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Abstract
Year-to-year variability in CO2 fluxes can yield insight into climate-carbon cycle relationships, a
fundamental yet uncertain aspect of the terrestrial carbon cycle. In this study, we use global
observations from NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite for years 2015–2019
and a geostatistical inverse model to evaluate 5 years of interannual variability (IAV) in CO2 fluxes
and its relationships with environmental drivers. OCO-2 launched in late 2014, and we specifically
evaluate IAV during the time period when OCO-2 observations are available. We then compare
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inferences from OCO-2 with state-of-the-art process-based models (terrestrial biosphere
model, TBMs). Results from OCO-2 suggest that the tropical grasslands biome (including
grasslands, savanna, and agricultural lands within the tropics) makes contributions to
global IAV during the 5 year study period that are comparable to tropical forests, a result
that differs from a majority of TBMs. Furthermore, existing studies disagree on the
environmental variables that drive IAV during this time period, and the analysis using
OCO-2 suggests that both temperature and precipitation make comparable contributions.
TBMs, by contrast, tend to estimate larger IAV during this time and usually estimate larger
relative contributions from the extra-tropics. With that said, TBMs show little consensus on
both the magnitude and the contributions of different regions to IAV. We further find that
TBMs show a wide range of responses on the relationships of CO2 fluxes with annual
anomalies in temperature and precipitation, and these relationships across most of the
TBMs have a larger magnitude than inferred from OCO-2. Overall, the findings of this
study highlight large uncertainties in process-based estimates of IAV during recent years
and provide an avenue for evaluating these processes against inferences from OCO-2.

1. Introduction

Interannual variability (IAV) in CO2 fluxes is of crit-
ical importance in understanding the global carbon
cycle. Themagnitude of IAV in global terrestrial fluxes
is large, comparable to that of land fluxes in an aver-
age year (Peylin et al 2013). An investigation of IAV
also offers an opportunity to explore the sensitivity
of the carbon cycle to changing environmental con-
ditions and may therefore yield a better understand-
ing of climate–carbon cycle relationships. Insight into
contemporary IAV may therefore help inform pro-
jections of future CO2 budgets under climate change
(e.g. Cox et al 2013, Friedlingstein et al 2014,Hoffman
et al 2014).

IAV in CO2 fluxes at global scales is relatively
well known; however, the contributions of differ-
ent ecoregions to global IAV remain highly uncer-
tain (e.g. Baker et al 2006, Peylin et al 2013, Deng
et al 2014). In situ observations of atmospheric CO2

have been extensively used to estimate global- and
regional-scale IAV (e.g. Bousquet et al 2000, Gurney
et al 2003, Rödenbeck et al 2003, Bruhwiler et al 2011,
Peylin et al 2013, Shiga et al 2018, Hu et al 2019,
Keppel-Aleks et al 2014). However, in situ measure-
ment sites are unevenly distributed across the globe;
therefore, inverse models using in situ observations
are arguably not sensitive to CO2 fluxes in under-
sampled regions like the tropics, where IAV is the
largest (e.g. Baker et al 2006, Peylin et al 2013, Piao
et al 2020). The advent of space-based observations
of CO2 provides greater coverage than in situ meas-
urements and opens new window into the study
of IAV, though these observations are available for
a more limited time period (e.g. Houweling et al
2004, Chevallier et al 2007). For example, the Green-
house Gases Observing Satellite (GOSAT), launched
in 2009, is the first Earth-orbiting satellite that is
designed to collect atmospheric CO2 with sufficient
accuracy to estimate surface CO2 fluxes (Yokota et al

2009). Existing studies have leveraged GOSAT obser-
vations to estimate IAV (e.g. Guerlet et al 2013, Byrne
et al 2019, 2020, Liu et al 2021). However, in a recent
study, Byrne et al (2019) argued that current GOSAT
observations can only be used to constrain IAV across
continent-sized regions or larger spatial scales.

