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Abstract
We present a fully automated method for the optimal state space reconstruction from univariate
and multivariate time series. The proposed methodology generalizes the time delay embedding
procedure by unifying two promising ideas in a symbiotic fashion. Using non-uniform delays
allows the successful reconstruction of systems inheriting different time scales. In contrast to the
established methods, the minimization of an appropriate cost function determines the embedding
dimension without using a threshold parameter. Moreover, the method is capable of detecting
stochastic time series and, thus, can handle noise contaminated input without adjusting
parameters. The superiority of the proposed method is shown on some paradigmatic models and
experimental data from chaotic chemical oscillators.

1. Introduction

State space reconstruction from observational time series often marks the first and basic step in nonlinear
time series analysis. Several methods addressed the reconstruction problem, but none of them allow for a
fully automatized and reliable way of embedding an uni- or multivariate set of observed time series with no,
or at least very few, free parameters. The aim of this paper is to provide such a technique. The embedding
theorems of Whitney [1], Mañé [2], and Takens [3] among with their extension by Sauer et al [4] allow
several approaches to tackle the reconstruction problem. Among using derivative coordinates [5, 6], PCA
[7] or Legendre coordinates [8], uniform- and nonuniform time delay embedding (TDE) [7] is by far the
most commonly used technique, due to its appealing simplicity. However, since Takens’ theorem [3] is
based on noise-free and infinitely long data, it does not give any guidance to choose the proper time
delay(s) τ in practice. Together with the unknown box-counting dimension DB of the observed, but
unknown system, which is needed to fulfil the embedding dimension criterion m � 2DB + 1, the majority
of the published articles propose ideas to infer estimates for τ and the reconstruction dimension m from
data, usually a univariate time series (univariate embedding). The reconstruction problem starts with the
unknown system �u(t) with a mapping f : RDB → R

DB , which is observed via a measurement function h and
lead to M observational time series {si(t)|i = 1, . . . , M} (figure 1). There can be different measurement
functions h′ forming the multivariate dataset si(t) and the combination of Whitney’s and Takens’
embedding theorems allow for constructing �u(t) from more than one time series (multivariate embedding)
[4, 9]. One then tries to find optimal embedding parameters m and τ ’s (the delays can be integer multiple
of some constant, uniform time delay embedding UTDE, or different for each embedding dimension,
non-uniform time delay embedding NUTDE) in order to build reconstruction vectors�v(t) and, thus, a
mapping F : Rm →R

m. These can be furthermore transformed by Ψ into�v′(t) and F′, preserving the

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/abe336
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9943-5391
https://orcid.org/0000-0003-0993-3184
https://www.pik-potsdam.de/members/hkraemer
mailto:hkraemer@pik-potsdam.de


New J. Phys. 23 (2021) 033017 K H Kraemer et al

Figure 1. Schematic representation of the embedding/reconstruction procedure. See the text for details. This figure is inspired by
Casdagli et al [10] and Uzal et al [11].

diffeomorphism to �u(t). For a detailed introduction into the reconstruction problem we refer to Casdagli
et al [10], Gibson et al [8], Uzal et al [11] or Nichkawde [12].

In TDE the key idea is to use lagged values of the available time series as components of the
reconstruction vector

�v(t) =
(
si1 (t − τ1), si2 (t − τ2), . . . , sim (t − τm)

)
. (1)

The delays τ j and the corresponding time series sij , j = [1, . . . , m] should be chosen, such that the resulting
components of the vectors forming the reconstructed state space�v(t) are as independent as possible [4, 7],
but at the same time preserve the correlation structure of the system to a certain extent. These two
competing objectives are also known as the problems of redundancy (delays should not be too small) and
irrelevance (delays should not be too large) [10, 11, 13, 14] and its optimization is goal to any proposed
TDE procedure.

Despite of its lack of a sound theoretical foundation for higher dimensional reconstructions (m > 2)
[15–17], in a univariate scenario [i.e. si1 = · · · = sim = s(t) in equation (1)], the approach to choose τ 2

from the first minimum of the auto-mutual information [18, 19] is most common. τ 1 is usually set to zero,
i.e. the unlagged time series constitutes the first component of the reconstruction vectors. The embedding
dimension m is then separately determined, usually by a false nearest neighbour approach [20–24] or some
other neighbourhood-preserving-idea [25, 26] and all delays up to τm are simply integer multiples of τ 2

(UTDE). Other approaches for an appropriate choice of τ 2 are possible [5, 13, 27–32]. We refer to this as
standard TDE in the following. More sophisticated ideas [16, 27, 33–42], some including non-uniform
delays and the extension to multivariate input data [12, 43–48] have been presented [48, 49], but it seems
their use is rather limited and not very popular. This could be due to their occasionally very complex nature
and the lack of high quality open source implementation in the most commonly used programing
languages. Another reason could be the fact that standard TDE performs surprisingly well in a range of
examples; but still, its limitations should not be neglected, in particular when it comes to noisy time series,
systems exhibiting multi-time scale behaviour, or multivariate input data. The latter are becoming of
increasing interest in the near future, since acquisition costs for sensors and data collection decrease rapidly.
Moreover, the application of complex systems approaches and nonlinear dynamics in different scientific
disciplines receives increasing popularity.

Here we propose a fully automated method for an appropriate state space reconstruction of uni- or
multivariate time series input, which utilizes two concepts, the continuity statistic [46] and the L-statistic
[11]. We briefly review the basic ideas we will use in our proposed method (section 2) in order to illustrate
their specific utilization in the algorithm (section 3), before applying it to simulated and experimental data
(section 4).
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Figure 2. Fiducial point (blue) and its k = 4 nearest neighbours (green) in the d-dimensional δ-ball (left panel). Arrows indicate
the mapping f : Rd → R

1 (right panel), which is the potential (d + 1)th component of each of the points in the left panel
(according to a specific delay τ d+1 and time series sjd+1

), equation (2). To decide whether this ε-interval size accepts or rejects the
null hypothesis on a significance level α the cumulative binomial distribution for getting at least l = 3 points in the ε-interval
with probability p is used (modified after Pecora et al [46]).

2. Review of used concepts

In order to ensure comprehensibility of our proposed method in section 3 we explain the two main
concepts of it in the following. In section 2.1 we review the continuity statistic [46] rather detailed, while the
L-statistic is described only briefly in section 2.2 and extensively in the appendix F.

2.1. Continuity statistic by Pecora et al
In the continuity statistic, the problem of finding an optimal state space reconstruction with respect to
redundancy and irrelevance is addressed by a statistical determination of functional independence among
the components of the reconstruction vector [46]. Let {si(t)|i = 1, . . . , M} be a multivariate dataset
consisting of M time series, equally sampled at time instants t = 1, . . . , N. Suppose we have already chosen
some delays τ k to build our temporal reconstruction vector�v(t) of dimension d. This is,
�v(t) = (sj1 (t + τ1), sj2 (t + τ2), . . . , sjd (t + τd)), with jk ∈ {1, . . . , M} being the choices of the different time
series and τ k the according delays, which can be—and most often are—different. Then for a new potential
component of�v(t) we ask if this new potential component can be expressed as a function of the existing
components. Mathematically speaking, the equality

sjd+1
(t + τd+1)

?
= f

(
sj1 (t + τ1), sj2 (t + τ2), . . . , sjd (t + τd)

)
(2)

needs to be tested in an appropriate way, i.e., a sensible choice for f : Rd → R
1 has to be made. This choice

can be based on the property of continuity [50].
The practical implementation of equation (2) would start with mapping k nearest neighbours,�vk(t), of a

fiducial point�vfid(t) from R
d → R

1, as illustrated in figure 2. That is, for each of the (k + 1) d-dimensional
points in the left panel a potential (d + 1)th component sjd+1

(t + τd+1) is considered and drawn onto the
number line (right panel). The continuity statistic now asks whether these k + 1 points on the
one-dimensional number line fall within a certain ε-interval size by chance, or due to the fact that there is a
functional relationship between the d and the (d + 1)th component of a potential reconstruction vector
�v(t). The according continuity null hypothesis is that l of the k + 1 points landed in the ε-interval by
chance, with probability p on the basis of the binomial distribution. When the number of observed
neighbours, which are mapped into the ε-interval, is larger than the expected number from the binomial
distribution for a selected α, i.e. l points, then the null can be rejected and, thus, a functional relationship
can be assumed. The number of considered nearest neighbours k (i.e., the size of the δ-ball in figure 2) also
determines the acceptable number of k + 1 − l points falling outside the chosen ε-interval for a given
probability parameter p of the binomial distribution and a given α. For each candidate delay τ d+1 and each
time series sjd+1

for each k (at a given p and α) there is a minimal spatial scale ε�′ for which the null
hypothesis can be rejected, i.e., a minimal size of the ε-interval in the right panel of figure 2. For the sake of
avoiding redundancy while choosing the right delay, an ε�′ for each potential τ d+1 has to be found. This is
simply the distance from the fiducial point to its lth-nearest neighbour. By averaging over a range of fiducial
points we eventually get the final continuity statistic 〈ε�〉(τ ) as a function of considered delay values τ
(figure 3).

