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Abstract
Atmospheric science relies on numerical models to simulate the complex mul-
tiscale nature of atmospheric variability, but our confidence in weather and
climate predictions relies on theory and simplified models that describe scale
interactions at a mechanistic level and can provide causal accounts of atmo-
spheric behaviour. Global simulations at kilometre-scale resolution are now
feasible and offer new opportunities to the atmospheric science community for
testing and expanding our understanding of climate variability and change. Tak-
ing full advantage of this new tool requires smart strategies for evaluating and
analysing the output, especially as kilometre-scale climate modelling will be
limited to relatively short simulations with a rather small number of realiza-
tions. We here review some of the available tools for diagnosing and studying the
dynamics of waves, coherent flows, and the interactions between them in terms
of their ability to provide causal accounts of the behaviour seen in observations
and in comprehensive simulation models. We describe their successes but also
some of their limitations. The limitations are seen to be especially pronounced in
the Tropics, where clouds, convection and atmospheric circulation are inextrica-
bly linked. The lack of a natural spatial truncation scale in the Tropics has given
rise to many theoretical challenges, but it is for precisely this reason that the
Tropics are where we might expect the largest gain from global kilometre-scale
models.
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1 INTRODUCTION

The atmosphere exhibits a rich spectrum of variability
in both space and time. Our knowledge of this variabil-
ity comes first and foremost from observations. However,

observations of the atmosphere provide an incomplete
representation of the relevant fields, and the historical
record only samples a subset – potentially a very small
subset – of what might have been possible. To make
matters worse, the historical record is affected by vari-
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ous sources of non-stationarity, some of which may be
unknown, meaning that aggregation in time to construct
statistics can sometimes be problematical. Comprehensive
simulation models based on the fundamental governing
equations can overcome these sampling limitations and
fill in the phase space of possible behaviour. But mod-
els have systematic errors and biases (many of which are
poorly known), so the reliability of this infilling is not
obvious. Moreover, since the real world is non-stationary,
we are actually interested in how the non-stationarity
plays out, on a variety of time-scales ranging from prob-
abilistic weather prediction to climate change. As the
non-stationarity never exactly repeats itself – and, for cli-
mate change, lies in the future – the uncertainty in the
effect of non-stationarity is epistemic rather than aleatoric
(Beven, 2016), and cannot be represented using stan-
dard aleatoric measures (Shepherd, 2019). This requires
thinking causally, in terms of theory and mechanistic
processes.

Comprehensive global simulations at kilometre-scale
resolution offer new opportunities to the atmospheric
science community, as their fine resolutions permit an
explicit simulation of important small-scale processes,
such as convection (Satoh et al., 2019). With fewer pro-
cesses requiring parametrization, one may hope that
model biases reduce. Much of the excitement about global
kilometre-scale models derives from the idea that the
newly resolved small scales are of immediate relevance
for a realistic simulation of larger-scale processes (Schär
et al., 2019). These simulations can serve as a tool to test
and expand our understanding of climate variability and
change. Yet, it is clear that this will require careful strate-
gies for evaluating and analysing the output, especially as
kilometre-scale climate modelling will be limited to rel-
atively short simulations with a rather small number of
realizations. In order to be able to identify biases, untangle
scale interactions and quantify their relevance for weather
and climate on different scales from such limited sam-
ples of model behaviour, it is necessary to bring theoretical
understanding.

The complex, multiscale nature of atmospheric vari-
ability, in both space and time, has always presented a
challenge for theoretical understanding. Since the fun-
damental governing equations support both waves and
turbulence, and the observations show manifestations of
both, Michael McIntyre (2002) evocatively described the
situation as a ‘wave-turbulence jigsaw puzzle’. Classical
approaches to this challenge have sought to identify spe-
cific dynamical regimes based on analysis of the govern-
ing equations under particular simplifying assumptions.
These provide the basis for conceptual models of atmo-
spheric variability and, ultimately, for causal accounts of
its behaviour. A unifying theme that runs through the

theoretical literature is the explanatory power provided by
the concepts of waves, coherent flows, and the interactions
between them. We use the term ‘coherent flows’ rather
than ‘mean flows’, as the former encompasses the latter
but is somewhat broader. We here review some of the ways
those concepts have been used to understand atmospheric
behaviour, based on atmospheric reanalysis data, numer-
ical models, and observations. In this we bring together
three strands of knowledge – large-scale dynamics, normal
modes, and tropical convection and gravity waves (GWs)
– which have historically represented rather distinct com-
munities of researchers, with an eye to their application
to the emerging first generation of kilometre-scale global
atmospheric models, and with a particular focus on the
Tropics. Each strand has been the subject of separate and
more comprehensive reviews in the past. However, we see
value in bringing the topics together, as a way of encour-
aging cross-fertilization of ideas across the three commu-
nities, especially for early-career researchers who may still
be defining the contours of their research ambitions.

In Section 2 we present a general overview of some
of the key equation systems that are relevant to differ-
ent dynamical regimes and of classical approaches to
distinguish between waves and coherent flows in these
regimes. Starting from the equations for horizontal oscilla-
tions on the sphere – the shallow-water equations (SWEs;
Section 2.1) – we discuss the concept of ‘balanced’ dynam-
ics which distinguishes between ‘fast’ waves and ‘slow’
coherent flows (Section 2.2), the non-separability of fast
and slow large-scale dynamics that arises in the Trop-
ics (even within linear theory) from equatorially trapped
modes (Section 2.3), internal gravity waves (Section 2.4),
and slow large-scale dynamics in the Tropics (Section 2.5).
Whilst we give many examples demonstrating how these
concepts are relevant to the real atmosphere, the perspec-
tive is very much from the direction of theory.

In Section 3 we invert the perspective, starting from the
observed behaviour of the atmosphere, especially as it per-
tains to interactions across scales (both space and time).
We start with the extension of spherical normal-mode the-
ory to the three-dimensional atmosphere (Section 3.1),
and discuss wave solutions of the linearized primitive
equations on the sphere (Section 3.2), an approach which
has considerable explanatory power in the Tropics where
the winds are much weaker than in the Extratropics.
The focus is on large-scale equatorial Kelvin and mixed
Rossby-gravity (MRG) waves, which explain a substan-
tial part of the intraseasonal variance and yet repre-
sent a significant source of error for comprehensive sim-
ulation models. We then move to tropical mesoscales
(Sections 3.3–3.5), where there is essentially no separa-
tion of time or space scales between GWs and coher-
ent flows, and where clouds, convection and atmospheric
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circulation are inextricably linked. The direct simulation
of these scales is also particularly challenging, because the
spectrum of vertical motion is essentially white, meaning
there is no natural truncation scale and the properties of
the solution can be expected to depend sensitively on the
wavenumber cut-off. Yet the processes occurring on these
scales have first-order effects on larger scales and on mean
aspects of climate, and thus represent a major source of
uncertainty – not only in models, but in theoretical expla-
nations of atmospheric behaviour. Finally, we bring in the
question of cause and effect (Section 3.6), which is always
implicit in any physical analysis of observed atmospheric
behaviour.

Section 4 provides some thoughts about future direc-
tions and opportunities, structured according to three
cross-cutting themes that emerge in our review: building
causal interpretations (Section 4.1), extending the concept
of teleconnection patterns to model biases (Section 4.2),
and a better understanding of upscale links (Section 4.3).
A brief conclusion is offered in Section 5.

2 DYNAMICAL REGIMES FROM
PLANETARY TO MESOSCALES

2.1 Horizontal motions on the sphere

Basic insight into the building blocks of atmospheric
dynamics can be obtained from the nonlinear rotating
SWEs. Their non-dimensional form in spherical coordi-
nates can be written as follows:

𝜕u
𝜕t

− v sin𝜑 + 𝛾

cos𝜑
𝜕h
𝜕𝜆

= −𝛾 (V ⋅ ∇u − uv tan𝜑) , (1)

𝜕v
𝜕t

+ u sin𝜑 + 𝛾
𝜕h
𝜕𝜑

= −𝛾
(
V ⋅ ∇v + u2 tan𝜑

)
, (2)

𝜕h
𝜕t

+ 𝛾∇ ⋅ V = −𝛾 (V ⋅ ∇h + h∇ ⋅ V) , (3)

where V = (u, v) is the non-dimensional horizontal veloc-
ity, t is non-dimensional time and h is the non-dimensional
perturbed fluid height about its mean state D. The
non-dimensional variables t, h, u and v are obtained
by replacing dimensional time by t∕2Ω, where Ω is the
rotation rate, dimensional perturbed height by Dh, and
dimensional velocities by

√
gD (u, v), where

√
gD is the

phase speed of surface GWs in the absence of rotation
and g is Earth’s gravity. The non-dimensional ‘del’, ∇ =
i𝜆(cos𝜑)−1𝜕∕𝜕𝜆 + i𝜑𝜕∕𝜕𝜑, defines the horizontal spatial
derivatives in spherical coordinates, with latitude and lon-
gitude denoted 𝜑 and 𝜆, respectively. The unit vectors
pointing towards the east and north are denoted i𝜆 and i𝜑,

respectively. The nonlinear terms on the right-hand sides
of (1)–(3) will be referred to as Nu, Nv and Nh for the zonal
velocity, meridional velocity and continuity equations,
respectively.

The parameter 𝛾 is the inverse of the square root of the
Lamb’s parameter,

𝛾 =
√

gD
2Ω a

,

with a being the Earth’s radius. The Lamb’s parame-
ter (𝛾−2) is a single non-dimensional constant which
partly characterizes the nature of shallow-water flows on
the sphere, and is the eigenvalue of (1)–(3) when the
right-hand side is zero (i.e., the Laplace tidal equation
without forcing) (Longuet-Higgins, 1968). On Earth, 𝛾 is
a small parameter with the Lamb’s parameter 𝛾−2 rang-
ing from about 8 for D around 10 km to several 100 for D
below 1 km.

A wave solution of the system (1)–(3) (with Nu = Nv =
Nh = 0) is defined in terms of the eastward and westward
propagating waves with latitudinal structure given by the
Hough functions 𝚯k

n,r,

(
uk

n,r, vk
n,r, hk

n,r
)T = W k

n,r𝚯k
n,r(𝜑) ei(k𝜆−𝜔k

n,r t), (4)

where W k
n,r is the expansion coefficient common to

all three variables, and r = 1, 2, 3 indicates the three
types of wave solutions: eastward-propagating inertia-
gravity (EIG), westward-propagating inertia-gravity
(WIG), and Rossby waves. For every wave type, the asso-
ciated frequency 𝜔 depends on D, the zonal wavenumber
k and the meridional index n. The horizontal structures
of geopotential height, zonal wind and meridional wind,
that is, the Hough harmonics Hk

n,r(𝜆, 𝜑) = 𝚯k
n,r(𝜑) eik𝜆, are

a well-known result of a classical theory that describes
small-amplitude perturbations about a motionless mean
state in the stratified atmosphere (Longuet-Higgins, 1968;
Andrews et al., 1987; Kasahara, 2020).

