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Abstract 

Any model used to derive projections of future climate or assess its impact constitutes a 
particular simplification of reality. To date, no model building process can guarantee 
full “objectivity” in the choice of model assumptions and parameterization. In this 
connection, researchers have introduced a number of stylized integrated assessment 
models, which attempt to represent the full time-dynamic non-linear causal loop 
between accumulated emissions, economy and climate, yet in a aggregated, simplified 
fashion to enable extensive uncertainty analysis with respect to both structural and 
parametric uncertainty. 

In this work, we put forward a simplified system dynamics integrated assessment model 
which simulates the global economic growth, corresponding emissions, global warming 
and caused by its secondary effects economic losses. While generally our model follows 
the same logic as DICE and other models of this kind, it pays more attention to the 
mechanism of the emission reduction. Mitigation is assumed to be done through the 
allocation of a certain fraction of the total output into enhancing carbon and energy 
efficiency. The model enables exploring effects of mitigation scenarios defined via 
carbon tax. We explore the structural sensitivity by examining five alternative climate 
sensitivity functions and use the "mutual compatibility integration" approach to 
synthesize the information from the five alternative model versions. 
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1 Introduction 

Adoption of the Global Sustainability Goals by the 193 countries of the UN General 
Assembly in 2015 explicitly acknowledged the countries’ commitment to include 
mitigation and adaptation to major global environmental changes, notably climate 
change, into their national policies.  Science is challenged to provide information 
relevant to societal decision-making, and when models are expected to provide input, 
appropriate interpretation of their results becomes very important (Stainforth et al., 
2007). Decision-makers would like science to provide exact and unique numbers on 
future climate conditions, but this demand is contrasted by uncertainties inherent in any 
future climate projection (Weigel et al., 2010). 

Any model used to derive projections of future climate or assess its impact constitutes a 
particular simplification of reality. To date, no model building process can guarantee 
full “objectivity” in the choice of model assumptions and parameterization; instead, this 
choice is typically done by researchers based on their expert knowledge and experience 
(Knutti, 2010). Any uncertainty due to choices made in the model design, i.e. going 
beyond uncertainty in parameter values, is usually referred to as structural uncertainty 
(Tebaldi and Knutti, 2007). 

Thus, multiple models have been put forward by individual scientific groups to 
represent and analyze parts of the complex dynamic climate-society system. Since there 
is a little opportunity to verify future climate forecasts on the timescale of decades, the 
skill or performance of models is often defined by comparing simulated patterns of 
present-day climate or its impact to observations. Such performance metrics are useful 
but not unique, and often it is unclear how they relate to future projections. Defining a 
set of criteria for a model to be 'credible', or agreeing on a quality metric is therefore 
difficult (IPCC, 2010). 
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Using collective information for decision-making is common sense in both everyday 
life and professional business (Hagedorn, 2005; Knutti, 2010). In particular, the greater 
the complexity of the involved processes, the more helpful the input to decision-making 
might be (Branzei et al., 2000). On the other hand, overload of possibly contradictory 
information can lead to suboptimal decisions. In general decision-making theory, it is 
under debate whether more information leads to more success or whether ‘simplicity 
rules the world’. For example, in short- and medium-range weather forecasting it has 
been demonstrated, in the early 1960s, that combining different forecasts from 
individual forecasters can be beneficial (Hagedorn, 2005; therein one can see also 
citations of original works). 

Estimates of impacts from anthropogenic climate change rely on projections from 
climate models. Uncertainties in those have often been a limiting factor (Knutti and 
Sedlacek, 2013). For time horizons of several decades or longer, the dominant sources 
of uncertainty at regional or larger spatial scales are model uncertainty and scenario 
uncertainty (Tebaldi et al., 2004; Weigel et al., 2010). Weigel et al. (2010) indicate that 
in practice, the scenario uncertainty is addressed by explicitly conditioning climate 
projections on a range of well-defined scenarios (concentration, e.g., RCP, scenarios - 
Moss et al., 2010; van Vuuren et al., 2011). 

Some processes in the climate system are not fully understood or are impossible to 
resolve due to computational constraints (IPCC, 2010), which leads to the model 
uncertainty (also known as response uncertainty). That is, in response to the same 
radiative forcing, different models simulate somewhat different changes in climate 
(Hawkins and Sutton, 2009). The consequences of model uncertainty are receiving 
particular attention (Stainforth et al., 2007). A pragmatic and well-accepted approach to 
addressing model uncertainty is given by the concept of multi-model combination 
(Tebaldi and Knutti, 2007, Weigel et al., 2010). 

An important issue for decision makers is to what degree the uncertainty can be 
narrowed down through investments in science – because the costs of adaptation are 
expected to be very large, the clear implication is that reducing uncertainty in climate 
predictions is potentially of enormous economic value (Hawkins and Sutton, 2009). 

Using multiple models as a tool to potentially narrow uncertainty was pioneered by 
climate science. Improving forecasts and projections by combining models rests on the 
assumption that if models are independent, their errors might at least partly cancel, 
resulting in a multi-model average that is more skillful than its constitutive terms 
(Tebaldi and Knutti, 2007). Progress in science may sometimes broaden rather than 
narrow uncertainty (Hawkins and Sutton, 2009); the heterogeneity in the new generation 
of climate models and an increasing emphasis on estimates of uncertainty in the 
projections raise questions about how best to evaluate and combine model results in 
order to improve the reliability of projections (IPCC, 2010). 
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Using probabilistic approach to represent uncertainties becomes common. Tebaldi et al. 
(2004) point that determining probabilities of future global temperature change has 
flourished as a research topic in recent years. Exploration of uncertainty can be done by 
sampling of uncertain initial model states, parameter values or structural differences 
(IPCC, 2010). 

A systematic approach was proposed to explore the uncertainty of a single climate 
model to model parameterization, a so-called perturbed physics ensemble (PPE) 
(Murphy et al., 2004; Stainforth et al., 2005; Tebaldi and Knutti, 2007). In each 
experiment, model parameters are set to a range of values derived from multiple prior 
distributions estimated by experts. For example, in climateprediction.net study 
(Sanderson et al., 2008), 15 parameters of a single model, HadSM3, were perturbed. 
There is certainly tremendous value in exploring parametric uncertainties by the PPE 
approach, and its success might be partly related to the simplicity of generating those 
ensembles. Apart from the enormous computational capacity required, this exploration 
of the parameter space is rather straightforward (Tebaldi and Knutti, 2007). Clearly, the 
PPE approach is limited in its ability to capture the full range of uncertainties in the 
models’ representation of the true climate system, as there are many ways to design a 
parametrization (Tebaldi and Knutti, 2007). Multi-model combination is a pragmatic 
approach to estimating model uncertainties and to making climate projections more 
reliable (Weigel et al., 2010). Stainforth et al. (2007) consider climate ensembles 
exploring model uncertainty as potentially providing a lower bound on the maximum 
range of uncertainty. A variety of applications, not only limited to the weather and 
climate prediction problems (e.g., Palmer et al., 2005), have demonstrated that 
combining models generally increases the skill, reliability and consistency of model 
forecasts. Examples include model forecasts in the sectors of public health (e.g., 
malaria; Thomson et al., 2006) and agriculture (e.g., crop yield; Cantelaube and Terres, 
2005), where the combined information of several models is reported to be superior to a 
single-model forecast Tebaldi and Knutti (2007). 