It is evenmore challenging to understand the rela-
tionships between IAV and underlying environmental
drivers across different regions of the globe. Here
we define ‘environmental drivers’ as meteorological
variables or characteristics of the physical environ-
ment that may correlate with net ecosystem exchange
(NEE) and can be quantified by measurements or
models (e.g. precipitation, air temperature). Specific-
ally, at small, local scales (∼1 km2), eddy flux tower
measurements have been used as one of the most
important approaches in quantifying IAV and its rela-
tionship with underlying environmental drivers (e.g.
Baldocchi et al 2001, Barford et al 2001, Suyker et al
2001, Schwalm et al 2007, Jensen et al 2017). Due to
the limited footprints of flux towers (∼ 1 km2), extra-
polation of local eddy covariance measurements in
space and time is necessary to obtain larger, regional-
to global-scale estimate of CO2 fluxes (e.g. Beer et al
2010, Jung et al 2011, Tramontana et al 2016). This
upscaling can be challenging to do, and recent stud-
ies have argued that upscaling efforts tend to under-
estimate IAV relative to atmospheric inverse mod-
els (e.g. Byrne et al 2019, Jung et al 2020, Piao et al
2020). Furthermore, process-based terrestrial bio-
sphere models (TBMs) have been widely used to sim-
ulate net carbon exchange (NEE) and IAV, and these
models provide a means to attribute changes in net
carbon uptake to specific environmental drivers (e.g.
Tarnocai et al 2009, Medvigy et al 2010, Belshe et al
2013). With that said, TBMs do not show consensus
on the magnitude of IAV in different ecoregions of
the globe (e.g. Shiga et al 2018). Even when TBMs do
agree on the magnitude of IAV, they often yield sim-
ilar patterns for different reasons, i.e. TBMs display
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very different sensitivities of IAV to environmental
drivers (Piao et al 2013, Huntzinger et al 2017).

NASA’s Orbiting Carbon Observatory 2 (OCO-2)
satellite has the potential to provide additional, new
information to investigate IAV and its relationships
with environmental drivers (e.g. Eldering et al 2017).
OCO-2 was launched in late 2014, so it does not
provide as long of a record asmany in situ or eddy flux
measurement sites. With that said, its unprecedented
global coverage and density of observations provides
a new opportunity to examine IAV, albeit across a
shorterwindowof time. Indeed, previous studies have
used the global set of OCO-2 observations to estimate
regional and global CO2 fluxes (e.g. Chatterjee et al
2017, Liu et al 2017, Miller et al 2018, Chevallier et al
2019, Palmer et al 2019, Miller and Michalak 2020).
For example, Liu et al (2017) and Chatterjee et al
(2017) reported large tropical flux anomalies associ-
ated with warm and dry environmental conditions
induced by the 2015–2016 ElNiño from the terrestrial
tropics and the tropical Pacific Ocean.

In this study, we employ OCO-2 observations
(years 2015–2019) and a geostatistical inverse model
(GIM) to examine the contributions of different
regions to global IAV in CO2 fluxes across the
5 year study period. We also explore the relation-
ships between this IAV and anomalies in environ-
mental drivers across the globe. We first present an
overview of the GIM approach. We then present res-
ults on 5 years of IAV for different global biomes
and evaluate the relationships between recent IAV and
environmental drivers, followed by comparisons to an
ensemble of 16 TBMs participating in the TRENDY
dynamic global vegetation model project (e.g. Sitch
et al 2015, Le Quéré et al 2018, Friedlingstein et al
2019, Piao et al 2020).

2. Methods

2.1. OCO-2 satellite observations
We use 10 s averages of bias-corrected total column
CO2 (XCO2) generated from version 9 OCO-2 satel-
lite observations. The 10 s averaged XCO2 retriev-
als have previously been used in the OCO-2 inverse
model inter-comparison project (e.g. Basu et al 2018,
Chevallier et al 2019, Crowell et al 2019). Specifically,
we include both land nadir and land glint retrievals in
the model for years 2015 through 2019.

2.2. Geostatistical inverse model
We couple a GIM and a global adjoint model (ver-
sion v35n of the GEOS-Chem adjoint, Henze et al
2007) to estimate five years of global CO2 fluxes and
associated uncertainties at a daily temporal resolu-
tion and a spatial resolution of 4◦ (latitude) by 5◦

(longitude). We define negative values of fluxes as net
carbon uptake by the land, and positive values thus
represent a net release from the land to the atmo-
sphere. In this section, we provide an overview of

the approach, and the supporting information text
S1 (available online at stacks.iop.org/ERL/16/054041/
mmedia) provides additional description of detailed
model setup and specific equations.

