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Abstract. Existent methods to identify linear response func-
tions from data require tailored perturbation experiments,
e.g., impulse or step experiments, and if the system is noisy,
these experiments need to be repeated several times to obtain
good statistics. In contrast, for the method developed here,
data from only a single perturbation experiment at arbitrary
perturbation are sufficient if in addition data from an unper-
turbed (control) experiment are available. To identify the lin-
ear response function for this ill-posed problem, we invoke
regularization theory. The main novelty of our method lies
in the determination of the level of background noise needed
for a proper estimation of the regularization parameter: this is
achieved by comparing the frequency spectrum of the pertur-
bation experiment with that of the additional control exper-
iment. The resulting noise-level estimate can be further im-
proved for linear response functions known to be monotonic.
The robustness of our method and its advantages are inves-
tigated by means of a toy model. We discuss in detail the
dependence of the identified response function on the quality
of the data (signal-to-noise ratio) and on possible nonlinear
contributions to the response. The method development pre-
sented here prepares in particular for the identification of car-
bon cycle response functions in Part 2 of this study (Torres
Mendonça et al., 2021a). However, the core of our method,
namely our new approach to obtaining the noise level for a
proper estimation of the regularization parameter, may find
applications in also solving other types of linear ill-posed
problems.

1 Introduction

To gain understanding of a physical system, it is very help-
ful to know how it responds to perturbations. Considering a
small time-dependent perturbation f : R→ R, the resulting
time-dependent response R : R→ R can from a very general
point of view be written as

R(t)=

t∫
0

χ(t − s)f (s)ds, (1)

where the linear response function χ : R→ R is a charac-
teristic of the considered system. In fact, under a number
of assumptions – among which smoothness and causality
are the most important – Eq. (1) is the first term of a func-
tional expansion of the response R into the perturbation f
around the unperturbed state f (·)= 0, known as Volterra se-
ries (Volterra, 1959; Schetzen, 2010). In this framing, the key
to gaining insight into the system is the linear response func-
tion χ : by knowing this function one has at hand not only a
powerful tool to predict the response for sufficiently small
but otherwise arbitrary perturbations, but also a means to
study the internal dynamic modes of the unperturbed system
by analyzing the temporal structure of the response function.

Linear response functions have been successfully applied
within different contexts in many fields of science and tech-
nology. In physics, for example, material constants like the
magnetic susceptibility or the dielectric function must be un-
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derstood as linear response functions that can be obtained
by Kubo’s theory of linear response (Kubo, 1957) via the
fluctuation–dissipation theorem from an auto-correlation of
the unperturbed system. However, applications of these func-
tions range far beyond physics into fields like neurophysi-
ology and climate (Gottwald, 2020). In climate science, in
particular, applications of linear response functions in the
context of Ruelle’s developments in response theory (see be-
low) are a recent topic (e.g., Lucarini, 2009; Lucarini and
Sarno, 2011; Lucarini et al., 2014; Ragone et al., 2016; Lu-
carini et al., 2017; Aengenheyster et al., 2018; Ghil and Lu-
carini, 2020; Lembo et al., 2020; Bódai et al., 2020). On
the other hand, these functions have already been success-
fully employed as a heuristic tool to study climate and the
carbon cycle for decades (e.g., Siegenthaler and Oeschger,
1978; Emanuel et al., 1981; Maier-Reimer and Hasselmann,
1987; Enting, 1990; Joos et al., 1996; Joos and Bruno,
1996; Thompson and Randerson, 1999; Pongratz et al., 2011;
Caldeira and Myhrvold, 2013; Joos et al., 2013; Ricke and
Caldeira, 2014; Gasser et al., 2017; Enting and Clisby, 2019).
Yet another perspective is that from engineering sciences, in
which the impulse response – that to a large extent corre-
sponds to the linear response function – and the closely re-
lated transfer function (or system function) characterize lin-
ear time-invariant (LTI) systems, widely applied in fields
such as signal processing and control theory (Kuo, 1966;
Rugh, 1981; Beerends et al., 2003; Boulet and Chartrand,
2006). Regardless of which viewpoint a particular commu-
nity takes to investigate the linear response of a system, a fun-
damental step in this investigation is the identification of the
appropriate linear response function, the topic of the present
study.

From a theoretical point of view, the existence of a lin-
ear response is by no means obvious: structurally stable dy-
namical systems are the exception (Abraham and Marsden,
1982), so that already small parameter changes typically lead
to topological changes in their sets of stable and unstable so-
lutions. Not every such bifurcation must prevent a linear re-
sponse in macroscopic observables, but the question remains
how in view of microscopic structural instability macro-
scopic linearity can prevail. A key result in this field is Ru-
elle’s rigorous demonstration of the existence of a linear re-
sponse for the structurally stable class of uniform hyperbolic
systems (Ruelle, 1997, 1998). It is believed that this result
transfers to large classes of nonequilibrium systems (Ruelle,
1999; Lucarini, 2008; Lucarini and Sarno, 2011; Gallavotti,
2014; Ragone et al., 2016; Lucarini et al., 2017). An example
may be the Lorenz system at standard parameters, for which
numerical analysis revealed evidence for a linear response
despite non-hyperbolicity (Reick, 2002; Lucarini, 2009). Re-
cent investigations by Wormell and Gottwald (2018, 2019)
indicate that the thermodynamic limit must be invoked to
reconcile microscopic structural instability with macroscopic
differentiability. Results on the existence/absence of a linear
response have been particularly obtained for iterative maps

(Großmann, 1984; Baladi, 2018; Śliwiak et al., 2021), which
are known for their notoriously rich bifurcation structure.
Well studied is also the linear response of stochastic sys-
tems (Hänggi and Thomas, 1982; Risken, 1996) for whose
quasistatic response rigorous mathematical results also exist
(Hairer and Majda, 2010).

In practical applications where the response function must
be recovered from data, its identification may be a challeng-
ing task. The reason is that the identification problem is gen-
erally ill-posed, so that by classical numerical methods one
obtains a recovery severely deteriorated by noise (see below).
In addition, existent methods to identify these functions from
data require one to perform special perturbation experiments.
In the present study, we develop a method to identify linear
response functions, taking data from any type of perturba-
tion experiment while fully accounting for the ill-posedness
of the problem.

The generality of our method allows for derivation of re-
sponse functions in cases hardly possible before. Examples
are problems where performing perturbation experiments is
computationally expensive, so that one must use data that
were not designed for the purpose of deriving these func-
tions. In the geosciences, this may be the case when one is
interested in characterizing by response functions the dynam-
ics of Earth system models – extremely complex systems em-
ployed to simulate climate and its coupling to the carbon cy-
cle. In principle, with our method one can derive these func-
tions, taking simulation data from Earth system model inter-
comparison exercises such as C4MIP – the Coupled Climate-
Carbon Cycle Model Intercomparison Project (Taylor et al.,
2012; Eyring et al., 2016) – that are already available in in-
ternational databases. In Part 2 of this study we explore this
possibility by investigating in an Earth system model the re-
sponse of the land carbon cycle to atmospheric CO2 perturba-
tions. Because of the relationship between the linear response
function and the impulse response and the transfer function
in LTI systems, our work can also be seen from the viewpoint
of the engineering sciences as a contribution to the corpus of
methods to solve system identification problems (Åström and
Eykhoff, 1971; Söderström and Stoica, 1989; Isermann and
Münchhof, 2010; Pillonetto et al., 2014).

In the field of climate science, the typical method to iden-
tify linear response functions is by means of the impulse re-
sponse function, which is the response to a Dirac delta-type
perturbation (e.g., Siegenthaler and Oeschger, 1978; Maier-
Reimer and Hasselmann, 1987; Joos et al., 1996; Thompson
and Randerson, 1999; Joos et al., 2013). This method has
become so widely known that often the terms linear response
function and impulse response function are used interchange-
ably. Indeed, in the particular case where perturbations are
weak, the two concepts coincide. However, this is not true
in general: if the impulse strength is large so that nonlineari-
ties become important, the impulse response function differs
from the linear response function.
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Other studies have proposed to identify linear response
functions by making use of other types of perturbations. Re-
ick (2002) and Lucarini (2009) used a weak periodic forc-
ing to derive response functions in the Fourier space (also
called susceptibilities). Hasselmann et al. (1993), Ragone
et al. (2016), MacMartin and Kravitz (2016), Lucarini et al.
(2017), Van Zalinge et al. (2017), Aengenheyster et al.
(2018), and Bódai et al. (2020) identify the linear response
function using step experiments, where the perturbation is a
Heaviside-type function. Additional studies have proposed to
compute the linear response of the system using the invariant
measure of the unperturbed system (Gottwald et al., 2016)
and by means of shadowing methods (Reick, 1996; Ni and
Wang, 2017; Ni, 2020).

As noted by Lucarini et al. (2014), in principle the lin-
ear response function of a system can be derived by taking
data from an arbitrary type of perturbation experiment. One
method would be to apply a Laplace transform to Eq. (1), so
that χ(t) can in principle be computed by the inverse Laplace
transform

χ(t)= L−1
{L{R}/L{f }}, (2)

where L{·} is the Laplace transform operator. In fact, a first
step towards the derivation of χ(t) from the general Eq. (1)
was taken by Pongratz et al. (2011), although the problem
was not systematically discussed.

Deriving χ(t) from perturbation experiment data is not a
trivial problem. For the general case where the perturbation
is different from a Dirac delta-type function, the problem
is ill-posed (e.g., Bertero, 1989; Landl et al., 1991; Lamm,
1996; Engl et al., 1996). This basically means that attempts
to recover the exact χ(t) yield a solution with large errors
due to an amplification of the noise in the data. On the other
hand, when f (t) is a Dirac delta-type function with suffi-
ciently small perturbation strength, so that the response can
be considered linear, the impulse response gives directly the
linear response function, i.e., χ(t)= R(t). However, even in
this case noise may hinder the recovery: because the pertur-
bation is only one “pulse” with small perturbation strength,
the response may have a too low signal-to-noise ratio because
of internal variability (Joos et al., 2013), giving once more a
recovery with large errors.

To remedy these noise problems, a method intended to
“damp” the noise in the response is usually employed. In
MacMartin and Kravitz (2016), a step experiment with large
perturbation strength is used to obtain a better signal-to-noise
ratio in the response but at the cost of enhancing the effect
of nonlinearities. An alternative approach is employed by
Ragone et al. (2016) and Lucarini et al. (2017), who em-
ploy an ensemble of simulation experiments and take the
ensemble-averaged response so that the level of noise is
reduced. However, especially for complex models such as
Earth system models, ensembles of simulations can be com-
putationally extremely expensive, so that such a procedure
may not be feasible.

Instead of trying to improve the signal-to-noise ratio of the
data by improved experiment design, here we are interested
in deriving χ(t) from a single realization of a given experi-
ment by accounting for the ill-posedness of the problem. For
this purpose, we employ regularization theory. Although this
theory offers a variety of methods to solve ill-posed prob-
lems (see, e.g., Groetsch, 1984; Bertero, 1989; Bertero et al.,
1995; Engl et al., 1996; Hansen, 2010), currently no gen-
eral all-purpose method exists. Typically, methods rely on
some type of prior information about the problem (Istratov
and Vyvenko, 1999). Hence, they must be tailored according
to the particularities of each application. Here, we develop a
method that under certain assumptions solves the ill-posed
problem when, in addition to the data from a single arbi-
trary perturbation experiment, data from an associated unper-
turbed – or control – experiment are also given to obtain inde-
pendent information about the noise level (Sect. 3). First, we
assume that the response function is well approximated by
a sum of decaying exponentials, meaning that potential os-
cillatory contributions to the response function are so small
that they can be considered to be part of the noise. The re-
sponse function is obtained by applying Tikhonov–Phillips
regularization. The regularization parameter is chosen via the
discrepancy method. An essential ingredient of the discrep-
ancy method is the noise level, which is usually not known
a priori. For this reason, we propose a method to estimate
the noise level by taking advantage of the information given
by a spectral analysis of the perturbation experiment and the
control experiment. If the desired response function is known
to be monotonic, the noise estimate can be further adjusted.
In Sect. 4, the method is demonstrated to give reliable re-
sults under appropriate conditions of noise and nonlinearity.
In Sect. 5, we compare the derived method with two existent
methods in the literature to identify the response function in
the time domain. Results and technical details are discussed
in Sect. 6. Additional calculations are shifted to the Appen-
dices.

