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Abstract. The stable carbon isotopic composition (δ13C) is
an important variable to study the ocean carbon cycle across
different timescales. We include a new representation of the
stable carbon isotope 13C into the HAMburg Ocean Car-
bon Cycle model (HAMOCC), the ocean biogeochemical
component of the Max Planck Institute Earth System Model
(MPI-ESM). 13C is explicitly resolved for all oceanic carbon
pools considered. We account for fractionation during air–
sea gas exchange and for biological fractionation εp associ-
ated with photosynthetic carbon fixation during phytoplank-
ton growth. We examine two εp parameterisations of dif-
ferent complexity: εPopp

p varies with surface dissolved CO2
concentration (Popp et al., 1989), while εLaws

p additionally
depends on local phytoplankton growth rates (Laws et al.,
1995). When compared to observations of δ13C of dissolved
inorganic carbon (DIC), both parameterisations yield simi-
lar performance. However, with regard to δ13C in particulate
organic carbon (POC) εPopp

p shows a considerably improved
performance compared to εLaws

p . This is because εLaws
p pro-

duces too strong a preference for 12C, resulting in δ13CPOC
that is too low in our model. The model also well reproduces
the global oceanic anthropogenic CO2 sink and the oceanic
13C Suess effect, i.e. the intrusion and distribution of the iso-
topically light anthropogenic CO2 in the ocean.

The satisfactory model performance of the present-day
oceanic δ13C distribution using ε

Popp
p and of the anthro-

pogenic CO2 uptake allows us to further investigate the po-
tential sources of uncertainty of the Eide et al. (2017a) ap-
proach for estimating the oceanic 13C Suess effect. Eide et al.
(2017a) derived the first global oceanic 13C Suess effect es-
timate based on observations. They have noted a potential

underestimation, but their approach does not provide any in-
sight about the cause. By applying the Eide et al. (2017a)
approach to the model data we are able to investigate in de-
tail potential sources of underestimation of the 13C Suess ef-
fect. Based on our model we find underestimations of the 13C
Suess effect at 200 m by 0.24 ‰ in the Indian Ocean, 0.21 ‰
in the North Pacific, 0.26 ‰ in the South Pacific, 0.1 ‰ in the
North Atlantic and 0.14 ‰ in the South Atlantic. We attribute
the major sources of underestimation to two assumptions in
the Eide et al. (2017a) approach: the spatially uniform pre-
formed component of δ13CDIC in year 1940 and the neglect
of processes that are not directly linked to the oceanic uptake
and transport of chlorofluorocarbon-12 (CFC-12) such as the
decrease in δ13CPOC over the industrial period.

The new 13C module in the ocean biogeochemical com-
ponent of MPI-ESM shows satisfying performance. It is a
useful tool to study the ocean carbon sink under the anthro-
pogenic influences, and it will be applied to investigating
variations of ocean carbon cycle in the past.

1 Introduction

The stable carbon isotopic composition (δ13C) measured
in carbonate shells of fossil foraminifera is one of the
most widely used properties in paleoceanographic re-
search (Schmittner et al., 2017). It is defined as a normalised
ratio between the stable carbon isotopes 13C and 12C:

δ13C(‰)=

( 13C/12C
Rstd

− 1
)
· 1000, (1)
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where Rstd is an arbitrary standard ratio. In observational
studies, the ratio 13C/12C in Pee Dee Belemnite (PDB;
Craig, 1957) is conventionally used for Rstd.
δ13C provides information on past changes in water mass

distribution and properties (e.g. Curry and Oppo, 2005; Pe-
terson et al., 2014). Direct comparison between paleo-δ13C
measurements and simulated δ13C facilitates evaluating the
ability of Earth system models (ESMs) to simulate paleo-
ocean states. For this reason, we present a new implemen-
tation of 13C in the HAMburg Ocean Carbon Cycle model
(HAMOCC6), the ocean biogeochemical component of the
Max Planck Institute Earth System Model (MPI-ESM). A
comprehensive representation of δ13C is a timely extension
of MPI-ESM in support of planned simulations of a complete
last glacial cycle within the German climate modelling initia-
tive PalMod (Latif et al., 2016). Before applying the new 13C
module to paleo-simulations, we evaluate it by comparison
to observational data in the present-day ocean.

Earlier versions of HAMOCC already featured a 13C mod-
ule, for instance HAMOCC2s (Heinze and Maier-Reimer,
1999) and HAMOCC3 (Maier-Reimer, 1993). HAMOCC3
included prognostic 13C variables for dissolved inorganic
carbon (DIC), particulate organic matter and calcium carbon-
ate. HAMOCC3 also accounted for temperature-dependent
isotopic fractionation during air–sea gas exchange (higher
δ13C of surface DIC in colder water) and biological frac-
tionation during carbon fixation. Due to the simplified rep-
resentation of marine biological production in HAMOCC3,
biological fractionation was based on fixation of inorganic
carbon into non-living particulate organic matter and was
parameterised by a spatially and temporally uniform factor.
This approach for biological fractionation of 13C, however,
could not reproduce the observed large meridional gradi-
ent of δ13C in particulate organic matter (Goericke and Fry,
1994). Since then, HAMOCC3 was refined in particular with
regard to its representation of plankton dynamics. The cur-
rent version HAMOCC6 resolves bulk phytoplankton, zoo-
plankton, detritus, dissolved organic carbon (Six and Maier-
Reimer, 1996) and nitrogen-fixing cyanobacteria (Paulsen
et al., 2017). We thus develop an updated 13C module that
considers the refined ecosystem representation and test dif-
ferent non-uniform parameterisations for biological fraction-
ation during phytoplankton growth.

To choose a suitable biological fractionation parameteri-
sation for our model, we test the parameterisations of Popp
et al. (1989) and Laws et al. (1995). These parameterisa-
tions are selected for two reasons. First, they are of different
complexities. The parameterisation of Popp et al. (1989) em-
pirically relates 13C biological fractionation to the concen-
tration of dissolved CO2 in seawater, whereas that of Laws
et al. (1995) considers dissolved CO2 concentration and phy-
toplankton growth rate. Second, input variables in these two
parameterisations are explicitly computed in the model. We
omit more complex parameterisations that include effects of
cell membrane permeability of molecular CO2 diffusion, cell

size and shape (e.g. Rau et al., 1996; Keller and Morel, 1999),
as HAMOCC6 does not resolve these features of plankton
cells.

Oceanic δ13C measurements were mostly carried out in
the late 20th century. In the upper ocean δ13C in dissolved
inorganic carbon (δ13CDIC) has been observed to notice-
ably decrease in response to the intrusion of anthropogenic
CO2 from fossil fuel combustion which carries a lower
13C/12C signal (Gruber et al., 1999; Quay et al., 2003). Such
δ13CDIC decrease is referred to as the oceanic 13C Suess ef-
fect (Keeling, 1979). Recently, Eide et al. (2017a) derived an
observation-based estimate of the global ocean 13C Suess ef-
fect since pre-industrial times. Such an observation-based es-
timate is valuable as it is the basis of an almost independent
estimate of the global ocean anthropogenic carbon uptake.
And it could be used for evaluating models at pre-industrial
states (Buchanan et al., 2019; Tjiputra et al., 2020) and for
setting up paleo-simulations (O’Neill et al., 2019).

Yet, Eide et al. (2017a) have noted that their approach
might underestimate the oceanic 13C Suess effect. They con-
jectured an underestimation of the 13C Suess effect between
0.15 ‰–0.24 ‰ at 200 m depth in 1994. However, the quan-
titative spatial distribution of this underestimation is unclear.
Moreover, although Eide et al. (2017a) have related the un-
derestimation to several assumptions in the approach they ap-
plied, the quantitative impact of these assumptions is still un-
clear as the measurements are too limited in space and time
to perform in-depth investigation.

Our model data include all parameters needed to apply
the Eide et al. (2017a) procedure, which relies on regres-
sional relationships between preformed δ13CDIC (related to
the transport of surface waters with specific DIC and DI13C)
and CFC-12 (chlorofluorocarbon-12) partial pressure. Thus,
our consistent model framework, with the complete spatio-
temporal information of the hydrological and biogeochem-
ical variables, enables us to investigate the spatial distribu-
tion of the above-mentioned potential underestimation of the
oceanic 13C Suess effect. Moreover, our model framework
also allows for the attribution of the underestimation to the
assumptions of the procedure Eide et al. (2017a) applied.

In the following sections, we first provide a brief introduc-
tion to the global ocean biogeochemical model HAMOCC6,
followed by a description of the new 13C module including
the experimental setup (Sect. 2). Section 3 presents the model
evaluation against observations in the late 20th century, and
Sect. 4 evaluates the simulated oceanic 13C Suess effect. Sec-
tion 5 addresses our findings on testing the Eide et al. (2017a)
approach for estimating the oceanic 13C Suess effect. Sum-
mary and conclusions are given in Sect. 6.
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2 Model description

2.1 The global ocean biogeochemical model
(HAMOCC6)

HAMOCC6 (Ilyina et al., 2013; Paulsen et al., 2017; Mau-
ritsen et al., 2019) includes biogeochemical processes in
the water column and in the sediment. In the water col-
umn, the following biogeochemical tracers are simulated:
dissolved inorganic carbon (DIC), total alkalinity (TA),
phosphate (PO4), nitrate (NO3), nitrous oxide (N2O), dis-
solved nitrogen gas (N2), silicate (SiO4), dissolved bioavail-
able iron (Fe), dissolved oxygen (O2), bulk phytoplankton
(Phy), cyanobacteria (Cya), zooplankton (Zoo), dissolved or-
ganic matter (DOM), particulate organic matter (POM), opal
shells, calcium carbonate shells (CaCO3), terrigenous mate-
rial (Dust) and hydrogen sulfide (H2S). Below the model-
defined export depth (100 m), the sinking speed of POM
linearly increases with depth. Theoretically, this leads to
a power-law-like attenuation of POM fluxes as observa-
tions (Martin et al., 1987; Kriest and Oschlies, 2008). Con-
stant sinking speeds are set for opal, CaCO3 and Dust. Except
for CaCO3 and opal, whose sinking speeds (30 and 25 m d−1,
respectively) are considerably faster than the horizontal ve-
locities of ocean flow, the water-column biogeochemical
tracers are transported by the hydrodynamical fields in the
same manner as salinity.

The sediment module is based on Heinze et al. (1999).
It simulates remineralisation and dissolution processes as in
the water column concerning dissolved tracers (PO4, NO3,
N2, O2, SiO4, Fe, H2S, DIC and TA) in the pore water and
the solid sediment constituents (POM, opal, CaCO3). The
tracers in the pore water are exchanged with the overlying
water column by diffusion. Pelagic sedimentation fluxes of
POM, CaCO3 and opal are added to the solid components of
the sediment. Below the active sediment there is one layer
containing only solid sediment components and representing
burial. To balance the loss of nutrients, TA, DIC and SiO4 in
the water column, constant input fluxes of DOM, CO2−

3 and
SiO4 are added uniformly at the ocean surface, whose rates
are derived from a linear regression of the long-term (approx-
imately 100 years) temporal evolution of the sediment (active
and burial) inventory.

A detailed description of HAMOCC6 is provided in Mau-
ritsen et al. (2019) and the references therein. Different to
the HAMOCC6 version in Mauritsen et al. (2019), we allow
DOM degradation in low-oxygen conditions until all avail-
able O2 is consumed.

2.2 The stable carbon isotope 13C in HAMOCC6

HAMOCC6 simulates total carbon C, which is the sum of
the three natural isotopes 12C, 13C and 14C. Because in na-
ture 12C constitutes about 98.9 % of the total carbon and 13C
only constitutes about 1.1 % (Lide, 2002), in HAMOCC6 we

assume 12C= C. We include a 13C counterpart for each 12C
prognostic variable; that is, we introduce seven new tracers
for the water column and three for the sediment. 13C only
mimics the 12C biogeochemical fluxes, modified by the cor-
responding isotopic fractionation. We assume 13C inventory
to be as large as the inventory of 12C to reduce numerical er-
rors. Consequently, the reference standard of the stable car-
bon isotope ratio Rstd is set to 1 in Eq. (1). In this section,
we describe the implementation of 13C fractionation during
air–sea exchange and carbon uptake by bulk phytoplankton
and by cyanobacteria. Because the isotopic fractionation dur-
ing the production of calcium carbonate is small (Turner,
1982) and uncertain (Zeebe and Wolf-Gladrow, 2001), it is
not considered in this study, following the model studies of
e.g. Lynch-Stieglitz et al. (1995), Schmittner et al. (2013) and
Tjiputra et al. (2020).