The final idea for achieving an optimal embedding is a sequential one. For each embedding cycle Dd, i.e.
for trying to find an appropriate additional component to build a reconstruction vector�v(t) of dimension
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Figure 3. Illustration of the proposed embedding procedure for a univariate case, using the y-component of the Lorenz system
(appendix E.1). (A) Blue, yellow, and green lines represent the continuity statistics 〈ε�〉 for the three embedding cycles the
algorithm 1 computes. Triangles identify the τ values corresponding to local maxima of 〈ε�〉. Then, the local maximum which
corresponds to the maximum decrease of the L-statistic with respect to the actual reconstruction vectors�vact , denoted as ΔL
(orange triangle) is chosen as a delay time in each embedding cycle. In the third embedding cycle the cost-function cannot be
minimized any further, i.e. all peaks lead to a non-negative ΔL. In this case no delay value is chosen and the algorithm breaks.
(B) We end up with a three-dimensional embedding and lags τ 1 = 0, τ 2 = 10, τ 3 = 5.

d + 1, initially starting with a one-dimensional time series�v(t) = {si(t)|i = 1, . . . , M}, the 〈ε�〉(τ ) values
for a range of possible delay values τ and for each time series si(t) gets computed. The τ of the highest
relative maximum of 〈ε�〉(τ ) is selected as the optimal delay for this embedding dimension d. This delay is
used to build up the temporal reconstruction vectors�v(t) with the according time series. From here the next
embedding cycle Dd+1 gets executed and the process gets repeated until some break criterion terminates the
procedure, i.e., when a sufficiently high embedding dimension m is reached.

Even though the idea of the continuity statistic is indeed promising, in this approach several unanswered
questions remain, making the proposed idea not suitable for a fully automated embedding approach.

(i) The choice of p = 0.5 has been made plausible and also our tests support this idea, while α = 0.05 or
α = 0.01 is standard in science (see figures 10–12 in appendix C), so we can safely fix them to these values.
What is not so clear, but highly relevant for the method, is how to choose the optimal delay τ from the
continuity statistic. Specifically, we might ask what ‘relative maximum’ exactly means and if there is any
objective criteria for that choice. Moreover, it is also not clear how to obtain the continuity statistic in the
first place with respect to the size of the neighbourhood, i.e. the size of the δ-ball in figure 2. We propose to
vary k from k = 8 to some higher value, like k = 14, for each considered delay τ and take the minimum of
all trials ε�′ (and finally average over all fiducial points in order to obtain 〈ε�〉). This is allowed, because
there is no preferred choice of k, but a lower bound (see table 1 in Pecora et al [46]), and generally the
choice depends on the amount of available data and its sampling rate.

(ii) In the original study, it was proposed that the continuity statistic on its own provides a breaking
criterion for the method, namely, when ‘〈ε�〉 remains small out to large τ , we do not need to add more
components’ [46]. However, this is no objective criterion and introduces a statistic, which would quantify
small, and also a threshold, which determines when small is small enough. Due to folding and stretching of
the attractor for high delay values τ , especially in case of chaotic systems, we expect 〈ε�〉 to increase with
higher τ , anyway. For these cases an (computationally intensive) irrelevance measure, the undersampling
statistic, has been proposed [46]. Nevertheless, even though the undersampling statistic prevents the choice
of irrelevant delays, it does not tell which of the local maxima of the continuity statistic we should pick and
when to stop adding more components to the reconstruction vectors7. As an alternative to assess the
irrelevance, the L-statistic has been suggested [11] which will be later used for our automated approach to
attractor reconstruction.

2.2. L-statistic by Uzal et al
The L-statistic is an objective cost function, which quantifies the goodness of a reconstruction, independent
of the reconstruction method [11]. It has two free parameters, k and TM. The approach uses ideas of noise
amplification and minimization of the complexity of the reconstruction, which lead to a variable σ, and
combines it with an irrelevance measure α. Specifically, the method estimates the conditional variance of

7 Implicitly the undersampling statistic could be used as a break criterion, when all of the considered delays (local maxima in the
continuity statistic) are above the chosen significance level β in the corresponding undersampling statistic. But this will not hold for
non-chaotic systems and leads to very high embedding dimensions in these cases.
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neighbourhoods consisting of k nearest neighbours as the relative dispersal of these neighbourhood points
with respect to the centre of mass of that neighbourhood T time steps ahead. Eventually this conditional
variance estimate gets averaged over a range of prediction horizons T up to a maximum value TM and is
normalized with respect to the original neighbourhood size, thus defining σ. The irrelevance measure α is
basically the averaged inter-point distance, which depends on the sampling. The final statistic is then
defined as

Lk = log10(αkσk), (3)

where the index k indicates the dependence on the chosen number of nearest neighbours. A detailed
description can be found in appendix F. The authors showed, that the L-statistic converges for any k � 3.
Our analysis (figure 10 in appendix C) supports this assumption and, thus, we can fix k = 3. However, the
second free parameter TM will alter the resulting L-statistic at any value. Particularly in the way we want to
utilize the concept of this cost function in our automated embedding scheme, we need to tackle this
parameter dependency (see section 3). It is worth mentioning that the L-statistic inherits the minimization
of a mean squared prediction error (MSE) (here computed using a local constant model based on the first k
neighbours) and the FNN-statistic proposed by Kennel et al [20] (when k = 1 and TM = τ ).

3. New reconstruction method

The L-statistic (section 2.2, appendix F) on its own could guide the reconstruction problem on finding the
optimal delay values and a sufficiently high embedding dimension, when used in a brute-force-approach,
i.e., scanning all possible delay values of all available time series in every single possible combination. It is
not clear a priori how to set the parameter TM for obtaining the L-statistic, so the described procedure has
to be repeated for a range of values for TM. In most cases, this is not computationally feasible and, therefore,
not suitable for a fully automated embedding approach. We propose to combine the continuity statistic
(section 2.1) and the L-statistic (section 2.2). The continuity statistic 〈ε�〉 guides the preselection of
potential delays τ and time series {si(t)|i = 1, . . . , M} in each embedding cycle Dd, whereas the L-statistic
decides which one to pick.

This algorithm works recursively. An embedding cycle Dd determines the optimal time delay and its
corresponding time series and enables us to build the actual reconstruction vectors�vact from this, having
dimension d + 1. Algorithm 1 and figure 3 explains the method in detail, which we refer to as ‘PECUZAL’
algorithm in honour of its roots.

(a) For the actual reconstruction vectors�vact, in each embedding cycle Dd, 〈ε�〉i(τ) is computed for all
available M time series si(t). We comment on the procedure in the first embedding cycle D1 further
below.

(b) We consider all those delays τ j for each 〈ε�〉i(τ), which correspond to local maxima τ̂j in 〈ε�〉i(τ).
These delays τ j (and their corresponding time series sij (t)) are used to build temporary reconstruction
vectors�vtemp(τj, sij ), by concatenating�vact with the τ j-lagged time series sij (t).