2 Linear response theory and basic ansatz of the
method

As a preparation for introducing our method in Sect. 3, in the
present section we derive its basic ansatz, which takes into
account, in addition to the response formula (Eq. 1), also the
noise in the data. Depending on the application context, the
noise may arise for different reasons, such as errors in the
measurements or stochastic components in the system. As
will be seen, our basic ansatz is in principle applicable to
all those cases. However, to make the connection to modern
applications of linear response functions that arise in the con-
text of Ruelle’s developments (e.g., climate), here we derive
this ansatz starting from considerations of linear response
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theory (Ruelle, 2009). Ruelle considered systems of type

d
dt
x =A0(x)+A1(x)f (t), (3)

where x(t) is the possibly infinite dimensional state vector
and the perturbation f (t) couples to the unperturbed sys-
tem d

dt x =A0(x) via the field A1(x). In the present context
Eq. (3) could, e.g., represent the dynamics of the Earth sys-
tem perturbed by anthropogenic emissions f (t). Considering
an observable Y (x), Ruelle proved that the ensemble average
of its deviation from the unperturbed system 〈1Y 〉 can be ex-
panded in the perturbation f (t):

〈1Y(x(t))〉 =

t∫
0

χ(t − s)f (s)ds+O(f 2), (4)

where the order symbol O(f 2) represents terms that van-
ish in the limit f (·)→ 0 more quickly than the leading lin-
ear term. This expansion describes the response of a sys-
tem that is noisy as a result of its chaotic evolution: starting
from different initial states, one obtains different values for
1Y(x(t)). Compared to Eq. (1), in Eq. (4) the linear response
function does not describe the response in observables di-
rectly, but only in their ensemble average, i.e., in an aver-
age over the initial states of the unperturbed system. For the
recovery of linear response functions from numerical experi-
ments, this would mean that one had to perform many experi-
ments starting from different initial states to obtain the appro-
priate ensemble averages. Using tailored perturbation exper-
iments, it was demonstrated in several studies (e.g., Ragone
et al., 2016; Lucarini et al., 2017; Bódai et al., 2020) that lin-
ear response functions can indeed be obtained in this way but
at the expense of a large numerical burden from the need to
perform many experiments. Instead, the aim here is to obtain
the linear response functions from a given experiment and
only from a single realization. Since we are dealing with a
single realization, Eq. (4) becomes

1Y(t)=

t∫
0

χ(t − s)f (s)ds+ η(t)+O(f 2), (5)

where η(t) is a noise term that must show up as a conse-
quence of dropping the ensemble average. Accordingly, the
noise η(t) is introduced here as the difference between the
noisy response in a single realization1Y(t) and the response
in the ensemble average 〈1Y(x(t))〉 (compare Eq. 4). In ad-
dition, we assume linearity in the perturbation. As a conse-
quence, the present study is based on the ansatz

1Y(t)=

t∫
0

χ(t − s)f (s)ds+ η(t), (6)

where now the response1Y(t) is divided into a deterministic

term
t∫

0
χ(t − s)f (s)ds and a noise term η(t).

The linearity assumption is on purpose: in the present ap-
proach to derive the linear response function (see next sec-
tion), hereafter called the RFI method (response function
identification method), we first use Eq. (6) to obtain χ(t)
and justify the linearity assumption a posteriori by analyz-
ing how robustly the response can be recovered for differ-
ent perturbation strengths. Dropping the nonlinear terms has
the advantage that one can use the corpus of linear methods
to derive χ(t) from Eq. (6). Note that, in practice, however
small the perturbation may be, the nonlinear terms do not
vanish. Therefore, the contribution of nonlinearities is in this
way distributed between χ(t) and η(t), which will be differ-
ent from the previous χ(t) and η(t) in Eq. (5). How strongly
nonlinearities affect the numerical identification of χ(t) de-
pends on the estimation of η(t), which is a crucial part of
our RFI method and the main novelty introduced here to deal
with the ill-posedness of the problem to identify χ(t).

In addition, although we derived Eq. (6) starting from
considerations of linear response theory, it is clear that this
ansatz can also be employed in any other context where it
may be assumed that the response formula (Eq. 1) applies
and that the data are contaminated by additive noise.

3 Identification of linear response functions from
arbitrary perturbation experiments

In this section we derive the RFI method. As mentioned
above, the aim of this method is to obtain the linear response
function using data from a single realization of a given per-
turbation experiment. For this purpose, an essential step is
our novel estimation of the noise term η(t), which requires
additional data from an unperturbed (control) experiment.

Starting from the ansatz Eq. (6), the method is based on the
idea that the noise term η(t) can be estimated using informa-
tion on the internal variability from the control experiment in
combination with a spectral analysis of the perturbation ex-
periment. The identification of the linear response function
proceeds as follows: first, we choose a functional form for
χ(t). Second, Eq. (6) is discretized for application to the dis-
crete set of time series data, which results in a matrix equa-
tion. Then, assuming that the solution obeys the Picard con-
dition (see below), we estimate the high-frequency compo-
nents of the noise term η(t) in Eq. (6) via a spectral analysis
of the matrix equation applied to the data from the pertur-
bation experiment. Next, assuming that the spectral distribu-
tion of noise is similar in the control and perturbation exper-
iments, we also estimate the low-frequency components of
η(t). The final estimate of η(t) is then used in a regulariza-
tion procedure to determine the regularization parameter and
thereby find an approximate solution for χ(t). In case χ(t) is
known to be monotonic, the approximated solution is further
adjusted by checking for monotonicity.

This section is organized as follows. In the first subsec-
tion, we introduce the assumption for the functional form of
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the linear response function. In Sect. 3.2, we present the dis-
cretized problem. In Sect. 3.3 we briefly review some ele-
ments of regularization theory employed in our method, in
particular Tikhonov–Phillips regularization (Sect. 3.3.1) and
the discrepancy method (Sect. 3.3.2). In Sect. 3.4 we present
our noise estimation procedure by which the regularization
parameter is determined. Finally, in Sect. 3.5 we show how
this procedure can be further improved in the presence of a
monotonicity constraint.

3.1 Functional form of the linear response function

In general, the identification of linear response functions
from data may be performed either pointwise (e.g., Ragone
et al., 2016) or assuming a functional form (e.g., Maier-
Reimer and Hasselmann, 1987). Both approaches usually
lead to an ill-posed problem and therefore to similar difficul-
ties in finding the solution (see more details in Sect. 3.3.1).
Although the RFI method may be applied in either case, here
we assume that the response function consists of an overlay
of exponential modes. By this ansatz we guarantee from the
outset that the response relaxes to zero for t → ∞, which
is consistent with the expectation that real systems have fi-
nite memory. Besides constraining the function space for the
derivation of the response function, another added value of
this approach is that in principle it also gives the spectrum of
internal timescales of the response.

Assuming this ansatz, the question on the functional form
of χ(t) arises. In climate science, it is typically assumed that
the response function can be described by only a few ex-
ponents (Maier-Reimer and Hasselmann, 1987; Enting and
Mansbridge, 1987; Hasselmann et al., 1993, 1997; Grieser
and Schönwiese, 2001; Li and Jarvis, 2009; Joos et al., 2013;
Colbourn et al., 2015; Lord et al., 2016), i.e.,

χ(t) :=

M∑
i=1

gie
−t/τi with M small, (7)

where the τi values are interpreted as characteristic
timescales and the gi values are their respective weights. τi
and gi are then obtained by applying some fitting technique
taking a fixed number of termsM . Thus, an important step in
this type of approach is to determine a suitable value for M .
A common practice is to initially take only a small number
of terms M , solve the problem, and then add terms progres-
sively until the addition of a new term does not improve the fit
anymore according to some quality-of-fit criterion (e.g., Ku-
maresan et al., 1984; Maier-Reimer and Hasselmann, 1987;
Hasselmann et al., 1993; Pongratz et al., 2011; Colbourn
et al., 2015; Lord et al., 2016). Thereby it is assumed that
once results stabilize, the information in the data has already
been fully exploited, so that fitting of additional terms would
be artificial. Nevertheless, finding the parameters τi and gi
either from a given χ(t) by Eq. (7) or from 1Y(t) by in-
serting Eq. (7) into Eq. (1) means solving a special case of a

Fredholm equation of the first kind (see Appendix A), which
is an ill-posed problem (Groetsch, 1984). This implies that
even though the obtained solution may give a very good fit
to the data, it may significantly differ from the exact solution
(see, e.g., the famous example from Lanczos, 1956, p. 272).

Therefore, to avoid the complication of determiningM , we
assume instead that the response function is characterized by
a continuous spectrum g(τ) (Forney and Rothman, 2012):

χ(t)=

∞∫
0

g(τ)e−t/τdτ. (8)

Accordingly, we assume that the response is dominated by
relaxing exponentials, meaning that potential contributions
from oscillatory modes are not distinguishable from noise.
By this approach the timescale τ is not an unknown anymore
but is given after discretization by a prescribed distribution
with M terms covering a wide range of τi values. Thus, only
a discrete approximation to the spectrum g(τ) needs to be
found. In this way the functional representation is made in-
dependently of the question of information content as long
as the spectrum of discrete timescales is chosen to be suffi-
ciently large and dense to widely cover the spectrum of inter-
nal timescales of the considered system.

This approach has an additional advantage. By prescribing
the distribution of timescales, one must not solve a nonlinear
ill-posed problem (by solving Eq. 7 for τi and gi) but only
a linear ill-posed problem (by solving Eq. 8 only for g(τ)),
for which the mathematical theory is fairly well developed
(Groetsch, 1984; Engl et al., 1996). Because the problem is
linear, the solution is even given analytically (see Sect. 3.3.1),
which makes the method very transparent.

3.2 Discretized problem

In view of applications to geophysical systems like the cli-
mate or the carbon cycle (Part 2 of this study) that are known
to cover a wide range of timescales (Ghil and Lucarini, 2020;
Ciais et al., 2013, Box 6.1), it is useful to switch to a logarith-
mic scale (Forney and Rothman, 2012) by rewriting Eq. (8)
in terms of log10τ :

χ(t)=

∞∫
−∞

q(τ)e−t/τdlog10τ,

with q(τ) := τ ln(10)g(τ ). (9)

Hereafter, q(τ) and its discrete version q (see below) will
be called the spectrum.

In order to apply the basic Eq. (6) together with Eq. (9) to
experiment data, the whole problem needs to be discretized
in time and also with respect to the spectrum of timescales.
Here we assume the data to be given at equally spaced time
steps tk = t0+k1t , k = 0,1, . . .,N−1, where N is the num-
ber of data, while the timescales are assumed to be equally
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spaced at a logarithmic scale between maximum and mini-
mum values τmax and τmin, i.e.,

log10τj = log10τmin+ j1log10τ,

j = 0,1, . . .,M − 1, with

1log10τ :=
log10τmax− log10τmin

M
, (10)

where M is the number of timescales. As shown in Ap-
pendix B, the resulting discretized equations corresponding
to Eqs. (6) and (9) are

1Yk =1t

k∑
i=0

χk−i fi + ηk, k = 0, . . .,N − 1 (11)

and

χk =1log10τ

M−1∑
j=0

qj e
−k1t/τj , k = 0, . . .,N − 1, (12)

where ηk stands for the noise. Combining the response data
1Yk , the spectral values qj , and the noise values ηj into vec-
tors 1Y ∈ RN , q ∈ RM , and η ∈ RN , these equations can be
written in vector form as

1Y = Aq + η, (13)

with the components of matrix A given by

Akj :=1 logτ 1t
k∑
i=0

e−(k−i)1t/τj fi,

k = 0, . . .,N − 1, j = 0, . . .,M − 1. (14)

Matrix A is known from the prescribed spectrum of
timescales τi and the forcings fi . Considering η as a fitting
error, in principle one can apply standard linear methods to
solve Eq. (13) for the desired spectrum by minimizing

min
qη
||Aqη−1Y ||

2, (15)

where || · || denotes the Euclidean norm, i.e., ||x|| =
√∑

ix
2
i .

Here we denoted the spectrum as qη instead of q to empha-
size that the spectrum found in this way can only be an ap-
proximation to the original q depending on the noise present
in the data.

Unfortunately, it turns out that solving Eq. (15) is not a
trivial task. The first difficulty is that the finite information
provided by the data makes the problem underdetermined:
ideally one wants to obtain a spectrum q(τ) defined for
τ ∈ [0,+∞[, but the data 1Y are discrete and cover only
a limited time span. However, the most serious issue in iden-
tifying χ(t) arises because Eq. (1) is a special case of a Fred-
holm equation of the first kind (Groetsch, 1984, 2007, see
also Appendix A), where the quest for the integral kernel is

well known to be an ill-posed problem (see, e.g., Bertero,
1989; Hansen, 1992). This basically means that any solution
qη of Eq. (15) obtained via classical numerical methods such
as lower-upper (LU) or Cholesky decomposition will be ex-
tremely sensitive to even small errors in the data (Hansen,
1992). Therefore, to solve Eq. (15) for the spectrum qη, we
invoke regularization.

