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Surface temperatures and all variables in the climate 
system fluctuate around their long-term evolving 

forced state due to the chaotic effect of internal variability. 
Real-world observations offer only one amongst many 
possible combinations of these fluctuations, making it 
difficult to distinguish the effect of internal variability 
from the forced response to external drivers. In contrast, 
initial-condition large ensembles (LEs) consist of up to 
hundreds of simulations of a single climate model under 
the same time-evolving external forcing conditions, 
which differ only due to the effect of chaotic internal 
variability. This means that when large enough LEs allow 
a precise quantification of both the time-evolving forced 
response, represented by the ensemble mean, and the 
internal variability, represented by the spread of possible 
fluctuations around this mean.

Due to their design, LEs allow for a more effective 
climate model evaluation. We can use LEs to determine 
whether observations fall within the ensemble spread 
simulated by each model. We exploit this potential of LEs 
to evaluate how well climate models capture the internal 
variability and forced response in observations, without 
the need to separate both quantities in the observations, 
by applying a methodological evaluation framework 
based on probabilistic forecast verification (Hamill 2001; 
Suarez-Gutierrez et al. 2018; Maher et al. 2019). This 
evaluation framework allows us to determine model 
performance more robustly than before, by assessing 
whether current climate models capture the long-term 
trajectory of the climate system as well as the possible 
range of fluctuations around this trajectory caused by 
internal variability in any given region and time period.
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Here, we use this framework to evaluate historical near-
surface air temperatures over North America in LEs from 
six comprehensive fully-coupled climate models in the 
Multi-Model Large Ensemble Archive (MMLEA; Deser et al. 
2020) provided by the US CLIVAR Working Group on LEs: 
CanESM2, CESM-LE, CSIRO-MK3.6,GFDL-CM3, GFDL-
ESM2M, MPI-GE; as well as in the Observational LE (OBS-
LE). In contrast to the six model LEs, OBS-LE is a statistical 
product that combines the simulated time-evolving 
forced response from CESM-LE with a synthetic statistical 
estimate of internal variability derived from observations 
from the Berkeley Earth Surface Temperature (BEST) 
dataset for temperature (McKinnon and Deser 2018).

Results

Time series and rank histogram analysis

For the hypothetical case of an LE that perfectly 
represents the combined effect of the real-world 
forced response and internal variability, a sufficiently 
long sample of observations should fall across all of 
the ensemble spread with no preferred frequency, 
and mainly occur within the ensemble maximum and 
minimum limits. We evaluate this by computing time 
series and rank histograms of annually averaged North 
American near-surface air temperature anomalies 
(SAT) with respect to the reference period of 1961–
1990 compared to CRUTEM4 observations (Figure 1). 

The time series in Figure 1 show the ensemble maxima 
and minima as well as the 75th percentile central 
ensemble range (i.e., 12.5th to 87.5th percentile range), 
together with observations. The rank histograms 
shown in Figure 1 represent the frequency with which 
observations take each place in a list of ensemble 
members ordered by ascending SAT values for each year 
(Hamill 2001). The rank is zero if the observed SAT for a 
given year is lower than each SAT simulated by all the 
ensemble members for that year. If the observed SAT is 
higher than all simulated SATs, the rank is n, the number 
of ensemble members. For a long enough observational 
record that is adequately simulated, observations 

should occur in all ranks with uniform frequency, thus 
resulting in a flat rank histogram. In contrast, a non-
flat rank histogram indicates a model bias in either 
the variability or forced response. This is the case 
for CanESM2, CSIRO-MK3.6, and GFDL-CM3, which 
show sloped rank histograms with disproportionately 
large low-rank frequencies. Thus, these ensembles 
overestimate the historical forced warming compared 
to observations. Observations occur frequently in the 
lower half of these ensembles, or below the ensemble 
minima, either during the entire observational record 
as for GFDL-CM3, or only in recent decades or early 
historical period, as for CanESM2 and CSIRO-MK3.6 
respectively. The remaining LEs — CESM-LE, GFDL-
ESM2M, MPI-GE, and OBS-LE — show relatively flat 
rank histograms. This indicates that these LEs cover the 
time-evolving observational spread in North American 
SATs adequately, with observations occurring uniformly 
across the ensemble spreads and mostly within the 
ensemble limits. 