(c) For each�vtemp(τj, sij ) and the actual reconstruction vectors�vact the L-statistic is simultaneous computed
for many parameters TM (cf figure 4), and we denote them as L�vtemp(τj,sij

)(TM) and L�vact (TM). We

compute the maximum L-decrease for�vtemp(τj, sij ) with respect to�vact as
ΔLtemp(τj ,sij

) = min
TM

[L�vtemp(τj,sij
)(TM) − L�vact (TM)]. This way TM is not a free parameter anymore.

(d) The delay-time series combination (τj′ , sij′ (t)), which yields the minimum ΔL value will be picked for
this embedding cycle Dd, if ΔL < 0, and is used to construct the actual reconstruction vectors
�vact = �vtemp(τj′ , sij′ ) of dimension d + 1

(e) �vact is passed into the next embedding cycle Dd+1.

(f) We repeat steps (a) to (e) until we cannot minimize the L-statistic any further, i.e. when each
considered potential embedding�vtemp will yield a positive ΔL. In this case the reconstruction cannot
get any better and we stop.�vact constitutes the final reconstruction. Thus, the L-statistic provides a
break criterion, without the introduction of any threshold parameter. Each embedding cycle ensures
the maximum possible decrease of the cost-function.

We give some remarks on the proposed idea:
(i) In case of the very first embedding cycle the actual reconstruction vectors�vact are not yet defined.

Roughly speaking, the algorithm needs to find a time series to start with and which can act as the first
component of the final reconstruction vectors. As explained in algorithm 1, each of the available time series
serves as�vact in the first run and consequently M2 continuity statistics get computed in the first step, i.e., for
each combination (i, k) of the given time series si(t). Note that we always use the unlagged available time
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Algorithm 1. Pecuzal embedding.

Input: An uni- or multivariate dataset consisting of M time series si with same length and sampling and a range of possible delay
values τ = 0 : τmax

1: Normalize all M time series to zero mean and unit variance
2: Set ΔLmin = −inf
3: While ΔLmin < 0 do
4: if 1st embedding cycle D1 then
5: Compute 〈ε�〉ik(τ ) for all M2 pairwise combinations of si, sk for the given τ ’s
6: for each peak τ̂j in each 〈ε�〉ik(τ ) do
7: Create�vtemp by appending the time series si with the τ k-lagged time series sk

8: Compute the L-statistics for�vtemp and si for a range of parameter values TM = 2 : τmax, denote them as
Ltemp(TM) and Lsi (TM)

9: Compute ΔLtemp = min
TM

[Ltemp(TM) − Lsi (TM)]

10: end for
11: From all ΔLtempj take the τ j, which corresponds to the peak with minimum ΔL, ΔLmin

12: Save ΔLmin and�vtemp

13: else if Dd then
14: Compute 〈ε�〉i(τ ) for�vact and all si for the given τ ’s
15: for each peak τ̂j in each 〈ε�〉i(τ ) do
16: Create�vtemp by appending�vact with the τ i-lagged time series si

17: Compute the L-statistics for�vtemp and�vact for a range of parameter values TM = 2 : τmax, denote them as Ltemp(TM)
and Lact(TM)

18: Compute ΔLtemp = min
TM

[Ltemp(TM) − Lact(TM)]

19: end for
20: From all ΔLtempj

take the τ j, which corresponds to the peak with minimum ΔL, ΔLmin

21: Save ΔLmin and�vtemp

22: end if
23: if ΔLmin < 0 then
24: Set�vact = �vtemp

25: end if
26: end while
27: Set�vfinal = �vact

Output: The final reconstruction vectors�vfinal

series si(t), which will constitute the first component of the reconstruction vectors, i.e. we set τ 1 = 0. The
continuity statistic reveals the correlation structure of its input, meaning that a lagged initial time series
would lead to different consecutive delay values. However, the difference of the finally chosen delay values as
well as the total time window of the reconstruction Tw = max(τ 1, τ 2, . . .) would be identical, because the
correlation structure does not change, at least in case of infinite data. Practically, any τ 1 �= 0 only reduces
the amount of data available and searching for the optimal τ 1 in the sense of a minimal ΔL for the first
embedding cycle D1 would increase the computation time tremendously.

(ii) The L-statistic can not serve as an absolute measure, due to its dependence on the parameter TM.
Consider a time series and a potential two-dimensional embedding consisting of this time series and a
τ -lagged version of it. This corresponds to the first embedding cycle D1 in algorithm 1. Figure 4 shows the
L-statistic for a range of parameters TM for the single time series and for the potential two-dimensional
reconstruction for two deterministic systems (panels A, B) and in case of the time series being uniformly
distributed random numbers (panel C).

Whenever the L-statistic of the two-dimensional reconstruction (orange graph) is lower than the one
from the single time series (blue graph) an embedding would be beneficial (grey shaded areas in figure 4).
But this is not always the case throughout the course of TM (see panel B). The conclusion is, that it is not
meaningful to judge a reconstruction on a single L-value, gained from a fixed TM. A reconstruction is
always related to a function L(TM) of the parameter TM and it is sensible to look at relative L-discrepancies
between two consecutive embedding cycles, namely ΔL. It turns out that some stochastic signals will yield a
negative ΔL for TM = 1. In panel C of figure 4 this is not the case, but the proximity of the two curves only
for TM = 1 is decernible. This is comprehensible by recalling that the L-statistic inherits the MSE [see
equation (F5)], and a one-sample-prediction horizon is simply too short, to properly distinguish
deterministic from stochastic sources. As a consequence we compute the L-statistics in each embedding
cycle for TM-values starting with TM = 2. Thus, for any embedding cycle each peak of the continuity
statistic does not receive a certain absolute L-value, but rather a maximum possible decrease of L, ΔL, with
respect to the actual embedding (figure 3). Then one simply picks the peak, which yields the largest
decrease. We can not rule out the possibility that we could obtain a lower overall decrease in L for all
embedding cycles by taking a different ‘path’, i.e. not go for the maximum decrease of L in each embedding
cycle. This would correspond to achieving a local minimum of the cost function in the parameter and
embedding cycle space.
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Figure 4. Illustration of the determination of ΔL within the embedding procedure for the first embedding cycle in a univariate
case, using (A) the y-component of the Lorenz system (appendix E.1), (B) the time series of the second node of an N = 8 Lorenz
96 setup (appendix E.2) and (C) 1000 uniformly distributed random numbers. Shown are the L-statistics for the single time
series (blue graphs) and a two-dimensional embedding with a τ -lagged version of itself (orange graphs) for a range of parameter
values TM. We set the number of nearest neighbours, which constitute a neighbourhood, necessary for computing the L-statistic,
to KNN = 3 and estimate τ from the first minimum of the corresponding auto-mutual information. The possible decrease of the
L-statistic for this hypothetical embedding cycle with the chosen τ is simply ΔL(TM) = Lorange(TM) − Lblue(TM). When
ΔL(TM) < 0 (shaded areas) the additional reconstruction vector component does increase the quality of the reconstruction,
whereas when ΔL(TM) > 0∀TM a further embedding is not beneficial. As expected that is the case for the stochastic signal in
panel C. The algorithm 1 automatically picks the first minimum ΔL over all TM, which has also been the global minimum with
respect to all TM throughout all examples we have considered so far.

(iii) We propose to stop the embedding process, when ΔL > 0 for all considered temporary
reconstruction vectors�vtemp. One could think about incorporating a threshold, a small negative number, e.g.
ΔL > −0.05, to avoid only tiny decreases of the cost function encountered in an embedding cycle.
Throughout all our computations this has not been necessary and, therefore, we dispense on such an
additional parameter.