3.3 Regularization

To treat the ill-posedness of Eq. (15), our RFI method com-
bines techniques from regularization theory with a novel ap-
proach to estimate the noise level in the data. To facilitate
the understanding of the method, in this section we briefly
review these techniques along with some other aspects of the
theory that are relevant for our method development.

3.3.1 Regularized solution

To deal with the ill-posedness, it is useful to perform a sin-
gular value decomposition (SVD) of the matrix A:

A= U6VT , (16)

with A ∈ RN×M , U ∈ RN×N , 6 ∈ RN×M , and V ∈ RM×M .
6 is a diagonal matrix with diagonal entries σ0 ≥ σ1 ≥ . . .≥

σM−1 ≥ 0 known as singular values, and

U=: [u0,u1, . . .,uN−1] (17)
V=: [v0,v1, . . .,vM−1] (18)

are orthonormal matrices with u0,u1, . . .,uN−1 being the left
singular vectors and v0,v1, . . .,vM−1 the right singular vec-
tors of A. In practice, assuming that there are more data than
prescribed timescales, i.e., N ≥M , the singular values σi
computed numerically are nonzero (see Golub and Van Loan,
1996, Sect. 5.5.8). In this case, Eq. (15) has the unique solu-
tion (see Golub and Van Loan, 1996, Theorem 5.5.1)

qη =

M−1∑
i=0

ui •1Y

σi
vi, (19)

where • denotes the usual scalar product.
In practice, when a SVD is applied to a discrete ver-

sion of a Fredholm equation of the first kind, the compo-
nents of the singular vectors vi and ui tend to have more
sign changes with increasing index i, as observed by Hansen
(1989, 1990). This observation justifies that in the following
we dub low-index terms in Eq. (19) low-frequency contribu-
tions and high-index terms high-frequency contributions.

It is well known that when applying the solution (Eq. 19),
one encounters certain numerical problems. Regularization
is a means to handle these problems. These problems arise –
even in the absence of noise – as follows. From the Riemann–
Lebesgue lemma (see, e.g., Groetsch, 1984) it is known that
the high-frequency components of the data 1Y(t) must ap-
proach zero. In the discrete case, by Hansen’s observation
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this means that the projections ui •1Y should approach zero
for increasing index values i. However, due to machine preci-
sion or the noise η contained in1Y , numerically the absolute
values |ui •1Y | do not approach zero but settle at a certain
non-zero level for large i or, in the presence of noise, may
even increase. Due to the ill-posedness, the singular values
σi in the denominator of Eq. (19) also tend to zero, so that
these high-frequency contributions to qη are strongly ampli-
fied. Hence applying Eq. (19) naively would not give a stable
solution for qη because its value would depend critically on
numerical errors and the noise present in the data.

Regularization remedies this problem by suppressing the
problematic high-frequency components. This approach as-
sumes that the main information on the solution is contained
in the low-frequency components, so that the high-frequency
contributions to the sum (Eq. 19) can be ignored. This as-
sumption is consistent with the very nature of ill-posed prob-
lems because in such problems information on high fre-
quencies is anyway suppressed, so that only low-frequency
components of the solution are recoverable (Groetsch, 1984,
Sect. 1.1).

To perform such filtering, we employ the Tikhonov–
Phillips regularization method (Phillips, 1962; Tikhonov,
1963). Besides being mathematically well developed (see,
e.g., Groetsch, 1984; Engl et al., 1996), the Tikhonov–
Phillips regularization method gives an explicit solution in
terms of the SVD expansion, which allows for a clear inter-
pretation of the filtering. In addition, it provides a smooth
filtering of the solution, in contrast to the also well-known
truncated singular value decomposition method (Hansen,
1987). For additional regularization methods, see, e.g., Bert-
ero (1989), Bertero et al. (1995), and Palm (2010).

The standard Tikhonov–Phillips regularization yields the
regularized solution in the simple form (Hansen, 2010; Bert-
ero, 1989)

qλ =

M−1∑
i=0

fi(λ)
ui •1Y

σi
vi, (20)

where the fi(λ) are the filter functions

fi(λ)=
σ 2
i

σ 2
i + λ

. (21)

Therefore, now the problem boils down to determining λ
(see next section). Once λ is determined, the solution qλ is
obtained by Eq. (20) and the desired linear response function
χ(t) finally follows from Eq. (12).

3.3.2 Determining the regularization parameter λ

By construction it is clear that qλ as computed from Eq. (20)
strongly depends on the regularization parameter λ. Accord-
ingly, much effort has been put in developing methods to de-
termine suitable values for λ (e.g., Engl et al., 1996; Hansen,
2010). Of special interest are methods that give solutions

converging with decreasing noise level to the “true” solu-
tion. One such method known to conform to this condition
while uniquely determining the regularization parameter has
been proposed by Morozov (1966). His discrepancy method
is based on the idea that the solution to the problem allows
the data to be recovered with an error of the magnitude of
the noise (Groetsch, 1984): let δ denote an upper bound of
the noise level ||η||, i.e., δ ≥ ||η||. Then, λ should be chosen
such that the discrepancy matches δ, i.e.,

||Aqλ−1Y || = δ. (22)

Groetsch (1983) motivates the choice of this method by
demonstrating that determining λ from Eq. (22) minimizes a
natural choice for an upper bound of the error in the solution
given by regularization. Unfortunately, in practical applica-
tions the noise level δ is usually not known. To try to solve
this problem for the application of interest, in the next section
we propose an approach to estimate δ.

3.4 Estimating the noise level δ

To introduce our approach, in the following we assume that
data from an unforced experiment (control experiment) are
available – as is typically the case in applications to Earth
system models (see Part 2) – that allow for an independent
estimate of the noise level δ.

A naive way to invoke these data to determine λ would be
to take δ essentially as the standard deviation of the control
experiment – more precisely: δ := σ

√
N = ||1Y ctrl||. Tech-

nically, to find λ, one way is to start with a large value
for λ and decrease it until the left-hand side of Eq. (22)
matches δ (as suggested by Hämarik et al., 2011). That this
procedure works is explained by the fact that the function
λ 7−→ ||Aqλ−1Y || is continuous, is increasing, and con-
tains δ in its range (Groetsch, 1984, Theorem 3.3.1). Having
found λ in this way, the desired solution qλ is then obtained
from Eq. (20). However, this approach is not as straightfor-
ward as one may think: because of the forcing, the noise in
the perturbed experiment may have different characteristics
from that in the control experiment. Therefore in the follow-
ing we devise a method for how to account for this problem.

Formally in Eq. (13) 1Y is split into a “clean” part and
noise η. Entering this into Eq. (19) gives

qη =

M−1∑
i=0

(
ui •Aq
σi

vi +
ui • η

σi
vi

)
. (23)

Accordingly, the first term in the sum gives the “true” so-
lution q, while the second term gives the noise contribution
to qη. As already pointed out when discussing regularization,
the “true” solution of ill-posed problems can only be recov-
ered if it is dominated by the projection onto the first singu-
lar vectors. This requirement is formally stated by the dis-
crete Picard condition (Hansen, 1990), which demands that

https://doi.org/10.5194/npg-28-501-2021 Nonlin. Processes Geophys., 28, 501–532, 2021



508 G. L. Torres Mendonça et al.: Identification of linear response functions – Part 1

the size of the projection coefficients |ui •Aq| drops suffi-
ciently quickly to zero, so that they become smaller than σi
before σi levels off to a finite value because of numerical er-
rors. To find a good estimate for the noise level δ, we use this
in the following way. Let imax be the value of the index i,
where the singular values σi start to level off. Assuming that
the Picard condition holds, one can infer that

ui •1Y

σi

(13)
=
ui •Aq
σi

+
ui • η

σi
≈
ui • η

σi
for i > imax. (24)

Therefore,

ui •1Y ≈ ui • η for i > imax. (25)

This equation determines the high-frequency components
of the noise η. It remains to determine also the low-frequency
components to obtain an estimate for δ.

For this purpose, we take advantage of the data from the
control experiment. The control experiment is an experi-
ment performed for the same conditions as the perturbed
experiment, with the only difference that the forcing f

is zero, so that the resulting 1Y ctrl can be understood as
pure noise; therefore we write ηctrl :=1Y ctrl. While in the
forced experiment the low-frequency noise is obscured by
the low-frequency response induced by the forcing, the low-
frequency part of the control experiment data can to first
order be expected to give an estimate of the low-frequency
noise present in the forced experiment. Nevertheless, it is
clear that due to the forcing the spectral characteristics of
noise may be different in the forced and unforced experi-
ments. More precisely, the spectrum of noise may differ in
its overall level and spectral distribution (i.e., the “shape” of
the spectrum). In the following, we account for a possible
difference in the overall level. However, we will assume that
the spectral distribution is approximately the same for ηctrl
and η; we call this the spectral similarity assumption.

After these considerations, λ can be determined as fol-
lows: take imax as the last index i before the plateau σi ≈ 0.
This imax distinguishes high-frequency (i > imax) from low-
frequency (i ≤ imax) components. Then

z := ||
[
uimax+1 •1Y , . . .,uM−1 •1Y

]T
|| (26)

zctrl := ||
[
uimax+1 • ηctrl, . . .,uM−1 • ηctrl

]T
|| (27)

are the levels of high-frequency noise in the perturbed (see
Eq. 25) and control experiments, respectively. We now scale
the spectral components of ηctrl so that its high-frequency
level matches the high-frequency level of 1Y :

η′ :=
z

zctrl
ηctrl. (28)

In this way, the magnitude of the high-frequency compo-
nents of η′ matches that of 1Y and because of Eq. (25) also
that of η. On the other hand, the spectral distribution of η′ is

the same as for ηctrl and by the spectral similarity assump-
tion approximately the same as for η. Because η′ and η have
similar spectral distributions, the fact that the magnitude of
the high-frequency components of η′ matches that of η im-
plies that the magnitude of their low-frequency components
also matches. Therefore, η′ can be seen as an estimate of the
noise η in the perturbed system not only at high, but also at
low frequencies. Hence this corrected noise vector η′ can be
used to obtain an estimate of the noise level of the perturbed
system by setting

δ := ||η′||. (29)

Compared to taking for δ simply the noise level from the
unperturbed experiment (as was insinuated above), taking
it in this scaled way ensures that the high-frequency com-
ponents are consistent with the Picard condition that must
hold for q to be recoverable from the ill-posed problem
tackled here. Having determined δ, λ can now be computed
from Eq. (22) as described above, from which the q follows
(Eq. 20) and hence χ(t) (Eq. 12).

3.5 Additional noise-level adjustment in the presence
of a monotonicity constraint

In the application to the land carbon cycle in Part 2 of this
study, we show that certain response functions χ(t) decrease
monotonically to zero. In attempts to recover such response
functions by employing the noise-level adjustment described
in the previous section, it may turn out that the numerically
found response function fails to be monotonic. There may be
several reasons for this failure (strong nonlinearities, signal
too obscured by noise, etc.). However, one additional rea-
son may be that the low-frequency level of the noise was not
properly estimated by assuming that the spectral distribution
in the unperturbed experiment reflects the distribution in the
perturbed experiment. For such cases one may try to improve
the result by further adjustment of the low-frequency noise
level to obtain a more reasonable result.

The idea is to adjust the low-frequency components of
noise independently of the high-frequency components itera-
tively until the solution obeys the monotonicity constraint. To
understand how to do so, several things must be explained.

1. A sufficient condition for χ(t) being monotonic is that
all components qi have the same sign (see Appendix C).
Therefore, starting out from a numerical solution for
χ(t), it would develop towards monotonicity if one
could come up with a sequence of vectors qλ with fewer
and fewer sign changes.

2. From Eq. (20) it is seen that because of Hansen’s obser-
vation explained in Sect. 3.3.1, that singular vectors vi
are less noisy for lower i, qλ has fewer sign changes the
fewer vi contribute to the sum.
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Figure 1. Final RFI algorithm (see text for details).

3. As seen from Eqs. (20) and (21), this is the case the
more components the filter function is suppressing,
i.e., the larger the value of λ.

4. To obtain larger values of λ, one sees from the discrep-
ancy method (Eq. 22) that one has to increase δ. The
proof for this can be found in Groetsch (1984) (Theo-
rem 3.3.1), but it can also be made plausible as follows:
starting from λ= 0, qλ = qη, which is the solution of
the minimization problem (Eq. 15). Hence, for λ= 0
the discrepancy on the left-hand side of Eq. (22) is min-
imal. By increasing λ, one decreases all components of
qλ (Eq. 20), thereby increasing the discrepancy.

