
1.  Introduction
The equilibrium climate sensitivity (ΔT2x) is the equilibrium global-mean surface warming per CO2 doubling 
(Hansen et al., 1985; Stocker et al., 2013). ΔT2x is often assumed to be constant (Stocker et al., 2013), allow-
ing the equilibrium warming from different CO2 increases to be characterized by a single metric and for 
time series with various CO2 changes to be used to estimate ΔT2x. A constant ΔT2x rests on two assumptions: 
each CO2 doubling induces the same radiative forcing, and each unit of forcing induces the same equilibri-
um warming (i.e., that the net radiative feedback is constant). However, for low or high enough CO2 concen-
trations, the net radiative feedback becomes positive, causing runaway glaciation (Hoffman et al., 1998) or a 
runaway greenhouse (Ingersoll, 1969; Komabayasi, 1967), respectively. Given these limits, will ΔT2x remain 
constant across the range of CO2 levels expected under future emissions scenarios?

Paleoclimatologists have investigated this question (Farnsworth et al., 2019; Heydt et al., 2016). Studies of 
the early Cenozoic find an increase in climate sensitivity with CO2 concentration (Anagnostou et al., 2016, 
2020; Caballero & Huber, 2013; Farnsworth et al., 2019; Shaffer et al., 2016; Zhu et al., 2019), while stud-
ies of the Pleistocene disagree about whether sensitivity increases (three of four models in Crucifix, 2006; 
Friedrich et al., 2016; Köhler et al., 2017; Snyder, 2019; Yoshimori et al., 2009), stays the same (Martín-
ez-Botí et al., 2015), or decreases (one of four models in Crucifix, 2006) with CO2. However, different conti-
nental configurations may affect how sensitivity changes with CO2 (Caballero & Huber, 2013; Farnsworth 
et al., 2019; Wolf et al., 2018).

While most studies of general circulation models under modern conditions have found that sensitivity in-
creases with CO2 (Bitz et al., 2012; Block & Mauritsen, 2013; Caballero & Huber, 2013; Duan et al., 2019; 

Abstract  Equilibrium climate sensitivity-the equilibrium warming per CO2 doubling-increases 
with CO2 concentration for 13 of 14 coupled general circulation models for 0.5–8 times the preindustrial 
concentration. In particular, the abrupt 4 × CO2 equilibrium warming is more than twice the 2 × CO2 
warming. We identify three potential causes: nonlogarithmic forcing, feedback CO2 dependence, and 
feedback temperature dependence. Feedback temperature dependence explains at least half of the 
sensitivity increase, while feedback CO2 dependence explains a smaller share, and nonlogarithmic forcing 
decreases sensitivity in as many models as it increases it. Feedback temperature dependence is positive 
for 10 out of 14 models, primarily due to the longwave clear-sky feedback, while cloud feedbacks drive 
particularly large sensitivity increases. Feedback temperature dependence increases the risk of extreme or 
runaway warming, and is estimated to cause six models to warm at least an additional 3K under 8 × CO2.

Plain Language Summary  Increasing CO2 reduces the rate at which energy leaves Earth, 
causing a net energy gain at its surface. The resulting warming increases the rate that energy leaves 
the planet. The planet stops warming once it regains balance. Studies usually assume that doubling 
atmospheric CO2 always produces the same eventual global temperature rise (called the “equilibrium 
climate sensitivity”), whatever the starting CO2 level. We show, on the contrary, that in nearly all the 
computer climate models we have examined, the extra warming for each doubling goes up as the CO2 level 
increases. In most models, the warmer the climate becomes, the more it has to warm in order to balance 
a further CO2 doubling because warming becomes less effective at rebalancing the flow of energy. This 
effect increases projections of warming, especially for scenarios of greatest CO2 increase.
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Gregory et al., 2015; Hansen et al., 2005; Jonko et al., 2013; Meraner et al., 2013; Rieger et al., 2017; Rohrsch-
neider et al., 2019), some have found that it decreases (Kutzbach et al., 2013; Stouffer & Manabe, 2003) or 
remains roughly constant (Colman & McAvaney, 2009). However, these 13 studies only evaluate ΔT2x for 
models from five modeling centers. In most cases, they use mixed-layer oceans, neglecting changes in ocean 
dynamics that can affect sensitivity (Farnsworth et al., 2019; Kutzbach et al., 2013).