The LEs with longer simulation lengths, CESM-LE and 
in particular CSIRO-MK3.6 and  MPI-GE, also appear to 
have larger SAT variability in the 19th and early 20th 
Centuries than in recent decades. This variability, 
represented by the ensemble spread of SAT, decreases 
in recent decades to maximum to minimum annual SAT 
ranges of around 1.5 to 2.0 °C, of similar magnitude 
across all LEs. We also find year-to-year variability in 
the ensemble maxima and minima SAT larger than 0.5 
°C across all six climate models LEs. 

By contrast, and due to its experimental design, OBS-LE 
shows substantially less year-to-year variability in the 
ensemble maxima and minima. This could arise from 
the large ensemble size of 1,000 members resulting in 
the saturation of the SAT ensemble spread on yearly 
timescales. However, this year-to-year variability 
remains comparatively low when only the first 100 
members of OBS-LE are considered, and is also lower 
than the variability that we could expect from normally 
distributed data (not shown), indicating a potential 
under-sampling of the distribution tails. This suggests 
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that OBS-LE may underestimate the intensity of the most 
extreme SAT events. This could result from the lack of 
sufficiently large samples of observed low-probability 
events, due to relatively short observational record, 
which leads to not only the potential underestimation 
of the intensity of extreme events but also complicates 
the robust estimation of their likelihood. 

Although this comparatively low year-to-year variability 

might indicate that OBS-LE underestimates the intensity 
of low-probability events at the tails of the ensemble 
distribution, OBS-LE offers the most adequate 
representation of the combination of the internal 
variability and forced response in observed SAT over 
North America throughout the historical observational 
record. The climate model LEs that capture both 
quantities in observations most adequately are GFDL-
ESM2M, CESM-LE and MPI-GE.

ONLY FIRST 100 MEBERSOnly first 100 MembersOBS-LE (Only First 100 Members)

Figure 1: Time series and rank histograms of annual SAT over North America. Time series of annual land-surface SAT anomalies simulated 
by each LE (colored) and CRUTEM4 observed anomalies (black circles) for the period 1850–2019 (left column). Lines represent ensemble maxima 
and minima, shading represents the central ensemble range within the 75th percentile (12.5th to 87.5th percentiles). Rank histograms show the 
frequency of each place that CRUTEM4 observations would take in a list of ensemble members ordered by ascending SAT values (right column). 
Crosses represent the frequency of minimum (0) and maximum (number of members; n) ranks; lines illustrate the histogram’s slope as the moving 
10-rank mean. Frequencies are normalized to percentage. Bin sizes are 1 rank, except for MPI-GE and OBS-LE where bin sizes from ranks 1 to n-1 
are 3 and 37 ranks, respectively, to aid visualization. Anomalies are relative to the period 1961–1990. Temperature anomalies are averaged over 
land-surface grid cells where observations are available in the [17.5–52.5°N, 62.5°W–127.5°W] domain.
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Spatial representation of the combined forced 
response and internal variability in observations

Based on the concepts in the previous section, we 
now evaluate how different LEs capture the internal 
variability and forced response in observations 
at the grid-cell level by identifying three different 
possible biases (Figure 2). First, we evaluate how often 
observations lie either below or above the ensemble 
limits in each grid cell. We distinguish between regions 
where 5% or more of the time observations fall below 
the ensemble minimum (blue shading) and above 
the ensemble maximum (red shading). If only one of 
these biases occurs in a region, the model respectively 
over- or under-estimates the forced response in 
observations. Alternatively, such a bias could also be 
caused by a bias in the skewness of the probability 
distribution for non-normally distributed variables. If 
both of these biases occur at the same location, this 
means that observations fall below and also above 
the ensemble limits, either over the entire period of 
analysis (indicating the model does not sufficiently 
capture the observed variability) or during specific 
periods (indicating a likely change in the sign of the 
model bias over time). 