5. Following the reasoning of the previous section, in order
to obtain a larger value for δ, one must increase the noise
level ||η′|| (compare Eq. 29). In doing so, one must keep
the high-frequency components of ||η′|| unchanged be-
cause they must keep matching the level of the high-
frequency components of the noise in the perturbed ex-

periment η (given by Eq. 25). Hence, to increase δ, one
sees from Eq. (29) that this is achieved by scaling up the
low-frequency components of ||η′||.

Summarizing these considerations, we have to increase the
level of low-frequency contributions to η′ to develop a given
solution for χ(t) towards monotonicity.

This leads to the overall algorithm listed in Fig. 1. The
first five steps have already been explained at the end of
Sect. 3.3.2. To account for monotonicity, the additional step 6
combined with the loop back to step 4 has to be iteratively
executed. To enhance the low-frequency noise level as ex-
plained above, we calculate in step 6 a new noise vector ηnew
by keeping the high-frequency part from η and enhancing its
low-frequency components by a factor c > 1. Then we re-
compute χ(t) from steps 4 and 5 and once more check for
monotonicity.

For the RFI algorithm to be applicable, two conditions
must be met: (1) a linear response exists for sufficiently
weak perturbation and, (2) in addition to the response exper-
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iment, a control experiment is also available. The assump-
tions needed for the successful application of the algorithm
are summarized in Table 1.

4 Applicability in the presence of noise and
nonlinearities

In application to real data, the presence of noise and nonlin-
earities may complicate the recovery of linear response func-
tions. Therefore, by using artificial data generated from a toy
model, in the present section we analyze the robustness of
the RFI method in the presence of such complications. Ro-
bustness for real data is studied in Part 2.

4.1 Toy model and artificial experiments

As a toy model we take

d
dt
x(t)=Mx(t)+ f (t)a+n(t). (30)

Here the matrix M ∈ RD×D describes the relaxation of
the unperturbed model. The second right-hand-side term rep-
resents the deterministic forcing constructed from the time-
dependent forcing strength f : R→ R and the coupling vec-
tor a ∈ RD . Additionally, the system is perturbed by the
stochastic forcing n : R→ RD , which for simplicity is as-
sumed to be white noise. To make the relation to the car-
bon cycle considered in Part 2, the components of x may
be understood as the carbon stored in plant tissues and soils
at the different locations worldwide, so that the observable
Y (t) :=

∑
ixi(t) is the analog of globally stored land carbon.

The solution of the system is

x(t)=

t∫
0

eM(t−s)af (s)ds+

t∫
0

eM(t−s)n(s)ds. (31)

We assume from the outset M to be diagonal with eigenval-
ues −1/τ ∗i , the τ ∗i being the relaxation timescales. Then

Y (t)=

t∫
0

χ∗(t − s)f (s)ds+ η∗(t), (32)

with the linear response function χ∗(t) and the noise term
η∗(t) given by

χ∗(t)=

D−1∑
i=0

aie
−t/τ∗i , (33)

η∗(t)=

D−1∑
i=0

t∫
0

e−(t−s)/τ
∗
i ni(s)ds. (34)

To complete the description of the toy model, one has
to specify its parameters. For the dimension D we take

Figure 2. Forcings for the experiments considered in this study. To
standardize the type of experiments considered here and in Part 2,
we select forcing functions that mimic those employed in climate
change simulation experiments to whose data the RFI method is
applied in Part 2. Note that in principle any type of forcing could be
employed.

70, and the timescales are assumed to be distributed loga-
rithmically between τ ∗min = 0.01 and τ ∗max = 1000, i.e., τ ∗i =
0.01× 10i1 logτ with 1 logτ = (log10103

− log1010−2)/70.
With carbon cycle applications in mind, the distribution of
the components of the coupling vector is adapted from the
log-normal rate distribution found by Forney and Rothman
(2012) for the decomposition of soils:

ai =
1

τ ∗i σ
√

2π
exp

(
−
(lnτ ∗i −µ)

2

2σ 2

)
, (35)

with µ and σ chosen so that the peak timescale is around
τ = 5 and the limits of the log-normal distribution are ap-
proximately within τ = 0.1 and τ = 200 (see the “true” spec-
trum in Fig. 3). The components of n are taken as uncorre-
lated, i.e., 〈ni(0)nj (t)〉 = ξδij δ(t), with standard deviation ξ
being chosen differently in different experiments.

In our experiments we explore how Y (t) behaves as a func-
tion of the forcing f (t). To this end, we choose a forcing
function f (t) (see Table 2 and Fig. 2). The most obvious
way to perform the toy model experiments would be to in-
tegrate Eq. (30). However, to have better control over the
noise, it is for our purpose more appropriate to use the an-
alytical solution (Eqs. 32–34). Hence, we numerically inte-
grate Eq. (32), using the representation Eqs. (33) and (34).
The data from these experiments are then used to investigate
the performance of the RFI algorithm to recover χ∗(t). Since
all ai values are non-negative, the response function (Eq. 33)
is monotonic, so that we apply the extended version of the
algorithm (see Fig. 1, including step 6). In all experiments
we generate N = 140 data points to have a time series of
similar length to the climate change simulations analyzed in
Part 2 (140 years, one value for each year). To apply the RFI
method, the noise from an associated control experiment is
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Table 1. Summary of assumptions underlying the RFI algorithm.

Assumption Reference

1. The response function χ(t) can be approximated as a sum over non-oscillatory exponentially decaying Sect. 3.1
modes (see Eq. 8).

2. The discrete Picard condition holds. Sect. 3.4

3. For imax to be well defined, the singular values σi should drop sufficiently close to zero. Sect. 3.4

4. If the response function χ(t) is not known to be monotonic: spectral similarity assumption. Sect. 3.4

5. If the response function χ(t) is known to be monotonic: the correct response function χ(t) can be Sect. 3.5
recovered by iteratively adjusting the noise-level estimate η′ to account for monotonicity.

Table 2. Experiments considered in this study. Forcings are shown in Fig. 2. To standardize the types of experiments considered here and in
Part 2, we select forcing functions that mimic those employed in climate change simulation experiments to whose data the RFI method is
applied in Part 2. Note that in principle any type of forcing could be employed.

Type Forcing Description

Percent 0.5 % Forcing is increased from a starting value at the specified percent rate per time step.
0.75 %
1 %
1.5 %
2 %

Step 1.1× f0 Forcing is abruptly increased from a starting value by the specified factor.
2× f0

Control Zero Forcing is held fixed at zero.

also needed. This is obtained from Eq. (34) by using another
realization ni(t) of white noise for each system dimension i.

4.2 Choice of parameters for the RFI method

To apply the RFI method, we choose M = 30 timescales for
the recovery of χ∗. Using τmin = 0.1 and τmax = 105, we
distribute the spectrum of timescales according to Eq. (10).
These parameters are also used for the application on the car-
bon cycle in Part 2 and for the comparison with previous
methods in Sect. 5.

4.3 Ideal conditions

To gain trust in the numerics of our implementation of the
RFI method, we present in this section a technical test con-
sidering conditions under which it is known that the linear re-
sponse function should be quite perfectly recoverable. Such
ideal conditions are characterized by perfect linearity and ab-
sence of noise. Hence we use the presented toy model (which
is anyway linear) in the absence of noise (n= 0) for this
test. Actually, this will not be a full test of the algorithm but
only of the implementation of its basic apparatus (Sects. 3.2
and 3.3.1), culminating in Eq. (20) since in the absence of
noise, the method to determine the regularization parameter
λ (Sects. 3.3.2 and 3.5) is not applicable. One might think

that in the absence of noise one could use Eq. (19) to deter-
mine the linear response function, but even under such ideal
conditions the ill-posedness of the problem calls for regu-
larization to suppress the numerical noise that prevents one
from obtaining a sensible solution from Eq. (19) (see the dis-
cussion in the paragraph after Eq. 19). However, choosing
the small value of λ= 10−8 for the regularization parameter
when evaluating Eq. (20) is sufficient for this technical test.

Figure 3c shows the response of the noiseless toy model
to the forcings shown in Fig. 2; i.e., we performed the ex-
periments listed in Table 2, although for the present test the
control experiment is not needed.

Applying Eq. (20) to the experiment data gives the spec-
trum qλ shown in Fig. 3a. Here, we derived the spectrum qλ
for each experiment separately, although in the figure only
single dots are seen, because all results coincide so closely
and are almost indistinguishable from the “true” solution q∗,
as was expected for this ideal case. The next Fig. 3b shows
the response function obtained from the spectra qλ using
Eq. (12). Obviously from Fig. 3a the “true” response func-
tion is reconstructed perfectly from whatever experiment is
used. As a final test we predict using in Eq. (1) the response
function obtained from the 1 % experiment the responses of
other experiments, and indeed, these predicted responses are
indistinguishable from the responses obtained directly from
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the experiments (see Fig. 3c). This latter result demonstrates
perfect robustness of the numerical approach to recover the
responses in this ideal case.

4.4 First complication: noise

The presence of noise may severely hinder the detailed re-
covery of χ∗(t) due to the ill-posed nature of the problem.
In order to demonstrate the effect of the addition of noise
on the quality of the derived χ(t), we define a relative er-
ror for the prediction of the responses from different exper-
iments. Consider a particular experiment – which is in our
case the 1 % experiment – from which we have obtained by
the RFI method the response function, which we call here
χ0(t). The relative error for the prediction of the response
from an experiment “k” by the recovered χ0(t) via the con-
volution (Eq. 1) is

ε0
k :=
||1Y k −χ0 ?f k||

||1Y k||
, (36)

where ? stands for the discrete form of the convolution opera-
tion (Eq. 1) used to predict the responses, i.e.,1t

∑
i

χ0
j−i f

k
i .

In the following we denote as ε0
k the prediction error for

the experiment “k”. To measure the quality of the prediction
across multiple experiments, we also define the mean predic-
tion error

ε0
:=

1
K

K∑
k=1

ε0
k , (37)

where K is the number of predicted responses. The reader
may wonder why we quantify the quality of the recovery only
indirectly from the responses found in different experiments
and not directly from the recovery of χ(t). The reason is that
in real applications the “true” χ(t) is not known but the re-
sponses are. The reliability of this indirect measure for the
quality of the recovery is discussed in Sect. 5.

To study how the quality of the recovery depends on the
noise level, we introduce the signal-to-noise ratio (SNR) of
the response data from a perturbation experiment as

SNR :=
||1Y ||

δ
, (38)

where δ is the final noise-level estimate obtained by the RFI
method, as described in Sect. 3.3.2 (see Eq. 29).

To demonstrate the dependence of the mean prediction er-
ror (Eq. 37) on the SNR, we performed 1 % experiments us-
ing different noise levels. The resulting dependence is shown
in Fig. 4. As expected, for a small error a sufficiently large
SNR is needed; i.e., a good recovery may be hindered by a
too high noise level.

In Fig. 5 we demonstrate how the overall noise-level ad-
justment in step 3 of the RFI algorithm (see Fig. 1) affects
regularization to recover the correct response function. To

guarantee that the overall level of the noise spectrum is in-
deed substantially different in the control and perturbed ex-
periments (so that the adjustment is really needed), we take
for the noise in the control experiment a standard deviation
10 times smaller than that for the noise in the perturbed ex-
periment. To demonstrate how the adjustment works, it is
helpful to consider the so-called “Picard plot”. This type of
plot was originally introduced to analyze the spectral char-
acteristics of an ill-posed problem (see, e.g., Hansen, 1992).
In Fig. 5a we show the Picard plot for data obtained from a
1 % experiment with the toy model using a SNR of ≈ 520 to
ensure a good recovery. The singular values σi decrease to
extremely small values as the index i increases. This demon-
strates that the problem of solving for the response function
is indeed ill-posed and therefore regularization is needed for
its solution (compare Eq. 19 with Eq. 20). The data labeled
by |ui • η| are the “true” noise coefficients, obtained by sub-
tracting the “clean” response Aq, known analytically from
the toy model description, from the noisy toy model response
1Y . Comparing them to the projection coefficients of the
response |ui •1Y |, one sees that with the exception of the
first few coefficients the response is dominated by its noise
content. Accordingly, only the information contained in these
first few coefficients is recoverable from this ill-posed prob-
lem whatever method is used. The data labeled by |ui • ηest|

have been added to the Picard plot to demonstrate how the
RFI algorithm operates: these data are the projection coeffi-
cients of the estimated noise content in the data, where ηest is
the final value of η′ obtained by the RFI method. Obviously,
the RFI algorithm correctly estimates the “true” noise level
not only at high frequencies – where it is correct by the noise-
level adjustment in step 3 of the RFI algorithm (see Fig. 1) –
but also at low frequencies, where it is predicted from the ad-
justed low-frequency components of the control experiment
(also step 3). Accordingly, in this case the spectral similarity
assumption holds, and there is no need to further adjust the
noise level (step 6).