Often the treatment of the SWEs is simplified by adopt-
ing a planar geometry for the study of dynamics restricted
to a limited range of latitudes. Here there is an essential
difference depending on whether the application is extra-
tropical or tropical. For extratropical dynamics, where
the Coriolis parameter is bounded away from zero, the
frequencies of the eastward- and westward-propagating
inertia-gravity wave (IGW) solutions are well separated
from the frequencies of the Rossby wave solutions, as
discussed in the next section. On the sphere or on the equa-
torial 𝛽-plane, however, the notion of separate fast and
slow dynamics becomes problematic. Two special wave
solutions, which owe their existence to the change of
sign of 𝜑 at the Equator, fill the gap (Figure 1). These
are the equatorial Kelvin wave and the MRG wave. The
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F I G U R E 1 Frequencies of linear wave solutions on the
sphere for D = 300 m. Frequencies are computed solving the
eigenvalue problem following Swarztrauber and Kasahara (1985)
and normalized by
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√
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former is the slowest among the eastward-propagating
modes whereas the latter is the fastest low-frequency,
westward-propagating mode. Since the 1960s, when the
two modes were derived analytically (Matsuno, 1966) and
observed both in the oceans and in the atmosphere, they
have been the subject of intense research, especially the
Kelvin wave. Its phase speed on the equatorial 𝛽−plane is
equal to that of the surface GWs in the absence of rota-
tion,

√
gD , a convenient scale for other waves, used in the

non-dimensionalization of (1)–(3).

2.2 Fast and slow dynamics

In geophysical fluid dynamics, the distinction between
waves and coherent flows arises naturally in the
small-amplitude limit about a state of rest where the char-
acteristic velocity magnitude U tends to zero with all else
held fixed. In that limit, waves retain a fixed frequency but
the Doppler-shift frequency induced by advection, U𝜅,
where 𝜅 is a wavenumber, tends to zero. There is then an
asymptotic time-scale separation between (fast) waves and
(slow) advective motion, represented by a small parameter.
We identify the advective motion with the coherent flow.

We illustrate how this works for the SWEs on an
f -plane. As is well known, the dispersion relation about
a state of rest has three roots for the frequency 𝜔 as a
function of total horizontal wavenumber 𝜅:

𝜔0 = 0, 𝜔IG = ±
√

f 2
0 + gD𝜅2, (5)

where f0 is the Coriolis parameter. The first root represents
the normal mode associated with the time evolution of dis-
turbance potential vorticity, which on the f -plane is purely
advective (i.e., there are no Rossby waves) and hence has
zero frequency in the small-amplitude limit, whilst the
other two roots represent (fast) IGWs. We can heuristically
represent the effect of coherent flows on these frequen-
cies through a Doppler shift, whence their ratio (assuming
all quantities positive for convenience, and also assuming
isotropy) takes the approximate magnitude

𝜔0

𝜔IG
≈ U𝜅

U𝜅 +
√

f 2
0 + gD𝜅2

. (6)

It is easy to see that this ratio is asymptotically small,
that is, there is a time-scale separation, if and only if

𝜖 ≡ U𝜅√
f 2
0 + gD𝜅2

≪ 1. (7)

Defining the Rossby number Ro and the Froude num-
ber Fr in the usual way as Ro = U𝜅∕f0, Fr = U∕

√
gD,

our small parameter can be written instead (Saujani and
Shepherd 2006) as

𝜖 = Ro ⋅ Fr√
Ro2 + Fr2

. (8)

We see that 𝜖 ≪ 1 if either Ro ≪ 1 or Fr ≪ 1, even
if the other parameter diverges. Thus, for example, there
is even a time-scale separation at the Equator if Fr ≪ 1,
even though Ro → ∞. A similar analysis applies to strat-
ified flow (Saujani and Shepherd, 2006). The existence
of a time-scale separation provides a mathematical basis
for separating waves from coherent flows in model sim-
ulations, either through the time-stepping method itself
(e.g., the use of implicit methods) or by applying a time
filter to the output.

Following Warn et al. (1995), we can represent systems
with such a time-scale separation in the general form

𝜕f
𝜕𝜏

+ Γf = 𝜖F(s, f ; 𝜖), 𝜕s
𝜕𝜏

= 𝜖S(s, f ; 𝜖), (9)

where f represents the fast variables (not to be con-
fused with the Coriolis parameter), s represents the slow
variable(s), Γ is an invertible operator, the right-hand
sides of the equations contain the nonlinear terms (such
as advection), and 𝜏 is the fast time-scale (as in the
non-dimensionalization employed to derive (1)–(3)). Note
that the parameter 𝛾 in the previous section can be writ-
ten as 𝛾 = Ro∕Fr, if the Rossby number is defined as Ro =
U∕(2Ω a). In this case, 𝛾 becomes the Burger number.
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In the limit 𝜖 → 0, the system linearizes with the eigenval-
ues of Γ providing the frequencies of the fast modes and
with a zero frequency for the slow mode. Thus, the nor-
mal modes of the linear system provide a natural basis for
the representation above, as they cleanly separate the fast
and slow degrees of freedom. However, one can also seek
solutions on the slow time-scale t = 𝜖𝜏, which leads to

𝜕f
𝜕t

+
Γf
𝜖

= F(s, f ; 𝜖), 𝜕s
𝜕t

= S(s, f ; 𝜖). (10)

Again considering the limit 𝜖 → 0, the first equation
now requires the fast mode to vanish, f = 0, whereby the
second equation reduces to a closed evolution equation for
the slow dynamics. (Note that the slow dynamics are non-
linear, even though the amplitude is small in the sense
of (7).) Warn et al. (1995) illustrate this for the case of
the f -plane SWEs under classical quasi-geostrophic scal-
ing with Ro = Fr, where the fast variables are divergence
and geostrophic imbalance, and the slow variable is the
disturbance potential vorticity. Since on the f -plane the
disturbance potential vorticity is a materially conserved
quantity, its time evolution is purely advective. It thus rep-
resents coherent flows, whilst the fast variables represent
IGWs.

If the slow dynamics contain low-frequency waves,
such as Rossby waves, which occurs if the f -plane is
replaced by the 𝛽-plane, then there is potentially a regime
of small-amplitude, linear slow dynamics. This regime
is relevant to the Tropics (see later discussion). More
generally, we can consider low-frequency waves to be
included within the function S, together with the advective
dynamics.

It is important to distinguish between fast/slow vari-
ables, and fast/slow dynamics. If one expands the fast vari-
ables in an asymptotic series f = f (0) + 𝜖f (1) + 𝜖2f (2) + … ,
then f (0) = 0 is just the leading-order approximation and
the next-order approximation of the system is given by

f (1) = Γ−1F(s, 0; 0), 𝜕s
𝜕t

= S(s, f (1); 𝜖). (11)

We can then say that the fast variables are slaved to the
slow variables (Warn et al., 1995), in the sense that the for-
mer are uniquely determined by the latter. (The converse
is not true, because one cannot determine s from f .) The
slow dynamics thus include not only the slow variables,
but also the slow, slaved component of the fast variables.

Such slow dynamics derived under a time-scale sepa-
ration are generally referred to as balanced dynamics, with
quasi-geostrophic balance being the prototypical example.
The importance of the time-scale separation is somewhat
obscured in the traditional derivations (Pedlosky, 1987),
which proceed from the momentum and mass equations.

The latter leads to three constraints (non-divergence and
geostrophic balance in both horizontal directions), which
turn out to be redundant, and potential vorticity conser-
vation is derived as if by magic. Yet, since potential vor-
ticity conservation is a property of all rotating, stratified
fluids (Hoskins et al., 1985), the existence of an advec-
tive slow mode is guaranteed for any geophysical system
in the limit 𝜖 → 0. An example of a slaving relation is
the well-known quasi-geostrophic omega equation, which
relates the vertical velocity (and thus the horizontal diver-
gence, a fast variable) to the slow dynamics. We can refer
to the fast dynamics as unbalanced dynamics, as it may not
be entirely wave-like if the amplitudes are large enough.
Thus, in general the fast variables will comprise both slow
(slaved) and fast (unbalanced) dynamical components.

However, even in this f -plane context, the separa-
tion between fast and slow dynamics is only exact in
the limit 𝜖 → 0. For small but finite 𝜖, the separation is
only asymptotic (Bokhove and Shepherd, 1996) and the
dynamics become coupled if the slow dynamics are chaotic
(Wirosoetisno and Shepherd, 2000) – which is generally
the case for vortical dynamics. Nevertheless, the degree
of separation of the fast and slow dynamics in geophysi-
cally realistic regimes can be quite remarkable. Figure 2
shows an example of this from an idealized model derived
from a low-resolution version of the SWEs, for which the
small parameter in (8) is 0.04 and thus there is a clear
separation of time-scales. The frequency power spectrum
of the potential vorticity, corresponding to the balanced
dynamics, is recognizable as a continuous spectrum falling
off rapidly from its maximum at zero frequency. Such a
feature is also evident in the power spectrum of diver-
gence, although five orders of magnitude smaller, and
corresponds to the slaved component of the fast variables,
represented by (11a). The unbalanced dynamics are visi-
ble in the divergence spectrum as a discrete set of GWs
(since the resolution of the model is very limited), clearly
identifiable by their frequencies. In a more realistic setting,
a similar sort of separation was identified in simulations
of the SWEs on a sphere forced by a large-scale planetary
wave (McIntyre and Norton, 2000).

A discrete spectrum of linear waves analogous to that
in Figure 2 is visible in the real atmosphere in the man-
ifestation of the trapped global normal modes, known as
Lamb waves, seen in surface pressure variations (Sakazaki
and Hamilton, 2020). More generally, however, atmo-
spheric spectra are continuous. The global horizontal
kinetic energy spatial wavenumber spectrum exhibits a
𝜅−3 power law at synoptic scales (Boer and Shepherd,
1983), which is associated with the slow balanced dynam-
ics, but a 𝜅−5∕3 power law on the mesoscales (Nastrom
and Gage, 1985). Similar behaviour is seen in atmospheric
analyses and models (Figure 3; also Figure 5a below).
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F I G U R E 2 Frequency power
spectra of potential vorticity (grey line)
and divergence (black line) at a single
grid point, in a simplified shallow-water
model run at 17 × 17 wavenumbers. The
minimum gravity wave frequency is 22.4.
From Wirosoetisno et al. (2002)

Note that, for global spectral analyses, the spherical har-
monic index (or global wavenumber) is the analogue of
the horizontal wavenumber 𝜅 in planar geometry. For local
analyses on the mesoscale, as in the aircraft measure-
ments used by Nastrom and Gage (1985), the spectrum
is usually assumed to be horizontally isotropic (Figure 4,
also Blažica et al., 2013). In that case one can use any
directional wavenumber as a proxy for 𝜅, for example,
the along-track wavenumber for aircraft measurements,
or the zonal wavenumber (Figure 3b), recognizing that in
a global spectrum the zonal wavenumber does not cor-
respond to a unique spatial scale. However the spectrum
is not isotropic at the large synoptic and planetary scales
of the global atmosphere, as discussed in Section 3.1 and
illustrated in Figure 3.

The origin of the 𝜅−5∕3 power law spectrum has been
the subject of much speculation over the years, but is now
generally associated with the fast unbalanced dynamics,
because the magnitude of the divergence is comparable
to or even exceeds that of vorticity, in contrast to the
𝜅−3 regime where the divergence is asymptotically much
smaller than vorticity and thus associated with balanced
dynamics (Figure 3; also Figure 5a). Both spectral regimes
co-exist, and whether the 𝜅−3 or the 𝜅−5∕3 regime is domi-
nant at a given scale is a dynamic property which depends
on the nature of the flow. Using midlatitude aircraft mea-
surements at tropopause height, Kunkel et al. (2019) show
examples of this from different flights. Within the mid-
dle atmosphere, the balanced spectrum is rapidly attenu-
ated with altitude by Charney–Drazin filtering (Charney
and Drazin, 1961), so that the 𝜅−5∕3 spectrum emerges
even at fairly large scales (Koshyk and Hamilton, 2001;
Burgess et al., 2013). Based on atmospheric simulation
models, the spectrum of vertical motion in the tropical tro-
posphere appears to be very shallow, indeed almost white
(Schumann, 2019), across a wide range of scales. This is
suggestive of a very strong fast unbalanced component

to the flow, since a divergent horizontal kinetic energy
power law of 𝜅−5∕3 would imply a horizontal divergence
variance power law of 𝜅1∕3 – that is, close to a (spatially)
white spectrum – and horizontal divergence is closely
related to vertical velocity. The dynamics of such a strong
unbalanced spectrum can be expected to be highly non-
linear, meaning that the coherent flows themselves will
fall within this spectrum and would be removed by a sim-
ple frequency filtering – throwing the baby out with the
bathwater.

