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ABSTRACT

The precision of tide prediction is ultimately limited by the underlying noise

spectrum, S(f).

For two neighbouring spectral lines at frequencies f and f+4f,

the variance in the estimate of either amplitude is 3x-2S(f)4f) 2T-2 (equation
15) where T is the record length. For the case M, and N: typical amplitudes are
50 cm and 10 cm respectively, 4 is 0.03 cycles per day (cpd); it is usually thought

a record length T=(4f)"1~21 month is required for adequate resolution.

The

observed S(f) is typically 1cm?/cpd. For T'=3 days the variance is then 1cm?,
and the rms amplitude errors equal 2 and 109, respectively.

1. Tidal line spectrum

The motion of the Sun and Moon and the
rotation of the Earth are associated with a
tide-producing potential

¢=73 (@, Co8 2x ot + b, sin 2x f,t)

summed over an infinite set of denumerable
frequencies f,. The latter arise from the
non-linear interaction between the various
Kepplerian orbital parameters. They can
be written as a sum of six basic frequencies
each multiplied by some integer:

fao=SafatSsfoe--+s;fr s=0, £1, +£2,.-.
where
fo '=1 day is the period of Earth’s rotation,
S+ '=1 month is the period of Moon’s orbital
motion,
fo'=1 year is the period of Sun’s orbital
motion,
fa'=9 years is the period of lunar perigee,
f, '~18.6 years is the period of regression
of lunar nodes,
fr'~21,000 years is the period of solar
perigee (precession).
We can ignore lower frequencies arising
from planetary perturbations.

2. Resolution and ‘‘beam-splitting”’
Consider a record

x(t)=a, cos 2x fit+b, sin 2z f,¢ } .
+a, cos 2r fol + b, sin 2z fit

consisting of two neighboring “‘lines”
fi=f.=1 cycle per day (cpd)
fe=fot+f3=14.0366=1.0366 cpd

separated by 1 cycle per month. It has
been customary to presume that one month
of record is required to evaluate the coef-
ficients; similarly, that a year’s record is
required to determine the coefficients for
frequencies split by 1 cycle per year, 18.6
years of record for regressional splitting,
and that the longest existing records (=200
years) cannot shed any light on precessional
splitting. But this presumption that

a record of length T is required to
evaluate coefficients pertaining 16 5(2)
frequencies separated by T

is clearly false (or at least grossly incom-
plete). For any 4 known values of x(f) (ex-
cepting degeneracies) will provide 4 equa-
tions to solve for the 4 unknowns a,, b,, a;,
b,, regardless of the frequency separation.
If the frequencies in equation (1) are not
known, then we require 6 readings of x(#)
to determine the 6 unknowns a,, b, as,
b, fi, f2. The problem now requires the
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solution of transcendental (rather than al-
gebraic) equations, but in principle is not
so very different from the previous one. In
general,
if () consists of a sum of n frequen- )
cies, then 2n readings are requived

to determine the coefficients if the 3)
frequencies are known, and 3n read- (

ings if they are not known, regard-

less of frequency separations.

What is wrong here? Common sense sup-
ports the traditional statement (2) and rebels
at the assertion (3) that a few hourly read-
ings could tell us anything about regres-
sional splitting. The trouble is that we
have presumed that oscillations in sea level
x(8) can be described by two (or at most a
denumerable set of) discrete frequencies,
without a superposed continuous noise spec-
trum arising from geophysical sources and
from random errors.in reading x(¢#). Equa-
tion (1) must be amended to read

x(ty=a, cos 2zfit+b, sin 2afit+a, cos 2nf2t}
by sin 2xfout+4' (1)

Noise x'(¢) is inevitably present (except in
the literature on tide analysis) and an
essential factor in the present context.
Thus we will demonstrate that some mean-
ingful statements about the frequencies f,
and f, can be made, provided

\fofil > i

+ (signal/moise level)?
For very low relative noise levels we may
indeed improve upon the classical resolution
T' (statement 2), but we shall never learn
anything about regressional splitting from
4 hourly observations because this requires
a noise level so low that it simply cannot
be achieved.lll Unlike statement (3), the
inequality (5) is no longer at odds with ex-
perience. In the almost analogous problem
of forming narrow RADAR beams it is well
known that the theoretical resolution (L/2)™

(5)

(11 If for no other reason than that x would
have to be measured to a small fraction of the
wave length of light.

associated with the finite aperture L can be
exceeded in just this ratio1/signal/noise level.
This is called “beam splitting.””. We shall
refer to any improvement over and above
the theoretical limit 7' afforded by the
“time aperture” of the record as ‘‘super-
resolution”’.