Tebaldi and Knutti (2007) sketch a history of analyzing model uncertainty. Namely, in 
1990, the Atmospheric Model Intercomparison Project (AMIP; Gates, 1992) developed 
a standard experimental protocol for atmospheric general circulation models (GCMs). 
For the first time, a systematic framework in support of model diagnosis, validation and 
intercomparison was put forward and since then the international community of climate 
modelling has participated and benefited from it widely. The natural follow-up to AMIP 
was CMIP, the Coupled Model Intercomparison Project (Meehl et al., 2000), whereby 
the output from coupled atmosphere–ocean general circulation models (AOGCMs) 
became the object of study. Output from the control runs and 1% (annual) increase CO2 
experiments represent the most scientifically straightforward response of the climate 
system to an unambiguous change in external forcing (Meehl et al., 2007). This ever 
increasing availability of model experiments under common scenarios, whose output is 
standardized and to which access is facilitated, has naturally inspired the analysis of 
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multi-model ensembles since the beginning of 2000. Subsequently there have been 
several next phases of CMIP (IPCC, 2010). Sillmann et al. (2013a, 2013b) provide a 
first overview of the performance of state-of-the-art global climate models participating 
in CMIP5 in simulating climate extremes indices. 

According to Tebaldi and Knutti (2007), Raisanen (1997) is probably the first one to 
explicitly advocate the need of quantitative model comparison and the importance of 
inter-model agreement in assigning confidence to the forecasts of different models. But 
it was only Raisanen and Palmer (2001) who first proposed a probabilistic view of 
climate change projections on the basis of multi-model experiments. On this basis, they 
evaluated probabilities of threshold events such as ‘the warming at the time of doubled 
CO2 will be greater than 1C° by computing the fraction of models that simulated such 
an event. 

In its simplest form, a multi-model ensemble forecast is produced by merging individual 
forecasts with equal weights (Hagedorn et al., 2005). However, more complex methods 
of optimally combining single-model outputs have been described (Krishnamurti et al., 
1999; Pavan and Doblas-Reyes, 2000; Rajagopalan et al., 2002). Even an equally 
weighted average of several coupled climate models is usually found to agree better 
with observations than any single model (Tebaldi and Knutti, 2007; Lambert and Boer, 
2001). In case of seasonal forecast models, the multi-model approach improves both 
deterministic and probabilistic performances of seasonal predictions compared to 
single-model forecasts (Hagedorn et al., 2005). 

There are obviously different ways to derive model weights. In many cases, Bayesian 
methods (e.g., Robertson et al., 2004; Tebaldi and Knutti, 2007) where weights are 
determined by using the historical relationship between forecasts and observations 
perform better than simple averages. Intuitively, it makes perfect sense to trust, and thus 
weigh, the better models more. The difficulty, however, is in quantifying model skill 
and deriving model weights accordingly. Referring to Min and Hense (2006), Tebaldi 
and Knutti (2007) highlight that for a given metric and for present day climate, 
weighted averages of models compare better to observations than simple averages. 
However, they point that it seems to be rather unlikely, that the weights for future 
projections should be the same as those derived for present-day climate. The problem of 
constructing a weighted average for climate projection, where no verification is 
available, is discussed in Tebaldi and Knutti (2007). 

Weigel et al. (2010) review proposed metrics serving as a basis for model weights, 
including the magnitude of observed systematic model biases during the control period 
(Giorgi and Mearns, 2002; Giorgi and Mearns, 2003; Tebaldi et al., 2005), observed 
trends (Greene et al., 2006; Hawkins and Sutton, 2009; Boe et al., 2009), or composites 
of a larger number of model performance diagnostics (Murphy et al., 2004), and 
promote an approach to weighting models from the angle of the expected error of the 
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final outcome. They present results that confirm that equally weighted multi-models on 
average outperform the single models, and that projection errors can in principle be 
further reduced by optimum weighting. However, this not only requires accurate 
knowledge of the single model skill, but the relative contributions of the joint model 
error and unpredictable noise also need to be known to avoid biased weights. If weights 
are applied that do not appropriately represent the true underlying uncertainties, 
weighted multi-models perform on average worse than equally weighted ones, which is 
a scenario that is not unlikely, given that at present there is no consensus on how skill-
based weights can be obtained. These results indicate that for many applications equal 
weighting may be the safer and more transparent way to combine models. 

In addition, multi-model ensemble members may not represent estimates of the climate 
system behavior (trajectory) entirely independent of one another, for example, this is 
likely true of members that simply represent different versions of the same model or use 
the same initial conditions (IPCC, 2010). 

In light of these complexities, IPCC (2010) formulated their Recommendations for 
Model Selection, Averaging and Weighting, including 

• There should be no minimum performance criteria for entry into the multi-
model database; 

• Testing methods in perfect model settings (i.e., one model is treated as 
observations with complete coverage and no observational uncertainty) is 
encouraged; 

• Arguments for providing code are full transparency of the analysis and that 
discrepancies and errors may be easier to identify; 

• Options for information from multi-model simulations could include medians, 
percentile ranges of model outputs, scatter plots of temperature, precipitation 
and other variables, regions of high/low confidence, changes in variability and 
extremes, stability of teleconnections, decadal time-slices, and weighted and 
unweighted representations of any of the above. 

Eventually, climate predictions are sued to assess its impacts onto different sectors of 
the economy at different locations (e.g., Hayhoe et al., 2006). Water-MIP, ISI-MIP, Ag-
MIP etc., extend the model inter-comparison to other dimensions relevant to integrated 
assessment. For example, ISI MIP project focuses on providing cross-sectorial global 
impact assessments, Water-MIP focuses on inter-comparison of the land surface 
hydrology models and global hydrology models. To name a few other studies – Kriegler 
et al. (2014) carried out inter-comparisons of energy-economy models and IAMs in 
their Energy Modeling Forum studies; using multi-model ensembles, Semenov and 
Stratonovitch (2010) evaluated the impact of climate change on the probability of heat 
stress during flowering of wheat, which can result in significant yield losses. 
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In all above works, attempts have been made to work with detailed models, which take 
into account as many aspects of the processes as the current knowledge and computing 
power allow. This is achieved by modeling only a part of a system – normally in models 
discussed above the feedback between the climate change and economy, and therefore, 
emissions, is missing. On the other hand, scientists put forward a number of stylized 
integrated assessment models, which attempt to represent the full time-dynamic non-
linear causal loop between accumulated emissions, economy and climate, yet in a 
aggregated, simplified fashion. The advantage of stylized IAMs is that they enable 
extensive uncertainty analysis with respect to both structural and parametric uncertainty 
– contrasting with large models which have reached a level of complexity prohibiting a 
large ensemble of perturbed initial condition simulations with each model with current 
computational resources. Stylized IAMs can be used to construct mitigation scenarios, 
which can then be tested by more detailed climate models (e.g., Johns et al., 2011). 