2.2.1 Fractionation during air–sea gas exchange

The net air–sea CO2 gas exchange flux F reads

F =−kCO2γCO2

(
pCO2

surf
−pCO2

atm
)
. (2)

Here, pCO2
surf and pCO2

atm are the partial pressures of CO2
in the surface seawater and in the atmosphere, respectively.
The piston velocity kCO2 (m s−1) for CO2 and the solubility
γCO2 (mol L−1 atm−1) of CO2 are calculated following Wan-
ninkhof (2014) and Weiss (1974), respectively.

Similar to the air–sea flux of total carbon in Eq. (2), the
net air–sea 13CO2 exchange flux 13F reads

13F =−13kCO2
13γCO2

(
pCO2

surfRg −pCO2
atmRatm

)
, (3)

in which Rg and Ratm are the ratios of 13C/12C in sur-
face pCO2 and in atmospheric CO2, respectively. Following
Zhang et al. (1995), we can rewrite Eq. (3) as
13F =−kCO2αkγCO2αaq←g(

pCO2
surf RDIC

αDIC←g
−pCO2

atmRatm

)
. (4)

Here, αk=
13kCO2/kCO2 is the kinetic fractionation factor,

αaq←g=
13γCO2/γCO2 is the equilibrium isotopic fractiona-

tion factor for gas dissolution (from gaseous to aqueous
CO2), αDIC←g = RDIC/Rg is the equilibrium isotopic frac-
tionation factor from gaseous CO2 to DIC and RDIC =
13CDIC/

12CDIC. Parameters αk, αaq←g and αDIC←g are
temperature-dependent, and they are obtained from labora-
tory experiments (Zhang et al., 1995), often expressed in
terms of a per mil fractionation factor ε(‰)= (α−1)×103:

εk =−0.85, (5)
εaq←g = 0.0049TC− 1.31, (6)
εDIC←g = 0.014TCfCO3 − 0.105TC+ 10.53. (7)

Here, TC is the seawater temperature in ◦C, and fCO3 =

CO2−
3 /DIC is the fraction of carbonate ions in DIC. Because
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in Eq. (6) the temperature dependency is weak, we use a con-
stant εaq←g =−1.24, obtained at TC = 15 ◦C in the model,
following Schmittner et al. (2013). In Eq. (7) we neglect the
first term 0.014TCfCO3 , because fCO3 is generally smaller
than 0.1 and because the constant factor is 1 order of magni-
tude smaller than that of the second term 0.105TC.

Note that Eq. (5) (εk =−0.85) and the simplified Eq. (7)
(εDIC←g =−0.105TC+ 10.53) in this study, adopting those
of Schmittner et al. (2013), are slightly different from the
OMIP protocol (Orr et al., 2017; εk =−0.88 and εDIC←g =

0.014TC fCO3 − 0.107TC+ 10.53). Results of a short pre-
industrial simulation with εk and εDIC←g from OMIP pro-
tocol yield a negligible difference (not shown). In our future
simulations εk and εDIC←g suggested by the OMIP protocol
will be used.

2.2.2 Fractionation during phytoplankton growth

The lighter stable carbon isotope 12C is preferentially utilised
over 13C during photosynthesis (O’Leary, 1988). Following
Schmittner et al. (2013), we formulate this isotopic frac-
tionation during net growth of the bulk phytoplankton and
cyanobacteria as

13G= RDIC αPhy←DICG, (8)

with

αPhy←DIC = αaq←DICαPhy←aq =
αaq←g

αDIC←g
αPhy←aq. (9)

Here G (µmol C L−1 d−1) denotes the growth of bulk phy-
toplankton or cyanobacteria. αPhy←DIC is the isotopic frac-
tionation factor for DIC fixation, which is determined by the
equilibrium fractionation factor αaq←DIC from DIC to aque-
ous CO2(aq) and by the biological fractionation factor εp =

(αPhy←aq− 1)× 103 related to the fixation of CO2(aq). Here
the subscript “Phy” denotes either the bulk phytoplankton or
cyanobacteria.

We test the parameterisations for biological fractionation
from Popp et al. (1989) and from Laws et al. (1995), i.e.

ε
Popp
p =−17 log(CO2(aq))+ 3.4, (10)

εLaws
p =

(
µ

CO2(aq)/ρsea
− 0.371

)
/0.015. (11)

Here, CO2(aq) (µmol L−1) is aqueous CO2 in surface wa-
ter, and variable µ (d−1) is the specific growth rate of
bulk phytoplankton or of cyanobacteria. Note that Laws
et al. (1995) measured εaq←Phy. Because αPhy←aq is close
to unity, εp ≈−εaq←Phy (Zeebe and Wolf-Gladrow, 2001).
In Eq. (11), we set the seawater density ρsea a constant value
of 1.025 kg L−1. Then Eq. (11) is simplified to

εLaws
p = 68.3

µ

CO2(aq)
− 24.7. (12)

Figure 1. The per mil biological fractionation factor εp against

aqueous CO2 concentration. The solid line illustrates εPopp
p , in

which the biological fractionation during phytoplankton growth is
only a function of CO2(aq). The dashed–dotted lines show εLaws

p ,
which depends on µ/CO2, the ratio of phytoplankton growth rate
to CO2(aq), for µ=0.2 (blue), 0.6 (red), 1.2 (yellow) and 2.0 (pur-
ple) d−1.

Both CO2(aq) and µ (depending on local conditions of light,
water temperature and nutrient availability) are determined
in HAMOCC6. Figure 1 illustrates the values of εPopp

p and
εLaws

p under typical ranges of CO2(aq) and µ in the ocean.

Whenµ≤ 1, εLaws
p is generally more negative than εPopp

p . For
high µ values, e.g. µ= 2, εLaws

p is constantly less negative

than εPopp
p . Under high µ and low CO2(aq), εLaws

p becomes
positive, which is unrealistic. However, our simulated ratios
of phytoplankton growth rate to dissolved CO2 concentration
do not produce unrealistic positive εLaws

p at any time step in
this study.

2.3 Model setup and experimental design

2.3.1 Setup

We conduct ocean-only simulations using the MPIOM-
1.6.3p1 (Jungclaus et al., 2013; Notz et al., 2013; Maurit-
sen et al., 2019) with HAMOCC6. MPIOM is a free-surface
ocean general circulation model. It uses a curvilinear grid
with the grid poles located over Greenland and Antarctica.
We use a low-resolution configuration with a nominal hori-
zontal resolution of 1.5◦. This configuration has a minimum
grid spacing of 15 km around Greenland and a maximum grid
spacing of 185 km in the tropical Pacific. There are 40 un-
evenly spaced vertical levels. The layer thickness increases
from 10 m in the upper ocean to 600 m in the deep ocean.
The upper 100 m of the water column is represented by nine
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levels. The time step is 1 h. In this setup, we additionally in-
clude the oceanic uptake and transport of CFC-12. CFC-12
is chemically inert and can therefore be treated as a conser-
vative and passive tracer participating in all hydrodynamical
processes within the ocean identical to e.g. salinity. The im-
plementation of the air–sea gas exchange of CFC-12 follows
the OMIP protocol (Orr et al., 2017).

2.3.2 Experimental design

For the pre-industrial spin-up simulations we cyclically ap-
ply the 1905–1929 sea-surface boundary conditions from
ERA20C (Poli et al., 2016, covering 1901–2010). The at-
mospheric CO2 mixing ratio is set to 280 ppmv. A spin-up
run is first conducted without 13C tracers until the long-
term averaged global net air–sea CO2 flux is smaller than
0.05 Pg C yr−1 (adequate to the C4MIP criterion for steady-
state conditions of < 0.1 Pg C yr−1; Jones et al., 2016). This
model state is the starting point for the two spin-up runs
including 13C tracers, PI_Popp and PI_Laws, which are
based on the biological fractionation parameterisation εPopp

p
(Eq. 10) and εLaws

p (Eq. 12), respectively.
The 13C tracers are initialised as follows. The mean δ13C

of the marine organic matter is about −20 ‰ (Degens et al.,
1968). Therefore, we set the initial concentrations of 13C
in the bulk phytoplankton, cyanobacteria, zooplankton, dis-
solved organic carbon, particulate organic carbon in the wa-
ter column and particulate organic carbon in the sediment to
0.98 (according to Eq. 1) of their 12C counterparts. The initial
13CDIC in the water column is calculated using the relation
between δ13CDIC and PO4 (Lynch-Stieglitz et al., 1995),

δ13CDIC = 2.7− 1.1PO4, (13)

and Eq. (1). Here PO4 and DIC are from the quasi-
equilibrium state of the spin-up run without 13C tracers. The
initial concentrations of 13CCaCO3 in the water column and in
the sediment and the initial concentration of 13CDIC in pore
water are set identical to their 12C counterparts.

The pre-industrial stable carbon isotope ratio δ13CO2 of
atmospheric CO2 is fixed at−6.5 ‰. The inputs of dissolved
organic 13C (DO13C) and 13CO2−

3 are uniformly added at
the ocean surface. The input rate of DO13C is calculated as
the product of the input rate of DOC and the sea-surface
DO13C/DOC ratio; the input rate of 13CO2−

3 is the product
of the input rate of CO2−

3 and the sea-surface 13CO2−
3 /CO2−

3
ratio. This approach to determine 13C input rates results in a
small drift in the water-column 13C inventory, but it only has
minor impact on the simulation results (see Appendix A).

PI_Popp and PI_Laws are spun up for 2500 simula-
tion years. Equilibrium states are reached with 98 % of
the ocean volume having a δ13CDIC drift of less than
0.001 ‰ yr−1 (employing the same criteria as for 14C in
OMIP protocol, Orr et al., 2017). An equilibrium of the sed-
iment is, however, not achieved for either 13C or other bio-
geochemical tracers.

In the transient simulations for the historical period 1850–
2010, Hist_Popp and Hist_Laws, we prescribe increasing
atmospheric CO2 mixing ratios (Meinshausen et al., 2017)
due to anthropogenic activities and decreasing atmospheric
δ13CO2 following OMIP and C4MIP protocols (Jones et al.,
2016) (Fig. 2a). For the period 1850–1900, when forcing data
are absent, we continue applying the 1905–1929 ERA20C
cyclic forcing. From 1901 to 2010, we use the transient
ERA20C forcing. The evolution of the atmospheric CFC-12
concentration (Fig. 2b) follows Bullister (2017). Because the
atmospheric CFC-12 is slightly higher in the Northern Hemi-
sphere, we prescribe a linear transition between 10◦ S and
10◦ N. Input rates of DO13C, DOC, 13CO2−

3 , CO2−
3 and SiO4

are kept constant and are the same as those of pre-industrial
simulations.

3 Model results and observations in the late 20th
century

Our model generally simulates the physical and biogeochem-
ical state for the present-day ocean well. The detailed model–
observation comparisons for the ocean physical variables
(e.g. seawater temperature and salinity, Atlantic Meridional
Overturning Circulation stream function, CFC-12) and for
the ocean biogeochemical tracers (e.g. primary production,
nutrients, DIC) are summarised in Appendix Sects. B and C.

In this section, we compare simulated 13C between the
two simulations Hist_Popp and Hist_Laws and evaluate the
two experiments by comparison to observed δ13CPOC and
δ13CDIC. The observations used here are the surface δ13CPOC
measurements assembled by Goericke and Fry (1994) and
the observed δ13CDIC, for both the surface and the interior
ocean, compiled by Schmittner et al. (2013). For the model–
observation comparison, we first grid the observed δ13CPOC
and δ13CDIC horizontally onto a 1× 1◦ grid and vertically
(only for δ13CDIC) onto the 40 depth layers of the model.
Multiple data points in the same grid cell in the same month
and year are averaged. Then we bilinearly interpolate the
simulated monthly-mean δ13CPOC and δ13CDIC over a 1× 1◦

grid. To quantitatively compare the performance between
Hist_Popp and Hist_Laws and to other 13C models, we cal-
culate the spatial correlation coefficient r and the normalised
root mean squared error (NRMSE, normalised by the stan-
dard deviation that is calculated using all the available mea-
surements of δ13CPOC or δ13CDIC during the observational
periods) between model results and observation.