(iv) The continuity statistic 〈ε�〉 itself contains information about the correlation structure of the data
(cf section 2.1), which makes it valuable in the context of an automated embedding procedure as proposed
here, especially for multivariate input. Not only that the first maximum most often coincides with the value
we would obtain from the first minimum of the mutual information, but the continuity statistic of two time
series ‘levels off’ at a certain value range. The absolute value of 〈ε�〉 represents the correlation structure of
the data we are looking at and quantifies the independence from each other for a specific time lag. This fact
allows our method to pick only time series from a multivariate set, which belong together, and,
consequently, in combination with the corresponding decrease of the L-statistic, ΔL, avoid stochastic
signals (cf figure 4(C), table 1).

(v) The time complexity of the proposed method is O(N log N) as illustrated in figure 9 (appendix A).

4. Application, comparison & results

We apply the proposed method to a range of different systems, artificial and experimental data,
exemplifying its advantage over established methods. Specifically, we compare our method to the standard
TDE. We estimate the uniform delay τ by means of the first minimum of the auto-mutual information [18]
and estimate the appropriate embedding dimension by using Cao’s method [22]. Specifically, we
automatically select the appropriate embedding dimension, when the E1-statistic reaches the saturation
value within a given threshold of the slope (we picked a slope of < 0.05). We also look at two more
sophisticated methods, which can also handle multivariate input, namely the method proposed by Garcia &
Almeida (G & A) [44, 45]8 and Nichkawde’s method (MDOP) [12]. The latter mentioned methods do not

8 Note that we were not able to reproduce the results shown in the papers from Garcia & Almeida [44, 45]. Two of the authors, KHK
and NM as well as another experienced researcher independently implemented this method and got the exact same results. An email
to Prof. Garcia explaining this issues and seeking for help remains unanswered. We improved the method to be at least capable of
producing acceptable results. First we implemented a Theiler window, which has not been discussed by the authors. Second we intro-
duced the forward time step in order to produce the dE2 statistic as a free parameter. The authors only discuss the case of a forward
time step of 1. Throughout all our computations we set this parameter to the same value as the Theiler window, i.e. the value of
the first minimum of the auto-mutualinformation. In the multivariate input cases, we picked the maximum from all first minima
of all auto-mutualinformation. The reader is welcome to follow the implementation process on https://github.com/JuliaDynamics/
DelayEmbeddings.jl/pull/38.
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Table 1. Embedding dimension, the accordingly chosen time series and corresponding time lags for the fooling datasets, mimicking
mixed deterministic data from different systems and redundant time series as well as stochastic time series. We compare Garcia &
Almeida’s (G & A), Nichkawde’s (MDOP), and our proposed PECUZAL method.

m chosen time series Delay’s

System G & A MDOP PECUZAL G & A MDOP PECUZAL G & A MDOP PECUZAL

Fooling
dataset I 3 6 3 1, 4, 1 6, 2, 1, 3, 3, 4 3, 4, 4 0, 1, 1 0, 20, 16, 20, 0, 23 0, 3, 0
Fooling
dataset II 6 6 — 1, 2, 2, 1, 1, 1 3, 3, 1, 2, 2, 1 — 0, 1, 2, 3, 2, 1 0, 1, 0, 1, 0, 1 —

come with a predefined way to terminate the embedding process. In order to terminate them we use
Hegger’s [23] method of obtaining the optimal embedding dimension. Specifically, we set an
FNN-threshold of 0.05, i.e., the algorithm breaks when the normalized fraction of FNN’s fall below this
threshold in order to allow the algorithm to give meaningful results in the presence of noise. The threshold
for the tolerable relative increase of the distance between the nearest neighbours, when increasing the
embedding dimension is set to 2, as suggested in [20, 23]. The threshold, which defines the factor of
tolerable stretching for the dE1 -statistic in case of G & A’s method is set to 10, as suggested by the authors.
We estimate the decorrelation time by using the first minimum of the auto-mutual information and use it
as the Theiler window [51] in all approaches. In the multivariate input cases, we pick the maximum from all
first minima of all auto-mutual information statistics. For distance computation, the Euclidean norm is
used.

4.1. Reconstruction evaluation statistics
In order to compare our approach with the established methods we need to quantify the goodness of the
embedding. For this, we will consider six statistics. In addition to the overall decrease of the L-statistic, that
is ΔL =

∑m−1
i=1 ΔLi, where m is the embedding dimension and ΔLi the corresponding L-decreases in the

encountered embedding cycles, we use two other statistics, which also reflect the neighbourhood relations
of the reconstruction compared to the reference. One is the mutual false nearest neighbour statistic [52].
Instead of estimating the coupling strength/ degree of synchrony of two coupled oscillators, we use the
statistic for assessing the similarity between the reference (time series gained from numerical integrations)
and the reconstruction:

MFNN =
1

N

N∑
i=1

∑K
k=1 |�vi −�viref

k
|∑K

k=1 |�ui − �uiref
k
|

∑K
k=1 |�ui − �uirec

k
|∑K

k=1 |�vi −�virec
k
|

, (4)

where �ui are the vectors of the reference/original system,�vi, i = 1, . . . , N the reconstruction vectors, iref
k the

indices of the K-nearest neighbours of index i in the original system and irec
k , k = 1, . . . , K the

corresponding indices measured in the reconstruction. We propose the comparison of K nearest neighbours
instead of just focussing on the first nearest neighbour, in order to receive more robust results in the
presence of noise. By sampling the data sufficiently high we allow the precise determination of quite large
neighbourhoods of a fiducial point, so we set K = 10 in our computations. The results vary in their
absolute values with different choices of K, but the order of rank for the different test methods and their
relative difference remain approximately constant. MFNN = 1 corresponds to an ideal Afraimovich
diffeomorphism [50, 53], higher values mark worse reconstructions. The other strict criterion we propose
quantifies the degree of neighbourhood-relation conservation: the joint recurrence rate fraction (JRRF). It
is based on the concept of a recurrence plot (RP), which is a two-dimensional representation of a dynamical
system as a binary matrix [54, 55] (appendix D). JRRF measures the accordance of the RP of the reference
system, Rref , and the RP of the reconstruction, Rrec.

JRRF =

∑N
i,j JRi,j∑N
i,j Rref

i,j

, JRRF ∈ [0 1] (5)

JR = Rref ◦ Rrec. (6)

We compute both, Rref and Rrec, by fixing the recurrence threshold corresponding to a global recurrence
rate of 8%. This is also to ensure comparability of the recurrence quantifiers described below [56]. Results
are fairly similar for a wide range of choices of the recurrence rate we tried and the particular choice (in our
case 8%) is not so important, since we apply them to all RP’s we compare. It is, of course, also possible to
compare different RP quantifiers gained from Rrec to the ones derived from Rref [55]. We here choose the
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Figure 5. (Relative) deviation of reconstruction by standard TDE, the Garcia & Almeida (G & A), Nichkawde’s (MDOP), and
PECUZAL methods, comparing the accordance of the RPs of the reconstructed attractor and the reference attractor (JRRF),
mutual false nearest neighbours (MFNN), ΔL-statistic, as well as the recurrence quantifiers determinism (DET), diagonal line
length entropy (ENTR), and the RTE. (A) Univariate case using the y-component of the numerically integrated Rössler system
(appendix E.3) and (B) multivariate case using the x- and y-values of the Rössler system. Since TDE cannot handle multivariate
input we take the values from the univariate case here for illustrative reasons, which result in different relative values in case of
MFNN and the ΔL-statistic. For these measures we plot the 1- relative deviations to the best score, which increases in the
multivariate case. For the other statistics we plot 1- relative deviations to the reference score, i.e. the closer to unity the value gets,
the better the accordance to the reference or the best achieved value is.

determinism (DET), the diagonal line length entropy (ENTR) and the recurrence time entropy (RTE)
(appendix D). The latter two are related to the Kolmogorov–Sinai–Entropy [57, 58], but do not serve as
straight forward estimators, when necessary corrections on the RP and its quantifiers are ignored [59].