Of these, Nordhaus’s DICE model family (Nordhaus and Boyer, 2000; Nordhaus, 2008; 
Nordhaus, 2013) has been perhaps the most influential. Here, in presence of climate 
change, the world output is reduced directly by the climate damages and indirectly by 
diverting a part of the available funds for abatement instead investing them in growth. 
The climate damages are parameterized by a climate damage function gradually 
increasing with the increase in the global mean surface air temperature. Abatement 
measures aim at reducing GHG emissions with the costs of emissions reductions being a 
function of the emissions-reduction rate. The global warming is caused by GHG 
emissions, of which only the industrial CO2 emissions are endogenous, while all other 
GHG emissions (including CO2 emissions arising from land-use changes) are 
exogenous. The climate module includes the carbon cycle represented by a three-
reservoir model: the atmosphere, the upper oceans and the biosphere, and the deep 
oceans. Radiative forcing/climate sensitivity link the GHG concentrations and the 
dynamics of the mean temperature. 

There are available in literature a vast number of alternative models of different 
complexity and focus. For example, Greiner (2005) uses a very similar modeling 
framework to DICE to study the effects of cooperation between nations in combating 
climate change. 

Non-Equilibrium Dynamic Model (NEDyM; Hallegatte and Ghil, 2008) describes the 
impacts of random shocks on the economy caused by natural disasters, including 
climate-related disasters, partially destroying the stock of productive capital and causing 
short-term economics disequilibria. Via appropriate stylized economy-climate models 
augmented with a stochastic damage function Rovenskaya (2010) and Kryazhimskiy et 
al. (2008) analyze how the anticipation of climate-driven natural disasters changes the 
abatement and investment decisions. 
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In this work, we build on the climate module of a stylized climate-emissions model 
presented in Kellie-Smith and Cox (2011). We put forward a simplified system 
dynamics integrated assessment model which simulates the global economic growth, 
corresponding emissions, global warming and caused by its secondary effects economic 
losses. While generally our model follows the same logic as DICE and other models of 
this kind, it pays more attention to the mechanism of the emission reduction. Mitigation 
is assumed to be done through the allocation of a certain fraction of the total output into 
enhancing carbon and energy efficiency. Such mechanism is currently recognized as a 
constructive solution to the society’s unwillingness to deprive themselves from 
consumption today to avoid negative effects of climate change in the future. The model 
enables exploring effects of mitigation scenarios defined via carbon tax. We explore the 
structural sensitivity by examining five alternative climate sensitivity functions and use 
the "mutual compatibility integration" approach to synthesize the information from the 
five alternative model versions. 

2 Model 

2.1 Equations 

In order to build long-term projections of the coupled economy-climate system 
trajectory, we employ a stylized integrated assessment model (IAM) with stochastic 
climate sensitivity and a nonlinear climate damage function taking out a part of the 
global output. The model we present here is a simplified and modified version of the 
previously developed Structural Dynamic Economic Model (SDEM) initially presented 
by Barth (2003) in an inter-temporal optimization setting, also extensively studied by 
Kovalevsky and Hasselmann (2014) and Kovalevsky (2014) in a system dynamics 
setting. 

In this paper we further simplify the SDEM model from Kovalevsky and Hasselmann 
(2014) by ignoring the role of human capital and labor market. We will refer to this 
version of the SDEM model as SDEM-AK, as it relies on the AK production function 
(see below).  

The SDEM-AK model consists of two dynamically interconnected blocks: 

• Global economy – with the key state variables being the physical capital stock 𝐾 
(translated into the global output 𝑌), carbon efficiency cf , and energy efficiency

ef  

• Global climate – with the key state variables being GHG atmospheric 
concentrations 𝐶 and the global temperature 𝑇, and the diagnostic variable being 
GHG emissions 𝐸. 

Following the established tradition in the literature on stylized IAMs (see, e.g., Kellie-
Smith and Cox, 2011), we further use global CO2 emissions, which are the largest 
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contributor to anthropogenic climate change, as a proxy for all GHG emissions driving 
the global warming. 

The dynamics of the coupled economy-climate system is controlled by the carbon tax 
rate 𝜏 ≥ 0, which determines the amount of tax to be paid for a unit of emitted GHG, 
the share of carbon tax revenue 𝜎 ∈ [0,1] allocated into improving the carbon efficiency 
and the saving rate 𝑠 ∈ [0,1]. 

The global output is assumed to evolve according to the AK model (see, e.g., 
Acemoglu, 2009) augmented with a temperature-based climate damage function 𝑑(𝑇) 
and the flow of carbon tax revenues 𝑇𝑇𝑇 as follows: 

𝑌 = 𝐴𝐾, (1) 

�̇� = 𝑠�1 − 𝑑(𝑇)�𝑌 − 𝑇𝑇𝑇 − 𝛿𝐾. (2) 

Dynamics (1)-(2) is independent on the population growth. We intend to use our model 
to produce scenarios for year 2100. According to the IIASA population projections 
(Lutz et al., 2014), the world population that reached 7.3 billion as of mid-2015 will 
peak at about 9.4 billion in 2070 and will then drop to 9.0 billion in 2100. So, as a first 
approximation, in our model we neglect the contribution of the population/ labor force 
to growth1.  

The carbon tax revenues are proportional to emissions 

𝑇𝑇𝑇 = 𝜏𝐸. (3) 

In this paper, we consider the (already calibrated) damage function suggested by 
Weitzman (2012) of the form 

1 − 𝑑(𝑇) =
1

1 + � 𝑇
20.46�

2
+ � 𝑇

6.081�
6.754. (4) 

It is assumed that the collected carbon tax revenue amounted to 𝑇𝑇𝑇 is redirected into 
the economy in the form of purpose-oriented “green” R&D investment aimed at 
increasing both energy and carbon efficiency. Here 𝜎 ∈ [0,1] defines the distribution of 
investment between the two sectors, 𝜇𝑐 and 𝜇𝑒 are corresponding investment 
efficiencies. Additionally, it is assumed that even in the absence of special investment 
both efficiencies autonomously improve over time with rates 𝜆𝑐 and 𝜆𝑒 (autonomous 
energy efficiency improvement (AEEI) is discussed in more details by Azar and 

                                                 
1 AK production function is widely used in stylized models in the economics of climate change (e.g., Greiner, 2005) 
and more generally in the environmental economics (e.g., the Rebelo model (Rebelo, 1991) and its followers (Michel 
and Rotillon, 1995; Withagen, 1995); see also a review paper by (Withagen and Vellinga, 2001). 
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Dowlatabadi (1999). Thus the carbon and energy efficiency evolve according to (Weber 
et al., 2005) 

�̇�𝑐 = 𝜇𝑐𝜎𝑇𝑇𝑇 + 𝜆𝑐𝑓𝑐, (5) 

�̇�𝑒 = 𝜇𝑒(1 − 𝜎)𝑇𝑇𝑇 + 𝜆𝑒𝑓𝑒. (6) 