Recently, two datasets have become available with coupled atmosphere-ocean general circulation model 
(AOGCM) simulations at multiple constant CO2 levels initialized under preindustrial conditions (abrupt 
n × CO2 simulations, where n × CO2 refers to the increase relative to preindustrial CO2 concentration): 
10 Coupled Model Intercomparison Project Phase 6 (CMIP6) models with abrupt 0.5 × CO2 and abrupt 
2  ×  CO2 simulations run as part of NonLinMIP (Good et  al.,  2016) in addition to the standard abrupt 
4  ×  CO2 simulations (Eyring et  al.,  2016), and five models in the LongRunMIP archive (a collection of 
1,000+ year simulations of coupled AOGCMs; Rugenstein et al., 2019) with abrupt 2 × CO2, abrupt 4 × CO2, 
and abrupt 8 × CO2 simulations. One model participated in both projects.

In this paper, we show that equilibrium climate sensitivity generally increases with CO2 level (Section 2); 
that changes in radiative forcing are not large enough to explain this increase for most models (Section 3); 
and that the increase is instead caused by positive feedback temperature dependence, with some contribu-
tion from feedback CO2 dependence (Section 4). We compare these three nonlinear terms and their causes 
(Section 5) and then summarize our findings (Section 6).

2.  Equilibrium Warming
Let T be the globally averaged surface temperature and ΔT ≡ T − Tpi be the warming relative to the prein-
dustrial period. We define ΔTeq(C) as the equilibrium warming caused by changing the CO2 concentration 
from its preindustrial value (pCO2,pi ≈ 280ppm) to a new value (pCO2), where C is the number of CO2 dou-
blings relative to this preindustrial period,
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Under preindustrial conditions, Cpi = 0; in an abrupt 2 × CO2 simulation, C = 1; and so forth. Table S1 is a 
glossary of all symbols used in this paper.

One condition for equilibrium is that the net top-of-atmosphere radiative flux N (downwards positive) is 
zero, on average. If we assume that N depends solely on C and T, then we can express a change in N in an 
abrupt n × CO2 simulation as an initial change due to C and a subsequent change due to T:
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F is the radiative forcing, the change in N relative to a given initial condition (Ci, Ti) caused by C doublings 
of CO2 while holding surface temperature fixed (F(Ci, Ti, C) ≡ N(Ci + C, Ti) − N(Ci, Ti)), and λ is the radi-
ative feedback, the dependence of N on T (λ(C, T) ≡ ∂N(C, T)/∂T), where the sign convention implies the 
feedback is typically negative. We can find ΔTeq(C) by setting N(C, T) = 0:

F C T C C T dTpi pi
Tpi

Tpi Teq C

, , ,     
  
 


� (5)

where we assume N(Cpi, Tpi) = 0, since the preindustrial climate was roughly in equilibrium.
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Under preindustrial concentrations, the spectral line shape of CO2 absorption bands creates a logarithmic 
dependence of N on changes in pCO2, so that the forcing per CO2 doubling (    /F N C) is often assumed 
to be constant (Myhre et al.,  1998). Our definition of radiative forcing also includes adjustments of the 
atmosphere, land, and ocean to CO2 changes that occur independently of subsequent changes in surface 
temperature (e.g., Kamae et al., 2015; Sherwood et al., 2014). This “effective radiative forcing” is also of-
ten assumed to be constant per CO2 doubling (Forster et al., 2016), as is the radiative feedback (Gregory 
et al., 2004; Hansen et al., 1985). Substituting these constant terms into Equation 5, we can solve for ΔTeq(C):

 


 


Δ eq
FT C C� (6)

Assuming a constant F and λ is equivalent to approximating N(T, C) with the linear Taylor expansion of 
N around preindustrial values of Cpi and Tpi (i.e.,    , ΔN C T FC T , where C = ΔC because Cpi = 0). 
The linear approximation of Equation 6 is ubiquitous in climate science (e.g., Knutti et al., 2017; Stocker 
et al., 2013).