The third metric of model performance highlights 
regions where observations cluster more than 
expected within the central 75th percentile range of 
the simulated ensembles. For the ideal case in which 
observations are uniformly distributed across the 
ensemble and exhibit a flat rank histogram, observed 
values would lie within the central 75th percentile 
ensemble range (12.5th–87.5th percentiles) around 75% 
of the time. Here we identify areas where observations 
occur in the central ensemble range more than 80% 
of the time (gray shading in Figure 2), indicating that 
the model overestimates internal variability. This bias 
results in simulated extreme events at the tails of the 
ensemble distribution that are systematically more 
intense than observed. Note that this type of bias 
can only be robustly identified when the simulated 
distribution adequately captures the forced response 

in observations, and when evaluated over a period 
long enough to sufficiently sample the timescales of 
internal variability under study. 

White areas without any shading in Figure 2 indicate 
that none of the three biases occurs to a substantial 
degree, indicating that the ensembles simulate a 
time-evolving forced response and range of variability 
around this response that are comparable to those in 
observations for the whole length of their simulations. 
Thus, in these areas, our evaluation framework 
indicates that the models adequately capture the 
forced response and internal variability in observed 
surface temperatures. The percentage of white 
areas over North America represents areas with no 
substantial biases for each LEs (upper right corners 
in Figure 2), and indicates that OBS-LE, with 85.9%, 
offers the most adequate spatial representation of the 
combined internal variability and forced response in 
observed historical SAT. MPI-GE, with 46.6% of white 
areas, offers the best representation of historical SAT 
over North America amongst the model LEs, followed 
by CanESM2, CESM-LE, and GFDL-ESM2M.

The predominance of blue shading over red shading 
in Figure 2 for CanESM2, and especially CSIRO-MK3.6 
and GFDL-CM3, indicates that observations fall below 
the ensemble minima more frequently and over larger 
regions than they fall above the ensemble maxima 
for these models. These are the same models that 
show overestimated forced warming compared to 
observations in Figure 1. Observations exceed the 
ensemble maxima over the East Coast and Gulf of 
Mexico area for CESM-LE and CSIRO-MK3.6 (red shading 
in Figure 2b and c), indicating that these ensembles 
underestimate the intensity of warm near-surface air 
temperature extremes in these areas. 

Over the Caribbean Islands and the Baja California 
Peninsula, observations occur both below and above 
ensemble limits with high frequency (overlapping blue 
and red shading in Figure 2). This indicates that models 
underestimate observed SAT variability in these 



31

U S  C L I V A R  V A R I A T I O N S

US CLIVAR VARIATIONS   •   Summer 2020   •   Vol. 18, No. 2 31

Figure 2: Evaluation of internal variability and forced response in annual SATs. Evaluation of annual SAT anomalies simulated by different 
LEs compared to CRUTEM4 observed anomalies from 1850, or each LE starting year, until 2019. Red shading represents the percentage of time 
that the observed yearly anomaly is larger than the ensemble maximum; blue shading represents the percentage of time that the observed 
yearly anomaly is lower than the ensemble minimum. Gray hatching represents how often observations cluster within the 75th percentile 
bounds of the ensembles (12.5th to 87.5th percentiles). Dotted areas are excluded from our analysis due to CRUTEM4 observations being 
available for less than 10 years. Percentages of white area in the upper right corners represent the percentual area of North America where 
none of these biases occur to a substantial degree for each LEs. Anomalies are relative to the period 1961–1990. Model output data are 
regridded to match the observational grid.
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regions, likely due to the effect of model resolution and 
complex orography in confounding land versus ocean 
in these grid cells. Lastly, observations cluster in the 
central ensemble ranges of several models, including 
CanESM2, CESM-LE, MPI-GE, and especially GFDL-
ESM2M, over the West Coast and Central US, indicating 
that these models overestimate the variability in these 
regions (gray shading in Figure 2). 