How the estimation of the noise in the data and the result-
ing regularization affects the projection coefficients of the
spectrum q can be seen in Fig. 5b: only those few coeffi-
cients not dominated by noise contribute to the regularized
solution. In this case these few coefficients selected by de-
termining the regularization parameter λ from the noise level
are sufficient for an almost perfect recovery of the response
function, as seen in Fig. 5c.

It is important to note that in the situation of Fig. 5, where
the overall noise level differs considerably in the control and
perturbed experiments, a naive noise estimate taken from the
control experiment without the adjustment in step 3 (as first
suggested in Sect. 3.3.2) would severely underestimate the
noise actually in the data. This would in turn lead to an un-
derestimation of the regularization parameter (see Groetsch,
1984, Theorem 3.3.1). As a result, the wrong filtering by reg-
ularization would leave projection coefficients dominated by
noise in the solution, likely leading to large errors in the re-
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Figure 3. Demonstration of robust recovery for noise-free data from the toy model: (a) recovered qλ; (b) recovered χ(t); and (c) original
responses and predictions using χ(t) derived from the 1 % experiment. Reconstructed values are almost indistinguishable from original data.
To plot the “true” spectrum of the toy model in subfigure (a), we used the relation q∗ = a/1log10τ , which can be obtained by comparing
Eq. (33) with Eq. (12). Since from the discrete spectrum the response function and the response may be obtained for any time t , the spectrum
is plotted as dots, while the response function and response are plotted as continuous lines. The regularization parameter is chosen as
λ= 10−8.

Figure 4. Mean prediction error (Eq. 37) of the recovery when de-
riving χ(t) for different values of the SNR. As the SNR increases,
the recovery of χ(t) improves. To illustrate the most general case
where χ(t) is not known to be monotonic, we do not apply the
monotonicity check (step 6 of Fig. 1).

covered response function. This example therefore demon-
strates the relevance of the noise adjustment in step 3.

Finally in this section, we demonstrate that by accounting
for monotonicity of the linear response function, one may
obtain a better estimate of the low-frequency components
of the noise whereby the recovery of the response function
is improved. In Fig. 6 we plot results from toy model ex-
periments where the spectral similarity assumption does not
hold. This was achieved by artificially enhancing the low-
frequency components of the noise η∗(t) in Eq. (32). The top
row plots show the results from the recovery when the addi-
tional noise-level adjustment was not used. Because the spec-
tral similarity assumption does not hold, the estimated low-
frequency components of the noise |ui • ηest| do not match
those of the “true” noise |ui • η| (Fig. 6a1). Ideally, only
those four projection coefficients of the data |ui •1Y | which
are larger than the projection coefficients of the “true” noise
|ui •η| should contribute to the recovered response function.
Instead, as seen in Fig. 6b1, the coefficients with indexes be-
tween i = 4 and i = 7 give the dominant contributions be-
cause they are larger than the estimated noise coefficients
|ui • ηest| (compare Fig. 6a1). Therefore, the recovery of the
response function is poor (Fig. 6c1). However, since in this
case the low-frequency components of noise are such that the
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Figure 5. Demonstration of the operation of the RFI algorithm in the presence of noise using toy model data from a 1 % and control
experiment. To demonstrate the relevance of the noise-level adjustment (step 3 from Fig. 1), the standard deviation of the noise in the control
experiment was taken to be 10 times smaller than that for the noise in the perturbed experiment. (a) Picard plot showing the singular values
σi and the projection coefficients of the data |ui •1Y |, the “true” noise |ui • η|, and the final noise estimate |ui • ηest|; (b) coefficients of
the regularized solution (Eq. 20); (c) “true” and recovered linear response functions. Since the RFI algorithm correctly adjusted the noise
level to the “true” noise in the data, the resulting regularized solution has contributions only from the first few projection coefficients which
are not completely obscured by noise. Overall, the recovery is almost perfect, because the SNR (chosen as about 520) is still sufficiently
good and because the noise was chosen to conform with the spectral similarity assumption. The regularization parameter determined by the
algorithm is λ≈ 30 364. Because the noise-level adjustment (step 3 from Fig. 1) already gave a good estimate of the “true” noise in the data,
no monotonicity check was needed (step 6 from Fig. 1).

recovered response function is non-monotonic although the
“true” response function is known to be monotonic, one may
further adjust the noise level to improve the results.

This further adjustment is the purpose of step 6 of the
RFI algorithm (see Fig. 1). Its effect is demonstrated by the
second-row plots of Fig. 6: the estimated noise components
now match the “true” noise components better that had been
underestimated in the first row (compare Fig. 6a2 and a1),
so that only those four components that carry information
(compare in Fig. 6a2 the projections |ui •1Y | for low index
i with |ui • η|) survive the regularization (Fig. 6b2). As a re-
sult, the quality of the recovery of the response function has
considerably improved (Fig. 6c2).

4.5 Second complication: nonlinearity

The second difficulty in recovering the linear response func-
tion χ(t) from a perturbation experiment may arise from
nonlinearities present in the considered system. Generally it
must be suspected that nonlinearities are present, so that they

should not hurt as long as they are small, and indeed, from
the viewpoint of regularization, contributions from nonlin-
earities can be considered an additional noise, so that in prin-
ciple they can also be filtered out. However, as with noise,
when getting stronger they cause a deterioration of the re-
covery of the response function. In the following, we show
this more formally and discuss in detail how the RFI algo-
rithm behaves in the presence of nonlinearities.

To understand how contributions from nonlinearities affect
the recovery of the response function, we write the nonlinear
terms in Eq. (5) collectively as η̃(t). This formally gives

1Y = Aq + η+ η̃ (39)

instead of Eq. (13). Plugging this into Eq. (20), the spectrum
is obtained as

qλ =

M−1∑
i=0

fi(λ)

(
ui •Aq
σi

vi +
ui • (η+ η̃)

σi
vi

)
. (40)
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Figure 6. Demonstration of the additional noise-level adjustment in the presence of a monotonicity constraint using toy model data from a
1 % and control experiment: (a) Picard plot; (b) coefficients of the regularized solution (Eq. 20) and (c) recovered linear response function.
All the figures are based on the same toy model experiments using a SNR= 1189. To demonstrate the effect of the noise-level adjustment, the
spectral similarity assumption is broken by artificially increasing the low-frequency components of the noise in the experiments. The plots
in the first row show the results from the RFI algorithm in the absence of additional noise-level adjustment (step 6 in Fig. 1). Although the
“true” response function of the toy model is monotonic, the response function recovered by the RFI algorithm is non-monotonic (last figure
in the first row). However, if the noise adjustment is switched on (second row), the response function is correctly recovered as monotonic
(last figure in the second row). Arrows in subfigures (b) indicate the index icritical that separates components of the solution that are only
weakly suppressed (i < icritical) from those that are almost completely suppressed (i ≥ icritical). The regularization parameter determined by
the algorithm is λ≈ 1 for the first row and λ≈ 11 450 for the second. For more details, see the text.

Accordingly, the nonlinear contributions can be under-
stood as an additional noise in the spectrum qλ, so that the
theory of regularization fully applies when replacing η by the
combined noise η+ η̃. Hence, as in their absence, nonlinear-
ities do not prevent the application of regularization as long
as the signal is not buried under this combined noise.

However, for the RFI algorithm to give good results, a sec-
ond condition is that the contributions from η̃ must not be
large compared to those from η. To understand this, one must
realize that the response and with it the nonlinear contribu-
tions η̃ are dominated by low-frequency components because
of the low-frequency nature of the forcing for the problems
of interest (for instance in % experiments). The RFI algo-
rithm uses an estimate for the noise level in the perturbation
experiment obtained from the control experiment assuming
that the spectral distribution is approximately the same in
the noise from the control experiment and the noise in the
data from the perturbation experiment (spectral similarity as-
sumption; step 3 of Fig. 1). However, the control experiment
does not contain any contributions from nonlinearities be-

cause the forcing is zero. Therefore, if in the data from the
perturbation experiment the contributions from nonlineari-
ties η̃ are not small compared to those from η, the spectral
similarity assumption does not hold. Since this assumption
is at the heart of the RFI algorithm, its breakdown leads to a
poor recovery of the linear response function.

All this is demonstrated in the following by toy model ex-
periments. For this purpose, we artificially consider the re-
sponse of the toy model not in Y but in its nonlinear trans-
form

Ynonlin(t) := Y (t)− aY
2(t), (41)

where the parameter a determines the strength of the non-
linearity. The particular functional form chosen for Ynonlin(t)

mimics the nonlinear effect of saturation encountered for in-
stance in the land carbon sink when atmospheric CO2 rises
to high values. In the following, to demonstrate the effect of
nonlinearities, we set the noise level in the toy model experi-
ments to a rather small value in order to have a good SNR in
the experiments considered.
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Figure 7. Mean prediction error (Eq. 37) of the recovery when de-
riving χ(t) for different values of the nonlinearity factor a of the
toy model. As a increases, the recovery of χ(t) deteriorates because
the level of the contributions from nonlinearities ||̃η|| becomes large
compared to the noise level ||η||; how these terms are computed for
the toy model is explained in Appendix D. To demonstrate here the
pure effect from the breakdown of the spectral similarity assump-
tion, the RFI algorithm is used here without the additional noise-
level adjustment enforcing monotonicity.

In Fig. 7 we show by plotting the mean prediction er-
ror (see Eq. 37) how the recovery of the response function
deteriorates as the nonlinearity parameter a increases. To
demonstrate that this is indeed caused by a breakdown of the
spectral similarity assumption, we plot in addition the ratio
||̃η||/||η||. It is seen that, indeed, as claimed above, the recov-
ery works well only when this ratio is not large, i.e., when the
contributions from nonlinearities η̃ are not large compared to
those from the noise η.

More insight into how nonlinearities affect the recovery
is obtained from the more detailed SVD analysis shown in
Fig. 8. The first row of subfigures was obtained from the
toy model assuming a rather small nonlinearity (a = 10−10).
In the Picard plot (Fig. 8a1) it is seen that in this case both
conditions necessary for a good recovery are met: first, the
signal |ui •1Y | is clearly visible above the combined noise
|ui • (η+ η̃)| (see the first four components). Second, in this
case |ui•η̃|/|ui•η| is small over the whole spectrum; i.e., the
contributions from η̃ are small compared to those from η.
As explained above, because this second condition is also
met, the noise estimate from the RFI algorithm ηest is a good
approximation to the combined noise across all frequencies
(compare in the Picard plot |ui • (η+ η̃)| to |ui • ηest|). As
a result, the four components selected by the regulariza-
tion for the recovered solution (Fig. 8b1) are precisely those
dominated by the signal (compare fi(λ)|ui •1Y |/σi with
fi(λ)|ui • (η+ η̃)|/σi). This example demonstrates that as
long as these two conditions are met, small contributions
from nonlinearities do not prevent a good recovery of the
response function (see Fig. 8c1).

In the second row of Fig. 8, we demonstrate how the vi-
olation of the second condition obstructs the recovery. In
this case the nonlinearity parameter has been given a larger
value (a = 2.5× 10−5). As a consequence, one sees in the
Picard plot that the low-frequency components of the com-
bined noise are enhanced. The first condition is still met:
the signal |ui •1Y | is visible above the combined noise
|ui • (η+ η̃)| (see the first two components). However, now
the ratio |ui •η̃|/|ui •η| becomes large at low frequencies, vi-
olating the second condition. As explained, the violation of
the second condition leads to the breakdown of the spectral
similarity assumption. As a result, the RFI algorithm under-
estimates the combined noise at low frequencies (compare in
the Picard plot |ui • (η+ η̃)| to |ui • ηest|). Using this wrong
noise estimate, regularization selects components for the re-
covered solution that are to a large extent dominated by the
combined noise (see components i = 2 to i = 6 in Fig. 8b2).
The result is that the strong low-frequency contributions from
nonlinearities deteriorate the recovery of the response func-
tion at long timescales (Fig. 8c2).