A global ocean climatology of pre-industrial δ13CDIC has
recently been derived by first estimating the oceanic 13C
Suess effect (Eide et al., 2017a) and then removing it from
the observed δ13CDIC (Eide et al., 2017b). This pre-industrial
δ13CDIC estimate has been used to evaluate model perfor-
mance (Tjiputra et al., 2020). We do not include a δ13CDIC
evaluation for the pre-industrial ocean because the histori-
cal simulations in this study facilitate the direct comparison
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Figure 2. (a) The evolution of atmospheric CO2 (blue, Meinshausen et al., 2017) and δ13CO2 (red, Jones et al., 2016) during 1850–2010.
(b) The evolution of atmospheric CFC-12 concentrations (Bullister, 2017). The solid blue line indicates the Northern Hemisphere, and the
dashed red line indicates Southern Hemisphere.

to observations in the late 20th century, which is different
from Tjiputra et al. (2020), who only include pre-industrial
simulations with 13C tracers. Moreover, as has already been
discussed by Eide et al. (2017a) and is discussed in Sect. 5
of this study, the 13C Suess effect is possibly underestimated
by the Eide et al. (2017a) approach. This suggests Eide et al.
(2017b) likely overestimate the pre-industrial δ13CDIC.

3.1 Isotopic signature of particular organic carbon in
the surface ocean

For comparison between Hist_Popp and Hist_Laws, the cli-
matological mean state of δ13CPOC is derived by averag-
ing over 1960-1991, the period when most δ13CPOC mea-
surements were collected. In Hist_Popp, the climatological
annual-mean surface δ13CPOC has a global mean value of
−22.5 ‰, and it shows a distinct horizontal pattern (Fig. 3a).
Less negative values up to−19.3 ‰ are found in the subtrop-
ical regions, where alkalinity is typically high and CO2(aq)
is consequently low. This low CO2(aq) results in a smaller
isotope fractionation during carbon fixation by phytoplank-
ton (Eq. 10, Fig. 1) with a biological fractionation factor
εp >−13 ‰ (Fig. 3c). Poleward of the subtropical regions,
δ13CPOC gradually decreases. The reason for this is twofold.
First, εp decreases from −13 ‰ to about −20 ‰ following
the increase in CO2(aq). Second, the thermal effect of equi-
librium fractionation causes about 3 ‰ more fractionation in
the polar regions than in the tropical and subtropical regions
(according to Eqs. 7 and 9). The lowest δ13CPOC of about
−30 ‰ occurs close to Antarctica where highest surface DIC
concentrations are typically found because of the upwelling
of deep waters and the reduced air–sea gas exchange by ice
cover (Takahashi et al., 2014). The annual range of δ13CPOC
(Fig. 3e), i.e. the difference between the minimum and the
maximum of its climatological monthly-mean annual cycle,
is low (< 0.5 ‰) in the subtropical regions, and it increases
polewards up to ∼ 9 ‰ in the Southern Ocean, mirroring
meridional changes in the annual range of CO2(aq).

Compared to Hist_Popp, Hist_Laws shows lower annual-
mean surface δ13CPOC (Fig. 3b), with a global-mean value

of −29.9 ‰ due to more negative εp (Fig. 3d). This is be-
cause εLaws

p (Fig. 1) is always more negative than εPopp
p when

the simulated mean growth rates (Fig. C1a and b) are lower
than 1 d−1. As εLaws

p increases with growth rate (Eq. 12), we
find less negative δ13CPOC (up to −24.1 ‰) in the central
tropical Pacific, where highest growth rates are simulated
(Fig. C1a and b). The lowest δ13CPOC of −33 ‰ occurs in
the Arctic Ocean and around Antarctica due to the combina-
tion of low growth rate, high CO2(aq) and low seawater tem-
perature. The meridional range of the annual-mean δ13CPOC
in Hist_Laws (∼ 9 ‰) is smaller than that of Hist_Popp
(∼ 11 ‰) because for low growth rates εLaws

p is generally

less sensitive to CO2(aq) changes compared to εPopp
p (Fig. 1).

This also results in a smaller annual range of δ13CPOC in
high latitudes (Fig. 3f) than Hist_Popp (Fig. 3e). In the low
and mid-latitudes, Hist_Laws shows larger annual range of
δ13CPOC because in these regions CO2(aq) concentrations
are relatively stable but growth rates shows noticeable sea-
sonal variability.

Hist_Popp captures major features of the observed
δ13CPOC (Fig. 4a, c and e). The meridional gradient, with
less negative values in the low latitudes and minimal val-
ues around 60◦ S, is well reproduced. In contrast, Hist_Laws
shows generally lower δ13CPOC than the observations (a
global mean bias of −8 ‰) and a smaller δ13CPOC differ-
ence between low and high latitudes (Fig. 4b, d and f). This
is also seen in a recent study by Dentith et al. (2020), who
tested εPopp

p and εLaws
p with the FAst Met Office/UK Uni-

versities Simulator (FAMOUS). The underestimation in the
global mean and in the meridional gradient of δ13CPOC in
Hist_Laws suggests that the parameters of the linear fit in
Eq. (12) (slope and intercept) would need to be increased
to gain a better performance. Around 60◦ S of the Atlantic
Ocean (Fig. 4b), Hist_Laws simulates a smaller range of
δ13CPOC than the observations. This is also a result of the
small δ13CPOC annual range produced by εLaws

p (Fig. 3f). Be-
tween 40◦ S and 40◦ N in the Atlantic Ocean, Hist_Laws sim-
ulates δ13CPOC peaks in the region of high growth rates south
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Figure 3. The climatological (1960–1991) annual-mean surface values for Hist_Popp (a, c, e) and Hist_Laws (b, d, f) for δ13CPOC (a, b),
εp (c, d), and for the annual range of δ13CPOC (e, f). All values are given in per mil (‰).

of the Equator, whereas the observed high δ13CPOC values
are located between the Equator and 20◦ N.

In the Indian Ocean around 45◦ S, Hist_Popp does not cap-
ture the prominent δ13CPOC peak in the field data (Fig. 4e),
despite the fact that the simulated CO2(aq), the controlling
factor in the parameterisation εPopp

p (Eq. 10), well reproduces
the meridional variation of the contemporaneous CO2(aq)
measurements (Fig. 4g). Although the empirical correlation
between εp and CO2(aq), such as Eq. (10), holds true to the
first order over large areas of the global ocean, other factors,
such as growth rate, affect the local variability in εp (Popp
et al., 1998; Hansman and Sessions, 2016; Tuerena et al.,
2019). Hist_Laws captures the δ13CPOC peak around 45◦ S in
the observations (Fig. 4f), owing to the dependency of εLaws

p
on phytoplankton growth rate and to the model successfully
reproducing the high productivity in this region (illustrated
by phytoplankton biomass, Fig. 4h). This is in alignment
with the field study by Francois et al. (1993) and the model
study by Hofmann et al. (2000), who ascribed this observed

δ13CPOC peak to a local high phytoplankton production dur-
ing the measurement period.

Overall, Hist_Popp (r = 0.84 and NRMSE= 0.57) better
reproduces the observed δ13CPOC than Hist_Laws (r = 0.71,
NRMSE= 2.5). Here a higher NRMSE indicates the model
captures a smaller fraction of the variation in observations.
The performance of Hist_Popp regarding δ13CPOC compares
well to that of the FAMOUS model (Dentith et al., 2020;
comparing their Fig. 8 and Fig. 4 in this study) and the Uni-
versity of Victoria (UVic) Earth System Model of intermedi-
ate complexity (with r = 0.74 and NRMSE= 0.92; Schmit-
tner et al., 2013). Note that Schmittner et al. (2013) compared
climatological annual-mean model output to the δ13CPOC
measurements from Goericke and Fry (1994), whereas our
study uses model results of the corresponding month and
year of the measurements. This difference leads to a better
comparison of Hist_Popp to the observed δ13CPOC in high
latitudes, particularly in the South Atlantic Ocean around
60◦ S, and therefore it is one reason for the slight better per-
formance of Hist_Popp compared to Schmittner et al. (2013),
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Figure 4. Comparison of surface δ13CPOC (‰) observations (blue triangle) from Goericke and Fry (1994) to model data (red circle) in
Hist_Popp (a, c, e) and Hist_Laws (b, d, f) for the Atlantic, Pacific and Indian Ocean, respectively. Inserted maps show cruise tracks of the
measuring campaigns. (g) Comparison of simulated CO2(aq) (red star) to observations (blue diamond) in the South Indian Ocean (Francois
et al., 1993; measurement locations indicated by black triangles in the inset map for the Indian Ocean). Panel (h) is as panel (g) but for
particulate organic matter, represented by total POC in Francois et al. (1993) and by phytoplankton biomass in the model. The measurement
precision is ±0.17 ‰ for δ13CPOC and 2 % for CO2(aq) and particulate organic matter, according to Francois et al. (1993).

aside from the underlying differences between the two mod-
els.

Hist_Popp also well reproduces the temporal changes of
the biological fractionation factor εp when compared to
the observation-based estimates of Young et al. (2013). In
Hist_Popp, the change rate of εp has a global-mean value of
−0.026 ‰ yr−1 for the period 1960–2009 (Fig. C7a), simi-
lar to an estimate of −0.022 ‰ yr−1 in Young et al. (2013).
Modest εp changes are found in eastern tropical Pacific and
south of 60◦ S, in good agreement with Young et al. (2013).
Hist_Laws, on the other hand, shows a very small global-
mean εp change rate of −0.005 ‰ yr−1 (Fig. C7b) as εLaws

p

is less sensitive to the increase in CO2(aq) than εPopp
p .

3.2 Isotopic signature of dissolved inorganic carbon
δ13CDIC

3.2.1 Comparison between Hist_Popp and Hist_Laws
and to observations

Figures 5a–b and 6a–f compare the climatological annual
mean of δ13CDIC (averaged over 1990–2005, when most
δ13CDIC measurements were collected) between Hist_Popp
and Hist_Laws. The two simulations exhibit very similar
δ13CDIC patterns for both the surface and interior ocean. The
surface seawater DIC is enriched in 13C due to the prefer-
ential uptake of the light isotope 12C by phytoplankton dur-
ing primary production. As particulate organic matter sinks
and is remineralised at depth, the negative δ13CPOC signal is
released. Consequently, in both Hist_Popp and Hist_Laws,
δ13CDIC at the surface is generally higher than in the ocean
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interior. At the surface of the equatorial central Pacific, the
eastern boundary upwelling systems and the Southern Ocean
south of 60◦ S, lower δ13CDIC (< 1.6 ‰) is seen due to the
upward transport of the 13C-depleted water (Fig. 5a and b).
In the interior ocean, we find higher δ13CDIC (> 1 ‰) in
well-ventilated water masses, in particular the North Atlantic
Deep Water (NADW) (Fig. 6a and d). The lowest δ13CDIC
values (<−0.5 ‰) occur at depth in tropical and subtropical
regions (Fig. 6a–f), where a large amount of organic matter
is remineralised.