The linear approximation implies that the equilibrium climate sensitivity (ΔT2x), the equilibrium warming 
per CO2 doubling, is simply   /F , which, being a ratio of two constants, is itself a constant. It should 
therefore not matter how many CO2 doublings are used to estimate it since ΔT2x = ΔTeq (C1)/C1 = ΔTeq (C2)/
C2. Figure 1a shows instead that our estimates of ΔTeq(C)/C increase with CO2 concentration for 13 of 14 
models. Colored bars show estimates made by extrapolating regressions of years 21–150 of N against ΔT 
to equilibrium (N = 0) for abrupt 2C × CO2 simulations (Gregory et al., 2004, see also solid gray lines in 
Figure S1). In these estimates, N and ΔT are anomalies: for LongRunMIP, we subtract the model's control 
simulation's mean value; for CMIP6, we subtract the linear fit of the control simulation after the branch 
point for the abrupt n × CO2 simulations. We use only one ensemble member for each simulation.

Estimates of ΔTeq typically increase with simulation length (Dai et al., 2020; Dunne et al., 2020; Rugenstein 
et al., 2020). While most CMIP6 simulations are only 150 years long, some are longer, and the LongRun-
MIP models are all at least 1,000 years long. Black horizontal lines in Figure 1a show estimates using years 
101–750+ (see Table  S2 for exact number of years). Here and in the following we use bootstrapping to 
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Figure 1.  (a) Equilibrium warming per CO2 doubling (ΔTeq(C)/C) for abrupt −2C ×  simulations estimated using years 21–150 (colored bars and gray horizontal 
lines) and years 101–n (where n is at least 750 years and given in Table S2; black horizontal lines). Vertical lines in panels a and b and all lines in panel c give the 
2.5th–97.5th percentile range of uncertainty (see Text S1). FAMOUS abrupt 4 × CO2 is an outlier, with ΔT4x/2 = 7.6K when 1,000 years are used. (b) Radiative 
forcing per CO2 doubling (F(C)/C) for abrupt −2C ×  simulations estimated using years 1–10 (colored bars and gray horizontal lines). The dashed black line 
shows the Myhre et al. (1998) assumption of linear F(C), while the gray bars give the analytic formula from Byrne and Goldblatt (2014). (c) Colored squares 
(octagons) show the factor by which equilibrium warming and forcing for an abrupt 4 × CO2 (abrupt 8 × CO2) simulation exceeds the linear extrapolation of its 
model's abrupt 2 × CO2 values. Colors are the same as panels (a) and (b). FAMOUS and CESM2 4X have nonlinear warming factors greater than 1.8.

(a) (c)

(b)
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estimate the 2.5th to 97.5th percentile range of uncertainty (gray and black vertical lines in Figure 1; see 
Text S1). Black bars show multimodel mean values for the two experiments for which we have simulations 
of all models.

The sensitivity definition in Figure 1a (i.e., ΔT2x(C) ≡ ΔTeq(C)/C) is often used to estimate ΔT2x from abrupt 
4  ×  CO2 simulations, which our results suggest would lead to an average overestimate of at least 0.5K, 
even neglecting the outlier of FAMOUS. Equivalently, the nonlinearity of N leads to an average increase 
in equilibrium warming of at least 1K under 4 × CO2. Sherwood et al. (2020) suggested that using only the 
first 150 years to estimate ΔTeq of an abrupt 4 × CO2 simulation compensates for this overestimate. For our 
five models with 1,000+ year abrupt 2 × CO2 simulations, this compensation does not hold individually 
(CNRM-CM6-1's ΔT2x would be 0.4K too small, FAMOUS's 1.8K too large), or on average (an 8% overes-
timate). If we define sensitivity instead as the equilibrium warming caused by successive CO2 doublings 
(ΔT2x(C) ≡ ΔTeq(C) − ΔTeq (C − 1); Jonko et al., 2013), then changes in sensitivity are larger, with increases 
larger than 1K for seven models (Figure S2). Alternatively, if we define sensitivity as the warming from 
doubling CO2 relative to preindustrial conditions only (ΔT2x ≡ ΔTeq (1); e.g., Ceppi & Gregory, 2017; Knutti 
et al., 2017), our results suggest that this metric may have a limited applicability.

The above shows that the equilibrium climate sensitivity is inconstant, and thus the linear approximation 
is inaccurate. To understand the increase in sensitivity, we take the quadratic Taylor expansion of N around 
(Cpi, Tpi):
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Substituting these new terms into Equation 5, we have:
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nonlinear forcing),  
 

 

2

C
N

C T
 is the feedback CO2 dependence, and  
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The three nonlinear terms ( 
CF , C , and T ) can all cause the equilibrium climate sensitivity to change 

with CO2 concentration. Solving for ΔTeq(C), we have
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We ignore the other quadratic solution, which gives an unstable equilibrium for C. In the following sections, 
we consider the impact of these terms on ΔTeq.