In the third row, we demonstrate for this type of nonlin-
earity that by accounting for monotonicity one can remove
from the recovered solution all components dominated by
noise. For this purpose, we set the nonlinearity parameter
to the same value as for the second row (a = 2.5× 10−5)
but employ the additional noise-level adjustment (step 6 of
Fig. 1); i.e., the low-frequency range of the noise estimate
is now automatically adjusted in order to recover a response
function that decays monotonically to zero. As seen in the
Picard plot, the additional noise-level adjustment results in
an artificial enhancement of the low-frequency components
of the noise estimate, with a large jump separating the low-
from high-frequency ranges. In this case, such enhancement
is able to better estimate the largest components of the com-
bined noise (first few components in the Picard plot). As a
consequence, regularization correctly selects for the recov-
ered solution only the two first components which are not
dominated by noise (Fig. 8b3). Unfortunately, as seen in
Fig. 8c3, these two first components do not contain enough
information for a perfect recovery, since the quality improves
at long timescales but deteriorates at short timescales (com-
pare Fig. 8c3 and c2). This is a consequence of how regular-
ization works: it filters out components dominated by noise
(or in this case nonlinearity) at the expense of also removing
useful information contained in those components.

5 Comparison with previous methods

As a last test of the quality of the results given by the RFI
method in application to the toy model, in this section we
compare our method against two existent methods in the lit-
erature to identify response functions in the time domain. The
comparison is performed for the particular case where the re-
sponse function is known to be monotonic and also for the
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Figure 8. Demonstration of how nonlinearities affect the recovery of the response function: (a) Picard plot; (b) coefficients of regularized
solution (Eq. 20) and (c) recovered linear response function. First row: nonlinearity factor a = 10−10 (no monotonicity check); second row:
nonlinearity factor a = 2.5× 10−4 (no monotonicity check); third row: nonlinearity factor a = 2.5× 10−4 (with monotonicity check). The
noise is overestimated in the low-frequency spectrum in the third row because nonlinearities yield a derived χ(t) that does not obey the
monotonicity constraint. As a consequence, the method increases the level of low-frequency components until the monotonicity constraint
is obeyed. The failure to obey the monotonicity constraint and consequent large overestimation of noise in this case can be taken as an
indication of the presence of nonlinearities in the response. Note that the “true” linear response function in this nonlinear case a 6= 0 is
obtained analytically from the linear case a = 0 via Eq. (41) (see Appendix D). The regularization parameter determined by the algorithm is
λ≈ 3120 for the first row, λ≈ 74 for the second, and λ≈ 14611873 for the third. For more details, see the text.

more general case where it is not. As a side issue, this sec-
tion also reveals some insight into the relation between the
quality of the recovery of χ(t) as measured by the prediction
of responses and the quality of the recovery of χ(t) itself.

In climate science, the most commonly used method is
to obtain χ(t) from an impulse response, i.e., the response
to a perturbation of Dirac delta type (e.g., Siegenthaler and
Oeschger, 1978; Maier-Reimer and Hasselmann, 1987; Joos
and Bruno, 1996; Joos et al., 1996; Thompson and Ran-

derson, 1999; Joos et al., 2013). Here we call it the pulse
method. Although this method is conceptually straightfor-
ward, in some cases it might not yield satisfactory results.
Since the perturbation is only one “pulse”, depending on the
observable of interest it may give a response with a small
SNR. As a consequence, the recovered response function
may be severely affected by noise. On the other hand, if the
strength of the pulse is made large to obtain a good SNR, the
linear regime may be exceeded. In this case, the impulse re-
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sponse does not correspond anymore to the linear response
function.

The second method consists of deriving the linear re-
sponse function from a step response, i.e., the response to
a Heaviside-type perturbation (e.g., Hasselmann et al., 1993;
Ragone et al., 2016; MacMartin and Kravitz, 2016; Lucarini
et al., 2017; Van Zalinge et al., 2017; Aengenheyster et al.,
2018). Here we call it the step method. Due to the special
form of this “step” perturbation, the linear response function
can in principle be derived from

χ(t)=
1
fstep

d
dt
1Ystep(t), (42)

where fstep is the step perturbation and 1Ystep is the corre-
sponding response. Unfortunately, such derivation involves
numerical differentiation, which is known to be an ill-posed
problem (Anderssen and Bloomfield, 1974; Engl et al.,
1996). Because the problem is ill-posed, noise is amplified,
potentially resulting in large errors in the derived linear re-
sponse function.

These two methods therefore share two limitations: first,
they require a special perturbation experiment; second, be-
cause of noise in the data they might yield a response func-
tion with large errors. In principle, the second limitation may
be overcome by using instead of a single response the ensem-
ble average over multiple responses. However, this comes at
the expense of the numerical burden of performing multi-
ple experiments, which is especially large when dealing with
complex models such as state-of-the-art Earth system mod-
els.

The main advantages of the RFI method lie precisely in
overcoming these two limitations: it recovers the response
function from any type of perturbation experiment and auto-
matically filters out the noise by regularization.

For the results of this section, we performed ensembles
of 200 simulation experiments with the toy model (see
Sect. 4.1). Each ensemble member is defined by a realiza-
tion of the noise η∗(t) with a fixed standard deviation (see
Eq. 34). Each realization was added via Eq. (32) to three ex-
periments: 1 %, step (2×f0), and pulse (4×f0). Note that be-
cause of the issue with the SNR mentioned above, we had to
employ for the pulse experiment twice the forcing strength
employed for the step experiment. Further, for each ensem-
ble member an additional realization of the noise was gen-
erated to serve as a control experiment to compute the noise
estimate for the RFI method (step 1 of Fig. 1).

We computed the response function by the pulse and step
method as follows. For a pulse experiment the forcing is
f (t)= aδ(t) with forcing strength a, so that the response is
given by

1Ypulse(t)=

t∫
0

χ(t − s)aδ(s)ds = aχ(t). (43)

Therefore, for the pulse method we took the response from
the pulse experiment and obtained the response function by

χ(t)=
1
a
1Ypulse(t). (44)

The recovery by the step method was calculated by taking
the response from the step experiment and applying Eq. (42).
The derivative was computed by forward difference.

To obtain comparable results with these two methods, we
recovered the response function by the RFI method from the
same pulse and step experiments. To compare the quality of
the results using also an experiment not decidedly tailored for
the identification, we include additionally the recovery from
the 1 % experiment.

To obtain a quantitative comparison for the quality of the
recovery for each method, we define the recovery error:

εr :=
||χ −χ∗||

||χ∗||
, (45)

where χ is the recovered response function and χ∗ is the
“true” response function, which is known because we use the
toy model. In contrast to the prediction error that measures
the quality of the recovery of χ(t) by means of the response
(see Eq. 45), the recovery error εr measures the quality of
the recovery of χ(t) itself. Another reason for introducing
the recovery error is to compare its results with results from
the prediction error. By doing that, we can gain insight into
how much the prediction error can be trusted as an indirect
measure of the quality of recovery in real applications, where
the “true” response function is not known.

First, we compare the pulse and step methods against the
full RFI algorithm, i.e., the RFI algorithm taking monotonic-
ity into account (step 6 in Fig. 1). Results are shown in Fig. 9.
In the first row of subfigures, we took for the recovery the en-
semble average over the 200 responses for each experiment.
For the RFI method, we took the ensemble average over the
control experiments as well to estimate the noise (step 1 of
Fig. 1). As shown in Fig. 9a1, with this approach all the
methods recover the response function almost perfectly. The
quality of the recovery is quantified by the recovery error in
Fig. 9b1. The RFI method shows the smallest values for the
step and pulse experiments when compared to the step and
pulse methods. Overall, the step method clearly shows the
largest value. To quantify the quality of the prediction, we
plot in Fig. 9c1 the prediction error (Eq. 36). As seen, values
are even smaller than for the recovery error. Overall, we see a
similar pattern: the step method again stands out, with other
methods showing much smaller error values.

In the second row, we compare results by taking only a
single response for the recovery. Since the quality of the re-
covery by the different methods may vary depending on the
particular noise realization, we again performed 200 simu-
lations to obtain better statistics but this time deriving the
linear response function for each ensemble member sepa-
rately. Figure 9a2 shows an example of recovery for one
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Figure 9. Quality of response function recovery by the full RFI method (including step 6 in Fig. 1) in comparison to the pulse and step
method. Subscripts at “RFI” indicate the experiment from which the response function was recovered with the RFI method. First row:
taking the average over the whole ensemble of toy model experiments for recovery; second row: performing the recovery for each ensemble
member separately. (a1 ) Recovered response function; (b1 ) recovery error; (c1 ) prediction error (Eq. 36); (a2 ) example of recovered
response function from one ensemble member; (b2 ) statistics of recovery error; (c2 ) statistics of prediction error (Eq. 36). The prediction
error is separately computed for the 0.5 % and 0.75 % experiments. Taking the ensemble average, all methods perform well (see first row).
However, taking only one ensemble member, the RFI algorithm gives better recovery and prediction errors than the pulse and step methods
when comparing the same responses (see second row).

of the ensemble members. As expected, the recoveries by
the pulse and step methods largely deviate from the true re-
sponse function. For the pulse method, the large errors re-
sult from the low SNR of the pulse response: even taking
twice the forcing strength of the step experiment, the SNR
of the pulse response is of order 100 against order 101 for
the step and 1 % responses. For the step method, on the other
hand, the large errors are not a result of a low SNR but of the
noise amplification associated with the ill-posedness of nu-
merical differentiation. In contrast to the recovery by these
two methods, because of regularization the recoveries by the
RFI method are smoother and visually seem to better fit the
true response function. To quantitatively check these results,
we plot in Fig. 9b2 for each method the average and stan-
dard deviation over the 200 values of the recovery error (one
for each ensemble member). The figure shows that the pulse
and step methods indeed display the largest average recovery
error, with the pulse method having a much larger spread.
Such spread is probably related to the low SNR in the re-
sponse from the pulse experiment. The results from the 1 %
and pulse experiments by the RFI method are better, showing
comparable error magnitudes. The smallest average recovery
error is obtained from the RFI method using the step exper-

iment. In Fig. 9c2 we show the average and standard devia-
tion over the 200 values of the prediction error (Eq. 36). The
smallest average prediction errors are obtained from the RFI
method using the 1 % and step experiments. The largest er-
rors are obtained for the pulse method and the RFI method
using the pulse experiment. In contrast to the situation for
the recovery error, for the prediction error no substantial dif-
ference between the two is found. Note also that when com-
paring recoveries from the same response (i.e., comparing
“Pulse” with “RFIpulse” and “Step” with “RFIstep”), the RFI
method gives better results than both the pulse and step meth-
ods. Another interesting point is that prediction errors for the
step method remain approximately unchanged by taking the
ensemble mean and a single response (compare “Step” in
Fig. 9c1 and c2). Overall, as in the first row, the prediction er-
ror shows for each individual method values smaller than the
recovery error. However, now there is a difference between
the plots for the recovery and prediction error: although the
pulse and step methods show the largest averages, with val-
ues of comparable size for the recovery error, for the predic-
tion error the pulse method has the largest average, with a
value much larger than the step method.
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This difference can be better understood as follows (see
MacMartin and Kravitz, 2016, for more details, including
the influence of the forcing scenario). Because Eq. (1) is ill-
posed, the convolution operator acts on χ(t) as a “low-pass
filter” (see, e.g., Bertero et al., 1995; Istratov and Vyvenko,
1999). This means that high frequencies in χ(t) are sup-
pressed by convolution and show up damped in the response
1Y(t). Hence, recoveries with large errors only at high fre-
quencies tend to give relatively small prediction errors. Be-
cause of the low SNR, the pulse method yields a recovery
of χ(t) with large errors at both high and low frequencies.
Although the errors at high frequencies are damped in the
prediction, errors at low frequencies are not. Hence, the large
recovery error results in a large prediction error. On the other
hand, because of the good SNR for the step response, the
step method gives a relatively good recovery of χ(t) at low
frequencies, with large errors concentrated at high frequen-
cies. As a result, the large recovery error results in only a
small prediction error. This suppression of high-frequency
errors might also explain why the prediction error for the step
method remains unchanged when recovering the response
function from a single response instead of the ensemble av-
erage. By comparing the recovery of χ(t) by the step method
in Fig. 9a1 and a2, one sees that the main difference is indeed
at high frequencies (the recovery in Fig. 9a2 is quite “noisy”
but follows the long-term trend). This is because the noise
amplification has a larger effect on the recovery from the sin-
gle response due to its larger noise level. However, since low
frequencies are well recovered in both cases, the resulting
prediction errors are almost the same.