2.3 Fast and slow dynamics on the
sphere

We now return to the spherical SWEs and explain how
their linearized solutions relate to the concepts of fast
and slow dynamics discussed above. An arbitrary solution
of (1)–(3) can be expressed as

(u, v, h)T =
∑
k,n,r

W k
n,r (t) Hk

n,r, (12)

which can be combined with (4) to transform the nonlin-
ear equations (1)–(3) into the spectral ODE

𝜕W
𝜕t

+ iW = N(W) . (13)

Here, W is a complex vector with the Hough expansion
coefficients W k

n,r(t), i is a skew-adjoint operator defined
by frequencies𝜔1, … , 𝜔N of eigensolutions of (1)–(3) with
the right-hand side equal to zero,  = diag(𝜔1, … , 𝜔R),
and N is a quadratic function induced by nonlinearity of
the system with elements Nk

n,k defined by

Nk
n,r =

1
2𝜋∫

2𝜋

0 ∫
1

−1
(Nu,Nv,Nh)T

( ∑
k′,n′,r′

W k′

n′,r′H
k′

n′,r′

)
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(a) (b)

F I G U R E 3 Global horizontal wavenumber spectra of horizontal kinetic energy at the 135 hPa level from the ERA5 reanalyses (black),
with the spectrum decomposed into its rotational (red) and divergent (blue) components. (a) shows the spectrum as a function of the
spherical harmonic index (or global wavenumber), which is the analogue of the horizontal wavenumber 𝜅 in planar geometry, and (b) as a
function of the zonal wavenumber k. The spectra are averaged over one week of data once per day

(a) (b) (c)

F I G U R E 4 Global two-dimensional horizontal kinetic energy spectra at the 135 hPa level from the ERA5 reanalyses decomposed
using spherical harmonics defined by the zonal wavenumber and spherical harmonic index (or global wavenumber). (a) Total horizontal
kinetic energy, (b) rotational and (c) divergent components. The scale is logarithmic and uses the same data as Figure 3

×
(
Hk

n,r
)∗ (𝜆, 𝜇) d𝜇 d𝜆 , (14)

where 𝜇 = sin(𝜑). For details of the derivation see, for
example, Kasahara (1977).

To distinguish between the slow and fast dynamics, the
state vector W is split into a partition with the W k

n,r corre-
sponding to the EIG and WIG modes, denoted Wf, and a
slow component made up of Rossby modes, denoted Ws.
Equation (13) is then partitioned into two equations for the
IG and Rossby modes:

𝜕Wf

𝜕t
+ ifWf = Nf (Wf,Ws), (15)

and

𝜕Ws

𝜕t
+ isWs = Ns(Wf,Ws), (16)

where f and s denote diagonal matrices with frequen-
cies of the IG and Rossby modes, respectively, and Nf
and Ns consist of elements Nk

n,r projecting onto the IG
and Rossby modes, respectively. The vectors in (15) have
twice as many elements as those in (16). The difference
to the fast–slow representation of (9) is the presence of
the Kelvin and MRG waves and the non-zero frequencies
of the Rossby waves. In the spherical normal-mode
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F I G U R E 5 Energy spectra of the (a) Rossby and non-Rossby modes, and (b) Kelvin and MRG waves in comparison with the total
eastward- and westward-propagating non-Rossby modes. Energy is averaged over a 35-year period and the boreal summer months (JJA). The
analysis includes 36 levels from the surface up to 96 hPa in ERA-Interim

decomposition, the MRG wave appears as a solution of
the dispersion relationship for slow modes, that is, it is
accounted for in (16) whereas the Kelvin wave is a part of
(15) and defined as the n = 0 EIG mode (Swarztrauber and
Kasahara, 1985). The n = 1 EIG on the sphere corresponds
to the so-called eastward-propagating MRG mode of Mat-
suno (1966) on the equatorial 𝛽-plane.

The problem of solving (15) for 𝜕Wf∕𝜕t in order to sup-
press unphysical high-frequency oscillations in numerical
weather prediction (NWP) was extensively addressed in
the late 1970s and 1980s as part of nonlinear normal mode
initialisation (Baer and Tribbia, 1977; Machenhauer,
1977; Tribbia, 1979; Temperton and Williamson, 1981).
This procedure is represented by (11a) earlier, and repre-
sents a slaving of the fast variables to the slow dynamics.
The equatorially trapped IG waves with low frequencies
coupled with convection posed a major challenge for ini-
tialisation based on such an ad hoc assumption of the
separability of slow and fast modes. As a complex picture of
the tropical atmosphere emerged in which the Rossby and
IG waves coexist at many scales, along with simpler initial-
isation methods such as the digital filter initialisation, the
nonlinear normal-mode initialisation ceased to be used.

The picture of non-separability of the Rossby and GW
dynamics in the Tropics was complemented by the finding
that a large part of the analysis and forecast uncertainties
in global prediction models projects onto the non-Rossby
modes (Žagar et al. 2005; 2013; 2015). For example, Žagar
et al. (2013) found that nearly 50% of the short-range
forecast errors in the ECMWF system projected onto the
non-Rossby modes, the Kelvin wave in particular. The

growth of short-range forecast uncertainties was also most
noticeable in the large-scale equatorial Kelvin waves. Fur-
thermore, the under-dispersiveness of the ensemble pre-
diction system on the medium range was found to be
associated with an insufficient variance in the equato-
rial non-Rossby modes (Žagar et al., 2015). For the pur-
pose of NWP, Žagar et al. (2004,2005) suggested that the
mass–wind coupling of both the Rossby and equatorially
trapped non-Rossby modes, primarily the Kelvin and MRG
waves, be explicitly implemented in the background-error
covariance models for data assimilation in a similar way
as the linear balance equation provides the geostrophically
balanced part of analysis increments in the Extratropics.

2.4 Gravity waves in the troposphere

The background flow in the middle atmosphere is often
slowly varying, so that there is a separation of timescales
between the background flow and GWs (Section 2.2). It
follows that linear theory is a good approximation for
describing the spectral characteristics of GWs, their prop-
agation, and their effects on the background atmosphere
(Fritts and Alexander, 2003). In the troposphere and espe-
cially near the planetary boundary layer, the atmospheric
flow is instead highly variable. The presence of convec-
tion and turbulence makes it difficult to extract GWs from
the noisy background, whereas several methods of filtering
and fitting have successfully been developed for isolat-
ing GWs in the middle atmosphere (e.g., Lehmann et al.,
2012; Wright et al., 2017; Schoon and Zülicke, 2018).
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Much of the description of GWs is based on the
Taylor–Goldstein equation, which describes GWs in the
2D space of the horizontal and vertical dimension instead
of the shallow-water system introduced in Section 2.1.
The Taylor-Goldstein equation can be interpreted as
Equation (9) or (15) without the nonlinear terms on their
right hand sides, that is, in the case of (9) in the limit
𝜖 → 0. The Taylor–Goldstein equation is not specific to
the Tropics, but the examples of wave-convection cou-
pling discussed in this section focus on the Tropics, and
on waves of shorter horizontal scales than those discussed
in Section 2.3.

We will now solve the two-dimensional irrotational,
frictionless, adiabatic Euler equations with the density 𝜌 =
𝜌0 + 𝜌′ under the assumption |𝜌′∕𝜌0| ≪ 1, which is valid
as long as the vertical scale of perturbations is small com-
pared to the density scale height Hs. Compressibility of
the background density is retained, 𝜌0 = 𝜌sfce−z∕Hs . The
equations are then

𝜕u
𝜕t

+ u𝜕u
𝜕x

+ w𝜕u
𝜕z

= − 1
𝜌0

𝜕p
𝜕x

, (17)

𝜕w
𝜕t

+ u𝜕w
𝜕x

+ w𝜕w
𝜕z

= − 1
𝜌0

𝜕p
𝜕z

− 𝜌′

𝜌0
g, (18)

𝜕u
𝜕x

+ 𝜕w
𝜕z

= 0, (19)

𝜕𝜌

𝜕t
+ u𝜕𝜌

𝜕x
+ w𝜕𝜌

𝜕z
= 0. (20)

Equations (17) and (18) are the horizontal and ver-
tical, respectively, momentum equations, (19) is the
non-divergence condition, and (20) represents the conser-
vation of the density anomaly.

Linearization about a z-dependent background state
(U, 𝜌0, p0) in hydrostatic balance (with w0 = 0) with
wave solutions for the perturbations, (u′,w′, 𝜌′, p′) =
(û(z), ŵ(z), 𝜌(z), p̂(z))ei(kx−𝜔t), yields the polarization
equations

i�̂�û − ŵ dU
dz

= i
𝜌0

kp̂, (21)

i�̂�ŵ = 1
𝜌0

dp̂
dz

+ 𝜌

𝜌0
g, (22)

ikû + dŵ
dz

= 0, (23)

i�̂�𝜌 − ŵ𝜌0

g
N2 = 0, (24)

where the intrinsic frequency

�̂� = 𝜔 − Uk (25)

and the Brunt–Väisälä frequency N =
√
−(g∕𝜌0)(𝜕𝜌0∕𝜕z).

(Note however, that this expression for N is only valid
under the Boussinesq assumption (local incompressibil-
ity) and using this formula for calculating N in the
atmosphere would yield incorrect values. Instead, N =√
(g∕𝜃)(𝜕𝜃∕𝜕z) must be used, where 𝜃 is the potential tem-

perature.) Defining the density-weighted vertical velocity
w∗ = ez∕(2Hs)ŵ, (21)–(24) can be solved for w∗ to yield the
Taylor–Goldstein equation

d2w∗

dz2 +
[

k2N2

�̂�2
+ k

�̂�

d2U
dz2 − k

�̂�

1
Hs

dU
dz

− 1
4H2

s
− k2

]
w∗ = 0, (26)

⇔
d2w∗

dz2 +
[

N2

(c − U)2 + 1
c − U

d2U
dz2 − 1

Hs(c − U)
dU
dz

− 1
4H2

s
− k2

]
w∗ = 0, (27)

⇔
d2w∗

dz2 +
[
Λ2 − k2]w∗ = 0, (28)

⇔
d2w∗

dz2 + m2w∗ = 0, (29)

where c = 𝜔∕k is the ground-based phase speed (Nappo
2002, for example, gives more details on GW linear the-
ory). Λ2, defined as the first three terms inside the bracket
in (27), is also called the Scorer parameter. The general
solution w∗ = Aeimz + Be−imz implies that the fields associ-
ated with vertically propagating waves (m2 > 0) vary sinu-
soidally in the vertical. This has important consequences
for the spectrum of tropospheric GWs as discussed in
Section 3.3.

2.5 Slow dynamics in the Tropics

The perspective of fast and slow dynamics has always been
problematical in the Tropics, because of the breakdown
of quasi-geostrophic scaling. Charney (1963) proposed
a low-Fr balance, in accordance with (8), but it is
adiabatic and thus neglects the dominant balance in
the thermodynamic equation, which is between verti-
cal motion and diabatic heating (Held and Hoskins,
1985). The latter follows from the weakness of the Cori-
olis term in the Tropics, which means that significant
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horizontal temperature gradients cannot be sustained.
Imposing this dominant balance as an exact balance
(i.e., neglecting the local time derivative of the geopo-
tential height perturbation) in (3) leads to the ‘weak
temperature gradient’ (WTG) approximation (Sobel et al.,
2001) when using the equatorial 𝛽-plane. However, the
WTG approximation fails to capture equatorial Kelvin
waves.