GHG emissions are assumed to be proportional to the global output and inverse 
proportional to the carbon and energy efficiency  

𝐸 =
𝑌
𝑓𝑐𝑓𝑒

. (7) 

The CO2 atmospheric concentration grows due to the anthropogenic carbon emissions 
𝐸, but is reduced by the carbon sink term with the characteristic time scale (relaxation 
time) 𝜏𝐶 (𝐶𝑃𝑃 is the preindustrial CO2 concentration) as follows 

�̇� = 𝛾𝐸 −
𝐶 − 𝐶𝑃𝑃
𝜏𝐶

. (8) 

Growing atmospheric CO2 concentration gives rise to the global temperature dynamics 
with the radiative forcing assumed to be logarithmic in CO2 concentration and the 
characteristic time scale 𝜏𝑇 set by the thermal capacity of the oceans (Kellie-Smith and 
Cox, 2011) 

�̇� =
1
𝜏𝑇
�
𝛥𝑇∗

ln 2
ln

𝐶
𝐶𝑃𝑃

− 𝑇� 
(9) 

for more details on the climate module). Here Δ𝑇∗ is the climate sensitivity that is the 
equilibrium global mean surface temperature increase response to doubling atmospheric 
CO2 concentration. 

All variables and parameters of equations (1)-(9) with the sources of their values are 
listed in Table 1. We start all simulations in the year 2010 and set the initial conditions 
from the historical data available for this year.  
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Table 1. Description of variables and parameters in the SDEM-AK model. 

Notation Name Units Values 

Variables 

𝑌 World output (at 
market prices) 

constant 2010 
trln 
USD/year 

Eq.(1) 

𝐾 Global physical 
capital stock (at 
market prices) 

constant 2010 
trln USD 

Eq.(2) with initial condition 𝐾(0) =
𝑌(0)
𝐴

=164.0 trln USD, where 𝑌(0) = 
65.6 trln USD (World Bank, 2016) 

𝐶 Global 
atmospheric CO2 
concentration  

ppmv Eq.(8) with initial condition 𝐶(0) = 
388.58 ppmv (Dlugokencky and Tans, 
2016) 

𝐸 Global CO2 
emissions  

GtCO2/year Eq.(7) 

𝑇 Global mean 
surface air 
temperature 
increase above the 
preindustrial level 

°C Eq.(9) with initial condition 
𝑇(0) =0.85°C (IPCC AR5 SYR SPM, 
2014) 

𝑓𝑐 Carbon efficiency  - Eq.(5) with initial condition 
𝑓𝑐(0) =1.2 (Weber et al., 2005) 

𝑓𝑒 Energy efficiency  constant 2010 
trln 
USD/GtCO2 

Eq.(6) with initial condition 𝑓𝑒(0) = 
1.75 trln USD/GtCO2 (Weber et al., 
2005; and units conversion)  

𝑑(𝑇) Climate damage 
function  

- Eq.(4) (Weitzman, 2012) 

𝑇𝑇𝑇 Carbon tax 
revenues 

constant 2010 
trln 
USD/year 

Eq.(3) 

Control parameters 

𝑠 Saving rate - SSP3 scenario: 0.156 
SSP5 scenario: 0.201 
(Authors’ own calculations; 𝑠 =
𝑝𝑐𝑝𝑝𝑃 𝑔𝑔𝑔𝑔𝑔ℎ 𝑔𝑟𝑔𝑒+𝛿+𝑛

𝐴
 

where 𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑔ℎ 𝑔𝑇𝑔𝑟 = 0.01 
(SSP3) and 0.028 (SSP5) (Leimbach 
et al., 2015); 𝑛 = 0.0025 is the 
average population growth rate, 
calculated based on the IIASA’s 
population projections (Lutz et al., 
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2014)) 
𝜎 Share of carbon tax 

revenue allocated 
into improving the 
carbon efficiency 
vis-à-vis energy 
efficiency 

- 0.2 (Calibrated to minimize the mean 
temperature increase in 2100 - see 
Appendix)  

𝜏 Carbon tax rate  constant 2010 
USD/tCO2 

BAU scenario: 0 USD/tCO2 
Mitigation scenario: 0 USD/tCO2 
before the year 2025; 30 USD/tCO2 
starting from year 2025 (Broadly 
corresponds to an ‘optimal’ level 
derived by Nordhaus (2008)) 

Parameters 

𝐴 Technology 
coefficient  

1/year  0.4 1/year (Econometric estimates by 
Weber et al. (2005) and Barth (2003)) 

𝛿 Depreciation rate  1/year 0.05 (Edenhofer et al. 2005) 
𝛾 Emissions to 

concentrations 
units conversion 
factor 

ppmv/GtCO2 0.12 ppmv/ GtCO2 (Kellie-Smith and 
Cox, 2011; and units conversion) 

𝜇𝑐 Efficiency 
coefficient for 
investments in 𝑓𝑐 

1/Constant 
2010 trln 
USD 

0.03 1/trln USD (Weber et al., 2005; 
and units conversion) 

𝜇𝑒 Efficiency 
coefficient for 
investments in 𝑓𝑒 

1/GtCO2 0.13 1/GtCO2 (Weber et al., 2005; and 
units conversion) 

𝜆𝑐 Rate of exogenous 
improvement of 
carbon efficiency  

1/year 0 1/year (IPCC AR5 WGIII, Technical 
Summary Fig. TS.7d presents almost 
flat historical trajectory (1970-2010) 
of carbon intensity of energy (in our 
notations 𝑓𝑐). Since 𝑇𝑇𝑇 = 0 from 
Eq.(5) we put here 𝜆𝑐 = �̇�𝑐

𝑓𝑐
= 0) 

𝜆𝑒 Rate of exogenous 
improvement of 
energy efficiency 
(AEEI) 

1/year 0.008 1/year (IPCC AR5 WGIII, 
Technical Summary Fig. TS.7c reports 
that the historical trend (1970-2010) of 
the energy intensity of GDP (in our 
notations 𝐸

𝑌
) declines at rate 0.8%. 

Assuming a constant 𝑓𝑐 and given that 
𝑇𝑇𝑇 = 0 from Eqs.(6) and (7) we 
obtain that energy efficiency increases 
at the same rate 0.8% equal to 𝜆𝑒) 

𝐶𝑃𝑃 Pre-industrial level ppmv 280 ppmv (Kellie-Smith and Cox, 
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of CO2 2011) 
𝜏𝐶 A characteristic 

carbon time scale 
year 50 years (Kellie-Smith and Cox, 2011) 

𝜏𝑇 A characteristic 
climate time scale 

year 50 years (Kellie-Smith and Cox, 2011) 

Δ𝑇∗ Climate sensitivity °C baseline value: 3°C (IPCC, 2014) 
Sensitivity analysis: Five parametric 
families of probabilistic distributions 
(Dietz, 2011; Weitzman, 2012; IPCC, 
2014) – see Table 3  

In the absence of climate damage and carbon tax, in accordance with the standard AK 
model, the global output grows exponentially at rate 𝑠𝐴 − 𝛿. The per capita GDP 
growth rate, therefore, can be expressed as 𝑠𝐴 − 𝛿 − 𝑛, where 𝑛 is the average 
population growth rate. In this paper, we examine two economic growth scenarios, 
reproducing SSP3 and SSP5 with the annual per capita GDP growth rates 1% and 2.8% 
respectively (Leimbach et al., 2015). 