3.  Radiative Forcing
Direct forcing depends linearly on C for small C (Myhre et al., 1998, who estimate F(C) = 3.71 C Wm−2; 
dashed black line, Figure 1b). At higher CO2 levels, new absorption bands make this dependence superline-
ar (Byrne & Goldblatt, 2014; Etminan et al., 2016). Using the left side of Equation 8, we have

      21, ,
2pi pi pi CF C T C F C FC� (10)
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Byrne and Goldblatt (2014) used line-by-line radiative calculations and a simple stratospheric adjustment 
model to estimate  23.69WmpiF  and   20.375WmCF  for 0.7 × CO2–36 × CO2, implying an increase in 
forcing per doubling with CO2 concentration (gray bars in Figure 1b).

We estimate forcing per doubling for each simulation (colored bars, Figure  1b) by regressing the first 
10 years of N versus ΔT to ΔT = 0 (dashed black lines in Figure S1; Gregory et al., 2004). This estimate 
includes adjustments as well as direct effects. Forcing per doubling decreases with C about as often as it 
increases, so that nonlinear forcing cannot explain the general increase in sensitivity. For CO2 levels for 
which we have simulations for all models (2 × CO2 and 4 × CO2), the multimodel mean forcing per doubling 
slightly decreases with C, although this decrease is not statistically significant.

Sensitivity increases with CO2 concentration by a greater factor than forcing per doubling for most models 
(Figure 1c). While all simulations but one have superlinear warming (i.e., are right of the vertical dashed 
line), nine simulations have sublinear forcing (i.e., are below the horizontal dashed line). Thirteen out of 
seventeen simulations have a smaller forcing increase than a warming increase (i.e., fall below the 1-to-1 
line), as do the multimodel means. Moreover, there is little correlation between the nonlinear warming 
and forcing factors (R2 = 0.05), even ignoring models with anomalous sensitivity increases (FAMOUS and 
CESM2; R2 = 0.14). Forcing does not play a large role in the sensitivity increase for most models, although 
it may for individual models (e.g., CESM1.0.4).

Using 20 years instead of 10 to estimate F reduces uncertainty (Figure S3a) but biases estimates of F low 
because of an increase in the slope of N versus ΔT over time (Figure S3b) and has little effect on our findings 
in Figure 1c (see Figure S3c). Sensitivity also increases by a greater factor than would be implied by Byrne 
and Goldblatt (2014) (Figure S3d). Our findings are also the same if we first estimate 

piF  and  
CF  for each 

model by fitting the quadratic function in Equation 10 (Figures S4a and S4b):  
CF  is positive for only half of 

the models, with multimodel mean values of  24.01WmpiF  and   20.017WmCF .

4.  Radiative Feedback
If sensitivity is not proportional to forcing, then Equation 5 implies the feedback is inconstant. Inconstant 
feedbacks are commonly associated with the “pattern effect,” in which the slope of N versus ΔT under 
constant forcing varies. This slope is a weighted average of the spatial pattern of feedbacks, where the 
weights are given by the spatial pattern of surface warming. The warming pattern evolves primarily due to 
the delay of warming in regions of deep ocean heat uptake (e.g., Andrews et al., 2015; Armour et al., 2013; 
Bloch-Johnson et al., 2020; Dong et al., 2019; Rose et al., 2014; Rugenstein et al., 2016; Senior & Mitch-
ell, 2000; Zhou et al., 2017).

The framework in Section 2 does not account for spatially varying feedbacks, which make N(C, T) an ill-de-
fined function, in that it can have multiple values: the same globally averaged T with warmer temperatures 
in regions with strong negative feedbacks implies a lower N than if the surface temperature was spatially 
uniform. It is more accurate to define  ,N C T , where 


ΔT  is the spatial temperature pattern (Haugstad 

et al., 2017). This means that the equilibrium response cannot generally be estimated from the slope of N 
versus ΔT, which may evolve differently at different forcing levels simply because the patterns of warming 
associated with each simulation are different. For example, it is possible for the slope of N versus ΔT to 
change due to a pattern effect, but for the overall response to forcing to be linear, so that the equilibrium 
climate sensitivity is constant (Rohrschneider et al., 2019).