A widely employed approximation to study low-
frequency equatorial waves is the long-wave approxima-
tion, which consists of neglecting the local time derivative
of the meridional wind in (2) when using the equato-
rial 𝛽-plane (Gill, 1982; Heckley and Gill, 1984; Ogrosky
and Stechmann, 2015). The MRG wave is filtered out
along with all IG waves. The long-wave approximation
can be considered as something like the equatorial equiv-
alent of the quasi-geostrophic approximation as it elim-
inates the IG waves. It has been helpful in providing
a basic picture of low-frequency phenomena including
the stationary tropical circulation in response to dia-
batic heating (e.g., Gill, 1980). One strong reason for
the usefulness of the long-wave approximation is that
it retains the Kelvin wave, which is of central impor-
tance for large-scale tropical motions that are affected
by rotation. The long-wave approximation thus captures
variability associated with the Walker circulation, but
it is not informative for the Hadley cell dynamics and
cross-equatorial winds projecting onto MRG waves (Yang
and Hoskins, 2017; Hoskins et al., 2020; Hoskins and
Yang, 2021).

Chan and Shepherd (2014) combined the long-wave
approximation with the slaving approach described in
Section 2.2 applied to the diabatically forced SWEs
on the equatorial 𝛽-plane, using height h as a slav-
ing variable and the anisotropy between meridional and
zonal length-scales (Ly, Lx respectively) inherent to the
long-wave approximation as the small parameter: 𝜖 =
Ly∕Lx. (Potential vorticity does not work as a slaving vari-
able in the Tropics if one wishes to include equatorial
Kelvin waves, since the latter have zero potential vorticity.
However, vorticity could be used rather than height.) This
approach uses the building blocks of the long-wave approx-
imation, but within a fully nonlinear context. Although 𝜖

is not explicitly a ratio of slow to fast frequencies, it can
be interpreted as such when Fr = 1 (Chan and Shepherd,
2014). The leading-order system takes the form

𝜕h
𝜕t

+ 𝜕

𝜕x
(u0h) + 𝜕

𝜕y
(v1h) = Q, (30)

u0 = −1
y
𝜕h
𝜕y

, (31)

v0 = 0, (32)

v1 = 1
h
−1

0

[
y𝜕h
𝜕x

+ yu0
𝜕u0

𝜕x
+ 𝜕2

𝜕x𝜕y
(hu0) −

𝜕Q
𝜕y

]
, (33)

0 ≡ − 𝜕2

𝜕y2 +
y
h

(
y − 𝜕u0

𝜕y

)
. (34)

Note that 0 is an invertible operator provided the
zonal flow u0(y) is inertially stable. This represents a
closed, first-order system (provided the diabatic heating
Q is specified somehow), hence it has effectively filtered
out the fast waves and is the appropriate slow dynamics
in the long-wave equatorial regime. The system reduces to
the time-dependent Gill model (Heckley and Gill, 1984) in
the small-amplitude limit, but has the merit of being fully
nonlinear.

In contrast to the WTG model, the mass Equation (30)
is a prognostic equation: the balance between horizontal
divergence and diabatic heating is included, but it is not
exact. This is what permits the Kelvin wave solution. Thus
the model incorporates WTG scaling, but does not impose
WTG balance. The balance is rather semi-geostrophic,
with the zonal flow in geostrophic balance (31), and the
ageostrophic meridional flow (33) being crucial to the
dynamics. One appealing feature of this model is that
the diagnostic equation for the winds is linear, unlike in
WTG. Also – potentially important for applications in data
assimilation – the winds can be diagnosed without knowl-
edge of the diabatic heating, so long as the time depen-
dence of the mass field is known. Because MRG waves do
not satisfy (31), they are not represented in the system.
However, the slow dynamics can nonetheless represent a
‘guiding centre’ about which the MRG oscillations take
place (Chan and Shepherd, 2014).

The dynamical balances within this model provide
a mathematical framework to relate diabatic heating to
meridional convergence (with the diabatic heating poten-
tially derived from the time dependence of the mass
field), which could be a useful metric for comparison of
the slow tropical dynamics – including phenomena such
as the Madden–Julian Oscillation – in kilometre-scale
models and in reanalysis, and their evaluation against
observations.

3 INTERPRETING OBSERVED
BEHAVIOUR ACROSS SCALES

3.1 Normal modes in the
three-dimensional spherical atmosphere

The rotating SWEs (1)–(3) appear also in the normal-mode
decomposition of the three-dimensional equations.
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They result from manipulating the standard prognos-
tic variables (u, v,T, ps) of the hydrostatic primitive
equations (Kasahara and Puri, 1981; Kasahara, 2020).
The assumption of vertical– and horizontal–time sep-
arability of the linearized 3D equations leads to two
eigenfunction problems linked through a constant with
the dimension of length, the so-called equivalent depth,
D. Positive values of D, obtained as a solution of the ver-
tical structure equation for the statically stable, vertically
bounded atmosphere (Cohn and Dee, 1989), provide cou-
pling between vertical eigenstructures and the horizontal
oscillations described by the linearized SWEs with the
average depth D. In this way, the SWEs are used to repre-
sent also the internal modes of a continuously stratified
atmosphere.

The complete set of three-dimensional normal modes
has been used to quantify the response to heating per-
turbations associated with different vertical modes of the
spherical atmosphere. A typical baroclinic structure of the
tropical response to transient heating involves a spectrum
of IG waves that strongly depends on the time-scale of
heating, whereas the Rossby and Kelvin wave responses
show little dependence on the heating time-scale (e.g.,
Geisler and Stevens, 1982; Kasahara, 1984; Salby and Gar-
cia, 1987; Garcia and Salby, 1987). The predicted baroclinic
vertical structure has been regularly identified in observa-
tions and reanalyses (e.g., Yang et al., 2007; Adames and
Wallace, 2014; Žagar and Franzke, 2015).

When heating perturbations occur in a realistic flow
including moist feedbacks, the circulation response is
still qualitatively similar to that in dry models with
imposed temperature perturbations, although nonlinear
effects enhance the amplitudes of the induced wave per-
turbations (Kosovelj et al., 2019). The short-term response
to equatorial stationary heating projects predominantly on
the Kelvin wave. Its prominent presence in observations,
prediction models and their simulated uncertainties, may
be due to the horizontal structure of the heating sources
resembling that of the Kelvin waves (i.e., maxima of tem-
perature perturbations on the Equator) and the fact that it
is the large-scale GW with a frequency closest to that of the
Rossby waves (Figure 1).

Note that the frequencies in Figure 1 are for the
equations linearized about a motionless mean state. In the
applications of the normal-mode function decomposition,
these frequencies are related solely with the derivation of
the horizontal structures of the Hough harmonics, and not
with the discussion of wave propagation properties (Žagar
et al., 2017). The wave frequencies differ from Figure 1
when the mean flow is taken into account in the lin-
earization; the frequencies can become unstable, as well as
continuous, except for a few of the lowest balanced modes
(Kasahara, 1980). However, the structures of the Hough

functions are not significantly different if the linearization
is performed around a non-zero mean zonal flow (Corri-
gendum of Kasahara, 1980; Salby, 1981; Ahlquist, 1982).
The Hough harmonics constructed with reference to the
basic state at rest are thus a suitable basis for the projection.
Evidence for theoretically predicted modes from linear
theory in atmospheric observations and reanalyses has a
long history (e.g., Madden, 2019, and references therein).

In spherical geometry, the latitudinal variation of 𝛽

defines the direction of wave activity propagation away
from tropical vorticity sources, and thereby teleconnec-
tion pathways (Hoskins et al., 1977; Hoskins and Karoly,
1981). The dynamics of thermally direct tropical circula-
tions in response to heating perturbations was elucidated
by a one-level vorticity equation model (Sardeshmukh and
Hoskins, 1988) and by applying the linear approximation
to the primitive equations on the equatorial 𝛽−plane (Gill,
1980; Heckley and Gill, 1984). An advantage of the lin-
earized primitive equations over the vorticity equation is
that the former supports both Rossby and IG waves and the
two already introduced equatorially trapped waves – the
Kelvin and the MRG wave.

A widely employed method to analyze the role
of MRG and Kelvin waves in tropical wave variabil-
ity is wavenumber–frequency filtering of single-level,
single-variable data (e.g., outgoing long-wave radiation)
within the tropical belt. Filtering relies on the Fourier
series expansion in longitude and time, with the disper-
sion relations for linear waves on the 𝛽−plane overlaid
on the wavenumber–frequency variance diagrams to con-
nect the observed power spectra with the Kelvin, MRG
and other equatorially trapped waves (e.g., Wheeler and
Kiladis, 1999; Kiladis et al., 2009). Spatial filtering using
the wave eigenstructures is a vastly different approach; in
addition to the Hough harmonics decomposition on the
sphere (e.g., Žagar et al., 2009; Castanheira and Marques,
2015; Blaauw and Žagar, 2018), the parabolic cylinder
functions can be employed on the equatorial 𝛽−plane (e.g.,
Yang et al., 2003, 2007, Tindall et al., 2006). The procedure
can be multivariate, meaning that the geopotential height
and winds are analyzed simultaneously (as in (4)). The
Hough harmonics decomposition, which is applied in the
next subsection, involves many equivalent depths leading
to the three-dimensional structure of wave perturbations.
The decomposition is time independent, but filtered wave
structures nevertheless show coherent propagation prop-
erties1 even for IG waves associated with synoptic-scale
processes as demonstrated by the comparison with the
hodograph method (Žagar et al., 2017).

1Examples of real-time equatorial wave filtering can be seen at http://
modes.cen.uni-hamburg.de.

http://modes.cen.uni-hamburg.de
http://modes.cen.uni-hamburg.de
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With the Tropics included, the energy spectra of the
large-scale circulation are considerably anisotropic, as
illustrated in Figure 4, which is a two-dimensional ver-
sion of Figure 3. It shows a peak rotational energy at the
global wavenumbers 5–10 associated with synoptic eddies.
In contrast, divergent energy is greatest at planetary zonal
scales and is skewed towards larger zonal wavenumbers
due to tropical non-Rossby modes, mainly the Kelvin and
MRG waves (Žagar et al., 2009). It is not possible to quan-
tify their role in Figure 4 based on the spherical harmon-
ics, as they are not predominantly vortical or divergent
modes. For example, the MRG wave better fits within
the Rossby regime at synoptic than it does at planetary
scales (Figure 1). A decomposition (12) in terms of the
Hough harmonics which isolates the Kelvin and MRG
waves within the global framework is thus undertaken in
the next section.