OBS-LE shows no substantial biases over 
North America, with the exception of the 
underestimation of SAT variability over the 
Baja California Peninsula (Figure 2g). Our 
results indicate that OBS-LE offers the most 
adequate spatial representation of the 
internal variability and forced response in 
observed historical SAT over this region. In 
agreement with the results in Mckinnon and 
Deser 2018 for 50-year trends, we find that 
OBS-LE shows only minor biases in annual 
SATs over most of the Northern Hemisphere; 
while it exhibits underestimated annual SAT 
variability compared to observations over 
large areas in the low latitudes (not shown). 
Over these regions, OBS-LE fails to cover 
the observed variability range in SATs, with 
observed extreme anomalies beyond the 
OBS-LE maximum and minimum values over 
more than 10% of the years. This could result 
from a combination of the comparatively 
lower variability at the tails of the OBS-
LE distribution identified in Figure 1, that 
could be more prominent in these areas, as 
well as an increased spatial and temporal 
observational sparsity in these regions that 
could affect the statistical processing used to 
generate OBS-LE.

Comparison of internal variability

Following our evaluation of the forced 
response and internal variability in LEs, 

we can now determine which LEs provide the most 
realistic simulations of internal variability in annual 
SAT over North America to better estimate the internal 
variability in the real world. Here, we measure the 
magnitude of internal variability in the model LEs and 
OBS-LE as the 2.5th to 97.5th percentile ensemble 
spread averaged over the period 1950–1990 (Figure 3a-
g). We restrict this analysis to the period 1950–1990 to 
ensure contributions from all LEs and to minimize the 

Figure 3: Variability in annual surface temperatures. (a-g) Ensemble spread 
for annual SAT anomalies by different model LEs and OBS-LE averaged for the 
period of 1950–1990 measured as the difference between the 2.5th to 97.5th 
annual SAT percentiles. (h) SAT spread in CRUTEM4 observations measured as 
the difference between the 2.5th to 97.5th percentiles of the whole distribution 
for the period of 1950–1990 of annual SAT anomalies. Simulated data are 
regridded to match the observational grid.
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potential effect of the forced response. For comparison, 
we compute the range of internal variability in 
CRUTEM4 observations, estimated directly as the 
2.5th to 97.5th percentile range in the distribution of 
non-detrended observed annual SAT anomalies in 
the same period (Figure 3h). The simulated amplitude 
of SAT internal variability ranges from 2 to 4°C over 
most of the continental land area across the different 
model LEs (Figure 3a-f) and OBS-LE (Figure 3g). The 
observational estimate (Figure 3h) is generally larger 
than the LE estimates, in particular over the northern 
part of the domain, and decreases more steeply with 
decreasing latitude. However, unlike the LEs estimates, 
the observational estimate of internal variability could 
be affected by the confounding effect of the forced 
response in observations. 

OBS-LE, which by design most adequately captures 
the forced response and internal variability in SAT 
over North America, exhibits a stratified pattern 
with variability increasing polewards, which is not 
completely captured by any of the LEs. Two of the four 
LEs that most adequately capture North American SATs, 
GFDL-ESM2M and MPI-GE (Figure 3e and f), simulate 
hotspots of too high SAT variability over the central 
United States and Gulf of Mexico region, in agreement 
with the areas of overestimated variability in Figure 2. 
These hotspots exhibit SAT variability ranges of 3.5°C 
to more than 4.0°C, almost twice as large as the SAT 
variability in other LEs. This indicates that in these 
areas, these two ensembles simulate annual mean 
SAT extremes systematically more intense than those 
observed, possibly due to an overestimation of the 
cold tail of the distribution during the summer months 
(not shown).