Any record x(¢) in the interval O<i<T
can be completely represented by a line
spectrum at frequencies sT ™', where s is an
integer. In the absence of any further
information, this is the simplest spectral
presentation consistent with the facts, and
nothing can be learned about frequencies
differing by less than 7' (in accordance
with statement (2)). But in tidal analysis
the situation is different: here we may
assume that the tides can be universally
represented by known Kepplerian frequen-

cies. For any noise-free record 0<¢<T the

Kepplerian representation is no better and
no worse than a representation in terms of
equally spaced Fourier frequencies. But
outside the interval 0<¢<7T the Kepplerian
representation is still valid, whereas the
Fourier representation is not. In principle,
the Kepplerian representation is completely
determined by any noise-free record of
length 7. ~In practice, the determination is
limited by the noise.

3. Fourier-Stieltjes representation

We confine ourselves to the simplest
possible example that exhibits super-resolu-
tion: two neighboring lines and a noise.
Then

x(t):Aleiml1+A1*e_iwlT+AzeiMZT
+ A e +x (1)
is an infinite stationary time series., We
represent x(¢) as a Fourier-Stieltjes integral

Xt = r AX(w)e™ (6)

where
dX (w)= dol Ad(@—aw,)+ A 3w+ o)
+ Agdlw—wy) + A" 3w+ )]
+dX'(w)
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and dX'(w) is the component of a stationary
noise (not necessarily Gaussian), with the
property
<dX'(w)dX (&) > =S(w)d(w+dYdwdd (T)

so that <(x'(t))2>=S°° S(w)de is the total
noise ‘“‘power”’, and S(w) the power spectrum
of the noise.
4. TFinite record length

x(¢) is measured in the interval ¢=—3%T
to t=+37T. Let

h(t)=1 for |t|<%T

=0 otherwise
designate the box function, and

_1
L@ 27

its Fourier transform. It follows from (6)
and the convolution theorem that
X(w)=A,H(0) +A2H(W1—w2)+X,(‘01)
X(wz):AlH(wz—w1)+AzH'(0) +X/(Cl)2)}
(8)

Sw k(t)e—iwtdtzsmﬂ‘

w

where
X'(w)= S” AX' (O H (wj—0).  (9)

Equation (8) states that the spectrum at o,
is due to three terms: (1) the line at wy;
(ii) some sideband effect from the line at
wy, with the degree of interaction depend-
ing on record length through H(w,—w,); and
(iii) the noise density at .

5. Least-square solutions

Since the noise density is not known, a
precise determination of A; is not feasible.
Rather, equations (8) can give only estimates
of Aj;. In particular, we desire the ex-
pected value and variance of these estimates.
For this purpose we generate a noise-free
time series

¥(t)= Bleimlt + B1*€-im1t + Bzeiwzt + Bz*e"'%t
and determine the coefficients B by minimiz-
ing

r < x(t)—y(t)> *h(b)dt

Terms in w;+®, can be neglected, since

H(w;+w)  H(w,—w,); also H{wy—)=H (w;—

w;)=H (4w). The result then is
X(0)=BH(0) + B.H(4dw) (10)
X (w:)=B,H (dw)+ B, H (0) }

and comparison-with (8) yields

SA, = X)) H (0)— X' (w,) H (do)
H¥0)—H*(da)
and similarly for B,. The expected values
of X'(w;) are zero. Thus E(A;)=0 and
E(Bj)=A;.
We need the expected value of [6A4;|%

First we introduce the definitions (9) into
(11):

Bi=A,4+04,,
} (11)

5A;= S" AX(0)0;(w)dw

where
()= H ((rr—r;)ljii{O]—}f gm—ﬂ}glff(dw)
(0)—H *(dw)
and similarly for @,(w). Then we make use
of the orthogonality property (7) to derive
<3ABA;*>

(12)

= i S(I'X ") i(w)dX ()0 (@) dwdd (13)

== SS(G}} i"pj{m)]z( w .