The global-mean surface δ13CDIC of the two experiments
only differs marginally (1.64 ‰ for Hist_Popp and 1.7 ‰
for Hist_Laws), which is expected as they are run using
the same prescribed atmospheric δ13CO2 (Schmittner et al.,
2013). Given very similar mean surface DI13C, the larger
vertical DI13C gradients in Hist_Laws, established by more
negative δ13CPOC (Fig. 3a and b), yield lower DI13C con-
centration at depth. This adjustment of DI13C content in the
ocean interior takes place during the pre-industrial spin-up
phase of the simulations via air–sea 13CO2 exchange (Ap-
pendix A). At the end of the 2500-year spin-up, the water-
column DI13C inventory in PI_Laws is 1.1×1012 kmol lower
than PI_Popp, yielding a global mean δ13CDIC difference
of 0.25 ‰ (Fig. 6g–i). Such interior-ocean δ13CDIC differ-
ence caused by using different parameterisation for biologi-
cal fractionation is also seen in Jahn et al. (2015) and Den-
tith et al. (2020). The seasonal upward transport of the lower
deep-ocean δ13CDIC in Hist_Laws leads to lower annual-
mean surface δ13CDIC and larger δ13CDIC annual range in
regions of upwelling (Fig. 5c and d).

When compared to the observed δ13CDIC, Hist_Popp (r =
0.81, NRMSE= 0.7) has a slightly better performance than
Hist_Laws (r = 0.80, NRMSE= 1.1). Hist_Laws generally
shows vertical gradients of δ13CDIC that are too strong and
therefore δ13CDIC values that are too low in the ocean inte-
rior, as is seen in the depth profiles of horizontally averaged
δ13CDIC (Fig. 7). This points to too strong a preference for
the isotopically light carbon simulated by εLaws

p as is already
discussed in Sect. 3.1. Given the slightly better performance
of Hist_Popp than Hist_Laws regarding δ13CDIC, we focus
in the following on the comparison between Hist_Popp and
observed δ13CDIC.

3.2.2 Source of surface δ13CDIC biases in Hist_Popp

Figure 8 contains model–observation comparison for the sur-
face δ13CDIC. Overall, the magnitude and spatial distribu-
tion of the observed δ13CDIC is well-captured by Hist_Popp.
In the surface ocean, the mean δ13CDIC is slightly overesti-
mated by Hist_Popp (1.7 ‰ compared to 1.5 ‰ in observa-
tion). Positive biases are widely seen in the Indian and Pa-
cific Ocean, and the negative biases are mostly found in the
Atlantic Ocean (Fig. 8c). To better understand the source of
differences between model and observations, we follow the
method of Broecker and Maier-Reimer (1992) to decompose

δ13CDIC into a biological component δ13Cbio
DIC and a residual

component δ13Cresi
DIC, driven by air–sea exchange and ocean

circulation:

δ13Cbio
DIC = δ

13CDIC|M.O.+
1photo

DICM.O.
RC:P(PO4−PO4|M.O.). (14)

Here the subscript M.O. refers to mean ocean values, 1photo
is the carbon isotope fractionation during marine photosyn-
thesis and RC:P is the C : P ratio of marine organic matter.
We use 1photo =−19 ‰ (Eide et al., 2017b) and RC:P =

122 (Takahashi et al., 1985) for both model and observa-
tional data. In reality 1photo shows spatial variability due to
the variations of CO2(aq) (Fig. 3c) and temperature (Eq. 7)
at the sea surface. However, using a constant1photo only has
limited quantitative impact on the model–observation com-
parison of the two components. To calculate δ13Cbio

DIC from
observations, we employ δ13CDIC|M.O. = 0.5 ‰, DICM.O. =

2255 mmol m−3 (Eide et al., 2017b) and PO4 from the World
Ocean Atlas (WOA13; Garcia et al., 2013a). Considering the
strong seasonality in PO4 in the surface ocean, we select
the phosphate concentration from the climatological monthly
WOA data (available only for the upper 500 m of the wa-
ter column) and the climatological monthly-mean model
data for the same month as the δ13CDIC observations. The
observed mean ocean phosphate concentration PO4|M.O. =

1.7 mmol m−3 is obtained by first merging the time mean of
the PO4 monthly WOA data in the upper 500 m and the PO4
annual-mean WOA data below 500 m and then mapping the
combined data to the vertical grid of our model. For sim-
ulated δ13Cbio

DIC, the model data of δ13CDIC|M.O. = 0.67 ‰,
DICM.O. = 2197 mmol m−3, PO4|M.O. = 1.5 mmol m−3 and
PO4 are used. The model–observation δ13Cresi

DIC difference
is calculated by subtracting the model–observation δ13Cbio

DIC
difference from the model–observation δ13CDIC difference.

The model captures the major features of the observed
δ13Cbio

DIC at the surface; that is, higher values are seen in the
subtropical regions and lower values in the high latitudes
(Fig. C8a and b). Nevertheless, noticeable quantitative dif-
ferences exist (Fig. 9a), which resemble the distribution of
(PO4−PO4|M.O.) bias (Fig. 9b). Between 30◦ N and 30◦ S
in the surface ocean, we find a mean negative bias of about
−0.1 ‰. This is caused by the underestimation of primary
production in the subtropical gyres (due to the underestima-
tion of phytoplankton growth rates; see Appendix C1) and
the consequently reduced enrichment of 13C in surface DIC.
A strong positive δ13Cbio

DIC bias of 0.6 ‰ to 1 ‰ is seen in
the North Pacific, where in the model iron is not a limit-
ing nutrient (Fig. C3), in contrast to observations (Moore
et al., 2013). In the equatorial central Pacific, a weak pos-
itive δ13Cbio

DIC bias< 0.2 ‰ is caused by a primary produc-
tion that is too high. Specifically, the simulated phytoplank-
ton growth rates in this region compare well to observations,
whereas the simulated phytoplankton biomass is too high
(Appendix C1). The latter is mainly induced by an upwelling
that is too strong. The observed mean upward vertical veloc-
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Figure 5. Climatological (averaged over 1990–2005) annual-mean surface δ13CDIC for Hist_Popp (a) and Hist_Laws (b), respectively.
Panels (c) and (d) show the difference in the climatological annual-mean δ13CDIC between Hist_Laws and Hist_Popp, and the difference in
the climatological annual range of δ13CDIC between the two simulations, respectively.

Figure 6. Zonal-mean δ13CDIC of the Atlantic Ocean (a, d, g), the Pacific Ocean (b, e, h) and the Indian Ocean (c, f, i) for Hist_Popp (a–c),
Hist_Laws (d–f) and for the difference between Hist_Laws and Hist_Popp (g–i).
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Figure 7. Depth profiles of horizontally averaged δ13CDIC of Hist_Popp (solid blue line), Hist_Laws (dashed red line) and the observational
data from Schmittner et al. (2013) (solid black line) for the global ocean (a), the Atlantic Ocean (b), the Pacific Ocean (c) and for the
Indian Ocean (d). The grey shading indicates observation uncertainty of±0.15 ‰, which relates to the estimated accuracy due to unresolved
intercalibration issues between laboratories (0.1 ‰–0.2 ‰; Schmittner et al., 2013).

Figure 8. Observed surface δ13CDIC (Schmittner et al., 2013) (a) and simulated δ13CDIC in Hist_Popp sampled at the location, month and
year of the observation (b). (c) The difference in δ13CDIC between Hist_Popp and observations.

ity at 0, 140◦W and 60 m depth during May 1990–June 1991
is 2.3× 10−5 m s−1 (Weisberg and Qiao, 2000), whereas the
model simulates 3.2× 10−5 m s−1 for the same location and
period.

In the Southern Ocean, a strong positive δ13Cbio
DIC bias of

0.6 to 1 ‰ (Fig. 9a) results from a primary production that is
too high under surface iron concentrations that are too high
(0.2–0.4 nmol L−1 compared to generally < 0.25 nmol L−1

from data of the GEOTRACES programme (http://www.
geotraces.org, last access: 15 April 2021, not shown). Pri-
mary production is limited by iron only south of 50◦ S in the
model compared to south of 40◦ S from observation (Moore
et al., 2013). One cause for the high surface iron concentra-
tion is that in HAMOCC6 organic matter is remineralised at
depths that are too shallow. This can been seen from the pos-

itive apparent oxygen utilisation (AOU) biases above 500 m
south of 45◦ S (Fig. 10j–l).

Another reason for the high surface iron concentration in
the Southern Ocean is that MPIOM simulates an upwelling
that is too strong. In particular, below 1000 m, the simu-
lated upward velocity shows noticeably larger magnitude
(> 5× 10−6 m s−1, Fig. B4) than that of a dynamically con-
sistent and data-constrained ocean state estimate (see Fig. 1
in Liang et al., 2017). The upwelling that is too strong in
the model is consistent with the volume transport that is
too large across the Drake Passage of 192 Sv compared to
134–173 Sv from observations (Nowlin Jr. and Klinck, 1986;
Cunningham et al., 2003; Meredith et al., 2011; Donohue
et al., 2016). Our model also features larger downward veloc-
ities than the estimate from Liang et al. (2017), which corre-
spond to mixed layer depths that are too deep in the Southern
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Figure 9. Model–observation difference in the biological component δ13Cbio
DIC (a), (PO4−PO4|M.O.) (b), and the residual component

δ13Cresi
DIC (c) at the ocean surface. (d) The net air–sea CO2 flux (positive into the air, averaged over 1990–2005) difference between the model

data and observation-based data product from Landschützer et al. (2015).

Ocean (up to 3000 m, Fig. B5) than observations (< 700 m;
de Boyer Montégut et al., 2004; Holte et al., 2017).

We find strong δ13Cresi
DIC negative biases of −0.5 ‰ to

−1 ‰ (Fig. 9c) in the North Pacific and the Southern Ocean,
which partially compensate for the positive biases of δ13Cbio

DIC
(Fig. 9a) in these regions. One major cause for the nega-
tive δ13Cresi

DIC bias in these two regions is our model over-
estimating the uptake of anthropogenic carbon, as is illus-
trated by the net air–sea CO2 difference between the model
and the observation (Fig. 9d). Consequently, the decreased
atmospheric 13C/12C ratio over the industrial period further
lowers δ13CDIC in the two ocean regions in the model. In the
Southern Ocean, the upward transport of 13C-depleted wa-
ter is too large, which also contributes to a negative δ13Cresi

DIC
bias.

3.2.3 Source of δ13CDIC biases in the interior ocean of
Hist_Popp

Figure 10 contains the model–observation comparison for
zonal-mean δ13CDIC in the Atlantic, Pacific and Indian
Ocean. In the interior ocean, δ13CDIC is controlled by rem-
ineralisation of 13C-depleted organic matter and by ocean
circulation (Broecker and Peng, 1993; Lynch-Stieglitz et al.,
1995; Schmittner et al., 2013). Low δ13CDIC is often found
in waters of high nutrient concentration and vice versa. Thus,
we find positive (negative) δ13CDIC biases coincide with neg-
ative (positive) phosphate biases (Fig. 10d–i). In the At-
lantic Ocean between 1000 and 3000 m, the North Pacific
above 1500 m and the Indian Ocean below 1000 m, posi-
tive δ13CDIC biases and negative phosphate biases are mainly

caused by a remineralisation that is too low, as is shown by
the negative AOU biases (Fig. 10j–l).

North of 30◦ S in the Atlantic Ocean, the negative δ13CDIC
biases below 3000 m, together with the positive δ13CDIC bi-
ases between 1000 and 3000 m, suggest δ13CDIC vertical gra-
dients that are too strong in the model (Fig. 10d). This results
from a lower boundary of the NADW cell that is too shallow,
constantly located above 2800 m (Fig. B3), compared to an
estimated NADW lower boundary of about 4300 m deep at
26◦ N (Msadek et al., 2013; Smeed et al., 2017). A possi-
ble reason for the shallow NADW in the model is that the
Lower North Atlantic Deep Water (LNADW), forming from
the Denmark Strait Overflow Water and the Iceland–Scotland
Overflow Water, is not dense enough to flow further south-
ward. This can be seen from the CFC-12 distribution along
the zonal Sect. A5 at 24◦ N (Fig. B7). The observed deeper
CFC-12 maximum (3000–4500 m west of 60◦W) indicates
the presence of LNADW (Dutay et al., 2002), which is not
represented in our model.