In a GIM, we estimate surface fluxes that will
best match atmospheric observations using an atmo-
spheric transport model:

z= h(s)+ ε (1)

The fluxes s (dimensions m × 1), when run
through an atmospheric model, h(s), should match
the observations z (dimensions n × 1) within a spe-
cific error ϵ (dimensions n× 1).

A unique aspect of the GIM is that we can incor-
porate an array of environmental drivers to help
describe the fluxes (s) instead of prescribing a tradi-
tional prior flux model. The GIM will scale the envir-
onmental drivers to best reproduce the atmospheric
observations, and this component of fluxes is referred
to as ‘the deterministicmodel’. Furthermore, the GIM
also estimates flux patterns that cannot be explained
by the environmental drivers but are still evident in
the atmospheric observations, and this component of
fluxes is referred to as the ‘stochastic component’:

s= Xβ+ ζ (2)

whereX is a matrix of environmental drivers (dimen-
sions m × p; see section 2.3), and the drift coeffi-
cients β (dimensions p × 1) scale these environental
drivers. Collectively, Xβ is the ‘determinstic model’.
The unknown vector ζ (dimensions m × 1) is the
stochastic component and is estimated at the model
grid scale. The posterior flux estimate (̂s, dimensions
m× 1) is a sum of the deterministic model (Xβ) and
the stochastic components (ζ).

We simultaneously estimate the fluxes (s) and the
coefficients (β) viaminimizing theGIM cost function
(e.g. Michalak et al 2004):

Ls,β =
1

2
(z− h(s))TR−1

(z− h(s))

+
1

2
(s−Xβ)TQ−1

(s−Xβ) . (3)

The cost function includes two covariance
matrices; R (dimensions n × n) and Q (dimen-
sions m × m). The covariance matrix R describes
z− h(s), referred to here as the model-data mis-
match errors. These errors include errors from the
atmospheric measurements z and from the trans-
port model h(). The covariance matrix Q prescribes
the variances and spatiotemporal covariances of the
stochastic component (ζ) and includes both diagonal
and off-diagonal elements. supporting information
text S1.1 describes the estimation of the covariance
matrix parameters in detail.

In total, we assimilate five years of OCO-2 obser-
vations (i.e. n = ∼3.7 × 105) to estimate ∼6.0 × 106

unknown fluxes (m) at the model grid scale. We do
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Figure 1. (a) Terrestrial biospheric flux totals for years 2015 through 2019 over the seven biomes, as estimated using OCO-2.
Error bars indicate associated uncertainties with 95% confidence interval; (b) the seven biome-based regions aggregated from a
world global map in Olson et al (2001). The flux totals shown here do not include flux patterns that map onto anthropogenic
emissions from ODIAC but include all other components of the estimated fluxes. The estimate using OCO-2 suggests that
tropical grasslands and tropical forests are large sources in years 2015 and 2016, and become smaller sources in years 2017
through 2019. Reproduced fromMiller et al (2018). CC BY 4.0.

so by minimizing equation (3), a process described
in the supporting information text S1. We also estim-
ate the posterior uncertainties in the flux estimate (̂s)
using a reduced rank algorithm described in Saibaba
and Kitanidis (2015) and Miller et al (2020), an
approach described in detail in supporting informa-
tion text S1.2.

We further compare the GIM flux estimates
against aircraft-based observations of CO2 and
against CO2 observations from the Total Carbon
Column Observing Network (TCCON; Wunch et al
2011), as an external means to evaluate the inverse
model estimates using OCO-2. supporting inform-
ation text S7, figures S3–S10, and tables S3 and S4
display the details of these comparisons.