To summarize: we measure the spectra
X(w;) at the known frequencies o, and w,
and solve for Bj according to (10). These
are the expected values of the harmonic
coefficients A;. Their variance is found
from the convolution (13) upon the noise
spectrum S(w). This is the formal solution
of our problem.

6. The doublet kernel

The kernel @;(w) can be greatly simplified
by allowing for the fact that (w,—w()<«
Hw,+w,). It is convenient to replace w; by
2z f;. Then write

fomg\Fitf), Af=fi=fi
r=d4f-T,
f-f=f—fotdf,  f—fi=f~fi=gAf,
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_sinnzT T _sin x2T
H(z:)= 2nz —21(2)’ f2)= wzl
Then from (12) =
L f=r)I0)—I( f—f:)[(4))
2 = 2 2
g 1%0)—1%df)
(14a)

2 -+ =+

and similarly

@(f)zi[—f'(f—fow L f—fo—+ ] (14b)

Y

where I’ is the derivative of I with respect
to its argument (zzT).

7. White noise

The simplest case is that of a noise
spectrum which does not vary appreciably
in the vicinity of the spectral doublet (w,,
@), so that we can replace S(w) by S(w,) in
(13). Also'2] S(w)de=S(f)df. To the first
order in 7, we then have

<[8A4> =S(fo)'<;3;\)2 S:I’Z(f—fo)df

8. A numerical experiment

We have generated artificial time series
consisting of a series of 8 doublets super-
imposed on a white noise. The doublets had
the following amplitudes and frequencies:

@=20, fi=0.2, a=10, f,=0.2002
©=30, f,=0.3, a,=15 f,-0.3002
@=90, f,=09, a,=45, f,=0.9002.

The length of the series is N=1000 values.
Let 4t designate some arbitrary interval be-
tween successive readings. Then T=N A4t

(2] In engineering practice, the definition

<x2(t)> :S:SE(f)df is customary, whereas here

<w(t)> =S:S(f) df, so that S(f)=3Sk(f) .

is the record length. The above frequencies
are in Nyquist units, 1/2 4¢. Thus the
resolution coefficient equals
r=4f - T=.0002 (1/2 4¢t) - N4t=0.1

for each of the 8 doublets, and it is assumed
that the interaction between one doublet
and any other doublet is negligible. Six
independent sets of random numbers were
generated, each having a mean square v*=
500. This mean square value is equally
distributed among all frequencies between
—1/24¢ and 1/24¢, so that the spectral densi-
ty equals

v° i

S(f)= T, =p°4t=5004¢ .

We then have according to (15)
g 3 Vit
<WBAI> = o N N

12 v’

~ 7 (.0002)*N°

Fig. 1 shows the computed values of a

and g, for each of the six independent noise
sets. For zero noise the computed values
should be along the heavy lines ¢, and @,
in accordance with the assumed values.
The presence of noise introduces a scatter.
The computed rms departures +1/15 from
the assumed values are shown by the thin
lines.

=15

9. Tidal noise spectrum

Suppose the noise spectrum is due entire-
ly to round-off error, tide gauges being read
to the nearest “least count’ (l¢) of 0.1 feet.
The mean-square error is (1/12)-(lc)®. This
is distributed equally in the frequency range
+1/24¢, with 4t=1/24 day designating the
interval between readings. The round-off
spectrum is accordingly

_ (1/12)-(l¢)?

S(f )—‘1 T

where ‘‘cpd” is ‘“‘cycles per day”. Suppose

we are attempting to observe monthly split-
ting from a 3-day record. Then

T=3 days, r=4f-. T:% -3=0.1

=.032 cm®/cpd

© <{0A’>=0.33cm?*
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AMPLITUDE IN ARBITRARY UNITS
2

0 2 4

b 8

FREQUENCY IN NYQUISTS

Fig. 1. The dots designate computed amplitudes of doublets a;cos 27fit+ascos2rfst at
frequencies .2, .3, ..., .9 Nyquists. In each case f;—f1=.0002 Nyquists. We arbitrari-

ly chose a;=100 f and a2=50 f.

or a rms error of 0.6cm. The amplitude is
of the order of 20 cm, and some meaningful
measure of monthly splitting can then be
attained from a 3-day record.

