in GCFS2.0. However, the warm 
bias in the winter polar stratosphere extends now from about 100 hPa up to 1 hPa. The polar vortex is too 
strongly decelerated due to resolved and parameterized wave activity.

At the surface, the bias distribution has also changed as is displayed in Figure 8. The tropical oceans now 
show a general warm bias for GCFS2.0 (8b), as seen before in the historical experiment (Figure 2). In the 
Pacific, the cold tongue again vanishes as simulations start from an analyzed climate state. Other strong 
biases from the GCFS1.0 are now also considerably reduced, such as the warm bias over Europe, the Am-
azon region and southern Africa or the cold bias over northern Africa. For boreal winter also the globally 
averaged RMSE is reduced in GCFS2.0, as shown in Table 3.

With these improvements in the higher resolved version GCFS2.0 has a better representation of the jet in the 
storm track region (see Figure 10 from Müller et al. (2018)). This leads to a good skill pattern in ACC of 2 m 
temperature as seen in Figure 9a and also for the geopotential height at 500 hPa pressure level (Figure 9b). 
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Figure 7.  Temperature differences of (a) GCFS1.0 ensemble mean and (b) GCFS2.0 ensemble mean to ERA-Interim with respect to DJF hindcasts during 
1990–2014.
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While ACC values over Europe in DJF are not apparent, the skill in the Arctic region, over Greenland and 
northern America shows significant values up to 0.8 (Figure 9a), whereas in GCFS1.0 the skill did not ex-
ceed values around 0.4 (not shown here). However, directly south of Greenland appears an oceanic region 
with negative skill. This is a new pattern in GCFS2.0 and is most probably not a model feature but could 
stem from assimilating the ocean reanalysis data ORAS5 from ECMWF. The same negative Pearson correla-
tion appears in the DJF hindcast skill of ECMWF's forecast model System 5 (Johnson et al. , 2019), see their 
Figure 19a. The authors also discuss ORAS5 as the reason of skill degradation. At the level of 500 hPa again 
the strongest positive values are found in the tropics. Apart from this, regions with considerable positive 
and significant skill are found over the eastern North Pacific extending into North America, as well as over 
Greenland and Arctic regions. Also, the North Atlantic shows a patch of significant positive skill.

The middle panels of Figure 9 highlight as before the change in skill in the ACC between the two versions 
GCFS1.0 and GCFS2.0, with dots over the significant regions. Again, significant regions also appear, where 
the difference in the two correlations (rG2EI − rG1EI) is very weak but the correlation between GCFS1.0 and 
GCSF2.0 rG1G2 is very high. Considerable skill has been gained at the surface, represented by the 2 m tem-
perature (Figure 9c). Greenland and large parts of Eurasia benefit from the new version. Europe partly gains 
skill, especially for the very north and the southern regions and partly loses skill, especially over central 
Europe. A substantial gain in skill is further evident for the geopotential height in the storm track level in 
the North Atlantic, Arctic regions (Figure 9d), as well as over Eurasia. The significant improvement over 
central Europe is gained by replacing negative ACC values with weak positive ones.

The bottom panels in Figure 9 present the difference between the two systems in terms of the probabilistic 
hindcast skill score RPSS as previously shown in Figure 5. Skill differences are stronger at the surface for 
temperature than for the middle troposphere in 500 hPa. During DJF GCFS2.0 probabilistic hindcasts are 
more skillful for eastern and southern Europe as well as eastern Russia. The skill amendment over Europe 
is seen also at 500 hPa. A region where GCFS2.0 forecasts are worse than its predecessor is the central 
tropical Pacific. The strongest gain in skill is seen over central Africa extending into the Indian Ocean. Im-
provements over the ocean are also visible for the subtropical south-eastern Pacific and the Agulhas Basin.

The improved conditions in the Northern Hemisphere show up as well in 
a skillful prediction of the NAO index in GCFS2.0 for the upcoming bore-
al winter season (Figure 10). The NAO skill does not directly suffer from 
the SST problems in ORAS5 reanalysis mentioned above, because it aris-
es from a different SST-region in the North Atlantic, and also depends on 
northern hemispheric sea ice, snow cover and stratospheric temperatures. 
The NAO index has been calculated using an empirical orthogonal func-
tion (EOF) from mean sea level pressure as in Dobrynin et al. (2018). The 
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Figure 8.  Difference of the T2m hindcasts (a) GCFS1.0 and (b) GCFS2.0 to ERA-Interim for DJF hindcasts between in 1990–2014.