3.2 Spatio-temporal variability
of equatorial Kelvin and MRG waves

Under the ergodicity assumption (i.e., time average is
equal to average over phase), coupling between spatial
and temporal variability associated with different dynam-
ical regimes and waves can be deduced by applying (12)
after the vertical decomposition. For the total (horizon-
tal kinetic plus available potential) energy associated with
a vertical mode with equivalent depth D at time t, total
energy is obtained as

Ik
n,r(t) =

1
2

gD |||W k
n,r(t)

|||2, (35)

where the square of the absolute value is |||W k
n,r
|||2 =

W k
n,r
(

W k
n,r
)∗, and ∗ denotes the complex conjugate (e.g.,

Kasahara 2020). The time-averaged energy (spatial vari-
ance) over time period T spanned by N steps is denoted
Ik

n,r.
Figure 5 shows Ik

n,r for the various modes in
ERA-Interim reanalysis data (Dee et al., 2011), with the
averaging performed for daily data over the 35 boreal
summers in the period 1980–2014. Energy per unit mass
is integrated over 36 model levels between the surface
and about 100 hPa. Note that the top boundary condition
for the 3D normal-mode function decomposition is still
applied near the model top (p ≈ 1 Pa). Including the data
above ∼ 100 hPa would significantly increase energy lev-
els per unit mass at large scales in the Kelvin and MRG
waves and would dilute the spectrum of their tropospheric
variance which is of interest here. The impact of vertical
data density on the spectra was discussed in Žagar et al.
(2012, 2017).

In Figure 5a, the MRG waves are counted together
with the Kelvin and other IG modes2. The continuous total
energy spectrum of the IG+KW+MRG modes in Figure 5a
has a slope which follows a k−5∕3 power law for k ≳ 10,
with the non-Rossby energy exceeding the Rossby mode
energy at scales around 500 km (k ≈ 50). Note that the
crossing scale is smaller than in Figure 3b which applies
to a single level (135 hPa) and to the horizontal kinetic
energy in ERA5. Žagar et al. (2017) showed that energy
spectra of IG modes in more recent, high-resolution anal-
yses follow a k−5∕3 power law closer than in ERA-Interim
data, which is consistent with a better representation of
smaller scales and internal GWs in higher-resolution mod-
els. Along with the results of energy decomposition into
the Rossby and gravity normal modes of the linearized sys-
tem by other authors (e.g., Dewan, 1979; Kitamura and
Matsuda, 2010; Terasaki et al., 2011), this supports the pic-
ture of quasi-linear IG waves being associated with the
regime transition from a −3 power law at synoptic scales
to a −5∕3 power law at subsynoptic scales, as discussed in
Section 2.2.

As discussed above, the MRG and Kelvin waves pose
a problem for the partition between fast and slow dynam-
ics on the sphere. The divergence/vorticity decomposition
(Figure 3) is not as elucidating here since the Kelvin and
MRG wave kinetic energy is spread across the vortical and
divergent parts of the spectra. Their less divergent nature
is made evident by their steeper energy spectra com-
pared to eastward-propagating and westward-propagating
IG modes, with the MRG spectrum more steep than the
Kelvin wave spectrum (Figure 5b). There are still signifi-
cant differences among analysis datasets in the representa-
tion of these two special wave solutions (Žagar et al., 2009;
Podglajen et al., 2014).

A major contrast between the Kelvin and MRG waves
at large scales is seen in their maximal energies at the zonal
wavenumbers k = 1 and k = 5–7, respectively. Although
the peak MRG activity at synoptic and smaller scales
exceeds that of the Kelvin wave, the total Kelvin wave
energy is almost twice as great. The energy portion of
Kelvin waves in all eastward-propagating modes is about
30%, whereas the MRG waves make up around 20% of the
energy of the westward-propagating non-Rossby modes.
The Kelvin and MRG wave contributions are much smaller
when viewed in the context of the total subseasonal vari-
ability which is dominated by variability in Rossby modes
(Žagar et al., 2020b), but are relevant for the formulation of
simplified tropical models as in Section 2.5. Furthermore,
the most energetic scales of the two special wave solutions

2Energy spectra in Žagar et al. (2017) and related papers count the MRG
waves among the balanced modes.
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F I G U R E 6 (a) Logarithm of subseasonal variance (in J⋅kg−1) of the global circulation projecting onto non-Rossby modes. (b) Ratio
between the subseasonal variance associated with the Kelvin and mixed Rossby-gravity modes and the total global non-Rossby subseasonal
variance in each zonal wavenumber, (KW+MRG)/(EIG+WIG+KW+MRG). Variance is computed for ERA-Interim data, vertically integrated
over 36 model levels from the surface up to ∼96 hPa, and averaged over all seasons

are characterised by significant interseasonal dynamics,
with the largest variance in boreal summer and winter
for the Kelvin waves and MRG waves, respectively (not
shown), in agreement with previous studies (Yang and
Hoskins, 2017; Blaauw and Žagar, 2018).

Time averaging applied to a single mode W k
n,r is the

time-mean state W k
n,r and the associated energy is Ek

n,r:

Ek
n,r =

1
2

gD|||W k
n,r
|||2, where W k

n,r =
1
N

N∑
t=1

W k
n,r(t) . (36)

The difference between energy of the mean state, Ek
n,r,

and the time mean energy Ik
n,r, is equal to one half of the

(biased) temporal variance V k
n,r:

Ik
n,r − Ek

n,r =
1
2

V k
n,r , (37)

where the biased variance is defined is

V k
n,r =

1
N

N∑
t=1

gD|||W k
n,r(t) − W k

n,r
|||2. (38)

In practice, we use the definition of the unbiased
variance, that is, normalization is performed by using
N − 1 instead of N. The unit of energy and variance is
J⋅kg−1 or m2⋅s−2. In modal space, the horizontally inte-
grated variance V k

n,r is equivalent to the integral in model
space, after the vertical projection, of the variance in
the wind components and weighted pseudo-geopotential
height (Žagar et al., 2020a).

The temporal variance, V k
n,r, associated with the Kelvin

and MRG modes at subseasonal scales is quantified in
Figure 6. It shows the largest variance in the n = 0 mode
which is equatorially trapped and includes the Kelvin
wave, the MRG wave and the n = 0 WIG mode. The
larger the zonal scale, the greater is the subseasonal
variability, except at synoptic scales and n = 2–6. A rel-
atively greater variability in this range of zonal scales
compared to neighbouring scales is associated with a com-
ponent of synoptic-scale midlatitude dynamics projecting
onto IG modes. We note that neither the annual cycle
nor any other component of the signal present in the
reanalysis data has been filtered. The variability distribu-
tion in ERA-Interim in the troposphere appears isotropic
beyond zonal wavenumber k ≈ 50, the scale where the
non-Rossby energy exceeds the Rossby wave energy in
Figure 5a.

The portion of variance due to the Kelvin and
MRG waves in the total non-Rossby variance in each
zonal wavenumber is quantified in Figure 6b. At zonal
wavenumber 1, the Kelvin wave contributes a little over
40% of the subseasonal variance below ≈100 hPa but
its portion drops sharply with zonal wavenumber, and
beyond wavenumber 5 makes up less than 5%. The MRG
variance peaks at synoptic scales where it makes up about
one-third of the subseasonal non-Rossby variability. At
k = 15 it is still over 10%. Overall, the two waves are
associated with about one-third of the global subseasonal
variance not associated with the Rossby-wave dynam-
ics at planetary and synoptic scales (scales larger than
1,000 km). Both Kelvin and MRG waves must therefore be
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ingredients of any theory that aims at describing tropical
dynamics at large scales.

3.3 Coupling of GWs to large-scale
convective systems

Tropospheric GWs can force coherent or periodic patterns
of vertical motion with visible effects on the cloud field.
Unlike in the midlatitudes, where the Coriolis force limits
the spatial influence of GWs, they can travel large dis-
tances in the Tropics. Here we review the mechanisms
that have been proposed to describe the coupling between
convection, GWs and the large-scale circulation on spatial
scales ranging from a few hundred metres to hundreds of
kilometres.

The heating or cooling associated with diabatic pro-
cesses, for example condensation or evaporation, gen-
erates density gradients in the atmosphere. Therefore,
a fundamental process associated with convective heat-
ing is the generation of internal GWs (Bretherton and
Smolarkiewicz, 1989). Any vertical heating and cool-
ing profile of depth D can be decomposed as Q(z) =
ΣN

n=1An sin(𝜋nz∕D), which projects onto vertical wave-
lengths

𝜆n
z = 2D

n
, (39)

(Alexander and Holton, 2004; Stephan et al., 2016). If
there is no background wind (U = 0) and the compressibil-
ity term 1∕(4H2

s ) is neglected, then the Taylor–Goldstein
equation (26) gives the dispersion relation

m2 = k2
(

N2

𝜔2 − 1
)
. (40)

Therefore, the horizontal phase speed of a wave with
vertical wavelength 𝜆n

z is

cn
p = 𝜔

k
= 1

k
N√

1 + m2

k2

m≫k
= N

m
= ND

𝜋n
. (41)

For N = 0.012 s−1 and D = 11 km, the resulting hori-
zontal phase speeds are 42 m⋅s−1 (n = 1), 21 m⋅s−1 (n =
2) and 14 m⋅s−1 (n = 3). The gravest mode (n = 1) is
associated with heating spanning the depth of the tropo-
sphere. To compensate for the local rising motion associ-
ated with this heating, the n = 1 mode initially induces
deep compensating subsidence throughout the depth of
the troposphere (Bretherton and Smolarkiewicz, 1989),
which would act to suppress convection. A phase of deep
ascending motion follows. This alternating response of

deep rising and sinking motion is similar to the response
of the surface of water at rest when it is displaced upwards
by an initial disturbance, that is, a disturbance oppo-
site to the downward displacement a stone thrown into
the water would cause. The second mode (n = 2) with
a vertical wavelength equal to the depth of the tropo-
sphere corresponds to lower-tropospheric cooling associ-
ated with precipitation. This n = 2 mode induces com-
pensating lower-tropospheric ascent, which would act
to promote new convection. Shallow convection projects
onto the n = 3 mode. The spectra of deep convection
have been explored in dry simulations with prescribed
sources of heating and cooling (Stephan and Alexander,
2015; Stephan et al., 2016), showing that prescribed heat-
ing generates very realistic wave amplitudes and prop-
agation characteristics which are consistent with linear
theory.

GWs associated with n = 1, 2, 3 and higher modes can
trigger a sequential initiation of convection, explaining
how organized convection can propagate faster than storm
outflow (Lac et al., 2002; Tulich and Mapes, 2008). More-
over, Lane and Zhang (2011) argued that quasi-regular
cloud systems can result from a quasi-resonant coupling
between convection and GWs. They explained that the
depth of convection determines the vertical wavelength,
while the typical time-scale of convection determines the
wave frequency. The horizontal wavelength is then con-
strained by the dispersion relation and in their case was
100 km, matching the cloud spacing.

The horizontal group velocity is

cgx =
𝜕𝜔

𝜕k
= Nm2

(k2 + m2)3∕2 ,

and the vertical group velocity is

cgz =
𝜕𝜔

𝜕m
= Nmk

(k2 + m2)3∕2 ,

and thus

cgz

cgx
= k

m
.

This implies that the waves will eventually escape into
the stratosphere, in particular the leading modes (small
m; (41)), if they are not partially or fully reflected. Verti-
cal variations in wind speed or stability can cause partial
or total reflection of upward propagating GWs, so that
waves can become trapped. For these waves m2 < 0, which
implies that the wave amplitude decays exponentially out-
side of the trapping region, which is also called the wave
duct. If there is a constant background wind U, then (40)
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becomes

m2 = k2
(

N2

�̂�2
− 1

)
, (42)

as is readily apparent from (27). One can see that m2 → 0
is approached as �̂� → N. Since

�̂� = kN
(k2 + m2)1∕2 = N cos 𝛼,

where 𝛼 is the angle between the wave vector and the hor-
izontal, trapped waves have vertically aligned phase lines,
that is, the waves are moving only horizontally. In this case
energy is not escaping into the stratosphere, but remains
within the troposphere.