But in fact the geophysical noise level
(due to atmospheric excitation) far exceeds
the instrumental noise level. Munk and
BurLarpt3] (1963) estimate S(f)=1cm?/cpd at
tidal frequencies. With this higher value
of noise level, <|6A|*>=10cm? and the
signal-to-noise power reduces to 400cm?/
10 cm®=40: 1.

10. Tidal cusps

The previous estimate of 1 cm?®/cpd is based
on measurements of the noise spectrum well
to one side or the other of the tidal line
clusters. Within the line cluster the

(3] Due to a numerical error the published value
is 0.1 cm?/cpd.

spectrum rises sharply, apparently as a
result of non-linear interaction between the
lines themselves and the rising noise spec-
trum near ‘‘zero’”’ frequency. This leads to
“‘cusps’’ in the noise spectrum at the strong
lines. Let

fit8
cj"‘=§ S(f)df
S8

designate the energy in the cusp centered on
fi. The approximation is now the reverse
of that leading to (15). There we assumed
that S(f) was nearly constant over the
range of integration and could be taken
outside the integral sign. Now we shall
assume that @;(f) can be taken outside:

fi+8
<|6A1|2>=|@1(f1)|28f 'S(fadf
1_f2+5

+|a>l<f2>|2§ S(f)df

Fy=8

= |(D1(f1)|2C12+ |(Z)1(f2)|2C22

1
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But
d sinx 1
dx oz 3 T
' 1 _ all
I'(fi—fo= —Eﬂ(fl—fo)TJr R A
' 1 1
I (fz_fo):""g”(fz—fo)T+'“:—'gm’-i-"'
so that
@1(f1)=1 ’ @1(fz)=0
D,(f1)=0, Dy f2)=1
plus smaller terms. The result is
<|84;*>=C* (16)

so that the variance of the line estimate is
limited by the noise energy in its own cusp.

Some estimates (unpublished) show that
the noise spectrum rises to 300 cm?/cpd with-
in a band + .01 cpd of the M; line. Very
roughly the energy in the cusp is (300 cm?/
cpd) (.02 cpd)=6cm? and <|3A,|°>=6cm®
as compared to 10cm® for a white noise
S(fs)=1cm?. The uncertainties introduced
by the cusps are of comparable magnitude
to those introduced by the underlying white
noise.

11. On tide prediction

The discovery of the tidal cusps separates
tide prediction into two classes: (i) the
short-range problem, and (ii) the long-range
problem.

In the short-range problem the uncertain-
ties associated with the tidal cusps can be
largely removed. These spectral cusps have
a simple interpretation in the time domain:
they arise from the non-linear interaction

of the tides with the fluctuating ‘‘mean sea
level”. Mean sea level may vary by 1l0cm
in a decade, and the tidal constants are
altered by this variation. Suppose the pro-
blem is to predict the 1964 tides at some
station, for which the tidal constants were
determined in 1950. We can improve the
prediction by allowing for the modification
of the tidal constants due to the change in
sea level between 1950 and 1964. The
easiest way is to measure the 1963 sea level
and assume that the 1964 sea level will be
the same. A better method is to perform
a Wiener-type prediction. With this addi-
tional effort (keeping track of the changing
sea level) the prediction error can then be
improved to the extent to which it is due
to cusp energy (equation 16). But clearly
this improvement is limited to such short
ranges for which meaningful predictions can
be made. This is of the order of ¢ (about
one year), where 6 is the cusp width in the
frequency domain.

Predictions beyond 67" constitute the long-
range problem, and these incorporate the
uncertainties associated with the cusps as
well as the underlying flat noise spectrum.
Such long-range predictions can be made
many centuries in advance. Ultimately
they are limited by the variable rotation of
the Earth and the anomalies in the Moon’s
orbit.
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