Forecast system RMSE [K] land RMSE [K] ocean

GCFS1.0 1.41 0.59

GCFS2.0 1.36 0.56

Table 3 
Gaussian Weighted Globally Averaged RMSE of 2 m Temperature for DJF
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monthly values have been normalized by the standard deviation of the monthly NAO index time series from 
1950 to 2000. Comparing to the previous version GCFS1.0 with a not significant NAO prediction skill of 0.21, 
the GCFS2.0 increased the NAO skill up to 0.40, which is statistically significant at the 5% significance level, 
although the difference in NAO skill between the two systems is not significant. Further, the NAO skill for a re-
duced 15-member GCFS2.0 ensemble is still considerably higher than in GCFS1.0. The correlation means over 
all combinations for 15 out of 30 members in GCFS2.0 is 0.34, with a range between 0.01 and 0.62 dependent 
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Figure 9.  Top panel: Anomaly correlation coefficient (ACC) of hindcasts for December, January, February with respect to ERA-Interim: (a) 2 m temperature 
and (b) geopotential height at 500 hPa pressure level. Dots represent significant values at α = 5%. Middle panel: the difference of ACC skill between GCFS1.0 
and GCFS2.0 for c) 2m temperature and d) geopotential height at 500 hPa. Significance is represented by dots at α = 5% derived from Equation 2. Bottom panel: 
the difference of GCFS1.0 and GCFS2.0 for the Fair Ranked Probability Skill Score for (e) 2 m temperature and (f) geopotential height at 500 hPa.



Journal of Advances in Modeling Earth Systems

on the selected members. This highlights that improvements of the model dynamics and physics have large 
potential for better long-range forecasts in the mid-latitudes as shown by Scaife et al. (2014).

3.4.  ENSO Hindcasts

The assessment of ENSO hindcasts in Figure 11 for the Niño3.4 region shows a strong seasonal dependence 
of skill in GCFS2.0. However, when considering all 12 start months predictive skill is reduced in GCFS2.0. 
The general structure of the difficult hindcast start months March, April, May and June can also be seen 
in GCFS1.0 and is also known in other models as “spring predictability barrier” (see e.g., Wang-Chun Lai 
et al. (2017)), making ENSO predictions difficult for forecast systems in general. This feature has not been 
improved in GCFS2.0. However, GCFS2.0 performs with a comparable forecast quality to GCFS1.0 in all 
other months from July to December.

Johnson et al. (2019) also report a warm bias of the ECMWF's seasonal forecast model System 5 during JJA 
hindcasts in the eastern Pacific basin (their Figure 1d). The warm structure of System 5 is stronger pro-
nounced north of the equator and much more confined to the South American coast. Their ENSO predictive 
quality improved with the higher resolution of the model.

4.  Conclusions
To summarize, we have shown that the second version of the GCFS has some improvements over its pre-
decessor. However, a version change does not necessarily lead to improvement everywhere and for every 
variable, which is certainly true here. An overall similar behavior of GCFS2.0 in comparison to GCFS1.0 has 
been assessed during JJA. Skill degradation of GCFS2.0 in JJA forecasts is prominent in the tropical Pacific 
and in the skill for ENSO. During DJF, hindcast quality is improved in GCFS2.0 due to the increased resolu-
tion and revised physical parameterizations, especially for Northern Hemisphere, where, for example, NAO 
skill for the winter months increased.

With this version, we have again learned that increasing the model resolution is not per se a solution to 
many forecast problems as it requires a lot of intense work and evaluation of the model physics on the new 
grid. Similar challenges are observed for the new system 5 at ECMWF (Johnson et al., 2019), where many 
issues arise with the new resolution. Scaife et al. (2019) even recommend to invest more into the ensemble 
size, vertical resolution or ocean resolution than in increasing the atmospheric horizontal resolution. As 
can be seen from our results, any changes to the model grid need careful adaptation of the model physics.

For a future system, a comprehensive performance testing is needed depending on different time-scale ap-
plications of this model (Schmidt et al., 2017), besides taking into account a well-tuned climate and climate 
sensitivity of the Earth-System Model, which is the key for climate experiments and climate projections. In 
this way, processes active in different seasons or timescales can be accounted for during the model tuning.
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Figure 10.  NAO time series of ERA-Interim, model ensemble mean and the single ensemble members averaged over December, January, February during 
1990–2014, (a) GCFS1.0 and (b) GCFS2.0. Time series are normalized by the standard deviation. The labeled years refer to January of the considered DJF.
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Data Availability Statement
Hindcast data used for this study and scripts to generate the figures are available by request to the first au-
thor under https://doi.org/10.5281/zenodo.3697080. GCFS2.0 data used for this study are available on the 
C3S climate data store https://climate.copernicus.eu/seasonal-forecasts.
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Figure 11.  Anomaly correlation of the SST forecasts for the ENSO 3.4 region for (a) GCFS1.0 and (b) GCFS2.0, both calculated with respect to the NCEP 
reanalysis for all 12 start months and all 6 lead months in 1990–2014.
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