From (28) and (29), Λ2 − k2 = m2. Therefore, waves
can only propagate upwards ifΛ2 − k2 > 0, or equivalently,
if 𝜆x = 2𝜋∕k is greater than the critical wavelength 𝜆∗x :

𝜆x > 𝜆∗x = 2𝜋
Λ

. (43)

Conditions conducive to trapping are characterized by
𝜆∗x increasing with height, or equivalently, by the Scorer
parameter decreasing with height. Trapping can occur,
for instance, through a Doppler shift of the intrinsic fre-
quency �̂� when a wave propagates upstream, as this would
increase �̂� (for upstream-propagation −kU > 0 in (25))
and decrease the Scorer parameter, since k2N2∕�̂�2 is the
leading term in (26).

Both shallow and deep trapped GWs can promote
the growth of shallow convection into banded clouds
(Shige and Satomura, 2001), and provide a mechanism
for the longevity of convective systems (Stechmann and
Majda, 2009). Ducted waves have also been observed
to initiate severe convection (Su and Zhai, 2017). The
n = 3 and higher modes have phase speeds and a ver-
tical structure similar to cold pools. Despite the recog-
nition that cold pools play an important role in the
organization of midlatitude convective systems via the
Rotunno–Klemp–Weisman theory (Rotunno et al., 1988),
Grant et al. (2018) showed that not cold pools, but GWs
influenced the intensity, mesoscale structure, propagation,
and lifetime of their simulated organized tropical oceanic
convective systems. They pointed out that the n = 3 wave’s
half-vertical wavelength (∼5 km) is similar to the altitude
of the freezing level. The wave amplitude is reinforced by
convective systems via latent cooling from melting and
evaporation below the freezing level. Similar arguments
were presented by Lane and Moncrieff (2015) and Mon-
crieff and Lane (2015) to explain the up- and downshear
propagation of mesoscale convective systems.

3.4 Coupling of GWs to the boundary
layer

Not only can GWs be forced thermally by heating, they
can also be generated mechanically when thermals are
subject to wind shear. It is mainly through this so-called
obstacle effect that dry and moist thermals in the convec-
tive boundary layer generate GWs, which then propagate
inside the above-lying stable layer and can be associated
with vertical motions spanning the depth of the tropo-
sphere (Clark et al., 1986; Balaji and Clark, 1988; Bal-
aji et al., 1993). Unlike the larger-scale waves associated
with mesoscale systems (e.g., Lane and Zhang, 2011), the
properties of these high-frequency and short-wavelength
waves are not so much determined by their source as
by the characteristics of the free troposphere (Lane and
Clark, 2002). The scale selection is affected by two pro-
cesses. The first is the trapping mechanism, discussed
above, which mainly affects upstream-propagating waves,
for which −kU is positive (25). If U varies with height
inside the stable layer, then this can cause waves of short
horizontal wavelengths to become trapped. The second
mechanism is critical-level filtering, which occurs when
�̂� → 0. A critical level corresponds to a wave propagat-
ing downstream, as �̂� = 0 implies c = U. For �̂�2 ≪ N2,
the dispersion relation (42) can be approximated as |m| =
N∕|̂c|, where the intrinsic phase speed ĉ = c − U. There-
fore, when a wave approaches a critical level, 𝜆z → 0. The
fluid motions become more and more horizontal, produce
turbulence and the wave breaks down before reaching the
critical level (Booker and Bretherton, 1967).

Studies using dry or moist models in two or three
dimensions, but idealized by using a spatially homoge-
neous background state, have reported a feedback of such
trapped waves on the boundary-layer thermals, whereby
the thermals are re-arranged to match the dominant wave-
length of the overlying wave field (Clark et al., 1986; Balaji
and Clark, 1988; Balaji et al., 1993; Lane and Clark, 2002).
Such a feedback is physically plausible because the ver-
tical velocity must be continuous at the interface of the
boundary layer and the stably-stratified wave layer. There-
fore, wave-induced periodic perturbations are also felt by
processes within the boundary layer. Here, it is impor-
tant to note that, even though the boundary layer does
not support GWs, the ducted wave amplitude decays below
the height of the boundary layer zBL as e−m(zBL−z). Since m
is proportional to k (42), the e-folding scale in the verti-
cal increases with decreasing k. In other words, trapped
GWs of longer wavelengths will influence a deeper region
than short wavelengths. Since the longest trapped wave is
𝜆∗x (43), linear theory would predict that this wavelength
will become dominant. For �̂� = N and 𝜆x = 5–15 km, the
e-folding scale would be 0.8–2.4 km.
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(a)

(b) (c) (d)

F I G U R E 7 (a–c) Water vapour mixing ratio (colours) and cloud mask (black shading) from the CORAL (Cloud Observation with
Radar And Lidar) instrument at the Barbados Cloud Observatory on 11 October 2019 (a) over 24 hr and (b) over 0000-0100 UTC and (c) over
0600–0700 UTC. (d) Daily-mean wind profiles on the same day at 300◦E, 12.5◦N from the NCEP reanalysis

To visualize wave effects inside the boundary layer,
Figure 7a–c shows observations from the CORAL (Cloud
Observation with Radar And Lidar) instrument at the
Barbados Cloud Observatory (Stevens et al., 2016). Since
May 2019 CORAL measures high-resolution vertical pro-
files of water vapour using a 100 Hz 355 nm laser beam.
Figure 7 shows a day that is representative of October
2019 in that widespread fields of shallow cumuli with
horizontal diameters of up to about 1 km covered sub-
stantial fractions of the tropical Atlantic around Barba-
dos. Reanalyzed wind profiles from NCEP (Kalnay et al.,
1996) imply advection speeds of about 4–5 m⋅s−1 at an
altitude just below 1 km (Figure 7d). The most important
factors controlling these types of clouds are assumed to
be tropospheric stability, surface wind speeds, free tro-
pospheric humidity, and large-scale vertical motion (e.g.,

Stevens and Brenguier, 2009). But CORAL observations
also show clear signatures of deep waves in the water
vapour mixing ratios. These waves extend up to at least
3 km and they are present above clouds, for instance
at 0000–0100 UTC (Figure 7b), but also at times when
no clouds are detected, for instance at 0600–0700 UTC
(Figure 7c). At 0600–0700 UTC the vertical coherence is
particularly evident even down to an altitude of 500 m.
These observations are consistent with a coupling between
trapped waves and dry or moist boundary-layer thermals.
Combining cloud and wind lidar observations could be a
promising avenue to enhance our understanding of how
background conditions, GWs and their sources in the
boundary layer are linked.

Idealized simulations with homogeneous background
conditions are a powerful tool to confirm the predictions of
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linear theory. However, due to the absence of larger-scale
forcings, the feedbacks between the boundary layer
and the overlying wave field might be unrealistically
enhanced. Recently, Stephan (2020) found that a coupling
between clouds and trapped GWs can also be detected
in kilometre-scale simulations of full complexity, that
is, in numerical simulations similar to weather forecasts
(Klocke et al., 2017). In the analyzed simulations of 2.5 km
horizontal resolution, feedbacks between trapped waves
and the cloud field occurred in regions and at times of
strong upper-tropospheric wind shear. These situations
were characterized by a highly-organized scattered cloud
field, with spectral power at horizontal wavelengths of
19–27 km dominating both the field of vertically integrated
cloud water as well as the vertical velocity field through-
out the troposphere. The study showed that clouds can be
patterned by waves even in the presence of large-scale forc-
ings. Important questions that were not addressed include
whether or not such interactions affect the overall amount
of cloudiness, favour deeper clouds, or influence cloud life-
time, as suggested by idealized studies (Balaji and Clark,
1988).

Another mechanism through which GWs can couple
to the boundary layer is Jeffreys’ drag instability mecha-
nism. Jeffreys (1925) described how water flowing down
an inclined channel can develop instabilities that result in
progressive waves on its surface. The instabilities develop
because the surface drag is proportional to the square of
the horizontal wind speed. Thus, variations in wind speed
create variations in drag, which, due to turbulent mixing,
are felt by the entire layer of water. These in turn result in
convergence or divergence of water, respectively, eventu-
ally forming visible waves. Under certain circumstances,
which are governed by nonlinear equations, this system
can achieve a resonant state. Chimonas (1993) applied this
concept to the atmospheric boundary layer by substitut-
ing the gravitational acceleration on slanted terrain with
the acceleration due to the horizontal pressure gradient
force. Figure 8a illustrates this case. In the undisturbed
state the pressure gradient force is balanced by surface drag
(d) which, due to turbulent mixing, acts on all fluid ele-
ments inside the boundary layer. In the disturbed state,
drag and layer depth vary in space and time. Stephan
(2021) showed that this mechanism contributes to the for-
mation of shallow-convective cloud lines perpendicular to
the near-surface wind, which are often observed by satel-
lites over the tropical oceans. An example of such cloud
lines is shown in Figure 8b.

The governing equation system was derived by Chi-
monas (1993). The simplest model consists of two layers
of incompressible fluids: a turbulent boundary layer of
depth h with constant density 𝜌0 and constant wind speed
U, topped by a neutrally or stably stratified semi-infinite

F I G U R E 8 (a) Jeffreys’ drag instability mechanism in the
atmospheric boundary layer. Instabilities develop because
variations in the surface drag d result in convergence or divergence
(taken from Chimonas, 1993). Here, the symbol d corresponds to
the term 𝜌d in (44). (b) Two superimposed visible GOES-E images
colourized by time (cyan: 1730 UTC and beige: 1800 UTC). The
images show the area 51–48◦W, 7.25–10◦N on 5 April 2020

Boussinesq fluid with constant density 𝜌1 and constant
wind u1. In the boundary layer, the mass continuity
equation in the long-wavelength limit is

𝜕h
𝜕t

= −𝜕(uh)
𝜕x

(Jeffreys, 1925), and the horizontal momentum equation
is

𝜌
(
𝜕

𝜕t
+ u 𝜕

𝜕x

)
u +

𝜕p
𝜕x

+ 𝜌d = 0. (44)

The key assumption is that for the constant back-
ground flow U with d(U) = d0,

𝜕p0

𝜕x
+ 𝜌d0 = 0,
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where the surface friction

∫
h0

0
𝜌0d0 dz = 0.5𝜌0CDU2.

Here, CD is a constant drag coefficient and h0 is the unper-
turbed height of the boundary layer. In the upper layer we
have a harmonic wave field with the perturbation vertical
velocity

w′ = A(z)ei(kx−𝜔t). (45)

This equation system can be solved by linearizing and
requiring that the field of pressure and height perturba-
tions must be continuous at the interface of the two fluids.
Then, in the long-wavelength approximation 𝜆h ≫ h0, the
growth rate of the perturbation vertical velocity is

𝜏−1
double =

CD

2
U
h0

(
3
2

U − c
)

(c − U)
, (46)

where c is the horizontal phase speed. Thus, perturba-
tions moving downstream have positive growth rates for
U < c < 3U∕2. Stephan (2021) showed that the frequently
observed cloud patterns with wavelengths of several tens of
kilometres form over the course of about half a day when
the mixed-layer depth (h0) is about 1 km and the mean
wind speed in this layer (U) is greater than 7 m⋅s−1. For
slower wind speeds, the growth rates of the drag instability
decrease significantly.

The fact that GWs can be about as slow, in terms of
phase speed, as the coherent flows in their surrounding
environment implies great difficulty in separating them.
For Jeffreys’ drag instability, the wave speed is close to
the speed of the background flow. A second example, dis-
cussed earlier in Section 3.3, is that GWs and cold pools
have nearly the same phase speed.