2.3. Model selection
We group the globe into seven biomes (figure 1(b));
for each biome, we consider an array of environ-
mental drivers to include in the GIM (i.e. in X)
available from NASA’s Modern-Era Retrospective
Analysis for Research and Applications, Version 2
(MERRA-2, Rienecker et al 2011). Specifically, these
environmental drivers include daily 2 m air tem-
perature, daily precipitation, 30 d average precip-
itation, photosynthetically active radiation (PAR),
surface downwelling shortwave radiation, soil tem-
perature at 10 cm depth, soil moisture at 10 cm
depth, specific humidity, and relative humidity. We
also include a non-linear function of air temperat-
ure (refer to hereafter as scaled temperature) from
the Vegetation Photosynthesis and RespirationModel
(Mahadevan et al 2008); in brief, this function charac-
terizes the non-linear relationships between temper-
ature and photosynthesis (e.g. Raich et al 1991). Note
that we estimate a different coefficient (β) for each
environmental driver in each biome and each year of

the study period. Miller and Michalak (2020) argued
that current OCO-2 observations are best-equipped
to constrain terrestrial CO2 fluxes for seven global
biomes, and we therefore use seven biomes in this
study.

We also incorporate additional fluxes inX that do
not necessarily map onto any environmental drivers,
including fossil fuel emissions from the Open-source
Data Inventory for Anthropogenic CO2 monthly
fossil fuel emissions (ODIAC,Oda et al 2018), oceanic
fluxes from the Estimating the Circulation and Cli-
mate of the Ocean consortium (ECCO-Darwin; Brix
et al 2015, Carroll et al 2020), and biomass burn-
ing fluxes from Global Fire Emissions Database
(GFED) version 4.1 (Giglio et al 2013). We find that
the estimated coefficients (β) for ODIAC, ECCO-
Darwin, and GFED are very uncertain if we attemp
to constrain those coefficients (β) for each of these
sources in each biome. Hence, we instead estimate a
single coefficient for all three sources for the entire
globe.

Furthermore, we include a constant column of
ones inX for each biome and each year (including for
the oceans). These columns help describe the mean
behavior of the fluxes in each biome, and the envir-
onmental variables in X describe deviations from
that mean behavior. All existing GIM studies to date
include constant components withinX, similar to the
setup here (e.g. Gourdji et al 2008, 2012, Shiga et al
2018).

We utilize a model selection approach to object-
ively determine the optimal subset of environmental
drivers that can best reproduce OCO-2 observations.
We specifically employ a type of model selection
known as the Bayesian Information Criterion (BIC),
a commonly used statistical approach in regression
analyses (e.g. Kass and Raftery 1995, Raftery 1995)

4
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Figure 2. IAV during the 5 year study period from a suite of 16 TBMs in TRENDY (blue), from the ensemble mean of TBMs
(black), and from the estimate using OCO-2 (red). Error bars indicate associated uncertainties (one standard deviation; see
supporting information text S6). Most TBMs exhibit larger IAV compared to the estimate using OCO-2. Furthermore, a large
number of TBMs (nine out of 16) estimate the largest IAV from tropical forests, whereas the findings using OCO-2 suggest that
the tropical grasslands and tropical forests biomes make comparable contributions to global IAV, at least during the 5 year study
period.

and inverse modelling studies (e.g. Gourdji et al
2012, Miller et al 2013, Fang and Michalak 2015,
Miller et al 2016, 2018). In brief, the BIC rewards
combinations of environmental drivers that better
reproduce OCO-2 observations and penalizes com-
binations with too many environmental drivers to
prevent overfitting; the best combination of envir-
onmental drivers is the combination with the lowest
score.Miller et al (2018),Miller andMichalak (2020),
and supporting information text S2 describes the spe-
cific setup for the BIC in greater detail.

2.4. State-of-the-art process-based models
We compare the inverse modeling estimates of IAV
during the 5 year study period against an ensemble
of 16 TBMs participating in TRENDY (v8; Sitch et al
2015, Friedlingstein et al 2019). Specifically, we collect
net biospheric production (NBP) from TRENDY S3
simulations, which are forced over years 1901–2018
with changing CO2, climate, and land use; NBP from
TRENDY represents net CO2 fluxes that take into
account photosynthesis, plant and soil respiration,
fire, land use change, and any carbon fluxes that are
in and out of the ecosystem (https://sites.exeter.acuk/
trendy).We compare against 5 years of model outputs
from TRENDY to match the number of years in the
inversemodel. At the time of writing, TRENDYmod-
els are available through year 2018, so we use model
outputs for years 2014–2018 (see table S1 for a full
list of TBMs; Le Quéré et al 2018, Friedlingstein et al
2019, Piao et al 2020). Note that the climate forcing
data used in TRENDY models are from Climatic

Research Unit (CRU) and Japanese Reanalysis (JRA)
datasets (CRUJRA; Harris et al 2014, Kobayashi et al
2015, Harris et al 2020).