To create a tractable framework, we assume that every globally averaged surface temperature T is associated 
with a unique equilibrium pattern,  


eqT T , which is the pattern when T is in equilibrium (stable or unstable) 

for some C. We then substitute N with    


, ( , )eq eqN C T N C T T  in our above definitions of λ and F. This 
substitution does not affect our forcing definition, as forcing is typically defined with respect to an equili-
brated state but ensures that any change in the feedback implies a change in the proportionality of F(C) to 
ΔTeq(C), and vice versa, as expected from Equation 5. It also causes λ to vary far less with T than suggested 
by the slope of N versus T (Figure S1) since changes in the equilibrium pattern of warming are much small-
er than the time-evolution of the transient warming pattern.
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From Equation 8, we have:

        , Δpi C TC T C T� (11)

where λpi ≡ ∂N/∂T|pi is the preindustrial feedback, ∂Cλ ≡ ∂λ/∂C = ∂2N/∂C∂T represents the feedback CO2 
dependence, and ∂Tλ ≡ ∂λ/∂T = ∂2N/∂T2 represents the feedback temperature dependence (Bloch-Johnson 
et al., 2015; Roe & Armour, 2011).

Feedback CO2 dependence quantifies the effect of additional atmospheric CO2 on radiative feedbacks, such 
as damping the Planck feedback by making more frequencies optically thick (Seeley & Jeevanjee, 2020). It 
can also include effects due to forcing adjustments. The pattern effect prevents us from comparing the slope 
of N versus ΔT across forcing levels to estimate ∂Cλ. Instead, we use additional experiments for five coupled 
AOGCMs, CESM1.2.2, CESM2*, CNRM-CM6-1*, HadGEM2, and HadGEM3-GC31-LL* (starred models are 
from our main analysis; see Table S3 and Text S2), to estimate ∂Cλ. Since         2/ / /C N C T F T , 
feedback CO2 dependence is also the dependence of the forcing per doubling on the reference temperature. 
We use pairs of experiments initialized at a colder temperature (Tcold) and a warmer temperature (Twarm) and 
the same initial CO2 concentration Ci to estimate forcing from the same amount of CO2 doubling C:

 
  

    


 warm cold

warm cold

Δ , ,1
Δ

i i
C T

F C T C F FF
T C T T C

� (12)

where Fwarm ≡ F(Ci, Twarm, C) and Fcold ≡ F(Ci, Tcold, C).

Fcold and Fwarm can be estimated using pairs of abrupt simulations (i.e., an abrupt 4 × CO2 simulation to 
estimate Fcold, and a simulation where CO2 is abruptly lowered from 4 × CO2 to preindustrial values to esti-
mate −Fwarm) or from two pairs of fixed-SST experiments (Hansen et al., 2005) at two different temperatures 
and CO2 concentrations. ∂Cλ has a multimodel mean value of ∂Cλmean = 0.0256 W m−2 K−1 and a range of 
0.0057–0.049 W m−2 K−1, suggesting that feedback CO2 dependence is generally positive, increasing sensi-
tivity with CO2 concentration.

To estimate each model's feedback temperature dependence, we perform a least squares fit of Equation 8 
using estimates of 

piF  and  
CF  from the previous section, as well as model-specific estimates of ∂Cλ when 

available or otherwise ∂Cλmean. We perform this fit using pairs of C and ΔTeq for each simulation, including 
the pair C = 0 and ΔTeq = 0 for the control simulation, giving estimates of λpi and ∂Tλ (colored dots, Fig-
ure 2). We find that 10 of the 14 models have positive feedback temperature dependence, with a multimodel 
mean value of ∂Tλmean = 0.029 W m−2 K−2 and a range from −0.14 to 0.109 W m−2 K−2.

With positive feedback temperature dependence, warming increases the feedback, leading to further warm-
ing, and so on. Under sufficient forcing, runaway warming occurs (Bloch-Johnson et al., 2015; Zaliapin & 

Ghil, 2010), specifically when Equation 9 has no real solution (            2 2/ 2T pi C C piC FC F C ), as 

shown by the light gray region for 8 × CO2 and dark gray region for 4 × CO2 (assuming that radiative forcing 
follows Byrne and Goldblatt (2014) and ∂Cλ = ∂Cλmean). FAMOUS falls in the latter region, and its abrupt 
4 × CO2 simulation does appear to lose its negative feedback (Figure S1); four models lie in the 8 × CO2 
runaway region. Climates in the gray regions do not actually warm infinitely, but simply warm sufficiently 
that the quadratic approximation breaks. Higher-order terms determine the temperature at which stability 
is regained, or if stability is lost in the first place. Models close to these runaway regions experience a sen-
sitivity increase at the associated forcing level: the six models with black outlines experience an estimated 
increase of equilibrium warming under 8 × CO2 of at least 3K, given each model's forcing and ∂Cλ estimates.