3.5 Gravity waves and mesoscale
divergence

So far, all mechanisms discussed in sections 3.3 and 3.4
have focused on discrete wave modes with horizontal
wavelengths matching the scales of the respective orga-
nized convective systems. Recent findings suggest that
mesoscale GWs may influence cloud patterns more
generally, at least in convectively suppressed conditions,
by modulating coherent vertical motion on horizontal
scales of a few tens to several hundreds of kilometres.
Weather and climate modelling often adopts the notion
that a slowly-varying large-scale vertical motion, such as
the sinking at the edge of a presumed Hadley cell, sets

the stage for convection. Yet, Stevens et al. (2020) showed
that small and intermediate scales of motion substantially
pattern cloud fields. Bony and Stevens (2019) observed
strong long-lived wave-like variability in vertical profiles
of mesoscale divergence. These profiles were computed
from dropsonde measurements of horizontal winds over
the tropical Atlantic. Stephan et al. (2020) confirmed such
fine-scale structures in divergence profiles derived from
the Tropical Warm Pool-International Cloud Experiment
(TWP-ICE; May et al., 2008).

In an attempt to explain these features, Stephan et al.
(2020) analyzed radiosonde observations from TWP-ICE
for the presence of low-frequency GWs, for which �̂� ≪ N.
GWs that may explain the divergence patterns need to
have periods consistent with the temporal autocorrelation
scales of the divergence profiles, horizontal wavelengths
consistent with their spatial autocorrelation scales, and
vertical wavelengths consistent with the vertical variability
of the divergence profiles. The divergence Div(x, y, z, t) is
directly related to the wind perturbations associated with
a plane wave with wave vector (k, l,m), frequency 𝜔 and
phase 𝜙,

(u, v,w) = (Ax,Ay,Az) sin(kx + ly + mz − 𝜔t + 𝜙), (47)

as

Div ∼ (kAx + lAy) cos(kx + ly + mz − 𝜔t + 𝜙). (48)

The typical characteristics of these low-frequency GWs
can be extracted from radiosonde soundings using hodo-
graph methods (e.g., Eckermann and Vincent, 1989). For
a zonally propagating wave, the meridional velocity per-
turbation is v̂ = −i(�̂�∕f )û, that is, v̂ is 90◦ out of phase
with û. Therefore, �̂� can be obtained from the polarization
ellipse that is traced by the horizontal wind components.
The vertical wavelength is found from a power spectral
analysis and the horizontal wavelength follows from the
dispersion relations. Stephan et al. (2020) found waves
with typical vertical wavelengths of about 4 km, horizontal
wavelengths of about 600 km and intrinsic periods of about
12 hr. The observed vertical, horizontal and temporal vari-
ability of divergence inside the area they considered are
related, as one would expect from these GW properties.

The dispersion relation of low-frequency GWs can be
approximated as

�̂�2 = N2 𝜅
2

m2 + f 2, where 𝜅2 = k2 + l2,

and thus ||| cgz

cgh

||| = 𝜅

m
=

√
�̂�2 − f 2

N
.
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Since for these waves �̂�2 ≈ f 2, they do not quickly escape
into the stratosphere, but propagate over far distances
within the troposphere.

The studies by Bony and Stevens (2019) and Stephan
et al. (2020) sampled constant-sized areas with diam-
eters of about 200 km, which did not permit studying
how divergence characteristics depend on area size. The
EUREC4A campaign of 2020, which took place over the
western tropical Atlantic (Stevens et al., 2021) included
an extensive radiosounding network composed of a sta-
tion on the island of Barbados and four ships (Stephan
et al., 2021). The polygon spanned by the island station
and the ships varied in size, sampling areas with equiv-
alent radii of 100 km up to about 400 km. Stephan and
Mariaccia (2021) showed that observed divergence mag-
nitudes during EUREC4A scaled approximately inversely
with the area equivalent radius. Moreover, they confirmed
this result in the ERA5 reanalysis and in a 2.5 km global
numerical simulation. By applying the normal mode
decomposition described in Section 3.1 to the numerical
data, they derived an analytic expression that explains
the scaling law of divergence magnitudes based on the
wavenumber dependence of the global IG wave energy
spectrum (the blue line of Figure 5a computed for their
2.5 km simulation). This finding clearly demonstrates
that some properties of mesoscale circulation depend on
all scales and that care must be taken when studying
mesoscale processes in limited-area domains.

3.6 Cause and effect

A common approach to develop conceptual models of
atmospheric variability is to consider the steady form of
a tendency equation derived from the underlying govern-
ing equations. Kilometre-scale models, for instance, can
be used to study how the energy budget changes with
cloud organization. Other examples of budgets include
the zonal momentum budget and the moist static energy
budget. The issue here is that, by definition, budgets
must balance, and it is not immediately apparent which
terms in the budget should be considered the cause, and
which the effect. For example, in the context of climate
change, a poleward shift of the Southern Hemisphere
(SH) westerlies is a robust global climate model (GCM)
response to global warming (Kushner et al., 2001), but the
mechanisms behind the shift remain unclear (Shaw, 2019).
The proximate explanation of the jet shift is a shift in the
regions of eddy momentum flux convergence, which can
be explained by critical-layer control (Randel and Held,
1991), but this is merely a diagnostic balance and the
causality of the relation remains unclear (Chen and Held,
2007).

The moist static energy budget is often used as a
diagnostic framework for the zonally averaged tropical
circulation (Neelin and Held, 1987). The framework has
been used to explain the location and potential shifts in
the ITCZ (e.g., Bischoff and Schneider, 2016). However,
in their study of the response of the zonal-mean circu-
lation to changes in surface roughness using a compre-
hensive GCM, Polichtchouk and Shepherd (2016) found
that whilst the circulation response was thermally rather
than dynamically driven (by changes in tropical surface
sensible and latent heat fluxes), the moist static energy
budget provided only a descriptive rather than a predictive
framework in which to understand the circulation shifts.

Another common approach, applied both to observa-
tions and to the output of model simulations, is lagged
correlations. This relies on the principle that causality
introduces an arrow of time and thus that, if a perturba-
tion in variable A occurs after a perturbation in variable
B, then B is the cause of A. There are many pitfalls in
such an approach, however (Runge et al., 2014). An obvi-
ous one is that both perturbations might be caused by
an unobserved common driver, with different lags in the
responses of A and B. Another is the role of autocorre-
lation, since atmospheric variability generally has a red
spectrum. For example, Lorenz and Hartmann (2001) per-
formed cross-correlation analysis of the zonal momentum
equation in the SH, and found not only the expected cor-
relation with the momentum flux convergence leading
the zonal wind acceleration, but also a weak oppositely
lagged correlation which they interpreted as a positive
eddy feedback. However, Byrne et al. (2016) showed that
such a feature can be produced in a synthetic model of
an eddy-driven mean flow with, by construction, no eddy
feedback, through autocorrelation.

In the stratosphere, causality can sometimes be eas-
ier to untangle because the eddy forcing arises from
waves propagating up from below, rather than from in situ
instability, and thus can be considered exogenous to the
stratosphere. For example, the robust strengthening of the
Brewer–Dobson circulation under climate change found
in GCMs is a direct consequence of the fact that tro-
pospheric warming extends to higher altitudes in the
Tropics than the Extratropics. By thermal-wind balance,
this implies a strengthening of the upper flank of the
subtropical westerlies, which (all things being equal)
induces an upward shift in the critical layers of the baro-
clinic eddies, allowing more of the wave forcing to be
exerted within the stratosphere (Shepherd and McLan-
dress, 2011). The fact that the stratospheric response
cannot nullify the first-order nature of tropospheric warm-
ing makes the causality in this case straightforward. On
the other hand, it has been common to partition the
wave forcing of the Brewer–Dobson circulation into its
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component parts, with a particular focus on the role of
IG waves whose representation in stratosphere-resolving
GCMs is mainly parametrized and subject to consider-
able uncertainty (Butchart et al., 2010). However, there
is a very strong, practically buffering interaction between
the wave forcing from Rossby waves and parametrized
GWs in the midlatitude lower stratosphere (Sigmond
and Shepherd, 2014), challenging the causality of such a
partitioning.

In the Tropics, the dominant balance between diabatic
heating and vertical motion naturally invites an interpre-
tation of the diabatic heating driving the vertical motion.
However, that is not as obvious as it might seem. From
a transient perspective, the diabatic heating had to arise
from some dynamical event or process, and thus depends
on the past history of the circulation structure that induced
it. From a steady perspective, the rising air must descend
somewhere else, and there could be constraints on the hor-
izontal motion or on the descent; and the diabatic heating
requires a moisture supply, which depends on the atmo-
spheric circulation. All this complicates understanding of
cause and effect.

4 OUTLOOK

In this article we have reviewed some aspects of the
present understanding of waves and coherent flows in
the atmosphere, and the interactions between them. The
motivation for doing so is that most of the theoreti-
cal frameworks for understanding how the atmosphere
works rest, in one way or another, on such concepts,
which need to be applied in meaningful ways to observa-
tions and model output to take full advantage of the new
generation of kilometre-scale global models. We exam-
ined classical approaches to this challenge, represented by
conceptual models targeting specific dynamical regimes,
and assessed their successes and limitations in providing
causal accounts of the behaviour seen in observations and
in comprehensive simulation models.

A common theme in our assessment is that the
limitations are especially pronounced in the Tropics as
quasi-geostrophic scaling ceases to apply. The equatorially
trapped Kelvin wave and MRG wave, two special solutions
provided by linear wave theory, obliterate the distinction
between ‘fast’ and ‘slow’ dynamics which otherwise exists
(at least asymptotically) in the Extratropics, and which
underpins so much of extratropical dynamical theory. We
presented new results which quantitatively estimate the
role of the Kelvin and MRG waves in the spatio-temporal
spectrum of tropical variability, clearly demonstrating the
necessity of including both the Kelvin and MRG waves in
simplified models of the Tropics.

On the tropical mesoscales, the lack of a clean sepa-
ration of dynamical regimes becomes even more apparent
in the complex interplay between convection, GWs, and
coherent flows, where ‘slow’ trapped GWs can provide a
large-scale constraint on ‘fast’ convective coherent flows.
In this final section we provide an outlook on potential
ways forward.

4.1 Building causal interpretations

Pearl and Mackenzie (2018), in their discussion of Arti-
ficial Intelligence, identify three levels in their ‘Ladder
of Causation’. The most primitive level is Association,
which identifies relationships between variables (corre-
lations). This assumes statistical stationarity and is not
causal. Causality can be inferred from the second level,
Intervention, but that is generally not an option in atmo-
spheric science. Although information can be gleaned
from particular interventions, such as volcanic eruptions,
it is not straightforward to map it onto the other sources
of non-stationarity in which we may be interested. The
highest level is that of Counterfactuals, meaning an imag-
ined outcome. By definition, counterfactuals cannot be
observed, thus are unverifiable in a traditional sense. How-
ever they constitute the essential evidence that informs
decision-making, and are anchored in understanding.

As has been discussed in Section 3.6, all too often what
passes for an explanation in atmospheric science is no
more than a description, without predictive power. Thus it
would be helpful to be more explicit about causality in our
scientific reasoning. For the real system, physical causal-
ity is probably not a well-defined concept for dynamical
interactions since the system is strongly coupled, but from
a statistical perspective causality can be defined as con-
ditional dependence (e.g., Kretschmer et al., 2016), that
is, how one thing would be different if something else ear-
lier in time were different, all else being equal. The rub
here is that for the real system, it will never be the case that
all else is equal, and we do not even know what ‘all else’
has to be. Nevertheless, causal networks provide a frame-
work for articulating causal hypotheses, and testing them
against data (Pearl and Mackenzie, 2018).