We find the strongest negative δ13CDIC bias in the deep
eastern equatorial Pacific (Fig. 10e). The cause is the “nu-
trient trapping” problem in the model, characterised by nu-
trient concentrations that are too high in the deep eastern
equatorial Pacific (Fig. 10h), which is a persistent problem
in many ESMs (Aumont et al., 1999; Dietze and Loeptien,
2013). Based on sensitivity experiments with the Geophysi-
cal Fluid Dynamics Laboratory model and the UVic model,
Dietze and Loeptien (2013) concluded the primary cause of
the nutrient trapping problem is likely model biases in phys-
ical ocean state – in particular, the poor representation of the
Equatorial Intermediate Current system and equatorial deep
jets. The latter two current systems are indeed poorly repre-
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Figure 10. Zonal-mean distribution in the Atlantic Ocean (left column), the Pacific Ocean (middle column) and the Indian Ocean (right
column) for the δ13CDIC observations from Schmittner et al. (2013) (a–c), for the difference between Hist_Popp (sampled at the same
location, year and month of the observations) and δ13CDIC measurement (d–f), for the (PO4−PO4|M.O.) difference between model and
WOA data (WOA13; Garcia et al., 2013a) (g–i), and for the apparent oxygen utilisation (AOU) difference between model and WOA data
(WOA13; Garcia et al., 2013b) (j–l). Here the climatological annual mean values of PO4 and AOU are used for both model and WOA data
because seasonal variation is negligible in the interior ocean and WOA only provides monthly data above 500 m.

sented in our model as well. Specifically, the zonal current
at 1000 m depth (typical depth for the Equatorial Interme-
diate Current system) shows too little spatial variability and
too low speeds of ∼ 0.2 cm s−1 (Fig. B6), compared to the
observed alternating jets with a meridional scale of 1.5◦ and
speeds of ∼ 5 cm s−1 (see Fig. 2 from Cravatte et al., 2012).

The performances of both Hist_Popp and Hist_Laws re-
garding δ13CDIC are comparable with the Norwegian Earth
System Model version 2 (NorESM2, Tjiputra et al., 2020;
comparing their Fig. 21), the Commonwealth Scientific and
Industrial Research Organisation Mark 3L climate system
model with the Carbon of the Ocean, Atmosphere and Land
(CSIRO Mk3L-COAL), Pelagic Interactions Scheme for
Carbon and Ecosystem Studies (PISCES) and LOch-Vecode-
Ecbilt-CLio-agIsm Model (LOVECLIM) (see Table 2 and
Figs. 3, S2 and S3 of Buchanan et al., 2019, and refer-
ences therein), the Community Earth System Model (CESM,

Jahn et al., 2015; comparing their Figs. 5 and 6 to our
Figs. 7 and 6, respectively), and the UVic Earth System
Model (Schmittner et al., 2013). The latter two studies used
the same δ13CDIC data set for model evaluation. Schmittner
et al. (2013) reported a better performance (r = 0.88 and
NRMSE= 0.5) than ours (r = 0.81 and NRMSE= 0.7 in
Hist_Popp). One main reason is that the nutrient trapping
problem in HAMOCC6 does not occur in the simulations of
Schmittner et al. (2013).

4 Evaluation of the simulated oceanic 13C Suess effect

The oceanic δ13C measurements taken during the late 20th
century already include a signal that originates from burn-
ing of isotopically light fossil fuel over the industrial period.
The associated decrease in atmospheric δ13C (Fig. 2) affects
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oceanic δ13C via air–sea gas exchange, leading to a general
decrease in δ13CDIC. The distribution of this δ13CDIC change,
i.e. the oceanic 13C Suess effect, could serve as benchmark
for ocean models to evaluate the uptake and re-distribution
of the anthropogenic CO2 emissions in the ocean.

The model is able to reproduce the size of the global
oceanic anthropogenic CO2 sink, though some local biases
in the net air–sea CO2 flux exist (Fig. 9d). The simulated
sink by year 1994 is 99 Pg C, which compares well to the
observation-based estimate of 118± 19 Pg C from Sabine
et al. (2004) and to other model estimates (e.g. 94 Pg C
in Tagliabue and Bopp, 2008). For a direct comparison to
published studies, we calculate the oceanic δ13C Suess ef-
fect, δ13CSE, as the difference between the 1990s-averaged
δ13CDIC from Hist_Popp and the pre-industrial climatolog-
ical (50-year mean) δ13CDIC from PI_Popp. δ13CSE calcu-
lated using the results of Hist_Laws and PI_Laws only shows
a marginal difference (global mean< 0.04 ‰) and is there-
fore not presented.

The surface mean δ13CSE in this study is−0.66 ‰, similar
to the model study of Schmittner et al. (2013) (−0.67 ‰) and
to the estimate by Sonnerup et al. (2007) (−0.76± 0.12 ‰),
who used an observation-based approach. The strongest
oceanic 13C Suess effect is found in the subtropical gyres
in the model (Fig. 11a), where water masses have long res-
idence times at the ocean surface and therefore receive a
strong anthropogenic imprint (Quay et al., 2003). In the
subtropical gyres, the simulated surface δ13CSE generally
varies between −0.8 ‰ and −1.1 ‰, which compares well
to the surface ocean δ13C decrease of−0.9±0.1 ‰ recorded
by coral and sclerosponges (Wörheide, 1998; Böhm et al.,
1996, 2000; Swart et al., 2002, 2010) and to the estimates
of −1.0± 0.09 ‰ extracted from GLODAPv2 (Olsen et al.,
2016; Eide et al., 2017a).

Along the vertical sections A16, P19 and I8S9N, δ13CSE
is mainly confined to the upper 1000 m depth in the sub-
tropical gyres of the South Atlantic, the Pacific Ocean and
the Indian Ocean (Fig. 12a–c). In the North Atlantic, δ13CSE
penetrates deeper than the other ocean regions, due to the
intensive ventilation related to the formation of NADW. The
simulated δ13CSE distributions show similar features to those
of CFC-12 (Fig. B8). This is because both the decrease in
δ13CDIC and increase in CFC-12 in the ocean are predom-
inantly caused by the uptake of atmospheric anthropogenic
signals and the subsequent transport by ocean circulation.
Since changes in δ13CDIC are also induced by changes in
marine biological activity, we separate δ13CDIC into a com-
ponent depicting changes due to the transport of the surface
13C signal, i.e. the “preformed” δ13CDIC, and to a regener-
ated component δ13Creg, following Sonnerup et al. (1999):

δ13Cpref
=

δ13CDIC ·DIC−AOU ·
(

C
−O2

)
org
· δ13Corg

DIC−AOU ·
(

C
−O2

)
org

. (15)

The
(

C
−O2

)
org

ratio is 122 : 172 in HAMOCC6, and we use

the simulated δ13CPOC for δ13Corg. Clearly, the change in the
preformed component δ13Cpref

SE = δ
13Cpref

1990s− δ
13Cpref

PI dom-
inates δ13CSE (comparing Fig. 12a–c to Fig. 12d–f). A ma-
jor difference between δ13Cpref

SE and δ13CSE is that positive
δ13Cpref

SE is widely seen below 1000 m, particularly in the Pa-
cific Ocean (Fig. 12e). These positive δ13Cpref

SE values relate
to changes in the regenerated component δ13Creg (see Ap-
pendix D).

5 Potential sources of uncertainties in an
observation-based global oceanic 13C Suess effect
estimate

Eide et al. (2017a) (hereafter E17) derived the first
observation-based estimate of the global ocean 13C Suess
effect since pre-industrial times. E17’s approach uses the
concept of the similarity between the oceanic uptake of the
anthropogenically produced CFC-12 and isotopically light
CO2 (see details in Appendix E1). Due to method- and data-
specific limitations E17 stated that they potentially underesti-
mate the oceanic 13C Suess effect. However, based on obser-
vations alone it is not possible to gain insight into the spatial
distribution of this uncertainty or into its origin.

Our model simulations, particularly PI_Popp and
Hist_Popp, provide an opportunity to learn more about the
source of this uncertainty because the oceanic δ13C in the
late 20th century (Sect. 3), the oceanic anthropogenic CO2
sink (Sect. 4) and the invasion of CFC-12 into the ocean
(Fig. B8) are well represented. Moreover, our simulated
δ13CSE qualitatively resembles the oceanic 13C Suess effect
estimate of E17 (see comparison between Fig. 11b and E17’s
Fig. 7, as well as comparison between Fig. 12a–c and g–i).

Based on the similarity between the oceanic uptake of the
atmospheric CFC-12 and δ13CO2 signal, E17 link the 13C
Suess effect since 1940 (when CFC-12 becomes detectable
in the ocean) to CFC-12 partial pressure (pCFC-12) with
a proportionality factor. Under the assumption of a tempo-
rally constant regenerated fraction δ13Creg, this proportion-
ality factor is considered equivalent to the slope of a linear
regression relationship between the preformed component
δ13Cpref and pCFC-12 at any time after 1940. Thus, this slope
a can be obtained by performing linear regression for field
measurements of δ13Cpref and pCFC-12. Multiplying a and
pCFC-12 data yields the 13C Suess effect since 1940, which
is then scaled to the full industrial period by a constant fac-
tor fatm (Eq. E7) related to changes in the atmospheric δ13C
signature:

δ13CSE(t−PI) = fatm · a · pCFC-12t . (16)

Here a is the regression slope for the linear relationship be-
tween δ13Cpref

t and pCFC-12t (Eq. E5). The value of a is de-
termined for each ventilation region defined in E17 (i.e. the
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Figure 11. The simulated oceanic Suess effect δ13CSE from the pre-industrial period to the 1990s at sea surface (a) and at 200 m (b).

Figure 12. The simulated oceanic Suess effect δ13CSE since pre-industrial times for vertical sections A16 in the Atlantic Ocean (a), P16 in
the Pacific Ocean (b) and I8S9N in the Indian Ocean (c). Panels (d)–(f) and (g)–(i) are as panels (a)–(c) but for the change in the preformed
component δ13Cpref

SE = δ
13Cpref

1990s− δ
13Cpref

PI and for the observation-based estimate of the oceanic Suess effect from Eide et al. (2017a),
respectively. Inserted maps show the location of the vertical sections. The horizontal dashed black lines in panels (a)–(f) indicate 200 m
depth, below which the Eide et al. (2017a) estimate is available. Note the bathymetry is different between the model and Eide et al. (2017a).
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Indian Ocean, North Pacific, South Pacific, North Atlantic
and South Atlantic). Details of the E17 approach are given in
Appendix E1.

By applying E17’s approach to our model data that are
sampled at the same geographical locations as observations
used in E17, we obtain the regression slopes, hereafter re-
ferred to as apref, for each ventilation region. Taking year
t = 1994 we obtain the estimated oceanic 13C Suess effect,
SEpref, for the period from the pre-industrial to 1994 follow-
ing Eq. (16). The detailed calculation of SEpref is given in
Appendix E2.

To quantify if SEpref under- or overestimates the oceanic
13C Suess effect, we compare SEpref to the simulated oceanic
13C Suess effect SEMod = δ

13CDIC,1994− δ
13CDIC,PI. Fig-

ure 13a presents (SEpref−SEMod) for 200 m depth. Posi-
tive values of(SEpref−SEMod) indicate underestimation of
the oceanic 13C Suess effect.

At 200 m SEpref mostly underestimates SEMod (Fig. 13a).
The region-mean underestimation is 0.24 ‰ for the Indian
Ocean, 0.21 ‰ for the North Pacific, 0.26 ‰ for the South
Pacific, 0.1 ‰ for the North Atlantic and 0.14 ‰ for the
South Atlantic (Table 1). Our model findings are very sim-
ilar to the underestimation range discussed by E17. They de-
termined an uncertainty range of 0.15 ‰ to 0.24 ‰ by com-
paring their global-mean estimate (−0.4 ‰ at 200 m depth)
to an estimate (−0.55 ‰ to −0.64 ‰ at 200 m) which they
deduced from previous model studies. Specifically, based on
Broecker and Peng (1993) and Bacastow et al. (1996) E17
assumed an ocean-to-atmosphere ratio of the 13C Suess ef-
fect of 0.65 and the 200 m to surface ratio of the 13C Suess
effect of 0.6–0.7. Multiplying the above two ratios with the
atmospheric δ13CO2 decrease of−1.4 ‰ by year 1994 yields
the global-mean 13C Suess effect estimate of −0.55 ‰ to
−0.64 ‰ at 200 m. In our model, the global-mean surface-
ocean–atmosphere ratio of the 13C Suess effect is only 0.46,
significantly lower than the five-box model of Broecker and
Peng (1993). The 200 m to surface ratio of the 13C Suess ef-
fect is 0.75 in our model, and it is slightly higher than that
of Bacastow et al. (1996), who employed an ocean general
circulation model with coarse vertical resolution (four layers
for the upper 200 m).