High estimated sensitivity (ΔT4x/2 > 4.5K) has been found in 20 CMIP6 models (Table S4). Of the six mod-
els with ΔT4x/2 > 4.5K that appear in our study (i.e., models right of the dotted line in Figure 2), four have 
ΔT2x < 4.5K (i.e., are left of the dashed line). These models reconcile the moderate ΔT2x implied by obser-
vations, paleoclimate, and processed-based analysis (Sherwood et al., 2020) with the sensitivity increases 
seen in paleoclimate studies of the warm Cenozoic (Anagnostou et  al.,  2016; Caballero & Huber,  2013; 
Farnsworth et al., 2019; Pierrehumbert, 2013; Shaffer et al., 2016).
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To test the assumptions behind Figure 2, we recalculate it with default values of ∂Cλ = 0 and 0.05 W m−2 K−1 
(Figures S5a and S5b, respectively). This shifts the estimates of ∂Tλ in the opposite direction as ∂Cλ, but also 
shifts the thresholds in the same manner, so that qualitatively the results are unchanged. Estimating forcing 
using years 1–20 instead of 1–10 has little effect (Figure S5c), so does using the direct estimate of F(C) in-

stead of 
 

  
 

 1
2pi CF FC C on the left side of Equation 8 (Figure S5d). Figure S5e shows how ∂Tλ evolves as 

more years are used to estimate the equilibrium warming. While more years do not greatly affect the results 
relative to each other, using years 101–1,000 instead of 21–150 increases the magnitude of ∂Tλ (excepting 
FAMOUS, which appears to be in a state of runaway). Since feedback temperature dependence should con-
tinue to affect the slope of N versus ΔT beyond year 150 (Rugenstein et al., 2020), our estimates of CMIP6 
models' |∂Tλ| and sensitivity changes may both be biased low.

5.  Causes of Sensitivity Increases
Figure 3a compares the contribution of the three nonlinear terms to each model's change in equilibrium 
climate sensitivity, ΔΔT2x ≡ ΔT4x/2 − ΔT2x. Using Equation 9 to express equilibrium warming as a function 
of the quadratic approximation coefficients,       Δ ; , , , ,eq pi pi C C TT C F F , we define:

            
2 ,ΔΔ Δ 2; , , ,0,0 / 2 Δ 1; , , ,0,0eq pi pi C eq pi pi Cx FC

T T F F T F F� (13)

            
2 ,ΔΔ Δ 2; , ,0, ,0 / 2 Δ 1; , ,0, ,0x eq pi pi C eq pi pi CCT T F T F� (14)

            
2 ,ΔΔ Δ 2; , ,0,0, / 2 Δ 1; , ,0,0,x eq pi pi T eq pi pi TTT T F T F� (15)

Feedback temperature dependence is the dominant term for the three models with the largest sensitivity 
increases, accounts for 69% of the average increase and contributes the largest term to the median increase 
(where FAMOUS is excluded from the averages, as the quadratic model suggests it experiences runaway 
warming under 4 × CO2). Feedback CO2 dependence contributes a small, positive increase in sensitivity, 
while nonlinear forcing decreases sensitivity about as much and as often as it increases it.
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Figure 2.  Preindustrial feedback versus feedback temperature dependence (colored dots; colored ellipsoids give the 
75th percentile of uncertainty). Values in the dark (light) gray region imply runaway warming under 4 × CO2 (8 × CO2) 
and values above the dashed (dotted) black line have a sensitivity estimated from abrupt 2 × CO2 (abrupt 4 × CO2) 
above 4.5K. All thresholds are calculated assuming forcing from Byrne and Goldblatt (2014) and model-mean feedback 
CO2 dependence. Colored dots with black outlines experience an additional 3K of equilibrium warming under 8 × CO2 
given our estimate of that model's forcing and ∂Cλ.
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To better understand these sensitivity increases, we estimate the flux components of the preindustrial feed-
back and feedback temperature dependence (Figures 3b–3d; see Figure S6 for all components and uncer-
tainties) by substituting individual top-of-atmosphere fluxes for N in the above derivations (see Text S3). 
We consider longwave (LW) versus shortwave (SW) and noncloud versus cloud components. For LW fluxes, 
noncloud versus cloud components are estimated using clear-sky fluxes and cloud radiative effect. For SW 
fluxes, to avoid cloud masking (Soden et al., 2004) we instead use approximate partial radiative perturbation 
(APRP; Taylor et al., 2007) for models with sufficient data available, including most CMIP6 models. For all 
other models, we use clear-sky fluxes and cloud radiative effect as with the LW.