In this paper, we assume mitigation of the GHG emissions via carbon tax. For the 
mitigation scenario to be analyzed, starting from the year 2025 we set the carbon tax 
rate 𝜏 to 30 USD per ton of CO2. This broadly corresponds (after averaging over time) 
to an "optimal" level derived by Nordhaus using the DICE model as described in 
Nordhaus (2008). We will compare the mitigation scenario with the business-as-usual 
scenario (BAU) in which the carbon tax rate 𝜏 is set to zero. 

The SDEM-AK model roughly mimics the two-pronged RCP/SSP framework, which 
serves as a basis in the IPCC analysis of feedbacks between climate change and 
socioeconomic factors, like world population growth, economic development, and 
technological progress (IPCC AR5, 2014). 

Indeed, we calibrate the economic module of SDEM-AK directly based on the 
assumptions of SSP3 and SSP5 scenarios (Leimbach et al., 2015). Because of the 
feedback effects of the climate change damages, the actual output per capita average 
growth rates within the period of simulations (2010-2100) under SSP3 and SSP5 
scenarios (business-as-usual case) and the baseline value of the climate sensitivity 3°C 
are 0.0095 per annum (vs. 0.01 per annum in Leimbach et al. (2015)) for SSP3, and 
0.0269 per annum (vs. 0.028 per annum in Leimbach et al. (2015)) for SSP5. The 
SDEM-AK generates global CO2 concentration and mean temperature increase 
endogenously based on the level of global production and energy and carbon efficiency; 
the values in 2100 under SSP3 and SSP5 and the baseline value of the climate 
sensitivity 3°C roughly correspond to RCP4.5 and RCP8.5 scenarios (RCPs; IPCC 
AR5, 2014) (see Table 2). 
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Table 2. CO2 concentrations and mean surface temperature increases in the SDEM-AK 
model and in four RCPs, RCP2.6, RCP4.5, RCP6, and RCP8.5 (named after a possible 
range of radiative forcing values in the year 2100 relative to pre-industrial values (+2.6, 
+4.5, +6.0, and +8.5 W/m2, respectively) (IPCC AR5 WG1, Summary for 
Policymakers, Table SPM.2, 2014). 

 CO2 concentrations in 
2100, ppmv 

Mean surface temperature 
increase and likely range, °C 

SDEM-AK model 

SSP3, business-as-
usual scenario 

497.7 1.9 

SSP5, business-as-
usual scenario  

924.8 3.1 

Representative Concentration Pathways 

RCP2.6 420.9 1.0 (0.3 to 1.7) 
RCP4.5 538.4 1.8 (1.1 to 2.6) 
RCP6 669.7 2.2 (1.4 to 3.1) 
RCP8.5 935.9 3.7 (2.6 to 4.8) 

Thus, the SDEM-AK model incorporates major dynamic feedbacks between the 
economic and climate blocks; it can be used for the sensitivity analysis and for testing a 
broad range of different policies, including the mitigation scenario, which is in the 
special focus of this paper. 

2.2 Uncertain climate sensitivity 

Climate sensitivity may be the most prominent example of an important parameter to 
which models are sensitive (Tebaldi and Knutti, 2007). The range of climate 
sensitivities derived from the existing GCMs is concentrated approximately between 2.0 
and 4.5°C. Most of the results indicate a substantial probability that climate sensitivity 
might be higher than 4.5°C, maybe up to 6°C or more (Andronova and Schlesinger, 
2001; Forest et al., 2002; Forest et al., 2006; Knutti et al., 2002; Murphy et al., 2004; 
Frame et al., 2005; Piani et al., 2005; Stainforth et al., 2005; Hegerl et al., 2006). The 
significant expected sensitivity of IAMs with respect to climate sensitivity motivates the 
research question of this paper set to explore the structural sensitivity of the considered 
stylized economy-climate model to a probabilistic distribution describing the climate 
sensitivity. 

In this paper, we adopt five alternative probabilistic distribution functions, which have 
been suggested in literature (to our knowledge, no other one has been suggested) to 
describe uncertain climate sensitivity. Following the Stern review (2007) and Stainforth 
et al. (2005), Dietz (2011) suggests triangular and log-logistic probability distributions 
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respectively. Weitzman (2012) suggests a normal, log-normal and Pareto probability 
distribution functions. 

Despite both Dietz (2011) and Weitzman (2012) provide also parameters for these 
functions, we recalibrate all five alternative PDFs based on most recent information 
from the IPCC Fifth Assessment report (IPCC, 2014). Namely, in the Summary for 
Policymakers, we find that "equilibrium climate sensitivity is likely in the range 1.5°C 
to 4.5°C (high confidence), extremely unlikely less than 1°C (high confidence), and 
very unlikely greater than 6°C (medium confidence). The lower temperature limit of the 
assessed likely range is thus less than the 2°C in the AR4, but the upper limit is the 
same. This assessment reflects improved understanding, the extended temperature 
record in the atmosphere and ocean, and new estimates of radiative forcing.” We 
interpret the above description as the following conditions 

𝑝(Δ𝑇∗ ∈ [1.5; 4.5]) ∈ [0.66; 1] ∩ 

𝑝(Δ𝑇∗ ≤ 1) ∈ [0; 0.05] ∩ 

𝑝(Δ𝑇∗ ≥ 6) ∈ [0; 0.1]. 

(10) 

For each of the five parametric families of climate sensitivity functions, we define the 
set of its parameters, such that the distribution satisfies (10). Table 3 summarizes the 
input distributions of climate sensitivity 

Table 3. Parametric families of probabilistic distributions describing uncertain climate 
sensitivity. 

Normal distribution (Weitzman, 2012) 

Cdf 𝐹(𝑇) =
1
2
�1 + 𝑟𝑔𝑓 �

𝑇 − 𝜇
𝜎√2

�� 

Parameters 𝜇 – mean, 𝜎2 > 0 – variance 

Constraints 
0 < 𝜇 < 5, 

0 < 𝜎 < 3, 
IPCC constraints from (10) 

 

Log-normal distribution (Weitzman, 2012) 

Cdf 𝐹(𝑇) =
1
2
�1 + 𝑟𝑔𝑓 �

ln (𝑇) − 𝜇
𝜎√2

�� 

Parameters 𝜇 – mean, 𝜎2 > 0 – variance 

Constraints 
0 < 𝜇 < 2, 

0 < 𝜎 < 1, 
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IPCC constraints from (10) 
 

Pareto distribution (Weitzman, 2012) 

Cdf 𝐹(𝑇) = 1 − �
𝑇𝑚
𝑇
�
𝛼

,   𝑇 ≥ 𝑇𝑚 

Parameters 𝑇𝑚 – scale, 𝛼 > 0 – shape 

Constraints 

0 < 𝑇𝑚 < 5, 

0 < 𝛼 < 6, 
IPCC constraints from (10) 

 

Triangular distribution (Dietz, 2011; Stern, 2007) 

Cdf 𝐹(𝑇) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0,   𝑇 ≤ 𝑇,
(𝑇 − 𝑇)2

(𝑏 − 𝑇)(𝑝 − 𝑇)
,   𝑇 < 𝑇 ≤ 𝑝,

1 −
(𝑏 − 𝑇)2

(𝑏 − 𝑇)(𝑏 − 𝑝) ,   𝑝 < 𝑇 < 𝑏,

1,   𝑏 ≤ 𝑇.