5.1 Source of underestimation attributed to data
coverage

E17 have speculated that the major cause of the underesti-
mation of the oceanic 13C Suess effect is that the available
observations are mostly from the intermediate and deep wa-
ters. The ocean–atmosphere equilibration timescale for δ13C
(10 years, Broecker and Peng, 1974) is significantly longer
than that of pCFC-12 (1 month, Gammon et al., 1982). Thus,
waters that have a shorter surface residence time, such as the
deep waters ventilated in the South Hemisphere, would show
less negative regression slope apref (for the linear relation-
ship between δ13Cpref and pCFC-12, Eq. E5) than waters that

have a longer surface residence time, e.g. subtropical gyres.
In other words, apref for the subtropical gyre water should be
more negative than apref for the entire corresponding ventila-
tion region (the North Pacific, South Pacific, North Atlantic,
South Atlantic or the Indian Ocean).

We test this potential explanation for the Indian Ocean
and North Pacific. We are able to span regressional rela-
tionships for the subtropical gyres only because we have a
larger data base. Specifically, we consider only model data
at the geographical location of observations, but we use all
model levels between 200 m and the pCFC-12 penetration
depth (see Appendix E3). For the Indian Ocean, we com-
bine model data from Subtropical Gyre Water (STGW) and
Sub-Antarctic Mode Water (SAMW) as both water masses
have a strong 13C Suess effect (Eide et al., 2017a). We find
for this combined water mass (STGW) apref (−0.65× 10−3,
r2
= 0.49) is more negative than that for the whole ventila-

tion region (−0.47× 10−3, Fig. E3a). So indeed, with addi-
tional observations in the subtropical gyre we would receive
a stronger 13C Suess effect estimate for the Indian Ocean.
However, this difference in apref only corresponds to an un-
derestimation of about 0.12 ‰ at 200 m for the Indian sub-
tropical region (see calculation in Appendix E3), which does
not explain the total underestimation of 0.24 ‰ in the Indian
Ocean (Table 1). In the North Pacific apref for the Subtropical
Gyre Water (−0.44× 10−3, r2

= 0.26) is even less negative
than that for the whole ventilation region (−0.71× 10−3) in
the model, which is in contrast to the conjecture of E17.

5.2 Source of underestimation attributed to
assumptions of E17’s approach

A potential under-representation of data from subtropical
gyres does not fully explain the underestimation of the 13C
Suess effect found in our model. Instead, we argue that the
source of uncertainty mainly relates to different assumptions
that have been made in the E17 approach. Specifically, in the
expression of the preformed component δ13Cpref

1994 (following
Eq. E3),

δ13Cpref
1994 = δ

13CSE(1994−1940)+ δ
13Cpref

1940

− (δ13Creg
1994− δ

13Creg
1940), (17)

E17 assume that the regenerated component is constant
in time, i.e. −(δ13Creg

1994− δ
13Creg

1940)= 0. Consequently,
Eq. (17) is reduced to

δ13Cpref
1994 = δ

13CSE(1994−1940)+ δ
13Cpref

1940. (18)

Furthermore, they assume that the regression slope apref for
δ13Cpref

1994 and pCFC-121994 is equivalent to the regression
slope for the total 13C Suess effect δ13CSE(1994−1940) and
pCFC-121994 (see Eqs. E1, E4 and E5). This implies that the
preformed component δ13Cpref

1940 of 1940 has to be spatially
uniform.
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Figure 13. Distribution at 200 m depth for SEpref−SEMod (a), SEpref−SEtotal (b) and SEtotal−SEMod (c). The isoline increment is
0.2 ‰. In panels (b) and (c), the South Pacific Ocean is not presented because the relationship between the total oceanic 13C Suess effect
δ13CSE(1994–1940) and pCFC-121994 is too weak (r2

= 0.07), and therefore SEtotal can not be estimated (see Appendix E4).

Table 1. Region-mean (SEpref−SEMod), (SEpref−SEtotal) and (SEtotal−SEMod) for five ventilation regions defined by E17, i.e. the Indian
Ocean, North Pacific, South Pacific, North Atlantic and South Atlantic. The unit is per mil. (SEpref−SEtotal) is further decomposed into the
two contributions fatm · (apref− atotal) · pCFC-12 and −fatm · btotal according to Eq. (20).

(SEpref−SEMod) (SEpref−SEtotal) fatm · (apref− atotal) · pCFC-12 (SEtotal−SEMod)
−fatm · btotal

Indian Ocean 0.24 0.23
0.12

0.01
0.11

North Pacific 0.21 0.09
0.06

0.13
0.03

South Pacific 0.26 \
\

\
\

North Atlantic 0.1 0.02
−0.1

0.09
0.12

South Atlantic 0.14 0.15
0.04

−0.01
0.11

However, we find a specific vertical structure in the simu-
lated δ13Cpref

1940 (Fig. 14a–c). Over large regions of the ocean,
δ13Cpref

1940 generally decreases with increasing depth. This
vertical distribution of δ13Cpref is already present in pre-
industrial times. High surface δ13CDIC caused by biological
fractionation is transported into the ocean interior. Therefore,
the preformed component generally decreases with increas-
ing water depth. From pre-industrial times to 1940, the de-
crease in the atmospheric 13C/12C ratio is relatively small

(0.4 ‰, Fig. 2a), and therefore also the impact on the oceanic
δ13CDIC is small. Thus, δ13Cpref

1940 has the similar vertical
structure as that of the pre-industrial ocean.

Both the total δ13CSE(1994−1940) (mostly negative, simi-
lar to the distribution of δ13CSE(1990s−PI) in Fig. 12a–c) and
pCFC-12 (Fig. B8a–c) show larger absolute values at the sur-
face than in the interior ocean. As δ13Cpref

1940 is more posi-
tive in the upper ocean than the deep ocean, δ13Cpref

1994 has a
smaller vertical gradient than δ13CSE(1994−1940) (see Eq. 18).
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Figure 14. (a–c) The zonal mean of the simulated δ13Cpref
1940 for the locations where both observed CFC-12 and δ13CDIC are available.

The thick grey line is the pCFC-121994 = 20 patm isoline, above which model data are used to perform linear regression. The thick black
lines outline the Subtropical Gyre Water in the Atlantic and North Pacific Ocean, as well as the Subtropical Gyre Water and Sub-Antarctic
Mode Water in the Indian Ocean and South Pacific Ocean (definition of water masses in Table E1). Panels (d)–(f), (g)–(i) and (j)–(l) are as
panels (a)–(c) but for pCFC-121994, for−(δ13Creg

1994−δ
13Creg

1940) and for AOU changes between year 1940 and 1994, respectively. Note that
for the Atlantic Ocean the upper 3 km is shown, whereas for the Pacific and Indian Ocean the upper 1.5 km is presented.

Thus, a linear regression for δ13Cpref
1994 and pCFC-12 results

in a less negative slope than a slope obtained with a spatially
uniform δ13Cpref

1940, which implicates a contribution to an un-
derestimation of the oceanic 13C Suess effect.

We also find that −(δ13Creg
1994− δ

13Creg
1940) is non-zero, and

it shows considerable spatial variability (Fig. 14g–i). Most
prominently, in the North Atlantic−(δ13Creg

1994−δ
13Creg

1940) is
mostly negative above 500 m, and it is mostly positive be-
low 500 m. This vertical structure of−(δ13Creg

1994−δ
13Creg

1940)

in the North Atlantic leads to stronger vertical gradient in
δ13Cpref

1994 and therefore a more negative regression slope than
that obtained with −(δ13Creg

1994−δ
13Creg

1940)= 0. This implies
the overestimation of the 13C Suess effect in the North At-
lantic.

To evaluate the impact of assuming a spatially uniform
δ13Cpref

1940 and −(δ13Creg
1994− δ

13Creg
1940)= 0, we calculate an

estimated 13C Suess effect from pre-industrial times to 1994,
SEtotal, based on a linear regression for the simulated total

oceanic 13C Suess effect δ13CSE(1994−1940) and pCFC-12:

SEtotal = fatm · (atotal · pCFC-121994+ btotal). (19)

Here atotal and btotal are regression coefficients for
δ13CSE(1994−1940) and pCFC-12 (more details in Ap-
pendix E4). With Eqs. (16) and (19) we get

SEpref−SEtotal = fatm · (apref− atotal)

· pCFC-121994− fatm · btotal. (20)

Comparison between the regressional slope apref (obtained
for δ13Cpref

1994 and pCFC-12) and atotal facilitates the quantifi-
cation of the under- or overestimation of the 13C Suess effect
linked to the above two assumptions.

In the Indian Ocean apref =−0.47×10−3 (Fig. E2a) is less
negative than atotal =−0.74× 10−3 (Fig. E3a). This results
in an underestimation of 0.12 ‰ according to Eq. (20). Sim-
ilarly, for the North Pacific apref =−0.71× 10−3 (Fig. E2b)
is less negative than atotal =−0.83×10−3 (Fig. E3b), which
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leads to an underestimation of 0.06 ‰. For the South Atlantic
apref =−0.6× 10−3 (Fig. E2e) and atotal =−0.7× 10−3

(Fig. E3e), which yields an underestimation of 0.04 ‰. Such
underestimation is mainly due to the decreasing δ13Cpref

1940
with increasing depth in these regions.

Different from these three ventilation regions, in the North
Atlantic apref =−0.81× 10−3 (Fig. E2d) is more negative
than atotal =−0.62×10−3 (Fig. E3d). This is due to the spe-
cific vertical structure of −(δ13Creg

1994− δ
13Creg

1940) as previ-
ously discussed.

Another major difference between SEpref and SEtotal is the
non-negligible negative intercept btotal (Eq. 20). This reveals
the underestimation of SEpref related to E17’s assumption
that the 13C Suess effect is directly proportional to pCFC-
12. The intercept btotal emerges possibly due to the different
atmospheric time history of the 13C Suess effect compared
to CFC-12, as is discussed by E17 for the deep ocean with
very low or zero CFC-12. The decreasing of δ13CPOC under
increasing surface CO2(aq) (Appendix D) also contributes
to an non-negligible btotal as lower δ13CPOC leads to lower
δ13CDIC in the ocean interior. In the South Atlantic and In-
dian Ocean, btotal =−0.07 ‰ corresponds to an underesti-
mation of 0.12 and 0.11 ‰ (Table 1), respectively.

Table 1 summaries of the contributions from (SEpref−

SEtotal) for different ventilation regions. The comparison to
the total underestimation given by (SEpref−SEMod) shows
that this underestimation, which is attributed to the assump-
tion of E17’s approach, is the largest contributor for the In-
dian Ocean and the South Atlantic.

The residual under-/overestimation of SEpref given
by (SEtotal−SEMod)= (SEpref−SEMod)− (SEpref−SEtotal)

shows how well a method based on linear regression rela-
tionships between δ13CSE and pCFC-121994 can estimate the
global ocean Suess effect. (SEtotal−SEMod) at 200 m gen-
erally show positive values, i.e. underestimation, in low lat-
itudes (between 40◦ S and 40◦ N), and it is rather negative
poleward of 40◦ (Fig. 13c). This pattern results from pool-
ing data from different water masses to generate one regres-
sion relationship for a large ventilation region. The waters
ventilated in lower latitudes typically have a stronger 13C
Suess effect than those ventilated in high latitudes. This is
clearly reflected in the linear regression relationships be-
tween δ13CSE(1994–1940) and pCFC-121994 for the North At-
lantic (Fig. E3d), which shows that the regression slope atotal
for the Subtropical Gyre Water is noticeably steeper than
that of the deep waters. Accordingly in the interior ocean,
the water masses ventilated in the low latitudes generally
show an underestimation of the 13C Suess effect (positive
values of SEtotal−SEMod), and the water masses ventilated
in the high latitudes show an overestimation (Fig. E1g–i).
In the North Atlantic Ocean, the region-mean underestima-
tion (SEpref−SEMod)= 0.1 ‰ is predominantly contributed
by (SEtotal−SEMod)= 0.09 ‰. In the North Pacific Ocean
(SEtotal−SEMod)= 0.13 ‰ accounts for more than half of

the total underestimation 0.21 ‰. In the Indian and South
Atlantic Ocean, however, (SEtotal−SEMod) has hardly any
influence to the region-mean underestimation.