The LW noncloud feedback typically has positive temperature dependence (colored circles, Figure 3b) due to 
an increasing water vapor feedback (Colman & McAvaney, 2009; Crucifix, 2006; Meraner et al., 2013). While 
some studies found that this increase is balanced by a strengthening negative lapse rate feedback (Boer 
et al., 2005; Caballero & Huber, 2013; Colman & McAvaney, 2009; Yoshimori et al., 2009), in recent studies, 
the water vapor feedback dominates (Block & Mauritsen, 2013; Jonko et al., 2013; Meraner et al., 2013; 
Rieger et al., 2017), and Meraner et al. (2013) found a positive ∂TλLWnoncloud for most CMIP5 models. Our 
findings contradict recent papers that find a constant LW clear-sky feedback (Koll & Cronin, 2018; Zhang 
et al., 2020), though we agree that the value of the preindustrial feedback is likely close to −2 W m−2 K−1.
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Figure 3.  (a) Contributions to the change in sensitivity from 2 × CO2 to 4 × CO2 (black bars) from nonlinear forcing ( 
CF, horizontally hatched bars), 

feedback CO2 dependence (∂Cλ, crossed-hatched bars), and feedback temperature dependence (∂Tλ, diagonally hatched bars). Dotted bars represent cross-terms, 
higher-order nonlinearities, and errors in our estimates. FAMOUS is not included in the mean and median as the quadratic model suggests it is in a state of 
runaway under 4 × CO2. (b), (c), and (d) Colored circles give estimates of the longwave (LW) noncloud, shortwave (SW) noncloud, and net cloud components, 
respectively, of the preindustrial feedback and feedback temperature dependence. Models with dotted circles use clear-sky fluxes instead of approximate partial 
radiative perturbation to partition the SW flux into noncloud and cloud components. Colors are given by the model names in panel a. Gray circles give the 
multimodel mean and gray ellipsoids give the estimated 75th percentile of uncertainty. The shaded regions in panel b are as in Figure 2. Triangles in panel b 
show the result of adding the SW noncloud component to LW noncloud components. Squares show the result for additionally adding the net cloud component.
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The SW noncloud feedback (colored circles, Figure 3c) is the sum of a surface term (Figure S6e) and an 
atmosphere term (Figure S6f). The former represents a positive ice albedo feedback, which typically sat-
urates, giving a negative temperature dependence (Block & Mauritsen, 2013; Colman & McAvaney, 2009; 
Duan et al., 2019; Jonko et al., 2013; Meraner et al., 2013; Rieger et al., 2017). The noncloud atmosphere 
term represents a positive water vapor feedback, which typically has a positive temperature dependence. 
Their sum has a positive preindustrial feedback with negligible temperature dependence (Figure 3c). The 
SW noncloud outliers are models for which clear-sky fluxes were used instead of APRP (circles with black 
dots, Figure 3c). Comparison of clear-sky versus APRP estimates of the SW noncloud component suggests 
that cloud masking biases generally increases the uncertainty of the SW noncould component (Figures S6c 
vs. S6g).