Overall, the analysis of Fig. 9 suggests two main conclu-
sions. First, as expected, the prediction error indeed gives an
indication of the quality of the recovery, since good recover-
ies result in good predictions. However, care should be taken
when judging the recovery only from the prediction error,
because a good prediction does not necessarily imply a good
recovery: due to the ill-posedness, Eq. (1) might damp large
high-frequency recovery errors, so that they do not show up
in the prediction. Nevertheless, from a good prediction er-
ror one can still infer a good recovery at low frequencies,
because at these frequencies large recovery errors result in
large prediction errors. Since regularization filtering leaves
only low-frequency terms in the recovery, the RFI method
shows in Fig. 9 small prediction errors associated with small
recovery errors.

Second, by taking only a single response – and not the
ensemble average – the full RFI algorithm gives on average
smaller recovery and prediction errors than the pulse and step
methods when comparing results obtained from the same ex-
periment.

However, the results above cover only the case where the
full RFI algorithm is employed. In the following, we also an-
alyze the case where monotonicity is not taken into account.
For this purpose, we repeated in full detail the exercise that
led to Fig. 9 but did not apply the additional noise-level ad-

justment to enforce monotonicity of the response function.
Figure 10a shows the results for the recovery error. Once
more, the RFI method gives smaller values than the step and
pulse methods when comparing the recovery from the same
responses. In addition, now the recovery for the RFI method
using the step experiment even improved in comparison to
Fig. 9b2. The reason may be related to the numerical check
for monotonicity: depending on the tolerance value that is
used to judge whether the recovered response function is
monotonic, the additional adjustment might actually overes-
timate the noise level, leading to slightly worse results.

Yet the improvement brought by the additional noise-level
adjustment is clear when looking at the recovery error for the
1 % experiment. Compared to Fig. 9b2, the average error in-
creases substantially, and the spread is much larger (see inset
for the whole value). As explained in Sect. 4.4, this deterio-
ration results from cases where the noise in the response is
such that the spectral similarity assumption does not hold.
Since here the noise estimate resulting from this assumption
is not further improved by the monotonicity check, the result
is a poor recovery (see Fig. 9b for an example). However,
because the large errors are mostly at high frequencies, even
poor recoveries are still sufficiently good for predictions, as
shown by the small mean prediction error in Fig. 9c (see
“RFI1 %”). Therefore, in contrast to the case where mono-
tonicity is taken into account, here some small prediction er-
rors are associated with large recovery errors.

Nevertheless, we find that, although extreme, such poor
recoveries are not frequent. In fact, extreme cases with re-
covery error εr> 1 account for 6.5 % of the recoveries. This
suggests that the large deterioration in the mean and spread
of the recovery error in subfigure (a) is not a result of overall
poor recoveries but of only few extreme cases. To check this
hypothesis, we plot in subfigure (d) the mean and standard
deviation, excluding these cases from the calculations. In-
deed, the result is much better, showing values comparable to
the case where monotonicity is taken into account (compare
“RFI1 %” in Fig. 10d and Fig. 9b2). Overall, this result indi-
cates that at least for models of this type – where in the per-
turbation experiment the spectral distribution of noise does
not change drastically compared to the control experiment
– although monotonicity plays a role in avoiding large re-
covery errors, statistically most recoveries are still relatively
good even without this additional improvement.

6 Summary, discussion, and outlook

Existent methods to identify linear response functions from
data require tailored perturbation experiments. Here, we de-
veloped a method to identify linear response functions from
data using only information from an arbitrary perturbation
experiment and a control experiment. The RFI method ad-
dresses the ill-posedness inherent to the identification prob-
lem by applying Tikhonov–Phillips regularization. The regu-
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Figure 10. Quality of response function recovery by our RFI method excluding step 6 in Fig. 1 in comparison to the pulse and step method.
Response function is recovered taking the individual response for each ensemble member. Subscripts at “RFI” indicate the experiment from
which the response function was recovered with the RFI method. (a) Statistics of the recovery error; (b) example of poor recovery with the
RFI algorithm; (c) statistics of the prediction error (Eq. 36); (d) statistics of the recovery error excluding for the RFI1 % the 6.5 % of the
recoveries with recovery error greater than 1. Once again, the RFI method gives better recovery and prediction errors than the pulse and step
methods for the same responses. Without accounting for monotonicity, the variability in the quality of the recoveries from the 1 % experiment
increases substantially, but poor recoveries are obtained in only a few cases.

larization parameter is computed by the discrepancy method,
which involves the estimation of the noise level. For this pur-
pose, we take advantage of information given by a spectral
analysis of the perturbation experiment and by the control
experiment. Assuming that the Picard condition holds, we es-
timate from the perturbation experiment the high-frequency
components of the noise. Then, assuming that the spectral
distribution of noise is approximately the same for the per-
turbed and control experiments (spectral similarity assump-
tion), we estimate from the control experiment the low-
frequency components of the noise. The obtained noise-level
estimate can be further adjusted if the linear response func-
tion is known to be monotonic. The robustness of the method
in the presence of noise and nonlinearity was demonstrated
in Sect. 4. Additional sensitivity tests showing the robustness
of the method under changes in the parameters for the recov-
ery are shown in Appendix E.

As discussed in Sect. 5, the developed method to identify
linear response functions is an alternative approach to exis-
tent methods in the literature, which require special pertur-
bation experiments and often give results with large errors

caused by noise. In contrast, the RFI method accounts in a
systematic way for the noise and can be directly applied to
data from any type of perturbation experiment once a con-
trol experiment is also given. Because it filters out the noise,
its results show in the cases analyzed here a higher quality
compared to results from previous methods when applied to
the same data from a toy model, and because it can iden-
tify response functions from any type of perturbation exper-
iment, the method is particularly suitable for application to
data from the C4MIP carbon cycle model intercomparison as
shown in Part 2 of this study.

The main novelty of the method is the estimation of the
noise level (steps 1–3 of Fig. 1), which is known to be crit-
ical for the application of regularization theory. When solv-
ing a problem by regularization, the most crucial step is the
computation of the regularization parameter. To compute this
parameter in a way that the solution converges to the “true”
solution for decreasing noise, methods need to account for
the noise level (Bakushinskii, 1984; Engl et al., 1996). How-
ever, in practical applications the noise level is rarely known.
Therefore, methods to obtain good estimates are needed.
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Our new method to estimate the noise level consists essen-
tially of two steps: first, estimating the high-frequency com-
ponents from data and then the low-frequency components
from the control experiment. While the second step is com-
pletely novel, the main idea behind the first step was al-
ready brought up in earlier studies (e.g., Hansen, 1990) and
has recently been further developed by methods to compute
the “Picard parameter” (Taroudaki and O’Leary, 2015; Levin
and Meltzer, 2017), which is different from the imax that we
use in our method. The Picard parameter is computed as the
index for which the components |ui •1Y | start to level off.
Typically, from this index onwards the data can be interpreted
as noise. For this reason, one might think that from the Picard
parameter one can obtain all data components dominated by
noise and thereby estimate the noise level. However, this is
not generally true: for instance, if the noise has large low-
frequency components such as in Fig. 8a2, then the com-
ponents |ui •1Y | level off at an index larger than that at
which the data start to be dominated by noise, so that in this
case the Picard parameter does not determine all data com-
ponents dominated by noise. In our RFI method, the interest
lies in obtaining not all data components dominated by noise
but only enough components to obtain the overall level of
the high-frequency noise. For this purpose, we define instead
of the “Picard parameter” the more conservative index imax,
above which the singular values are zero and by the Picard
condition the “true” data components must also be zero. In
this way, we unambiguously identify data components that
contain only noise (see Eq. 24). These components give the
high-frequency noise level, so that in the second step the re-
maining low-frequency noise components can also be esti-
mated from the control experiment (step 3 of Fig. 1).

Because our noise-level estimation is not particularly re-
lated to the problem of identifying response functions, it can
in principle be applied to solve also other types of linear ill-
posed problems (see, e.g., Engl et al., 1996). In general, all
one needs for the application are the following.

1. A problem of the type

y = Ax+ η, (46)

where given the matrix A and the noisy data y one is
interested in finding x.

2. Data from a situation similar to the control experiment,
where Ax = 0, so that the resulting yctrl gives the noise
term

ηctrl = yctrl. (47)

3. The singular values of A decaying to values sufficiently
close to zero to obtain imax.

Then, as long as both the Picard condition and the spectral
similarity assumption hold, the method gives a reasonable

noise estimate – since then, by assumption, the noise estimate
is simply a scaling of the noise in the control experiment (see
Sect. 3.3.2) – by which the regularization parameter can be
determined.

While the Picard condition is necessary for a solution to
be recoverable from an ill-posed problem, the validity of
the spectral similarity assumption is less clear. An intuitive
explanation for this assumption can be thought as follows.
Since here the interest lies in identifying linear response
functions, the perturbation to the system must be sufficiently
weak so that the response can be considered linear. If the
noise in the control experiment depends on the perturba-
tion, a sufficiently weak perturbation will modify its char-
acteristics only slightly. The RFI method accounts partially
for this change by adjusting the overall level by which the
noise increases. Nevertheless, it assumes that since the char-
acteristics of the noise change only slightly, then the spectral
components of the noise in the perturbed experiment can be
thought of as having the same relative contributions as those
in the control experiment. When in addition the response
function is known to be monotonic, the estimate of the noise
can be further improved (step 6 of Fig. 1), this time by ad-
justing the relative contribution of the spectral components:
since the high-frequency region is known from the spectral
analysis of the response, then the components of the noise
are adjusted in the low-frequency region; this is done itera-
tively until the resulting response function becomes mono-
tonic. Such additional adjustment has been demonstrated to
give good results in the applications in the present study and
subsequent Part 2 for the special case where the response
function can be considered monotonic.

Although it is assumed that χ(t) is given by the spectral
form (Eq. 8), this is not essential for our method. In principle,
any functional form can be assumed for χ(t), or even none –
in which case one would recover χ(t) pointwise. However,
compared to the simpler pointwise recovery of χ(t), assum-
ing Eq. (8) has some advantages. The most obvious is that
in contrast to the pointwise approach, with Eq. (8) both χ(t)
and the spectrum can be recovered together. If χ(t) is re-
covered pointwise, the spectrum has to be derived in a sec-
ond step from χ(t), which is also an ill-posed problem (Is-
tratov and Vyvenko, 1999). Further, the description (Eq. 8)
restricts the function space for the recovered χ(t), forcing
limt→∞χ(t)= 0 as is expected for most problems of inter-
est, which greatly simplifies the problem compared to the
case where χ(t) can assume any form. Our ansatz (Eq. 8)
also has advantages in comparison with the typical multi-
exponential ansatz (Eq. 7) assumed in most previous stud-
ies (see discussion in Sect. 3.1). When assuming that χ(t)
is given by a sum of few exponents, an important problem is
how to choose the number of exponents. The typical methods
to choose this number rely on “quality-of-fit” criteria, but for
ill-posed problems these criteria can be unreliable because
in these problems a good fit does not mean that the derived
parameters are close to the “true” parameters (see, e.g., the
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famous example from Lanczos, 1956, p. 272). In our ap-
proach, as long as the distribution of timescales is appropri-
ately prescribed and the data quality is sufficiently good, nu-
merical results indicate that the solution is approximately in-
dependent of the number of exponents (Appendix E). More-
over, compared to the multi-exponential approach, our ansatz
(Eq. 8) has two additional advantages: the first is that it
leads to the linear problem of finding only the spectrum q(τ)

– in contrast to the nonlinear problem of finding both the
timescales τi and the weights gi from Eq. (7) – which permits
an analytical solution and thereby gives more transparency to
the method. The second is that compared to the assumption
of only a few timescales, the ansatz of a continuous spec-
trum of timescales is typically more realistic for real systems,
which is, e.g., the case for the carbon cycle study presented
in Part 2. One limitation is however that our ansatz (Eq. 8)
restricts the solution to systems with exponentially relaxing
responses and vanishing oscillatory contributions.

In the present paper the robustness of our method has been
investigated only for artificial data taken from toy model ex-
periments. In this analysis, we not only knew the “true” re-
sponse function underlying the data, but also had control over
the two complications that may hinder its recovery, namely
the level of background noise and nonlinearities. Under these
ideal conditions, we could carefully examine the quality of
the response functions identified by our RFI method. Never-
theless, such conditions are hardly met in practice. Therefore,
the applicability of our method must be investigated as well
for real problems. Such an investigation is presented in Part 2
of this study.