In summary, our analysis points out two major causes for
the underestimation of 13C in E17’s approach. The first is the
assumption of a spatially uniform preformed δ13C compo-
nent in 1940. The second cause is the neglect of processes
not directly linked to the oceanic uptake and transport of
CFC-12, e.g. the uptake of anthropogenically light CO2 in
the times prior to the emission of CFC-12 and the decrease
in δ13CDIC due to the decrease in δ13CPOC over the industrial
period.

6 Summary and conclusions

We present results of the new 13C module in the ocean
biogeochemical model HAMOCC6 for the historical period
forced by reanalyses data (ERA20C). We test two parameter-
isations of different complexity for the biological fraction-
ation factor: εPopp

p depends on dissolved CO2 (Popp et al.,
1989); εLaws

p is a function of dissolved CO2 and phytoplank-
ton growth rate (Laws et al., 1995). Furthermore, we use our
consistent model framework to assess the approach by Eide
et al. (2017a), which yields the first global oceanic 13C Suess
effect estimate based on a correlation between preformed
δ13CDIC and CFC-12 partial pressure.

The comparison between simulated and observed isotopic
ratio of organic matter δ13CPOC reveals that εPopp

p (r = 0.84
and NRMSE= 0.57) has a better performance than εLaws

p
(r = 0.71 and NRMSE= 2.5). Using εLaws

p results in notice-
ably lower δ13CPOC values and smaller δ13CPOC gradients
between low and high latitudes compared to observations.
The parameterisation of Laws et al. (1995), obtained based
on cultures of marine diatom Phaeodactylum tricornutum,
results in too strong a preference of isotopically light carbon
in our global ocean biogeochemical model.

Regarding δ13CDIC, εPopp
p also yields slightly better agree-

ment with observations than εlaws
p (r = 0.81 and NRMSE=

0.7 versus r = 0.80 and NRMSE= 1.1), because εLaws
p pro-

duces lower δ13CPOC and therefore lower interior-ocean
δ13CDIC than those found in observations. εPopp

p performs
well considering the uncertainties in observed δ13CDIC
(0.1 ‰–0.2 ‰; Schmittner et al., 2013). Our model slightly
overestimates surface δ13CDIC. By decomposing δ13CDIC
into a biological component and a residual component, we
find the overestimation in the high-latitude ocean is domi-
nated by biases in the biological component caused by e.g.
surface iron concentration that is too high. In the interior-
ocean δ13CDIC biases are mainly due to biases in the physical
state (for instance, a boundary that is too shallow between the
NADW cell and the Antarctic Bottom Water cell in MPIOM).

Our model represents well the temporal evolution of the
oceanic δ13CDIC since pre-industrial times, i.e. the oceanic
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13C Suess effect due to the intrusion of isotopically light car-
bon into the ocean. With the complete information on the
spatial and temporal 13C evolution in the ocean, together with
the simulated evolution of CFC-12, we identify the sources
for the potential uncertainties in the framework of Eide et al.
(2017a) for deriving an observation-based oceanic 13C Suess
effect. Based on our model, we find underestimations of the
13C Suess effect at 200 m by 0.24 ‰ in the Indian Ocean,
0.21 ‰ in the North Pacific Ocean, 0.26 ‰ in the South Pa-
cific Ocean, 0.1 ‰ in the North Atlantic Ocean and 0.14 ‰ in
the South Atlantic Ocean. These numbers are in line with the
underestimation range 0.15 ‰ to 0.24 ‰ conjectured by Eide
et al. (2017a). They speculated this underestimation is due to
the under-representation of the water masses with a stronger
13C Suess effect, such as the Subtropical Gyre Water and
Sub-Antarctic Mode Water, in the observational data. Our
analysis shows that their hypothesis only explain half of the
underestimation in the Indian Ocean. For the North Atlantic
Ocean this hypothesis is not supported by the model data .
We identify two major causes for the underestimation of the
13C Suess effect by the applied method. The first relates to
the assumption of a spatially uniform preformed component
of δ13CDIC in year 1940. In our model this preformed com-
ponent is generally more positive in the upper ocean than in
the interior ocean, which contributes to the underestimation
of the δ13C Suess effect. The second cause relates to the ne-
glect of processes that are not directly linked to the oceanic
uptake and transport of CFC-12 – for instance, the 13C Suess
effect prior to the emission of CFC-12 and the decrease in
δ13CPOC over the industrial period.

We conclude that the new 13C module with biological frac-
tionation factor εPopp

p from Popp et al. (1989) has a satis-
factory performance. We are aware that the parameterisation
ε

Popp
p omits any potential changes, e.g. in ecosystem struc-

ture, which might have occurred in the paleo-ocean. Our new
13C module will serve as a useful tool to evaluate the perfor-
mance of MPI-ESM in paleoclimate and to investigate the
past changes in the ocean, for instance within the ongoing
research project PalMod (Latif et al., 2016).
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Appendix A: Governing factors for the water-column
DI13C inventory changes

The water-column DI13C inventory difference is primarily
a result of the difference in the net air–sea 13CO2 flux be-
tween PI_Popp and PI_Laws. This is demonstrated by the
comparison of the contributions of the governing factors for
the water-column DI13C inventory changes (Table A1), in-
cluding air–sea gas exchange, loss of POC and CaCO3 to ma-
rine sediment, diffusion of the remineralised DIC from sed-
iment into the water column, input of DOC and CO2−

3 , and
the exchange with other marine carbon pools (phytoplankton,
CaCO3, etc.). Table A1 also reveals that the current method
to determine the 13C input (see Sect. 2.3.2) only has a small
contribution to the change in the water-column DI13C inven-
tory.

Table A1. Contributions to the rate of the water-column DI13C inventory change (in Gmol yr−1), averaged in the last 50 years in the corre-
sponding pre-industrial spin-up simulations. Positive values denote contributions to the increase in the water-column DI13C inventory. The
last column gives the relative contribution to the total rate difference with relative contribution= (PI_Laws-PI_Popp) / total rate difference.

13C fluxes into PI_Popp PI_Laws PI_Laws – PI_Popp Relative
the water column (Gmol yr−1) contribution

Air–sea gas exchange 1824.4 1552.3 −272.1 1.1

POC loss to sediment −34902.9

sum: 596.1

−34626.4

sum: 626.6

276.5

sum: 30.5 −0.1
CaCO3 loss to sediment −16672.1 −16674.3 −2.2
DOC input 13612.7 13506.8 −105.9
CO2−

3 input 16505.2 16506.9 1.7
Sediment DIC reflux 22053.2 21913.6 −139.6

From other water-column carbon pools 63.8 64.2 −0.4 0.001

Total rate 2484.7 2242.7 −242.0 1
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Appendix B: Model–observation comparison of ocean
physics

Sea surface temperature (SST) and salinity (SSS) generally
show good performance (Fig. B1 and Table B1). The most
striking bias is seen for SSS (2–3 psu) in the Arctic Ocean.
In the ocean interior, the performance of temperature and
salinity is similar to other ocean general circulation models,
e.g. Tjiputra et al. (2020) (comparing our Table B1 to their
Fig. 2). The model biases shown here (for instance, the sur-
face layers are too cold, whereas the water between 500 and
2500 m is too warm and saline; see Fig. B2) are typically
seen in MPIOM; see Jungclaus et al. (2013) for a detailed
discussion.

Figure B1. Biases in sea surface temperature (SST, panel a) and salinity (SSS, panel b). Both model and observational data (EN4 version
4.2.0; Good et al., 2013) are averaged for 1960–1999.

Figure B2. Zonal-mean biases of seawater temperature (a–c) and salinity (d–f) with respect to observations (EN4 version 4.2.0; Good et al.,
2013) for the Atlantic Ocean (a, d), Pacific Ocean (b, e) and Indian Ocean (c, f).
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Table B1. Summary of the spatial correlation coefficient r and normalised root mean square error (NRMSE) between model data and
observations from EN4 (version 4.2.0; Good et al., 2013).

Depth (km) Temperature Salinity

r NRMSE r NRMSE

0 0.997 0.099 0.95 0.41
0.5 0.90 0.58 0.88 0.43
1 0.87 0.89 0.83 0.70
3 0.91 1.09 0.92 1.62

Figure B3. Atlantic Meridional Overturning Circulation (AMOC) stream function (Sv).

Figure B4. 1990–2009 mean vertical velocity (m s−1) in the model at 1020 m depth (a) and 2920 m depth (b).
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Figure B5. The mean of the annual maximum of the monthly mixed layer depth (m) for the period 1970–1999 in the model. The mixed layer
depth is defined as the depth at which a 0.03 kg m−3 change in potential density with respect to the surface has occurred. Contour intervals
are 50 for 0–500 and 500 for 500–3000.

Figure B6. The simulated zonal current (cm s−1) at 960 m depth in the equatorial Pacific (averaged over January 2003–August 2009).
Positive values indicate eastward flow.

Figure B7. CFC-12 concentration (pmol kg−1) in February 1998 along the A5 section in the Atlantic Ocean (see right panel) of the model
(a) and of observations from GLODAPv1 database (panel b; Key et al., 2004). Contour intervals are 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6,
0.8, 1.2 and 2 pmol kg−1.
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Figure B8. (a–c) CFC-12 concentration (pmol kg−1) for the section A16 (a), P16 (b) and I8S9N (c). Panels (d)–(f) and (g)–(i) are as
panels (a)–(c) but for the observed CFC-12 (GLODAPv1; Key et al., 2004) and for the difference between model and observation, respec-
tively. The isolines in panels (a)–(f) are 0.01, 0.1, 0.4, 0.7, 1.0, 1.3, 1.6, 1.9 and 2.2 pmol kg−1. The isoline increment in panels (g)–(i) is
0.2 pmol kg−1.
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Appendix C: Model–observation comparison of ocean
biogeochemistry

C1 Net primary production, growth rate, biomass and
limiting nutrients

The simulated net primary production, 48.7 Gt yr−1 for bulk
phytoplankton and 3 Gt yr−1 for cyanobacteria, compares
well with the satellite-based estimate of ∼ 52 Gt yr−1 (West-
berry et al., 2008; Silsbe et al., 2016).

The simulated growth rate µ (Fig. C1a and b, only shown
for bulk phytoplankton because cyanobacteria has a much
lower primary production) is broadly consistent with the
large-scale patterns of the satellite-based µ estimates from
Westberry et al. (2008) (Figs. C1c and C1d) and with field
observations. In the central equatorial Pacific the simulated
µ well reproduces the observed range (0.55–0.7 d−1, Chavez
et al., 1996; note the satellite-based estimates overestimate µ
due to excluding iron limitation). In the subtropical gyres, the
simulated µ (annual-mean 0.1–0.25 d−1) is at the lower side
of both the observations (annual mean 0.3–0.53 d−1 in the
North Pacific subtropical gyre, Letelier et al., 1996; annual
mean 0.13–0.62 d−1 in the North Atlantic subtropical gyre,
Marañón, 2005) and the satellite-based µ estimates. In the
Pacific sector of the Southern Ocean, the simulated µ (0.3–
0.4 d−1) in the austral summer is higher than the observations
(about 0.1–0.2 d−1; Boyd et al., 2000) and the satellite-based
estimates. The simulated phytoplankton biomass is too high
in the equatorial Pacific (> 100 mg C m−3) and the Southern
Ocean (> 50 mg C m−3; Fig. C2) compared to the satellite-
based estimates (< 30 mg C m−3 for both regions; Westberry
et al., 2008).