 

Parameters 𝑇 – lower limit, 𝑏 – upper limit, 𝑝 – mode 

Constraints 

−2 < 𝑇 < 6, 

0 < 𝑏 < 10, 
−1 < 𝑝 < 7, 

IPCC constraints from (10) 
 

Shifted log-logistic distribution (Dietz, 2011; Stainforth et al., 2005) 

Cdf 𝐹(𝑇) =
1

1 + �𝑇 − 𝛾
𝛼 �

−𝛽 ,   𝑇 > 𝛾 

Parameters 𝛼 > 0 – scale, 𝛽 > 0 – shape, 𝛾 – location 

Constraints 

1 < 𝛼 < 2, 

1 < 𝛽 < 5, 
1 < 𝛾 < 3, 

IPCC constraints from (10) 
 

For each functional family, each particular admissible parameter set is considered to be 
equally probable; on this basis, we define a meta-distribution of climate sensitivity for 
each climate sensitivity function under consideration. 
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2.3 Simulations 

For each of the five parametric families of climate sensitivity functions, we performed 
Monte-Carlo simulations from a probability distribution of the climate sensitivity with 
500 randomly chosen parameter tuples from the domain of admissible values. In each of 
500 realizations of the probability distribution functions, we derived 500 realizations of 
the climate sensitivity and run the model dynamics. Thus, for each output variable we 
have 500 samples with 500 points in each sample. Each point can either fall into a 
variable value domain or take the no answer value. The latter case corresponds to the 
climate sensitivity parameter being admissible, but taking a non-positive value in the 
simulation run. We represent each output variable sample for each input family of 
climate sensitivity functions as an empirical probability distribution. 

Continuous output variables 

We put a uniform grid 𝑆𝑖 (𝑖 = 1, … ,5) on an output variable axis. The step size of the 
grid for the i-th family of climate sensitivity functions is defined as a Freedman-
Diaconis step size (Freedman and Diaconis, 1981) taken over all points in 500 samples: 

ℎ𝑖 = 2
𝐼𝐼𝐼(𝑋𝑖)
𝑛𝑖
1 3⁄ , (11) 

where 𝑋𝑖 is a union of all sample points with exclusion of points with no answer value, 
𝐼𝐼𝐼(𝑋𝑖) is an interquartile range of the sample 𝑋𝑖 and 𝑛𝑖 is the number of points in 𝑋𝑖. 

Next, we define a probability mass function 𝑝𝑖0(𝑠𝑖𝑖) on the grid 𝑆𝑖 for the i-th input 
family of climate sensitivity functions as a conditional probability on the event that 
simulations returned some output. 

That is, 

𝑝𝑖0�𝑠𝑖𝑖� ≔ Pr
𝑖
�𝑠𝑖𝑖�𝐸� =

Pr
𝑖
�𝑠𝑖𝑖�

Pr
𝑖

(𝑠𝑖1) + ⋯+ Pr
𝑖
�𝑠𝑖𝑝𝑖�

=
𝑓𝑖�𝑠𝑖𝑖�

𝑓𝑖(𝑠𝑖1) + ⋯+ 𝑓𝑖�𝑠𝑖𝑝𝑖�
  , (12) 

where 𝑠𝑖𝑖 is the j-th grid cell, 𝑝𝑖 is the total number of cells in the grid 𝑆𝑖 and 𝑓𝑖(𝑠𝑖𝑖) 
denotes a frequency of sample points, which fall into the j-th grid cell. 𝐸 is an event that 
a simulation value falls into the segment [0; 1). Here, each particular admissible 
parameter tuple is considered to be equally probable. 

Thus, we obtain empirical probability distributions for each of the five parametric 
families of climate sensitivity functions. After that, we project 𝑝𝑖0 on 𝑆𝑖 to a probability 
distribution 𝑝𝑖 on 𝑆, where 𝑆 is the grid with the minimum step size among all five 
grids. In general, the left and right border cells of the grid 𝑆 are determined from the 
minimum and maximum values over all points in the dataset, respectively. 



 17 

If a cell 𝑠𝑘 of the grid 𝑆 falls entirely into some cell 𝑠𝑖𝑖 of the grid 𝑆𝑖, then 

𝑝𝑖(𝑠𝑘): =
ℎ
ℎ𝑖
𝑝𝑖0�𝑠𝑖𝑖�, 

otherwise, a cell 𝑠𝑘 intersects with two cells 𝑠𝑖𝑖 and 𝑠𝑖(𝑖+1) of the grid 𝑆𝑖 and 

𝑝𝑖(𝑠𝑘): =
𝑙𝑖𝑖
ℎ𝑖
𝑝𝑖0�𝑠𝑖𝑖� +

𝑙𝑖(𝑖+1)

ℎ𝑖
𝑝𝑖0�𝑠𝑖(𝑖+1)�, 

where ℎ is a minimum step size, 𝑙𝑖𝑖 is a length of the fraction in 𝑠𝑘 that falls into 𝑠𝑖𝑖 and 
𝑙𝑖(𝑖+1) is a length of the fraction in 𝑠𝑘 that falls into 𝑠𝑖(𝑖+1). 

The distributions 𝑝1, … ,𝑝5 on 𝑆 are considered as the input distributions for the 
integration. 

Discrete output variables 

The sample space Ω𝑖 of a discrete variable for the i-th input family of climate sensitivity 
functions (𝑖 = 1, … ,5) is a union of 𝑘𝑖 elementary events 𝜔𝑖1, … ,𝜔𝑖𝑘𝑖 ∈ ℕ

+ (e.g., 
𝜔𝑖𝑖 = 2050) and the event 𝑋0 that a variable takes a non-defined value. 

We put a uniform grid 𝑆𝑖 with fixed step size ℎ𝑖 ∈ ℕ+ (e.g., ℎ𝑖 = 5 years) on an output 
variable axis such that: 

𝑠𝑖𝑖 = [𝑣𝑖1 + (𝑗 − 1)ℎ𝑖;   𝑣𝑖1 + 𝑗ℎ𝑖),           𝑗 = 1, … ,𝑝𝑖 − 1, 

𝑠𝑖𝑝𝑖 = [𝑣𝑖1 + (𝑝𝑖 − 1)ℎ𝑖;  𝑣2],                                      𝑗 =  𝑝𝑖, 

where 𝑠𝑖𝑖 is the j-th grid cell, 𝑝𝑖 is the total number of cells in the grid 𝑆𝑖 (i.e., 𝑆𝑖 =

⋃ 𝑠𝑖𝑖
𝑝𝑖
𝑖=1 ) and 𝑣𝑖1 = �

min (𝜔𝑖1,…,𝑔𝑖𝑘𝑖)

ℎ𝑖
� ∙ ℎ𝑖. Here, 𝑣2 ≥ max (𝜔𝑖1, … ,𝑔𝑖𝑘𝑖) is a threshold 

value (e.g., 2100). 