Appendix A: Basic equations in this study are Fredholm
equations of the first kind

In this Appendix we show that Eqs. (1), (7), and (1) with χ(t)
given by Eq. (7) are indeed special cases of the Fredholm
equation of the first kind, as claimed in Sects. 3.1 and 3.2.
Since inverse problems in the form of this equation are well
known to be ill-posed (e.g., Groetsch, 1984; Bertero, 1989;
Hansen, 2010), this clarifies the inherent difficulties in identi-
fying linear response functions from perturbation experiment
data.

A Fredholm equation of the first kind is an equation of the
type (Groetsch, 1984)

h(t)=

b∫
a

k(t, s)f (s)ds. (A1)

Clearly, by setting a := 0, k(t, s) := 0 ∀ s > t , and
k(t, s) := k(t − s), one obtains the form of Eq. (1) – which
can also be seen as a Volterra equation of the first kind (Ol-
shevsky, 1930; Polyanin and Manzhirov, 1998; Groetsch,
2007).

That Eq. (7) is a special case of Eq. (A1) can be seen (Istra-
tov and Vyvenko, 1999) by noting that Eq. (7) can be written
in integral form as

χ(t)=

∞∫
0

e−t/τg(τ)dτ (A2)

with

g(τ)=

M∑
i=1

gi δ(τ − τi). (A3)

Since Eq. (A2) is a particular case of Eqs. (A1) and (7) is
a particular case of Eq. (A2), Eq. (7) is also a particular case
of Eq. (A1).

Now, entering Eq. (7), written in the form (Eqs. A2–A3),
into Eq. (1), one obtains an equation of the type

R(t)=

∞∫
0

k(t,τ )g(τ )dτ (A4)

with

k(t,τ )=

t∫
0

e−(t−s)/τf (s)ds, (A5)

which is a special case of Eq. (A1). Thus, Eqs. (1), (7),
and (1) with χ(t) given by Eq. (7) can all be understood as
Fredholm equations of the first kind.

Appendix B: Derivation of Eqs. (11) and (12) on which
our study is based

This Appendix complements Sect. 3.2 by deriving the set
of Eq. (11), Eq. (12) underlying the RFI algorithm. They
are a discretization of the basic definition (Eq. 6) of the lin-
ear response function we are interested in. The special form
(Eqs. 11, 12) involves in particular the logarithmic trans-
formation (Eq. 9) and a discretization of the representation
(Eq. 8) for the response function by means of a spectrum of
timescales. Since χ(t) is assumed to be given by a spectrum
of timescales according to Eq. (8), the discretization must be
performed in both the time and timescale domains.

We start by defining the nondimensional timescale

τ ′ :=
τ

τ0
, (B1)

where τ0 is a reference timescale. Applying definition
(Eq. B1) in Eq. (8) gives

χ(t)=

∞∫
0

g(τ0τ
′)e−t/τ0τ

′

τ0dτ ′. (B2)
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Due to the wide range of timescales of the systems of inter-
est such as climate and the carbon cycle (Part 2 of this study),
calculations are facilitated if the timescales are evenly dis-
tributed at a logarithmic scale. To do so, the following change
of variables is performed in Eq. (B2):

τ ′ = 10z, (B3)
dτ ′ = 10z ln10 dz= τ ′ ln10 dlog10τ

′. (B4)

Thus, Eq. (B2) becomes

χ(t)=

∞∫
−∞

g(τ010log10τ
′

)e−t/τ010log10τ
′

τ0τ
′ ln10 dlog10τ

′, (B5)

or simply

χ(t)=

∞∫
−∞

g(τ0τ
′)e−t/τ0τ

′

τ0τ
′ ln10 dlog10τ

′. (B6)

A convenient choice for the reference value is τ0 = 1 unit
of time, so that by Eq. (B1) the timescale τ = τ ′ units of time.
The resulting equation can thus be written as

χ(t)=

∞∫
−∞

q(τ ′)e−t/τ
′

dlog10τ
′, (B7)

with

q(τ ′) := τ ′ ln10 g(τ ′). (B8)

For convenience of notation we use simply τ instead of τ ′.
For the discretization the support of q(τ) is assumed to lie

within [logτmin, logτmax]. Accordingly, Eq. (B7) reduces to

χ(t)=

logτmax∫
logτmin

q(τ)e−t/τdlog10τ. (B9)

Taking a constant step 1 logτ such that logτmax =

logτmin+M1log10τ , Eq. (B9) may be written as

χ(t)=

M−1∑
j=0

logτmin+(j+1)1log10τ∫
logτmin+j1log10τ

q(τ)e−t/τdlog10τ. (B10)

Naming t = (k+ 1)1t , Eq. (6) can be rewritten as

1Y(t)=

k∑
i=0

(i+1)1t∫
i1t

χ(s)f (t − s)ds+ η(t). (B11)

Plugging Eq. (B10) into Eq. (B11) and rearranging the re-
sulting equation gives

1Y(t)=

M−1∑
j=0

log10τmin+(j+1)1log10τ∫
log10τmin+j1log10τ

K(t,τ )q(τ )

dlog10τ + η(t), (B12)

where

K(t,τ )=

k∑
i=0

(i+1)1t∫
i1t

e−s/τf (t − s)ds. (B13)

Assuming constant steps1log10τ and1t one may apply a
quadrature rule (Hansen, 2002) to both Eqs. (B12) and (B13),
so that

1Y(t)=1log10τ

M−1∑
j=0

K(t,τj )q(τj )+ ετ (t)+ η(t), (B14)

K(t,τ )=1t

k∑
i=0

e−si/τf (t − si)+ εt (t,τ ), (B15)

where ετ (t) and εt (t,τ ) are the errors resulting from the dis-
cretization. Plugging Eq. (B15) into Eq. (B14) yields

1Y(t)≈1log10τ 1t

M−1∑
j=0

q̃(τj )

k∑
i=0

e−si/τj f (t − si)

+ η(t)= ψ(t)+ η(t), (B16)

where q̃ is an approximation to q that accounts for the dis-
cretization errors. Now, if one requires that ψ(tk)+ η(tk)=
1Y(tk) for particular times tk ,

1Y(tk)=1log10τ1t

M−1∑
j=0

q̃(τj )

k∑
i=0

e−si/τj f (tk − si)

+ η(tk), k = 0,1, . . .,N − 1, (B17)

with the time steps chosen as follows,

tk =k1t, k = 0,1, . . .,N − 1, (B18)
si =i1t, i = 0,1, . . .,k, (B19)

and the timescales

τj = τmin10j1log10τ , j = 0,1, . . .,M − 1. (B20)

In order to simplify the notation, Eq. (B17) is written as

1Yk =1t

k∑
i=0

χk−i fi + ηk, k = 0, . . .,N − 1, (B21)

χk =1log10τ

M−1∑
j=0

qj e
−k1t/τj , k = 0, . . .,N − 1. (B22)

These are Eqs. (11) and (12) underlying our study.
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Appendix C: Spectrum q(τ) positive or negative for all
τ implies χ(t) is monotonic

This Appendix is referred to in Sect. 3.5 with the claim that a
sufficient condition for χ(t) being monotonic is that all com-
ponents qi have the same sign. The proof is as follows.

Let χ(t) be defined by Eq. (9). Then,

d
dt
χ(t)= −

∞∫
−∞

q(τ)
e−t/10log10τ

10log10τ
dlog10τ. (C1)

Since 10log10τ ≥ 0, e−t/10log10τ

10log10τ
≥ 0 ∀ t . Thus, if q(τ)≥

0 ∀ τ , then d
dt χ(t)≤ 0 ∀ t . Similarly, if q(τ)≤ 0 ∀ τ , then

d
dt χ(t)≥ 0 ∀ t .

Appendix D: Response function and noise in the
nonlinearized response for the toy model

In this Appendix it is shown how the linear response func-
tion and the noise terms are computed in Sect. 4.5 when dis-
cussing by means of the toy model the complications arising
from nonlinearity. We demonstrate that the linear response
function for the nonlinear response (Eq. 41 with a 6= 0) of
the toy model (Sect. 4.1) can be analytically obtained from
the linear case a = 0. Additionally, the noise from the con-
trol experiment and the combined noise in the response are
defined.

We first demonstrate how to obtain the linear response
function. Plugging Eq. (32) into Eq. (41) gives

Ynonlin(t)

=
[
1− 2aη∗(t)

] t∫
0

χ∗(t − s)f (s)ds

+ η∗(t)
[
1− aη∗(t)

]
− a

 t∫
0

χ∗(t − s)f (s)ds

2

. (D1)

Taking the ensemble average of Eq. (D1) and noting that
〈η∗(t)〉 = 0 gives

〈Ynonlin(t)〉 =

t∫
0

χ∗(t − s)f (s)ds+O(f 2). (D2)

Therefore, χ∗(t) obtained for a > 0 from the nonlin-
earized response (Eq. 41) is the same as for the case a = 0.

Now, by taking f = 0 in Eq. (D1) one obtains for this non-
linear case the noise from the control experiment:

ηctrl(t) := η
∗(t)[1− aη∗(t)]. (D3)

To define the combined noise η(t)+ η̃(t), one must first
define the nonlinear term η̃(t) from Eq. (39). For the nonlin-
earized response from the toy model, this term is given by

the nonlinear term in Eq. (D1), i.e.,

η̃(t) := −a

 t∫
0

χ∗(t − s)f (s)ds

2

. (D4)

Then, the noise term consists of the remaining terms of the
nonlinear response Ynonlin after subtracting the “clean” linear
response and the nonlinear term η̃, i.e.,

η(t) :=Ynonlin(t)−

t∫
0

χ∗(t − s)f (s)ds− η̃(t)

=− 2aη∗(t)

t∫
0

χ∗(t − s)f (s)ds

+ η∗(t)[1− aη∗(t)]. (D5)

Hence, the combined noise is given by

η(t)+ η̃(t) :=− 2aη∗(t)

t∫
0

χ∗(t − s)f (s)ds

+ η∗(t)[1− aη∗(t)]

− a

 t∫
0

χ∗(t − s)f (s)ds

2

. (D6)

Appendix E: Sensitivity of the recovered response
function and spectrum to the parameters M , logτmin,
and logτmax of the RFI algorithm

In this Appendix, it is shown that as long as the extent and
resolution of the discrete distribution of timescales approxi-
mate the spectrum sufficiently densely, the derived spectrum
qλ and the derived linear response function χ(t) are approxi-
mately independent of the number of timescalesM and of the
limits of the distribution logτmin and logτmax. To isolate the
effect of changes in M , logτmin, and logτmax from the effect
of noise, a relatively high SNR∼O(105) is taken. For the
computations we took data from 1 % experiments performed
with the toy model described in Sect. 4.1. No monotonicity
needed to be accounted for (step 6 of Fig. 1).

Figures E1–E5 show the recovery, taking the same limits
used throughout the paper (logτmin = −1 and logτmax = 5)
but a different number of timescalesM . Figures E6–E8 show
the recovery, keeping the number of timescales and the lower
limit used throughout the paper (M = 30 and logτmin = −1)
but changing the upper limit logτmax. Figures E9–E11 show
the recovery, keeping the number of timescales and the upper
limit used throughout the paper (M = 30 and logτmax = 5)
but changing the lower limit logτmax. As expected, the re-
sults are approximately independent of the changes in the
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Figure E1. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 30, logτmin = −1, and
logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black
lines indicate their “true” values.

Figure E2. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 60, logτmin = −1, and
logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black
lines indicate their “true” values.

Figure E3. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 90, logτmin = −1, and
logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black
lines indicate their “true” values.
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Figure E4. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 120, logτmin = −1,
and logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while
black lines indicate their “true” values.

Figure E5. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 140, logτmin = −1,
and logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while
black lines indicate their “true” values.

prescribed parameters. The only substantial differences are
found in the recovered spectra at timescales smaller than
the time step 1t = 1 and thus timescales over which any-
way only little information is given by data. These small
timescales are also problematic because of the ill-posedness
of the problem that suppresses high-frequency information
from the solution (see Groetsch, 1984, Sect. 1.1).
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Figure E6. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 30, logτmin = −1, and
logτmax = 7. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black
lines indicate their “true” values.

Figure E7. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 30, logτmin = −1, and
logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black
lines indicate their “true” values.

Figure E8. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 30, logτmin = −1, and
logτmax = 3. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black
lines indicate their “true” values.
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Figure E9. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 30, logτmin = −3, and
logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while black
lines indicate their “true” values.

Figure E10. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 30, logτmin = −5,
and logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while
black lines indicate their “true” values.

Figure E11. Response function χ(t) and spectrum qλ recovered from toy model data taking the RFI parameters M = 30, logτmin = −7,
and logτmax = 5. Blue dots in (a) and blue line in (b) indicate the recovered values for the spectrum and for the response function, while
black lines indicate their “true” values.
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