4.2. Paradigmatic examples
We investigate three paradigmatic chaotic systems, the Rössler system in the funnel regime (appendix E.3), a
driven Duffing oscillator in regular motion (appendix E.4) and the Mackey–Glass delay
equation (appendix E.5). For all systems we compare the mean values of the evaluation statistics from
ensembles of 1000 trajectories with different initial conditions. Table 2 in appendix B summarizes all results,
also including uncertainties and results for 10% additive measurement noise. In order to easily compare the

evaluation statistics, we use the relative deviation from the reference (e.g. |DETrec−DETref|
DETref ), except for the

MFNN and the ΔL-statistic, where we use the relative deviation from the best score (i.e. |MFNNrec−MFNNbest|
MFNNbest ).

For a concise visual presentation we use spider plots in the following and plot 1 - rel. deviation, i.e. the
closer to unity the value gets, the better the accordance to the reference or the best achieved value is.

(i) For the chaotic Rössler system, we reconstruct the state space for the univariate case (using the
y-component, in order to allow TDE having the best chances [60]) and for the multivariate case (using the
x- and y-component). An overview over the results are shown in figure 5. For TDE in the multivariate case
we take the results from the univariate example, because TDE cannot handle multivariate input. Note that
this leads to different relative values for MFNN and ΔL, since we plot the deviation to the best score in
these cases. The PECUZAL method performs best in the univariate as well as in the multivariate scenario,
with improved outcomes for the multivariate one, as expected. This also holds in case of applied
measurement noise, where our method even expands its lead for most measures (table 2). Surprisingly, TDE
also provides very good results in the univariate case and in the multivariate setup Garcia & Almeida’s
method yields an overall larger deacrease of the L-statistic than PECUZAL, but only in the noise free case
(see table 2 in appendix B). This lower ΔL is not reflected in better performance of the other evaluation
statistics. Specifically, the diagonal line length entropy values differ from the true reference value in the
double-digit percentage range for G & A’s method.

(ii) The overall rating also holds for the driven Duffing oscillator (figure 6), but there are severe
differences. In contrast to the chaotic Rössler system here it seems that the additional given time series for
the multivariate scenario do not improve the reconstructions significantly. The JRRF do not get better and
remain on a quite high level of 80% (G & A) up to 84% (PECUZAL) accordance with the reference RP Rref .
This is also reflected in the ΔL statistic, which also does not improve in the multivariate case for G & A and
MDOP, and only slightly decreases for PECUZAL. The same story is told by looking at the other evaluation
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Figure 6. Same as figure 5, here for the Duffing system (appendix E.4).

statistics summarized in table 2. It is important to note that under noise our proposed method outperforms
the others in almost all cases, but in principle we notice that the signal to noise ratio seems to be very low
and biases the results of all methods more than in case of the Rössler example. Specifically in case of RTE
deviations to the true reference value increase from the low single digit percentage range up to 62% in the
noisy case. The reason is that in regular motion we expect a near zero value of RTE and noise easily blurrs
the diagonal lines in the RP, leading to a broader distribution of recurrence times and, thus, to randomly
elevated RTE values. The very same problem make the ENTR values deteriorate for all methods, here
already apparent in the noise free case. In a regular motion system ENTR is biased the most when no
correction of the diagonal lines is performed, which has been shown by Kraemer and Marwan [59]. The
proposed skeletonizaton of the recurrence plots for the purpose of reducing the bias in the diagonal line
based RP quantifiers, such as ENTR and RTE, lead to way better results in the one digit percentage range
even for noise, as expected. Due to the computational complexity of the skeletonization algorithm [59] we
did not apply this correction scheme to all of the 1000 runs in this experiment, but rather tried it on small
samples not shown here, in order to understand the bad performances for all methods in case of ENTR and
RTE.

(iii) In contrast to the above systems, the Mackey–Glass system (appendix E.5) is infinite dimensional
and we have do deal with a univariate time series from the numerical integration, which is why we do not
have a ‘reference’ value we could base our computations on. Therefore, we can only use the ΔL-statistic
(table 2). The proposed PECUZAL method performs significantly better than the other methods with
Garcia & Almeida’s method coming second, especially in the presence of noise. Here all methods but the
proposed one yield reconstructions with corresponding positive ΔL-values, i.e. the suggested embeddings
do not decrease the overall L-statistic. Admittedly, PECUZAL also comes with a very small negative ΔL
value, with 0 falling within the 1σ-interval. This finding indicates a too low signal to noise ratio, which we
comment on below. Farmer [61] conjectured a linear relation between the delay chosen in the
Mackey–Glass equation and the corresponding dimensionality of the attractor (cf table 1 in [61]). A linear
fit to the data of that table suggests an attractor-dimension of dA ≈ 5.3 with the 95% confidence interval
being between ≈ 2.1773 and ≈ 8.2888. The studied methods give 5 ± 0(6.7 ± .5) (TDE), 3 ± 0(4.6 ± 1)
(G & A), 4 ± 0(2 ± 0) (MDOP) and 7 ± 0(2.2 ± 1.7) (PECUZAL). The bracketed values correspond to the
case of 10% additive noise. While all methods meet Farmer’s conjecture in the noise free scenario, this does
not hold for the MDOP method an the proposed method in the noisy case. Both methods suggest too low
embedding dimensions. This is due to the fact that the signal to noise ratio is apparently too low and
PECUZAL treats the signal as a stochastic source for some realizations where it does not embed the data at
all, while it did not do it in case of the Rössler and Duffing system, despite the same variance of the white
Gaussian noise. Results from G & A and TDE do fall in the 95% confidence interval, which is large, because
of the weak data basis given in reference [61] and the resulting uncertain fit. We find the time window of
the embedding, i.e. the total time span covered by a reconstruction vector, decreasing with increasing noise
level throughout our experiments. This is very much in line with the findings of Ragwitz and Kantz [62].

We finally look at two made up, ill-defined multivariate datasets, in order to see how the G & A, MDOP,
and the PECUZAL method cope with redundant data and with stochastic signals.
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Figure 7. Reconstructions of the fooling dataset I (see text for details). In case of the MDOP method (panel B), we plot the first
three components of the 6-dimensional trajectory. While G & A and MDOP methods mix timeseries from different systems,
leading to nonsensical reconstructions (panels A and B), our proposed method (panel B) sticks to time series from one system
(Lorenz in this case).

(i) First we construct a dataset consisting of six time series (Fooling dataset I). The first two time series
are the x- and y-component of the Rössler system (appendix E.3), the third and fourth time series are the x-
and y-component of the Lorenz system (appendix E.1), the fifth time series corresponds to x2

Rössler + yRössler,
whereas the sixth time series is set to xLorenz · yLorenz + yLorenz. Our proposed method does not mix time
series from both systems and sticks to one system (Lorenz in this case), as shown in table 1. It suggests a
three-dimensional embedding and also does not need the redundant information stored in the fifth and the
sixth time series of the input dataset. In contrast, G & A and MDOP fail here, suggesting a
three-dimensional and a six-dimensional embedding, respectively, mixing up the different systems yielding
a useless reconstruction (figure 7).

(ii) The second made-up dataset (Fooling dataset II) consists of three time series of length 5,000, with
the first one being an auto-regressive process of order 1 with parameters (0, 0.9) and initial condition
u0 = 0.2, to mimic coloured noise. The second and third time series are Gaussian and uniform random
numbers. While G & A and MDOP embed the non-deterministic time series, our proposed algorithm
suggests no embedding and throws an error (table 1). The reason is, that the L-statistic is a monotonically
increasing function of the embedding dimension for stochastic data for any prediction horizon parameter
TM, i.e. the algorithm cannot minimize L already in the first embedding cycle. For the sake of completeness
we have to stress that this particular example should not be read as a claim of a generalizable behaviour of
our proposed method to deal with auto-regressive processes of arbitrary order p. In the case of higher-order
AR processes, PECUZAL often suggests an embedding with a dimension that corresponds to the order of
the AR process, as we would expect it theoretically. We have noticed, however, that the embedding depends
heavily on the length of the time series used, which is in line with the findings of Holstein and Kantz [43],
but also of the choice of the particular AR-parameters and the order of the AR process under study. A
systematic consideration of PECUZAL’s embedding suggestions for this class of processes is beyond the
scope of this paper.