Summary and conclusions

We use a novel framework exploiting the power of 
large ensembles to evaluate historical temperatures 
over North America in six comprehensive, fully-coupled 
climate models, as well as in the observational ensemble 
OBS-LE. This framework is based on a simple approach: 

evaluating whether observations occur evenly across the 
ensemble spread of simulations, and whether they occur 
mainly within the limits of this spread. Our evaluation 
shows that the experimental design in OBS-LE results 
in the most adequate representation of the combined 
effect of the forced response and internal variability 
in observed temperatures over North America. The 
climate model LEs that provide the best representation 
according to our metrics are MPI-GE, CanESM2, CESM-LE, 
and GFDL-ESM2M, suggesting that these LEs are the best 
choice for investigating future temperature projections 
over this region. Our evaluation framework highlights 
MPI-GE as the model LE that most adequately captures 
the combined forced response and internal variability 
in observed North American surface temperatures for 
the period 1850–2019, with the largest area with no 
substantial biases, 46.6% of the North American region.

Several models show similar biases over similar regions, 
such as an overestimation of temperature variability 
in Central North America and an underestimation of 
variability over the Caribbean Islands and the Baja 
California Peninsula, likely due the combination of 
model resolution and complex orography in these 
regions. Some models overestimate recent forced 
warming over North America beyond the range of 
plausible fluctuations caused by internal variability. 
Our results show that models do not consistently 
over- or underestimate internal variability in surface 
temperatures, and that models that perform adequately 
over one region will not necessarily do so in another. 

Overall, this evaluation framework provides a new and 
more robust approach to determine model performance, 
allowing users to decide which models are most appropriate 
for their variable and region of interest, by highlighting 
which models offer the most adequate representation of 
the real-world internal variability and forced response.
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Data and methods
We include LEs from six coupled climate 
models in the US CLIVAR MMLEA (Deser et al. 
2020) as well as the synthetic product OBS-LE based on 
observations (Table 1). Each of the climate model LEs 
comprises several simulations for one fully coupled climate 
model that differ only in their initial state, and evolve 
under one specific set of forcing conditions. However, 
the ensembles differ in their number of simulations, in 
how sensitive the model is to increasing CO2, or in the 

method used for the initialization of their members. 
When available, historical simulations are extended with 
one available future forcing scenario to cover the entire 
observational record. We also use surface temperature 
observations from the CRUTEM4 (Jones et al. 2012) dataset 
for comparison to the LE simulations. All simulated 
data are regridded to match the coarser resolution of 
CRUTEM4 observations and transformed to anomalies 
with respect to the 1960–1991 climatological period. 

The methodological framework demonstrated in 
this paper was first used in Suarez-Gutierrez et al. 
2018 to evaluate European summer temperature 
and precipitation in MPI-GE; and further expanded 
to evaluate global annual mean temperatures in 
Maher et al. 2019, and global summer maximum 
temperatures in Suarez-Gutierrez et al. 2020. 

LE Experiment Members Years Forcing Reference

CanESM2 50 1950-2018 Hist + RCP8.5 Kirchmeier-Young et al. 2017

CESM-LE 40 1920-2018 Hist + RCP8.5 Kay et al. 2015

CSIRO-MK3.6 30 1850-2018 Hist + RCP8.5 Jeffrey et al. 2013

GFDL-CM3 20 1920-2018 Hist + RCP8.5 Sun et al. 2018

GFDL-ESM2M 30 1950-2018 Hist + RCP8.5 Rodgers et al. 2015

MPI-GE 100 1850-2018 Hist + RCP8.5 Maher et al. 2019

OBS-LE 1000 1920-2014 Hist + RCP8.5 McKinnon et al. 2017

Table 1: Details of LE experiments analysed from the Multi-Model Large Ensemble Archive (Deser et al. 2020). Experiment name, 
number of members, simulated years used, forcing scenarios and references of LE experiments included. All experiments include 
historical forcing (Hist.) until 2005, except for OBS-LE, which is based on historical observed temperatures (see McKinnon and Deser, 
2018). Historical simulations are extended beyond 2005 using one future forcing scenario.
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