3. Results and discussion

3.1. The contributions of different regions
to global IAV during the study period
We find large differences in the magnitude of IAV
(defined here as the standard deviation of annual
flux totals) between the results from OCO-2 and
the TBMs (figure 2). Most TBMs simulate larger
IAV compared to the estimate using OCO-2 across
the five-year study period. Furthermore, TBMs show
little consensus on IAV across different biomes and
the globe. With that said, the ensemble mean of these
TBMs across different biomes and the globe are gen-
erally within the uncertainty bounds of IAV estim-
ated using OCO-2, but numerous individual TBMs
still fall outside the uncertainty bounds; this res-
ult implies that there is an opportunity to evalu-
ate estimates of IAV within individual TBMs using
current satellite observations of CO2, at least during
the time period for which satellite observations are
available.

The estimate using OCO-2 further indicates that
tropical biomes dominate global IAV and account
for 87.8% of the variability during the 5 year study
period. By contrast, most TBMs estimate a lower
relative contribution (%) to global IAV from the
tropics during this time, especially from the tropical
grasslands biome (figure 3). Using OCO-2, we also

5
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Figure 3. Relative contributions (%) of different biomes to
global IAV, including (a) tropical grasslands, (b) tropical
forests, and (c) the extra-tropics, from 16 TBMs (blue) and
from the estimate using OCO-2 (red). In each panel, we
order the models from the smallest contribution to the
largest contribution. Compared to the estimate using
OCO-2, most TBMs (12 out of 16) estimate lower relative
contributions from tropical grasslands to global IAV during
the study period, and approximately half of TBMs display
lower relative contributions from tropical forests.
By contrast, most TBMs suggest higher relative
contributions from the extra-tropics to global IAV.

find large variations in the carbon cycle associated
with the 2015–2016 El Niño and subsequent recov-
ery; these perturbations dominate global IAV dur-
ing 2015–2019 and account for the very large contri-
bution of the tropics to IAV in the OCO-2 estimate

(figures 1(a) and 2). Note that we estimate regional
contributions (figure 3) to global IAV using a contri-
bution framework developed byAhlström et al (2015)
(supporting information text S5); in brief, we weigh
the flux anomaly (i.e. departure from a 5 year mean)
from each individual region by its similarity to the
global anomaly, and therefore enable a direct com-
parison of their relative importance to global IAV.

Specifically, the estimate using OCO-2 suggests
that the tropical grasslands and tropical forests bio-
mes make comparable contributions to global IAV
during 2015–2019 (figure 3). Note here the tropical
grasslands biome in Olson et al (2001; figure 1(b))
broadly encompasses grasslands, savanna, and agri-
cultural land ecosystems (see figure 1 in Teluguntla
et al 2015 or figure 16.1 in Thenkabail et al 2011)
within the tropics. This finding differs from the
TBMs, a majority of which (nine out of 16) estimate
the largest contribution to global IAV from tropical
forests (figure 3); a smaller number of TBMs (five out
of 16) estimate the largest contribution from tropical
grasslands.

Conversely, results fromOCO-2 indicates that the
extra-tropics accounts for a small fraction of recent,
global IAV (12.2%). This result also disagrees with the
estimates from the TBMs; most TBMs (12 out of 16)
estimate larger IAV across the extra-tropics compared
to the estimate using OCO-2 (figure 3). In fact, using
OCO-2 we find a negative contribution from tem-
perate grasslands to global IAV, which indicates the
regional anomaly from temperate grasslands is in the
opposite direction from the global anomaly. A previ-
ous study (Liu et al 2018) explored drought impact
on CO2 fluxes over the contiguous U.S. (CONUS),
and suggested that the regional flux anomaly (depar-
ture from a 6 year mean) over the CONUS drought-
impacted regions are in opposite directions of the
global atmospheric CO2 growth rate anomaly. The
overall contribution of the extra-tropics is a sum of
both positive and negative contributions of smaller-
scale regions (e.g. Ahlström et al 2015). The negat-
ive contribution from temperate grasslands, there-
fore, acts to reduce the overall contributions of the
extra-tropics to global IAV during years 2015–2019.