4.3. Experimental data
We will now utilize the PECUZAL embedding method on experimental data. Specifically, we look at a
chaotic time series from electrochemical oscillations. The experiment was performed with the chaotic
electrodissolution of nickel in sulphuric acid [63]. A standard three-electrode electrochemical cell was used
with a 1 mm diameter nickel wire as working, a Pt counter, and a Hg/Hg2SO4/sat. K2SO4 reference
electrode. The electrolyte was 4.5 M H2SO4 at 10 ◦C. The nickel wire was connected to the working point of
the potentiostat through an individual resistance (Rind), and a potentiostat (Gill AC, ACM Instruments)
applied a constant circuit potential (V0, with respect to the reference electrode). At a given circuit potential,
the rate of the metal dissolution, measured as the current, can exhibit chaotic oscillations due the hidden
negative differential resistance and additional nonlinear processes related to the passivation kinetics [64].
About 500 current oscillations were recorded at a data acquisition rate of 200 Hz, which corresponds to
about 200 points per cycle and a time series length of N = 100 000. There are two primary bifurcation
parameters in the experiment: the individual resistance, which affects the charging time constant of the
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Figure 8. (A) Entire z-standardized and downsampled time series from electrochemical oscillations of length N = 50 000 and
(B) a sub-sample of length N̂ = 2, 500. (C) The relative deviation of the medians of the distributions of the RQA-quantifiers
ENTR, LAM, RTE and T obtained from RPs of 1, 000 sub-samples to their reference values obtained from RPs of the entire time
series for the four reconstruction methods.

electrical double layer, and the circuit potential, which drives the dissolution. We consider a setting with
Rind = 1.5 kΩ and V0 = 1360 mV.

We demonstrate the ability of the proposed embedding method to cope with rather small to
intermediate sized experimental datasets. We first downsample the time series to N = 50 000 [figure 8(A)].
Reconstructions for the four methods (TDE, G & A, MDOP, PECUZAL) are then computed from which we
obtain RPs (with a fixed recurrence rate of 8%, in order to guarantee comparability) and the corresponding
RQA-quantifiers diagonal line length entropy (ENTR), the laminarity (LAM), the RTE and the recurrence
network measure transitivity (T ), see appendix D. We denote each of these values for each of the
reconstruction method as its reference values. We then repeat the described procedure for 1, 000
sub-samples of length N̂ = 2, 500 drawn from the time series at random [shown exemplary in figure 8(B)],
i.e. for each of the 1, 000 sub-samples we compute the reconstruction for each of the four methods, its
corresponding RP and the RQA-quantifiers. This will result in distributions for ENTR, LAM, RTE and T
for each reconstruction method. Finally we compare the medians of these distributions to their reference

values and plot the relative deviation
|RQAmedian(distr.)−RQAref |

RQAref
in figure 8(C). The capability of the four methods

to allow for satisfying estimates from short time series samples differs strongly for the different
RQA-quantifiers. The largest discrepancies to the reference can be noted for TDE in case of T and RTE. For
LAM all methods estimate the reference very well from the subsamples. While our proposed method slightly
comes last in case of ENTR, it yields the best results for T and LAM and is performing well in case of RTE.
The example shown here can not be generalized, but it underpins our claim that PECUZAL provides robust
state space reconstructions for a very broad range of processes under different conditions, which are often
better, but always at least equally well than the ones obtained from the established methods.

5. Conclusions

A fully automated approach for state space reconstruction from uni- or even multivariate time series is
proposed and compared to established methods. The algorithm works iteratively and appends the
reconstruction vectors in each embedding cycle with an appropriate time delay and an according time series
until a cost function cannot be minimized further. Its core functionality is based on identifying potential
time delays and its corresponding time series in each embedding cycle by using the continuity statistic. For
each of those delays, temporary reconstruction vectors are build and the cost function is computed. The
delay value, which yields the maximum decrease of the cost function is selected. If none of the considered
delay values yields a decrease of the cost function the reconstruction can not get any better and the final
embedding is obtained without the need of setting any threshold parameter. Usually the time delays chosen
that way are not simply multiples of each other, but rather reflect even complex correlation structures
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within the data. This is why the algorithm is also able to detect time series stemming from a stochastic
source, which it will not embed. Except from computing the decorrelation time of the data for providing a
valid Theiler window for the nearest neighbour search, and providing a range of possible delay values the
algorithm shall encounter, there are neither any data preprocessing steps necessary, nor any free parameters
need to be adjusted before using the proposed routine. The approach is demonstrated on a variety of
exemplary systems as well as on experimental data stemming from chaotic chemical oscillators. We find that
it provides often better, but always at least equally well reconstructions than the established methods. It is
furthermore capable of providing meaningful reconstructions for rather short time series, which
particularly holds for the case of multivariate input. The additional computational effort in comparison to
standard TDE is manageable and justified. Since the proposed method works automatically, is basically
parameter free, and can handle multivariate input without mixing data originating from different systems,
we can think of a wide range of potential applications. This is especially true for scenarios, where multiple
sensors or channels of a detector monitor real world processes, which are not isolated observables, i.e. in
engineering, earth- and life science contexts. The provided software (appendix A) in three common coding
languages will facilitate the use of the presented method.
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Appendix A. Implementation and code availability

The study that we present here is available as a fully reproducible code base [65]. In addition, we have
implemented performant versions of the embedding algorithms, as well as the automated pipeline for
optimal embedding. A single package is provided for Python [66] (https://pypi.org/project/pecuzal-
embedding/) and a toolbox for MATLAB� [67], (https://de.mathworks.com/matlabcentral/fileexchange/
86004-pecuzal-embedding-algorithm-for-matlab) while for the Julia language we have integrated the
PECUZAL algorithm into the library DynamicalSystems.jl [68] (the other methods ‘TDE, Garcia & Almedia,
MDOP’ were already part of the library). The automated pipeline for optimal embedding has been further
refined for better user experience and is also part of DynamicalSystems.jl.

The Julia versions of the algorithms have been heavily optimized and are the most performant ones by
orders of magnitude in parts, when compared to the Python (and MATLAB�) implementation. Due to the
nearest neighbour tree search, all compared methods have O(N log N) time complexity (figure 9). Our
proposed method is slightly (but consistently) slower than the established methods, with standard TDE
performing best (Cao’s method). Worth mentioning is the fact that in the MDOP case the most
computational effort is put on the estimation of the maximum considered delay value and not on the
computation of their β-statistic. Considering that an optimal embedding is a one-time operation, we
believe that all methods shown here are practically useful with respect to their computational complexity.

Appendix B. Numerical results

Chaotic Rössler system, driven Duffing oscillator in regular motion, and nonlinear time-delay Mackey-Glass
equation are used to evaluate the performance of the different embedding approaches (TDE, G & A, MDOP,
and PECUZAL). We consider univariate and multivariate embedding (Rössler and Duffing). The
y-component of the Rössler system and the x-component of the Duffing system are used for the univariate
embedding, wheres the x- and y-values of the corresponding systems are used for the multivariate
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Table 2. Results of the evaluation measures: accordance of the RP (JRRF), mutual false nearest neighbours (MFNN), ΔL-statistic, as well as the recurrence quantifiers determinism (DET), diagonal line length entropy (ENTR), and
RTE for the standard TDE, Garcia & Almeida (G & A), Nichkawde’s (MDOP), and PECUZAL-method (see text for details), using chaotic Rössler system, driven Duffing oscillator in regular motion (both in univariate (u) and
multivariate (m) case), and nonlinear time-delay Mackey–Glass equation. Mean values and standard deviation of ensembles consisting of 1000 integrated trajectories are shown. Bracketed values present results for additive noise.
The results of recurrence quantifiers are presented as relative deviations from the reference. The best results for each considered system are highlighted in black.