Next, we define a probability mass function 𝑝𝑖0 (𝑋 =  𝑋𝑖
𝑖) on the sample space 

Ω𝑖′ = 𝑆𝑖 ∪ 𝑋0 for the i-th input family of climate sensitivity functions as a conditional 
probability on the event that simulations returned some output. That is, 

𝑝𝑖0�𝜔𝑖𝑖
′ � ≔ Pr𝑖�𝜔𝑖𝑖

′ �𝐸� =
Pr𝑖�𝜔𝑖𝑖

′ �

Pr𝑖(𝑠𝑖1)+⋯+Pr𝑖�𝑠𝑖𝑝𝑖�+Pr𝑖(𝑋
0)

=
𝑓𝑖(𝜔𝑖𝑖

′ )

𝑓𝑖(𝑠𝑖1)+⋯+𝑓𝑖�𝑠𝑖𝑝𝑖�+𝑓𝑖(𝑋
0)

  , (13) 

where 𝜔𝑖𝑖
′ ∈ Ω′ and 𝑓𝑖(∙) denotes a frequency function. 𝐸 is an event that a simulation 

value falls into Ω𝑖. Here, each particular admissible parameter tuple is considered to be 
equally probable. 
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Thus, we obtain empirical probability distributions for each of the five parametric 
families of climate sensitivity functions. After that, we project 𝑝𝑖0 on Ω′ to a probability 
distribution 𝑝𝑖 on Ω, where Ω is the union of 𝑋0 and a consecutive sequence of unique 
𝜔𝑖𝑖 (𝑖 = 1, … ,5 and 𝑗 = 1, … ,𝑘𝑖). That is, if 𝜔𝑘 ∈ Ω equals 𝜔𝑖𝑖

′  (i.e., it equals either 
some 𝑠𝑖𝑖 or 𝑋0), then 

𝑝𝑖(𝜔𝑘) ≔ 𝑝𝑖0�𝜔𝑖𝑖
′ �, 

otherwise, 𝑝𝑖(𝜔𝑘) ≔ 0. 

The distributions 𝑝1, … ,𝑝5 on Ω are considered as the input distributions for the 
integration. 

2.4 Output 

Simulations in the SDEM-AK model are run for four scenarios. The scenario matrix is 
given in Table 4. 

Table 4. Matrix of simulation scenarios. 

 SSP3 scenario SSP5 scenario 

Business-as-usual 
scenario 

economic growth scenario 
without introducing carbon 
tax or mitigation, with the 
annual per capita GDP 
growth rate 1% 

economic growth scenario 
without introducing carbon 
tax or mitigation, with the 
annual per capita GDP 
growth rate 2.8% 

Mitigation scenario 

economic growth scenario 
with global carbon tax, 
with the annual per capita 
GDP growth rate 1% 

economic growth scenario 
with global carbon tax, 
with the annual per capita 
GDP growth rate 2.8% 

In this paper, we are focusing on comparing and reconciling stochastic output of the 
global economy, emissions, CO2 concentration and temperature increase in the SDEM-
AK model in the year 2100 according to the five alternative model versions. 
Additionally, we perform cost benefit analysis by comparing gains from mitigation to 
its costs. Table 5 describes output variables for the end year of simulations 𝑔1 (𝑔1 =
2100).  
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Table 5. Output variables of the SDEM-AK model. 

Notation Units Name 

Continuous domain [𝟎, +∞) 

�1 − 𝑑�𝑇(𝑔1)�� ∙ 𝑌(𝑔1) constant 2010 trln 
USD2010/year 

Output of the global 
economy corrected for 
climate damages 

𝑑�𝑇(𝑔1)� ∙ 𝑌(𝑔1) constant 2010 trln 
USD2010/year 

Global economic losses 
from climate change 

𝐸(𝑔1) GtCO2/year Global carbon emissions 

𝐶(𝑔1) ppmv 
Atmospheric CO2 
concentration 

𝑇(𝑔1) °C 
Global mean surface air 
temperature increase above 
the pre-industrial level 

Discrete domain 

𝑔∗1 year 
The first year when the 
gains from mitigation 
surpass its costs 

3 Integration 

3.1 Methodology 

Inserting five alternative climate sensitivity distributions into the SDEM-AK model, we 
obtain five alternative stochastic models of the coupled global climate-economy system. 
We treat five distributions of a model output variable as priors and employ the Bayesian 
framework to combine the priors into the joint probability distribution based on the two 
principal assumptions: 

A1. There is no ground for giving a preference to any prior distribution; 
A2. The posterior event is the one when stochastic variables in all models have the 

same realization. 

Assumption A2 is motivated by the fact that all the prior stochastic estimates are 
supposed to represent the same deterministic element. This implies, in particular, that if 
                                                 

1 𝑔∗ = min�̅� �𝑔̅ : ∑ �𝑑�𝑇𝐵𝑟𝐵(𝑔)� ∗ 𝑌𝐵𝑟𝐵(𝑔) − 𝑑 �𝑇𝑚𝑖𝑔.(𝑔)� ∗ 𝑌𝑚𝑖𝑔.(𝑔)� >�̅�
𝑔=𝑔𝜏

∑ 𝑇𝑇𝑇𝑚𝑖𝑔.(𝑔)�̅�
𝑔=𝑔𝜏 �, 𝑔𝜏 = 2025 – year of carbon tax introduction. 
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a certain elementary event (outcome) is not possible in at least one model, it should be 
excluded from the set of admissible posterior elementary events, i.e., we consider only 
mutually compatible outcomes of models from a multi-model ensemble. Kryazhimskiy 
(2015) operationalized the use of the Bayesian framework under assumptions A1 and 
A2 given the independence of priors. 

For simplicity, we operate with discrete distributions. First consider two priors. Let 𝑍 be 
the set of all possible elementary events (outcomes) in both distributions;  𝑧 ∈ 𝑍 be an 
elementary event from 𝑍. Therefore, the posterior probability distribution 𝜋(𝑧) (𝑧 ∈ 𝑍) 
describing mutually compatible priors 𝜋1(𝑧) and 𝜋2(𝑧) is defined as follows 

𝜋(𝑧) =
𝜋1(𝑧)𝜋2(𝑧)

∑ 𝜋1(𝑧′)𝜋2(𝑧′)𝑧′∈𝑍
  . (14) 

The numerator in (14) is the probability of 𝑧 to be realized in both models 
simultaneously and the denominator is the probability of the entire posterior event (see 
A2). More than two priors can be treated in the same way iteratively. The theoretical 
foundations of this approached are discussed in Kryazhimskiy (2013) and Kryazhimskiy 
(2016). An example of application to reconciling alternative models of the net primary 
production of carbon by forests is presented in Kryazhimskiy et al. (2015). 