While the cloud feedback has multimodel mean values close to zero, it has more intermodel spread than the 
other two components (Figure 3d) and has positive temperature dependence for most models. For CESM2, 
this occurs because its negative mixed-phase cloud feedback saturates (Bjordal et al., 2020; Frey & Kay, 2018; 
Tan et al., 2016). The spread in cloud feedback explains the range of nonlinearity in Figure 3a. The average 
LW noncloud feedback on its own (gray circle in Figure 3b) would experience too little warming for its 
temperature dependence to matter (e.g., ΔΔT2x = ΔT4x/2 − ΔT2x ≈ 0.17K assuming forcing from Byrne and 
Goldblatt  (2014) and average ∂Cλ). Adding the SW noncloud feedback does not change the temperature 
dependence but makes the preindustrial feedback more positive (gray triangle in Figure 3b), causing more 
warming, increasing the nonlinearity (e.g., ΔΔT2x ≈ 0.33K using the same assumptions). Adding the average 
cloud feedback causes little change (gray square in Figure 3b). For individual models, cloud feedbacks can 
move the climate into nonlinear regions, either by increasing the preindustrial feedback (CanESM5) or by 
increasing the feedback temperature dependence (CESM2 and FAMOUS). On the other hand, GISS-E2-2-
G's cloud feedback temperature dependence is anomalously negative, and, therefore, it is the only model for 
which sensitivity decreases with CO2 concentration.

We briefly discuss the flux components of the other two nonlinear terms (Figure S7). The LW clear-sky term 
of the nonlinear forcing is negative for 11 of 14 models (Figure S7a). Since the direct LW clear-sky forcing 
depends superlinearly on CO2 doubling (Byrne & Goldblatt, 2014), this negative term is due either to over-
simplifications in the model's radiative scheme or to adjustments. The other components vary in sign, with 
the largest source of intermodel spread coming from the cloud components. Since APRP accounts for cloud 
masking, the SW cloud spread must also be due to forcing adjustments. Adjustments thus play a first-order 
role in determining nonlinear forcing. The LW clear-sky component of feedback CO2 dependence is positive 
for all five models (Figure S7b), likely due to a blocked Planck feedback. SW cloud contributes the largest 
source of intermodel spread, so that forcing adjustments also play a first-order role in this nonlinearity.

6.  Conclusions
Equilibrium climate sensitivity increases with CO2 concentration for 13 of 14 models, contradicting the 
linear approximation of global energy balance, which assumes a constant forcing per CO2 doubling and a 
constant radiative feedback. On average, climate models experience at least a degree of additional equilib-
rium warming under 4 × CO2 due to this sensitivity increase. Using a quadratic approximation allows us to 
capture the sensitivity increase using three second-order terms: nonlinear forcing, feedback CO2 depend-
ence, and feedback temperature dependence.

Feedback temperature dependence explains 69% of the sensitivity increase and explains more of the median 
increase than any other term. Most importantly, it explains the particularly large increase seen in a handful 
of models, as positive feedback temperature dependence can cause runaway increases in sensitivity. Four 
models are predicted to experience runaway warming under CO2 concentrations eight times larger than the 
preindustrial, and six models are projected to experience at least three additional degrees of equilibrium 
warming under this concentration. Feedback temperature dependence plays a key role in determining the 
risk of extreme warming in the coming centuries.

Out of 14, 10 models have positive feedback temperature dependence, primarily due to the LW clear-sky 
feedback. Models with large sensitivity increases have cloud feedbacks with either anomalously positive 
temperature dependence or anomalously positive preindustrial values. Feedback CO2 dependence plays a 
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smaller role, but results from five models suggest that it is likely positive, increasing sensitivity, primarily 
due to its LW clear-sky component. The forcing per CO2 doubling decreases with CO2 concentration for as 
many models as it increases. Nonlinear forcing contributes less to the sensitivity increase than either other 
term, although it can be important for individual models. Forcing adjustments play a first-order role in 
determining the nonlinear forcing.

The substantial uncertainties in some of the terms discussed here could be greatly decreased with addition-
al simulations. Longer simulations give better estimates of equilibrium warming (Dai et al., 2020; Dunne 
et al., 2020; Rugenstein et al., 2020); fixed-SST experiments give better radiative forcing estimates (Forster 
et al., 2016; Pincus et al., 2016); and simulations at multiple CO2 levels allow for an assessment of nonlin-
earities (Good et al., 2016). Simulations that behave in surprising or anomalous ways may be exhibiting 
nonlinear dynamics, and should not be neglected (Valdes, 2011). Even if a loss of stability causes models 
to warm outside the range for which they were calibrated, the increase in sensitivity may still be physical. 
Exploring and documenting the nonlinear frontiers of warming in climate models is essential to assessing 
the risk of extreme warming for the real world.

Data Availability Statement
CMIP6 data are at https://pcmdi.llnl.gov/CMIP6/. LongRunMIP data access is at http://www.longrunmip.
org/.
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