JRRF MFNN ΔL

System TDE G & A MDOP PECUZAL TDE G & A MDOP PECUZAL TDE G & A MDOP PECUZAL

Rössler (u) .71 ± .02 .48 ± .04 .64 ± .01 .73 ± .01 3.8 ± .3 8.7 ± 2.4 4.0 ± .4 3.3 ± .2 −1.27 ± .09 −1.03 ± .17 −1.24 ± .08 −1.41 ± .08
(.71 ± .02) (.6 ± .03) (.62 ± .01) (.73 ± .01) (4.1 ± .3) (5.1 ± .6) (4.8 ± .4) (3.7 ± .2) (−1.14 ± .05) (−0.94 ± .08) (−0.95 ± .04) (−1.23 ± .05)

Rössler (m)
— .83 ± .02 .86 ± .04 .87 ± .01 — 1.9 ± .6 1.4 ± .1 1.29 ± .08 — −1.58 ± .2 −1.26 ± .12 −1.48 ± .08
— (.82 ± .04) (.87 ± .01) (.87 ± .01) — (2.4 ± .6) (1.57 ± .06) (1.5 ± .1) — (−1.14 ± .09) (−1.04 ± .07) (−1.28 ± .04)

Mackey-G
— — — — — — — — −.43 ± .0 −.57 ± .0 −.35 ± .0 −.77 ± .0
— — — — — — — — (.12 ± .04) (.12 ± .07) (1 × 107 ± .0) (−0.02 ± .03)

Duffing (u)
.82 ± .01 .80 ± .04 .83 ± .02 .84 ± .02 4.0 ± 1.2 4.9 ± 1.7 3.9 ± .9 3.8 ± .8 −1.66 ± 1.7 −1.68 ± .18 −1.66 ± .16 −1.75 ± .15
(.74 ± .01) (.63 ± .04) (.69 ± .02) (.73 ± .02) (8.9 ± .4) (10.2 ± 1.6) (8.8 ± .3) (15.1 ± 3.7) (−.5 ± .05) (−.51 ± .08) (−.41 ± .06) (−.69 ± .04)

Duffing (m)
— .80 ± .06 .83 ± .02 .84 ± .02 — 3.9 ± 1.5 3.1 ± .8 3.3 ± .9 — −1.6 ± .2 −1.4 ± .2 −1.8 ± .2
— (.72 ± .04) (.74 ± .02) (.73 ± .01) — (10.0 ± 1.8) (7.9 ± .6) (14.1 ± 3.9) — (−.5 ± .1) (−.3 ± .1) (−.71 ± .04)

DET ( ×103) ENTR RTE

System TDE G & A MDOP PECUZAL TDE G & A MDOP PECUZAL TDE G & A MDOP PECUZAL

Rössler (u)
.03 ± .01 .71 ± .28 .03 ± .01 .01 ± .01 .05 ± .01 .32 ± .03 .18 ± .01 .08 ± .01 .03 ± .01 .07 ± .02 .07 ± .01 .04 ± .01
(6.6 ± .8) (7.2 ± 1.2) (8.0 ± .7) (3.0 ± .4) (.14 ± .02) (.05 ± .03) (.08 ± .02) (.08 ± .01) (.02 ± .01) (.04 ± .01) (.04 ± .01) (.02 ± .01)

Rössler (m)
— .95 ± .35 .19 ± .06 .14 ± .03 — .2 ± .04 .09 ± .02 .08 ± .02 — .06 ± .02 .02 ± .01 .01 ± .01
— (6.6 ± 2.4) (4.9 ± .4) (2.8 ± .3) — (.05 ± .03) (.08 ± .01) (.06 ± .01) — (.02 ± .01) (.01 ± .01) (.01 ± .0)

Duffing (u)
3.9 ± .08 3.6 ± 1.0 4.1 ± .3 4.2 ± .3 .44 ± .09 .36 ± .07 .42 ± .02 .45 ± .05 .03 ± .04 .02 ± .03 .01 ± .01 .02 ± .02
(97.4 ± 4.3) (113.8 ± 14.2) (113.4 ± 15.4) (61.5 ± 5.7) (.03 ± .02) (.30 ± .06) (.37 ± .05) (.21 ± .09) (.62 ± .01) (.32 ± .16) (.54 ± .03) (.46 ± .06)

Duffing (m)
— 8.3 ± 19 4.2 ± .3 4.2 ± .3 — .49 ± .12 .51 ± .07 .44 ± .06 — .16 ± .57 .02 ± .02 .02 ± .03
— (113 ± 18) (103 ± 10) (61 ± 4) — (.32 ± .07) (.22 ± .07) (.22 ± .08) — (.56 ± .09) (.61 ± .01) (.44 ± .06)
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Figure 9. Median time complexity for the state space reconstruction from the y-component of the Rössler system (appendix E.3)
for TDE, Garcia & Almeida’s, MDOP, and PECUZAL method. Ensembles of function calls for each considered time series length
N are computed and the median values are shown (implemented in BenchmarkTools.jl [69]). A Theiler window is set as the first
minimum of the auto-mutual information and the maximum encountered time delay is set to four times the Theiler window for
TDE, G & A, and PECUZAL.

embedding. For the TDE only univariate embedding is possible and, thus, there are no results for the
multivariate case.

Ensembles of 1000 trajectories using different initial conditions are used. Additionally, we consider
additive noise with an amplitude of 10% of the standard deviation of the corresponding signal.

All RPs are computed using a fixed recurrence rate of 8% and a minimum line length of 2.

Appendix C. Dependency on parameters

We investigate the impact of different parameter settings on the resulting reconstruction of our proposed
method for the x-component of the Lorenz system (appendix E.1). In particular, figure 10 shows the
sensitivity of the L-statistic value and the chosen delays with respect to the number of nearest neighbours
kNN for a fixed paramter TM = 20 (panels A, B) and also the dependence on the continuity statistic
parameters δ-Neighborhoodsize (panels C, D), the (binomial) probability p (panels E, F) and
significance-level α (panels G, H). The critical dependence of the L-statistic on the parameter TM is
discussed in section 3 and figure 4. The results show very little impact on the reconstruction quality and,
thus, confirm our choice of fixed parameter values for the algorithm. Specifically, the crucial qualitative
course of the continuity statistic, i.e. the position of the local maxima, remains unchanged for relevant
choices of α and in the vicinity of p = 0.5, which is the proposed fixed value (figures 11 and 12).

Appendix D. The recurrence plot and its quantification measures

A RP is a binary, square matrix R representing the recurrences of states �xi (i = 1, . . . , N, with N the number
of measurement points) in the d-dimensional state space [54, 55]

Ri,j(ε) = Θ
(
ε− ‖�xi −�xj‖

)
, �x ∈ R

d, (D1)

with ‖ · ‖ a norm, ε a recurrence threshold, and Θ the Heaviside function. There are several ways to
quantify the structures and dynamics encoded therein, but here we look at the determinism [70], which is
the fraction of recurrence points that form diagonal lines of length 


DET =

∑N

=
min

P(
)∑N

=1 
P(
)

, (D2)

with P(
) being the histogram of all diagonal line lengths in the RP and 
min the considered minimal line
length (here set to 2). Another quantifier is the Shannon entropy of the probability distribution
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Figure 10. L-statistic (left panels) and chosen delays (right panels) for a variety of choices of parameters for embedding the
Lorenz system, relevant for the PECUZAL method. See text for details. When not varied, the other parameters were fixed to
δ-Neighbourhoodsize = 14, p = 0.5, α = 0.05 and kNN = 3, as we propose.

Figure 11. Impact of different significance-level choices α on the continuity statistic. The other parameters for obtaining the
continuity statistic were fixed to δ-Neighbourhoodsize = 14 and p = 0.5.

p(
) = P(
)∑

P(
) to find a diagonal line of exact length 


ENTR = −
N∑


=
min

p(
) ln p(
). (D3)

It is also possible to look at the Shannon entropy of the length distribution of the white vertical lines 
w,
which correspond to recurrence times

RTE = −
N∑


w=1

p(
w) ln p(
w). (D4)
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Figure 12. Impact of different choices of the binomial probability parameter p on the continuity statistic. The other parameters
for obtaining the continuity statistic were fixed to δ-Neighbourhoodsize = 14 and α = 0.05.