3.2 Performance Metrics 

We look for robustness with respect to the assumption regarding how the global 
warming impacts the economy. The latter process is described in a stylized fashion, by 
the combination of the climate sensitivity with the damage function that takes away a 
part of the global output depending on the level of global warming. We are interested in 
estimating the most probable realization of a model output variable in 2100, as well as 
in estimating the resulting uncertainty. 

Continuous output variables 

We summarize original and integrated distributions by their mean and standard 
deviation. 

The mean values are compared relative to average and spread of the mean in the five 
original distributions. That is, we compute a relative mean of the probability distribution 
as follows 

𝜇∗ =
𝜇 − �̅�
𝜎�

,  (15) 

where 𝜇 is a mean of the probability distribution, �̅� is an average mean over all original 
distributions 𝑝1, … ,𝑝5 and 𝜎� is a population standard deviation of the sample, which 
includes means of all original distributions 𝑝1, … ,𝑝5. 
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Discrete output variables 

We summarize original and integrated distributions by their conditional mean and 
standard deviation with respect to an event 𝑋0���� that an output variable takes some integer 
value (i.e., 𝑋0���� = Ω ∖ 𝑋0), as follows 

𝜇∗ = 𝐸�𝑋�𝑋0����� = � 𝑝(𝑠𝑖)
𝑠𝑖1 + 𝑠𝑖2

2
𝑖=1,..,𝑘

, (16) 

𝜎∗ = �𝐸�𝑋2�𝑋0����� − 𝐸�𝑋�𝑋0�����
2

= � 𝑝�𝑠𝑖� �
𝑠𝑖1 + 𝑠𝑖2

2
�
2

𝑖=1,..,𝑘

− (𝜇∗)2,  (17) 

where 𝑠𝑖1 and 𝑠𝑖2 are the left and right border points of the bin 𝑠𝑖 (𝑗 = 1, … ,𝑘) 
respectively, and 𝑘 is a number of bins in Ω. 

Additionally, we compute probability of the non-defined value 𝑝(𝑋0) in original 
distributions 𝑝1, … ,𝑝5 and in the integrated distribution. 
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4 Results 

Table 6. Statistics of the global economic output in the original models and in the 
ensemble integrated product. The SDEM-AK versions differ in the probability 
distribution of the climate sensitivity. 

 Mean (relative) Standard deviation 

 SSP3 

Business-as-usual 
scenario 

  

Mitigation scenario 

  

 SSP5 

Business-as-usual 
scenario 

  

Mitigation scenario 
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Table 7. Statistics of the global economic losses from climate change in the original 
models and in the ensemble integrated product. The SDEM-AK versions differ in the 
probability distribution of the climate sensitivity. 

 Mean (relative) Standard deviation 

 SSP3 

Business-as-usual 
scenario 

  

Mitigation scenario 

  

 SSP5 

Business-as-usual 
scenario 

  

Mitigation scenario 
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Table 8. Statistics of the global carbon emissions in the original models and in the 
ensemble integrated product. The SDEM-AK versions differ in the probability 
distribution of the climate sensitivity. 

 Mean (relative) Standard deviation 

 SSP3 

Business-as-usual 
scenario 

  

Mitigation scenario 

  

 SSP5 

Business-as-usual 
scenario 

  

Mitigation scenario 
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Table 9. Statistics of the atmospheric CO2 concentration in the original models and in 
the ensemble integrated product. The SDEM-AK versions differ in the probability 
distribution of the climate sensitivity. 

 Mean (relative) Standard deviation 

 SSP3 

Business-as-usual 
scenario 

  

Mitigation scenario 

  

 SSP5 

Business-as-usual 
scenario 

  

Mitigation scenario 
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Table 10. Statistics of the global mean surface air temperature increase in the original 
models and in the ensemble integrated product. The SDEM-AK versions differ in the 
probability distribution of the climate sensitivity. 

 Mean (relative) Standard deviation 

 SSP3 

Business-as-usual 
scenario 

  

Mitigation scenario 

  

 SSP5 

Business-as-usual 
scenario 

  

Mitigation scenario 
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Table 11. Statistics of the year when the gains from mitigation surpass its costs1 in the 
SDEM-AK simulations in the original models and in their ensemble integrated products 
(bin size = 5 years). The SDEM-AK versions differ in the probability distribution of the 
climate sensitivity. 

 SSP3 SSP5 

Conditional mean 

  

Conditional standard 
deviation 

  

𝑷(𝒕∗ > 𝟐𝟐𝟎𝟎) 

  

   

  

                                                 

1 𝑔∗ = min�̅� �𝑔̅ : ∑ �𝑑�𝑇𝐵𝑟𝐵(𝑔)� ∗ 𝑌𝐵𝑟𝐵(𝑔) − 𝑑 �𝑇𝑚𝑖𝑔.(𝑔)� ∗ 𝑌𝑚𝑖𝑔.(𝑔)� >�̅�
𝑔=𝑔𝜏

∑ 𝑇𝑇𝑇𝑚𝑖𝑔.(𝑔)�̅�
𝑔=𝑔𝜏 �, 𝑔𝜏 = 2025 – year of carbon tax introduction. 
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Software 

The estimates from the posterior integration method are obtained using the R package 
'modelIntegration', which is available through the link 
http://www.iiasa.ac.at/web/home/research/researchPrograms/AdvancedSystemsAnalysis
/modelIntegration-package.html at the International Institute for Applied Systems 
Analysis (IIASA). 
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Appendix 

Parameter 𝜎 in equations. (5)-(6) defines the share of the carbon tax revenue to be 
allocated into improving the carbon efficiency vis-a-vis energy efficiency. An optimal 
distribution of funds between these two allocations needs to be found in order to make 
these investments most efficient in terms of mitigation the global warming.  

Therefore, in order to calibrate parameter 𝜎, we investigate the sensitivity of the global 
temperature increase in 2100 in the SDEM-AK model under SSP3 and SSP5 scenarios 
and the baseline value of the climate sensitivity 3°C. We vary 𝜎 over its entire range of 
admissible values, from 0 to 1, with step 0.05, run the SDEM-AK model and display the 
output mean temperature increase in 2100 as a function of 𝜎. Figures A.1 and A.2 
present results of the SSP3 and SSP5 scenarios respectively. Maximal mean temperature 
reduction is achieved at 𝜎 = 0.2 in the SSP3 case and at 𝜎 = 0.35 in the SSP5 case 
(within the accuracy of the used grid). In both scenarios, the curve is rather flat around 
an interior minimum point, basically, in each case any value of 𝜎 between 0 and 0.4 
gives a near-to-optimal value to the mean temperature increase. On this basis, we 
choose 𝜎 = 0.2 for the simulations. 

Figure A.1. Global mean surface air temperature increase above the preindustrial level 
in the end year of simulations 2100 as a function of 𝜎, case of SSP3 scenario. 

 

Figure A.2. Global mean surface air temperature increase above the preindustrial level 
in the end year of simulations 2100 as a function of 𝜎, case of SSP5 scenario. 
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