Although budgets have their interpretative limitations,
they are anchored in the fundamental physical principles
(conservation of energy, momentum, mass and moisture)
that govern atmospheric dynamics. As a result, they con-
sist of well-defined and in principle measurable quanti-
ties, which can be used to bridge between models and
measurements, and within model hierarchies spanning
different levels of complexity, including now the global
kilometre-scale models. It would therefore be useful to bet-
ter understand how different balances between terms can
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manifest themselves in the steady limit, through study of
the evolution from transient to steady-state balances. One
way of doing this is through cross-spectral analysis, as has
been used for the zonal momentum equation

𝜕u
𝜕t

= − 𝜕

𝜕y
(u′v′) − ru (49)

in midlatitudes, applied to the barotropic component of
the flow (Lorenz and Hartmann, 2001). Here the bar
denotes a zonal average, the prime denotes deviations
from the zonal average, and r is an effective damping rate.
Taking the Fourier transform in time yields

Z∗M
Z∗Z

= i𝜔 + r, (50)

where Z is the transform of the zonal-mean wind, Z∗ its
complex conjugate, M the transform of the eddy momen-
tum flux convergence, and 𝜔 the frequency. This relation-
ship turns out to hold remarkably well across time-scales
for describing the variability of the SH midlatitude jet, and
allows a clear identification of transient, intermediate, and
quasi-steady regimes (Boljka et al., 2018). The intermedi-
ate regime (periods between about 10 and 50 days) cor-
responds to the subseasonal-to-seasonal (S2S) time-scales
that are of much current interest in climate and weather
prediction. Somewhat surprisingly, Boljka et al. (2018) also
found that a similar relationship holds for the eddy kinetic
energy equation, which can be considered a proxy for
baroclinic wave activity, on intermediate to quasi-steady
time-scales, though not for transient time-scales, despite
the presence of additional terms that are ignored in such a
simplified treatment. This shows that simplified versions
of budgets may well hold to good approximation in prac-
tice, and help enable understanding of the transition to
quasi-steady balances.

In this respect, the use of asymptotic models to define
physically based causal networks with which to study par-
ticular phenomena would seem a fruitful avenue to pur-
sue. Here the goal is not to solve the asymptotic equations
to simulate the phenomena in question, which is the tra-
ditional use of asymptotic models. Rather, the goal is
to use the asymptotic models to motivate the choice of
dynamical variables and causal linkages with which to
develop a causal network that can be applied to observa-
tions and comprehensive simulation models. This could
be a powerful way of testing physical hypotheses. Indeed,
this philosophy lies at the heart of the approach to trop-
ical waves described in Sections 3.1–3.2, which uses lin-
ear theory (which is an asymptotic theory) to define the
wave structure but observations or high-resolution mod-
els to determine the wave dynamics (evolution in time). In
the context of the nonlinear asymptotic model described

in Section 2.5, for example, one might use (33) to moti-
vate a spatial relationship between the diabatic heat-
ing and the meridional velocity, but use observations or
high-resolution models to infer the quantitative nature of
the relationship.

With respect to simulation models, causality proba-
bly is a well-defined concept when it comes to model
biases. Certainly, one can perturb a parameter or a pro-
cess in a model, and run the simulation sufficiently long
to be sure that the difference is robust; the perturbation
will then unambiguously be the cause of the difference.
The problem is that this sort of causality is generally not
very useful. Sensitivity to model parameters usually takes
some time to manifest itself, undergoes feedbacks, and
leads to changes in emergent properties of the solution,
such as coherent flows, which can be difficult to inter-
pret physically. The zonal mean circulation response to
altered surface roughness discussed earlier (Polichtchouk
and Shepherd, 2016) is an example of this. On the other
hand, an abrupt switch-on of an exogenous forcing, such
as increased CO2, can sometimes be useful for separating
chicken from egg (Chemke and Polvani, 2019). A com-
mon approach to overcome this issue is to intervene in the
model directly, for example, through mechanism denial
or nudging, but this violates physical self-consistency and,
whilst useful for testing hypotheses such as the role of eddy
forcing (O’Gorman and Schneider, 2007), can only be an
intermediate step. The use of causal networks to formal-
ize the sort of reasoning involved in such experimentation
would help to make the logic more transparent and make
clear how the results should be interpreted.

4.2 Tropical dynamics and model biases

Linearized equations and asymptotic models have so far
provided a gross understanding of tropical large-scale
variability in response to heating, predominantly repre-
sented in terms of the Kelvin waves and Rossby waves
with the lowest meridional mode n = 1. With a factor of
three difference in their phase speeds and their opposite
mass–wind coupling near the Equator (positive and neg-
ative for the Kelvin and n = 1 Rossby wave, respectively),
the combined effect of diabatic forcing is a weak gradient
in the mass field as expected due to the weakness of the
Coriolis effect close to the Equator. The cross-equatorial
flow is instead associated with the MRG mode and IG
modes, even for the solstitial Hadley circulation (Hoskins
et al., 2020). The absence of the MRG wave from the
Matsuno–Gill type models (or their nonlinear extensions
as discussed in Section 2.5) is likely the most important
missing building block in asymptotic tropical models, as
evidenced by reanalysis data in Section 3.2.
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The Kelvin and MRG waves generated by convective
forcing are responsible for the loss of separability between
the slow and fast dynamics close to the Equator. This
makes wave–wave interactions involving these waves and
their contribution to the tropical vorticity sources timely
to study. Studies of resonant triads involving the equatorial
Rossby, MRG and Kelvin waves are just beginning (Raupp
and Dias, 2009). A model describing dynamics in terms
of Rossby and IG eigensolutions of primitive linearized
equations (i.e., Hough harmonics), as envisaged by Kasa-
hara (1978), provides a suitable framework for evaluating
tropical wave interactions on low-frequency (intraseasonal
or longer) time-scales. A high-resolution, high-accuracy
version of such a model also offers an attractive framework
for untangling GW dynamics in high-resolution climate
simulations (Vasylkevych and Žagar, 2021).

Deficiencies in simulated variability by the climate
models are related to model biases which may originate in
remote regions. Their improved understanding is possible
within the normal-mode function framework discussed in
Sections 3.1–3.2. Applying (37) to numerical model out-
put and its verifying dataset, for example reanalysis, which
is assumed unbiased, we obtain the following relationship
between the spatial variability (energy spectra), temporal
variability (variance spectra) and the model bias (Žagar
et al., 2020a):

Ic − Ia = 1
2
(

V c − V a) + 1
2

B + P(ΔW ,Wa). (51)

The indices c and a stand for the climate model
simulation and reanalysis data, respectively, while other
indices (k, r and n) have been dropped. The spectrum
of the bias is denoted B and is defined as the variance
of the time-averaged difference between the model and
reanalysis:

B = gD |||ΔW |||2, where ΔW = W c − Wa. (52)

The covariance term P(ΔW ,Wa) describes the covari-
ance between the mean state of the verifying reanalysis
and bias and is defined as

P(ΔW ,Wa) = 1
2

gD
[
ΔW

[
Wa

]∗
+
(
ΔW

[
Wa

]∗)∗]
. (53)

Using (37) for the model and reanalysis, (51) can be
rewritten as

Ec(W) − Ea(W) = 1
2

B + P(ΔW ,Wa). (54)

Equation (54) states that the misrepresentation of the
climatological spatial variance (energy of the mean state)

in the model with respect to the reanalysis is described
by the two terms that account for the amplitude and
phase of the bias. As an example, let us look at the case
with a variability mode W (with all indices dropped)
simulated with a perfect amplitude and a phase shift
of Δ𝜙 with respect to the reanalysis. The time-mean
state of the reanalysis is given by Wa = Woei𝜙 and the
simulated mean state is W c = Woei(𝜙+Δ𝜙). The two com-
ponents of the bias are B = 2gDW2

o (1 − cosΔ𝜙) and
P = gDW2

o (1 − cosΔ𝜙). The simulated variance spec-
trum is perfect, Ec = Ea = 0.5gDW2

o . The total bias is
0.5B + P = 2gDW2

o (1 − cosΔ𝜙) and, depending on the
phase error, it may well exceed the variance. For example,
for Δ𝜙 = 𝜋∕2, the bias is four times the variance.

Both terms on the right-hand side of (54) need to be
evaluated for full information about bias associated with
a particular mode, whereas filtering of ΔW k

n,r per scale
(indices k and n) and per mode (index r) to physical space
may provide causal links between the biases in simulations
and energy transfers within, and possibly also outside, the
tropical atmosphere.

4.3 A better understanding of upscale
links

An important remaining question is to what level the
background of coherent vertical motions is saturated or
composed of discrete modes. Is the sky really white? There
is a decent understanding of how large scales affect smaller
scales, but the effects of mesoscale and sub-mesoscale
dynamics on larger scales has presented a notorious chal-
lenge for theoretical understanding as well as for numer-
ical modelling, as global models are needed to include
large-scale motions, whereas a very fine horizontal mesh
is required to resolve convection.

Convective processes, such as diabatic heating associ-
ated with cloud formation, act on scales that global models
are beginning to resolve. There are good observations of
clouds, but understanding the connection between moist
processes and motion fields has been a long-standing goal,
as the three-dimensional wind field is difficult to observe
directly. Global kilometre-scale modelling makes the link
between small-scale convection and the large-scale circu-
lation a new frontier.

Conceptual models based on simplifying assumptions
targeted to specific dynamical regimes are useful for con-
ditional process understanding, but cannot account for
the large number of observed scale interactions. The era
of kilometre-scale global climate models that can account
for many, albeit not all, scale interactions and the nonlin-
ear behaviour of the atmosphere, is just beginning. Even
global integrations of hectometre scale will soon become
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available. Cloud scales have first-order effects on larger
scales and mean aspects of climate. Clever ways of linking
observations to hectometre simulations and to coarser but
longer integrations harbour a great potential for advanc-
ing Earth system science. In this regard, improving the
understanding of the large-scale effects of mesoscale and
sub-mesoscale dynamics is a key step.

A fundamental requirement are observations that
capture small temporal and spatial scales. We have given
examples of how combining local measurement tech-
niques, such as radiosondes and lidar, with remote-sensing
measurements that cover the mesoscale (satellite and
radar) is proving to be an efficient approach for quantify-
ing the effects of cloud-scale dynamics on the larger-scale
circulation. Thinking of new ways of using observations
synergistically, to decompose the spectrum of variabil-
ity, in order to isolate small-scale features and their link
to the larger-scale dynamics, can reveal deep insights
into physically and dynamically consistent atmospheric
phenomena.

5 FINAL REMARKS

It is sometimes argued that traditional ‘theory’ is highly
idealized and that the atmospheric science community’s
theoretical understanding is best represented in its most
sophisticated atmospheric models. Whilst this might be a
tenable position if models did not have systematic errors
and deficiencies, and made highly reliable predictions, this
is not the case. The new generation of kilometre-scale
global atmospheric models will simulate an unprece-
dented range of interactions across scales, reaching into
uncharted dynamical territory, and offers much hope for
a more direct comparison with observations that span
this range of scales than has hitherto been the case. Yet
there will still be systematic errors and deficiencies, and
limited sampling of the full range of natural variability.
The challenge is thus to understand what we can reliably
learn from the models, and what are the reasons for their
remaining systematic errors and deficiencies. Especially
for application to climate change, which is fundamentally
unverifiable, the only sound basis for prediction is physical
understanding of causal mechanisms.

The line of argument developed here is that it is fruit-
ful to start from the observations, armed with the toolkit of
theory. We have given many examples of how rather simple
theory is surprisingly explanatory of observed atmospheric
behaviour, despite the complexity of the latter. Theory
provides the qualitative framework – the causal narra-
tive – within which the quantitative information from
models and observations can be meaningfully compared
and usefully combined.
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