3.2. Connections between IAV during years
2015–2019 and environmental drivers
There is a growing consensus that tropical regions are
the largest contributor to global IAV (e.g. Bousquet
et al 2000, Peylin et al 2005, Gurney et al 2008,
Jung et al 2017), but there is an ongoing debate over
whether temperature or precipitation is a stronger
correlate with this IAV in tropical regions (e.g. Zhao
et al 2010, Wang et al 2014, Ahlström et al 2015,
Jung et al 2017, Humphrey et al 2018). The findings
usingOCO-2 suggest that both environmental drivers
play a key role in describing CO2 variability across
multiple scales—both in describing daily, grid-scale
variability in CO2 fluxes and in describing IAV, at
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Figure 4. Five year mean flux estimate using OCO-2 (a; unit of µmol m−2 s−1), and flux differences between years 2015 and 2017
(b); the flux estimate includes sources from NEE, fire, fossil fuel, and ocean in panels (a) and (b). Different environmental drivers
in the deterministic model (Xβ) contribute to these year-to-year differences, including air temperature (c), precipitation (d),
PAR (e), and the stochastic component ζ (f). The flux differences (b) over the tropics are mostly related to differences in air
temperature (c) and precipitation (d) between the two years rather than from the stochastic component (f). The stochastic
component here only reflects broad-scale flux differences. Note that the color bars used in panel (a), panels (b)–(e), and panel
(f) are different. White colors in panels (c)–(e) reflect the fact that not all environmental drivers are selected in all biomes (see
table S4).

least during the years when OCO-2 observations are
available.

At the daily, model grid scale, a combination of
temperature and precipitation can describe a sub-
stantial portion of the variability in CO2 fluxes over
the tropical grassland and tropical forest biomes
(i.e. ∼78%–87% and ∼71%–83% of the flux vari-
ance across the study years, respectively). We define
grid-scale variability as any spatiotemporal patterns
in CO2 fluxes that manifest at the resolutions of
the GEOS-Chem model (daily, 4◦ (latitude) × 5◦

(longitude)) during the 5 year study period. Using the
statistical model selection, we only select scaled tem-
perature and precipitation in tropical biomes, further
indicating the explanatory power of these environ-
mental drivers. Figures 4(c)–(e) illustrate the sets of
environmental drivers that are selected across indi-
vidual biomes and their contributions to IAV in the
inverse modeling estimate for years 2015–2019 (sup-
porting information text S2, S3 and table S5 describe
the full results of model selection for all biomes.).

An analysis of the 2015–2016 El Niño further
illustrates the correlation between these environ-
mental drivers and IAV in the posterior flux estim-
ate across tropical regions. The 2015–2016 El Niño
induced anomalously dry and warm environmental
conditions in the tropics (e.g. Jiménez-Muñoz et al
2016) that altered global biospheric CO2 fluxes
(e.g. Liu et al 2017). We find that differences in tem-
perature and precipitation in the deterministic com-
ponent of the flux estimate (Xβ, figures 4(c)–(e))

between years 2015 and 2017 contribute most to
the grid-scale differences in CO2 fluxes between the
2 years (figure 4(b)). By contrast, the stochastic com-
ponent ζ (figure 4(f)) describes relatively little year-
to-year differences in the estimated fluxes. This res-
ult indicates that most year-to-year differences in the
fluxes, as estimated usingOCO-2, can be described by
temperature and precipitation across tropical regions.

We also perform additional analysis to explore the
impact of possible legacy effects, and disturbance (i.e.
fire and land cover change) on IAV during the 5 year
study period. We have limited ability in detecting leg-
acy effects on IAV using five years of OCO-2 observa-
tions. Furthermore, fire and land cover change appear
to play a small role in IAV for a 5 year period of this
study. We discuss these topics in detail in supporting
information text S3 and S4.

3.3. Relationships with environmental drivers help
explain differences between OCO-2 and TBMs
To better understand the differences of estimated IAV
between OCO-2 and the TBMs, we further exam-
ine the relationships between IAV and annual anom-
alies in key environmental drivers during the 5 year
study period. We explicitly examine the relationships
with annual anomalies in temperature and precipita-
tion across the tropics, a region that makes the largest
contributions to global IAV during this time period
(figure 5).