Analogue to the definition of the determinism, the laminarity is the fraction of recurrence points that
form vertical lines

LAM =

∑N

v=
v,min

P(
vv)∑N

v=1 
vvP(
vv)

, (D5)

with 
v the length of a vertical line, P(
vv) the histogram of all vertical lines in the RP and 
v,min the
considered minimal line length (here set to 2).

Finally, the RP can be considered as the adjacency matrix of an ε-recurrence network [71], A = R − 𝟙
and define the transitivity [72] as

T =

∑N
i,j,k=1 AjkAijAik∑N

i,j,k=1 AijAik(1 − δjk)
, (D6)

which is a measure characterising the geometric structure of the state space attractor [73].

Appendix E. Exemplary models

The models described in the following are all integrated using DynamicalSystems.jl and
DifferentialEquations.jl [68, 74] in the Julia Language.

E.1. Lorenz system
The Lorenz system [75] is defined as

ẋ = σ(y − x)

ẏ = x(ρ− z) − y

ż = xy − βz.

We set the initial condition to u0 = [1.0, 1.0, 50.0], use a sampling time of Δt = 0.01 and discard the first
1000 points of the integration as transients. For producing figure 3 we set the parameters to
σ = 10,β = 8/3, ρ = 60 and use a time series consisting of 5000 samples. In figures 4, 10–12 and the
redundancy fooling-dataset in section 4.2 we use the standard parameter values σ = 10,β = 8/3, ρ = 28
and also a time series consisting of 5000 samples.

E.2. Lorenz 96 system
The Lorenz 96 system [76] is defined as

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F
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with xi the state of the system for nodes i = 1, . . . , N and it is assumed that the total number of nodes is
N � 4. The forcing constant F serves as the control parameter. Here we set N = 8, F = 4.472 and the initial
condition to u0 = [0.590; 0.766; 0.566; 0.460; 0.794; 0.854; 0.200; 0.298], use a sampling time of Δt = 0.1
and discard the first 2500 points of the integration as transients leaving us with a time series consisting of
5000 samples.

E.3. Rössler system
The Rössler system [77] is defined as

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c).

We randomly choose the initial conditions uniformly from an interval [0, 2] and discard the first 2000
points of the integration as transients working with time series of length N = 10 000 (for figure 9 we set
N = 20 000). The parameters are set to a = 0.2925, b = 0.1, c = 8.5 (funnel regime) for the experiment in
section 4.2, where the sampling time is set to Δt = 0.03 and a = 0.2, b = 0.2, c = 5.7 with a sampling time
of Δt = 0.02 elsewhere.

E.4. Driven Duffing oscillator
The driven Duffing/Van der Pol oscillator [78, 79] is defined as

ẋ = y

ẏ = μ(1 − x2)y − αx − βx3 + z

ż = γ · ω · cos(ω · t),

with μ = 0.1,α = 1,β = 0, γ = 0.5, and ω = 2 [80] resulting in a regular, quasi periodic motion. We
randomly choose the initial conditions x0, y0, z0 uniformly from the interval [0, 0.2], use a sampling time of
Δt = 0.1 and discard the first 2000 points of the integration as transients, resulting in time series of length
N = 5, 000.

E.5. Mackey–Glass equation
The Mackey–Glass equation [81] is the nonlinear time delay differential equation

ẋ = β
xτ

1 + xn
− γx,

with the lag τ = 44, and the parameters n = 10, β = 0.2, and γ = 0.1. xτ represents the value of x at time
t–τ . We randomly choose the initial conditions uniformly from an interval [0, 1.5], use a sampling time of
Δt = 0.5 and discard the first 2000 points of the integration as transients, resulting in time series of length
N = 10 000.

Appendix F. Details of the L-statistic

The concept of quantifying noise amplification in the context of the validation of an attractor
reconstruction has been proposed in [10]. The reconstruction process is considered in the presence of noise
and the finite data availability as a modelling problem, introducing a noise amplification and
estimation/prediction error for any measures on the reconstructed attractor. The variance of the conditional
probability density function is a ‘natural criterion for assessing predictability’ [10] and is used as the noise
amplification for a fiducial point �vfid(t) at a given noise level ε on the reconstructed attractor

σε (T,�vfid(t)) =
1

ε

√
Var

(
�v (t + T) |Bε (�vfid(t))

)
, (F1)

with Var
(
�v (t + T) |Bε (�vfid(t))

)
being the conditional variance of�v(t + T) for�vfid(t) in a radius ε ball

Bε (�vfid(t)) for a prediction horizon T. Finally, the noise amplification σ

σ (T,�vfid(t)) = lim
ε→0

σε (T,�vfid(t)) (F2)

averaged over all fiducial points on the attractor (and squared), 〈σ(T)〉2, serves as a measure of the
predictive power, with respect to the time horizon T, the reconstruction vectors�v allow for (for details see
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[10]). Broadly speaking a low conditional variance, and thus, a low value of 〈σ(T)〉2 is achieved for
sufficiently unfolded attractors, because in this case noise distortions of the true trajectory are not likely to
result in mixing states, which are far away from each other in true state space and consequently preserve the
neighbourhood relations on the reconstructed attractor.

Uzal et al [11] reinterpret equation (F1), (F2) and give an approximation-recipe for the conditional
variance. The authors redefine the mentioned equations as

σ2
ε (�vfid(t)) =

1

TM

∫ TM

0
σ2
ε (T,�vfid(t)) dT (F3)

and consider the limit
σ (�vfid(t)) = lim

ε→0
σε (�vfid(t)) (F4)

where ε is not related to any observational noise level anymore. The ε-ball Bε (�vfid(t)) is simply a tool for
determining certain neighbourhood relations of a fiducial point �vfid(t) and their changes when mapped to
future states by the reconstruction function F/F′ (figure 1). It is possible to approximate the conditional
variance in equation (F1) by

E2
k(T,�vfid) ≡ 1

k + 1

∑
�v′∈Bk(�vfid)

(
�v′(t + T) − uk(T,�vfid)

)2
(F5)

where Bk(�vfid) estimates Bε (�vfid(t)) by the fiducial point itself and its k nearest neighbours, respecting a
Theiler window (i.e. avoid temporal correlations in the neighbour-searching) [51]. The centre of mass with
respect to the chosen time horizon T and the fiducial point �vfid is defined as

uk(T,�vfid) ≡ 1

k + 1

∑
�v′∈Bk(�vfid)

�v′(t + T). (F6)

The size of the k-neighbourhood of�vfid, Bk(�vfid) is estimated as

ε2
k(�vfid) ≡ 2

k(k + 1)

∑
�v′ ,�v′′∈Bk(�vfid)

�v′ �=�v′′

‖�v′ −�v′′‖2, (F7)

where ‖ · ‖ is a norm used for the distance computation. Finally, E2
k(T,�vfid) [equation (F5)] is averaged over

a range of T’s in [0, TM] and the noise amplification estimated from k nearest neighbours is

σ2
k (�vfid) ≡ E2

k(�vfid)

ε2
k(�vfid)

, (F8)

which needs to averaged over all considered fiducial points N′ on the reconstructed attractor to obtain

σ2
k =

N ′∑
i∈{�vfid}

σ2
k (�vi). (F9)

Since the reinterpretation of ε with the related k now acts as a neighbourhood size parameter
[equation (F3)–(F8)], σ2

k can be normalized with respect to the averaged inter-point distance, which
depends on the sampling rate and the scale of the input data [11]. The normalization factor is

α2
k =

1
N ′∑

i∈{�vfid}
ε−2

k (�vi)

(F10)

with ε2
k from equation (F7). In this way, the final statistic will be able to compare attractor reconstructions

stemming from different input data and also serves as an irrelevance measure, because large delays will
result in large ε2

k’s.
Finally, equation (F9), (F10) define the L-statistic

Lk = log10(αkσk), (F11)

which has a free parameter k and another implicit parameter TM [equation (F3)].
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