We find that CO2 fluxes in most TBMs tend to
have stronger relationship with annual anomalies in

7
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Figure 5. CO2 fluxes in most TBMs (blue) show stronger relationships with annual anomalies in temperature and precipitation
than inferred from OCO-2 (red) (a)–(d). This conclusion is particularly evident if we exclude models that show low correlation
between anomalies in environmental drivers and flux anomalies (R2 < 0.1), denoted in light blue above. In each panel, we order
the models from the weakest relationship to the strongest relationship. For each TBM and the OCO-2 estimate, we fit a linear
regression model between flux anomalies (departure from the 5 year mean) and annual anomalies in environmental drivers using
model grid-scale datasets within each biome, and the slope of the linear regression model therefore indicates the relationships
with the environmental drivers. Here we show the estimated slopes for various TBMs and OCO-2. Note the climate forcing data
used in TRENDY models are from the CRUJRA datasets (see section 2.4), and we use environmental drivers from the CRUJRA
data to examine the relationships here for these TBMs.

temperature and precipitation than estimated using
OCO-2 (figure 5). This analysis likely helps to explain
the differences of IAV between the TBMs and OCO-
2. Indeed, TBMs that have stronger relationships with
anomalies in temperature andprecipitation relative to
the estimate using OCO-2 tend to also display a larger
magnitude of IAV over tropical biomes (figure 2).

Furthermore, some TBMs show different rela-
tionships with environmental drivers but still arrive
at the same IAV. For example, VISIT shows strong
relationship with temperature across tropical grass-
lands while LPX-Bern shows strong relationship with
precipitation; however, estimated IAV over tropical
grasslands between the twomodels are in close agree-
ment. This finding further underscores the import-
ance of rigorously characterizing drivers of IAV in
TBMs, not just the magnitude of IAV. TBMs that
describe very different relationshipswith temperature
and precipitation would likely yield divergent projec-
tions of future carbon budgets under climate change
(e.g. Huntzinger et al 2017).

4. Conclusions

In this study, we employ 5 years of OCO-2 satel-
lite observations and a GIM to evaluate year-to-year
variability in the global carbon cycle and its relation-
ships with environmental drivers; we then compare
IAV inferred from OCO-2 against 16 state-of-the-art
TBMs.

This analysis provides an avenue for evaluating
IAV in process-based flux estimates using satellite
observations of CO2. Despite the global observational
coverage provided by OCO-2, the inverse modeling
results presented here show substantial uncertainties
(e.g. figure 2), pointing to the limitations of cur-
rent space-based CO2 monitoring. With that said,
the uncertainties in inverse model are still smaller
than the large range of estimates from the TBMs,
implying that satellite observations can provide an
important tool to evaluate IAV and even the environ-
mental factors that correlate with this IAV. Further-
more, a longer record of satellite observations from
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OCO-2 (or comparable instruments) in the future
would facilitate an examination of longer time peri-
ods, and this study is a first step into exploring IAV
using OCO-2 satellite observations.

Overall, we find that state-of-the-art TBMs show
little consensus on the magnitude of IAV at either
regional or global scales, at least for the 5 year period
examined in this study. Compared to these models,
our analysis using OCO-2 indicates (a) a larger con-
tribution of tropical grasslands, savanna, and agri-
cultural lands to global IAV during the study period,
(b) a smaller contribution from the extra-tropics, and
(c) a slightly smaller overall magnitude of IAV. These
differences, particularly across the tropics, appear to
stem from disagreement in the relationships within
each model between carbon fluxes and annual anom-
alies in temperature and precipitation. This study
hence reinforces the need to rigorously characterize
the relationships between environmental drivers and
IAV within TBMs, not just the estimated magnitude.

Data availability

Data information of the ObsPack data product is
available at www.esrl.noaa.gov/gmd/ccgg/obspack/;
data information of the TRENDY v8 is available at
http://sites.exeter.acuk/trendy/.

The data that support the findings of this study
are openly available at the following URL/DOI: ftp://
ftp.cira.colostate.edu/ftp/BAKER/.
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