Figure C1. The 1999–2004 climatological-mean surface phytoplankton growth rates (d−1) of the model (a, b, for bulk phytoplankton) and
of the satellite-based estimates from Westberry et al. (2008) (c, d) for the boreal summer (a, c) and winter (b, d). The growth rate is identical
between Hist_Popp and Hist_Laws.
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Figure C2. The 1999–2004 averaged annual-mean surface phytoplankton biomass (mg C m−3) of the model.

Figure C3. Limiting nutrients for primary production in the model.
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C2 Additional model–observation comparison for
oceanic biogeochemical variables

The model captures the major features of the observed phos-
phate, DIC, oxygen and nitrate distribution. The biases of
the above four variables are shown in Figs. 9b, 10g–i, C4,
C5 and C6. We slightly underestimate the global mean phos-
phate by 0.2 mmol m−3, DIC by 41.3 mmol m−3, oxygen by
15 mmol m−3 and nitrate by 4.7 mmol m−3.

Figure C4. (a) DIC biases with respect to observation (GLODAPv1; Key et al., 2004) at the sea surface. (b–d) Zonal-mean DIC biases for
the Atlantic, Pacific and Indian Ocean, respectively. Model data are averaged for 1990–1999.

Figure C5. As Fig. C4 but for simulated oxygen and observation from WOA13 (Garcia et al., 2013b).
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Figure C6. As Fig. C4 but for simulated nitrate and observation from WOA13 (Garcia et al., 2013a).

Figure C7. The change rate of biological fractionation εp from 1960 to 2009.
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Figure C8. The biological component δ13Cbio
DIC at the ocean surface for the model Hist_Popp (a) and observation (b). Panels (c–d) are as

panels (a–b) but for the residual component δ13Cresi
DIC.
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Appendix D: The regenerated component of δ13CDIC

The regenerated component of δ13CDIC, δ13Creg, relates to
organic matter remineralisation and calcium carbonate disso-
lution. We neglect the dissolution of CaCO3 following Son-
nerup et al. (1999), who argued that this simplification only
results in a small offset (< 2%). δ13Creg is calculated as

δ13Creg
= δ13CDIC− δ

13Cpref, (D1)

with δ13Cpref given in Eq. (15). Note that the calculation of
δ13Cpref in Eq. (15) only applies below the 200 m, which is
roughly the euphotic zone depth (Eide et al., 2017a).

The temporal change of the regenerated component
δ13Creg

SE = δ
13Creg

1990s− δ
13Creg

PI (Fig. D1a–c) generally shows
a much smaller magnitude than δ13Cpref

SE (Fig. 12d–f). Above
1500 m, the δ13Creg

SE is mainly caused by the change in
remineralisation, as is illustrated by the change in AOU
(Fig. D1d–f). Below 1500 m, the δ13Creg

SE is generally neg-
ative because δ13CPOC decreases by 2.2 ‰ from the pre-
industrial period to the 1990s, mainly due to the decline of
the biological fractionation factor εp under increasing surface
CO2(aq) (Fig. C7a).

Figure D1. The simulated change in the regenerated component δ13Creg
SE = δ

13Creg
1990s− δ

13Creg
PI for vertical sections A16 in the Atlantic

Ocean (a), P16 in the Pacific Ocean (b) and I8S9N in the Indian Ocean (c). The locations of the vertical sections are shown in Fig. 12.
Panels (d–f) are as panels (a–c) but for the change in AOU from pre-industrial times to the 1990s.
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Appendix E: Applying the Eide et al. (2017a) approach
to the model data

E1 Description of the Eide et al. (2017a) approach

To derive the global oceanic 13C Suess effect, Eide et al.
(2017a) (hereafter E17) first applied the two-stage back-
calculation method developed by Olsen and Ninnemann
(2010) to calculate the 13C Suess effect using data from
the World Ocean Circulation Experiment sections. The steps
and assumptions of this stage are explained below. Next E17
mapped these 13C Suess effect estimates onto a 1× 1◦ grid
with 24 vertical layers and obtained the three-dimension dis-
tribution of the 13C Suess effect in the global ocean. For sim-
plicity, hereafter the above procedure is collectively referred
to as E17’s approach.

E17 first assume that any oceanic CFC-12 signal before
1940 is negligible and the oceanic 13C Suess effect at any
time t after 1940, δ13CSE(t−1940), is proportional to CFC-12
partial pressure at time t :

δ13CSE(t−1940) ∼ a · pCFC-12t. (E1)

Here the proportionality factor a is time-invariant. δ13CDIC
at any time t after year 1940 is decomposed as

δ13Ct = δ
13CSE(t−1940)+ δ

13Cpref
1940+ δ

13Creg
1940. (E2)

The calculation of δ13Cpref is given in Eq. (15) and δ13Creg

in Eq. (D1). E17 include two additional terms on the right-
hand side of the above equation1δ13Creg and1δ13Cpref (see
their Eq. 4), which represent any changes not related to the
13C Suess effect, e.g. changes in ocean carbon cycle. We do
not explicitly write these two terms as they are set to zero by
E17.

Decomposing the left-hand side of Eq. (E2) into a pre-
formed component and a regenerated component gives

δ13Cpref
t = δ13CSE(t−1940)+ δ

13Cpref
1940

− (δ13Creg
t − δ

13Creg
1940). (E3)

Following Gruber et al. (1996), E17 assume a steady-state
ocean over the period of interest and set (δ13Creg

t −δ
13Creg

1940)

to zero, and this gives

δ13Cpref
t = δ13CSE(t−1940)+ δ

13Cpref
1940. (E4)

Combining Eqs. (E1) and (E4) yields linear relationship be-
tween δ13Cpref

t and pCFC-12t:

δ13Cpref
t ∼ a · pCFC-12t+ b, (E5)

where b contains term δ13Cpref
1940. Thus, the proportionality

factor a can be determined with δ13Cpref
t and pCFC-12t at

time t , and δ13CSE(t−1940) can be obtained with Eq. (E1).

To scale δ13CSE(t−1940) to δ13CSE(t−PI) for the full indus-
trial period, the assumption is used that the oceanic δ13CDIC
change scales with the atmospheric δ13CO2 change, i.e.:

δ13CSE(t−PI) = fatm · δ
13CSE(t−1940) = fatm · a · pCFC-12t, (E6)

with

fatm =
δ13CO2,t− δ

13CO2,PI

δ13CO2,t− δ13CO2,1940
. (E7)

E2 Calculation of SEpref, the oceanic 13C Suess effect
estimate using E17’s approach and model data

To achieve a result comparable to E17, we select the model
data at the geographic locations for which both CFC-12 and
δ13CDIC measurements are available. The observational data
set of E17 has data from one cruise in the South Atlantic
(A13.5) in 2010. We do not include this cruise data be-
cause the applied ERA20C forcing, and, thus, our simula-
tions ends in 2009. Here we use the observations compiled
by Schmittner et al. (2013) because δ13CDIC in this data set
has been quality controlled and is publicly available. Follow-
ing E17, we use data at the model layers between 200 m and
the simulated CFC-12 penetration depth (defined as pCFC-
12= 20 patm (pico-atmosphere); see the thick grey lines in
Fig. 14). We take model data of year t = 1994. By perform-
ing a linear regression (Eq. E5) for five ventilation regions
(the North Atlantic, South Atlantic, North Pacific, South Pa-
cific and Indian Ocean) we obtain the regression parameters,
hereafter referred to as apref and bpref. Applying Eq. (E6) to
the three-dimension model data of pCFC-12 for t = 1994, re-
gression slope apref and fatm = 1.5 (determined with Eq. E7
for year 1994), we obtain the estimate of the global oceanic
13C Suess effect, SEpref, in year 1994 (Eq. 16).

The regressional relationships between δ13Cpref
1994 and

pCFC-121994 and the regression coefficients apref and bpref
are shown in Fig. E2 (the water masses in this figure are de-
fined in Table E1). The coefficient of determination r2, the
percentage of the variance in the data explained by the re-
gressional relationship, ranges between 0.33 and 0.66. The
strength of these linear relationships is acceptable consider-
ing the lowest r2

= 0.22 in E17.
The regression relationships between δ13Cpref and pCFC-

12 in our model (Fig. E2) show some quantitative differences
compared to those of E17 (see their Fig. 3). These differences
originate from model biases in the distribution and properties
of water masses. These mismatches do not affect the analysis
and conclusions in Sect. 5. Nevertheless, we briefly discuss
their causes for better understanding of the model behaviour.

First, the definitions of several water masses in the model
are slightly different from those of E17 (comparing our Ta-
ble E1 with their Table 2).

Second, our simulated δ13Cpref
t in the deep and bottom wa-

ters (Antarctic Bottom Water, Circumpolar Deep Water, Pa-
cific Deep Water and Indian Deep Water) in the Southern
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Hemisphere (Fig. E2c and e and Fig. E3c) is higher than
that in E17 (see their Fig. 3a, c and e). The possible rea-
sons for this difference are related to mixing and primary
production in the Southern Ocean. Here, the simulated deep
convection, which primarily occurs in the open ocean rather
than the along continental shelf, is too strong in the model.
This can be seen by the large mixed layer depth (Fig. B5) and
by the CFC-12 bias along selected vertical sections (Fig. B8),
which feature persistent positive biases off the Antarctic con-
tinental shelf in the Atlantic, Pacific and Indian sectors of
the Southern Ocean. Furthermore, the Southern Ocean has
a primary production that is too high in the model (about a
factor of 1.5 of the satellite-based net primary production es-
timates from Westberry et al., 2008). The high primary pro-
duction causes higher surface δ13CDIC than observations (see
the South Pacific Ocean in Fig. 8c). Consequently, the simu-
lated preformed component δ13Cpref

t in the bottom and deep
water masses of the Southern Ocean is higher than observed
values in E17.

Third, the lowest values of δ13Cpref
t (< 1.4 ‰) are often

found in the upwelling regions in the model. This is due to
the upward transport of water from the ocean interior that has
lower δ13CDIC than observations (Fig. 10e and f).

Figure E1. The difference (SEpref−SEMod) for the vertical sections A16 in the Atlantic Ocean (a), P16 in the Pacific Ocean (b) and I8S9N
in the Indian Ocean (c). Panels (d–f) and (g–i) are as panels (a–c) but for (SEtotal−SEMod) and (SEpref−SEtotal), respectively. The isoline
increment is 0.05 ‰. The thick grey line is the pCFC-121994 = 20 patm isoline, below which SEpref is generally very small (< 0.05 ‰).
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E3 Linear regression for subregions in the Indian
Ocean

We can span regressional relationships for the subtropical
gyres of the Indian Ocean and North Pacific Ocean be-
cause we use all model levels between 200 m and the pCFC-
12= 20 patm isoline at a given geographical location, and
therefore we have more data points than field measure-
ments. In the Indian Ocean, performing linear regression for
δ13Cpref

1994 and pCFC-121994 in the Subtropical Gyre Water
and Sub-Antarctic Mode Water yields regression parame-
ters aSTGW

pref =−0.65× 10−3, bSTGW
pref = 1.98 and r2

= 0.49.
The more negative aSTGW

pref compared to regression slope
apref =−0.47× 10−3 obtained for the whole Indian Ocean
suggests an underestimation of the 13C Suess effect. The
mean pCFC-12 in the Indian subtropical region at 200 m
pCFC-12STGW

1994 = 440 patm. Following Eq. (E6), we can cal-
culate the mean underestimation for the subtropical Indian
Ocean as fatm · (apref− a

STGW
pref ) · pCFC-12STGW

1994 = 0.12 ‰.

E4 Calculation of SEtotal

To calculate SEtotal we perform a linear regression for the
total oceanic 13C Suess effect δ13CSE(1994–1940) and pCFC-
121994:

δ13CSE(1994–1940) ∼ atotal · pCFC-121994+ btotal. (E8)

Here the model data are subsampled in the same manner as
in Sect. E2. Next, applying a correction for the period prior
to 1940 (in analogy to Eq. E6) we obtain the expression of
SEtotal in Eq. (19).

The regression relationships in Eq. (E8) and regression
coefficients are given in Fig. E3. For the Indian, North Pa-
cific, North Atlantic and South Atlantic Ocean, r2 lies be-
tween 0.34 and 0.67, which suggests an acceptable strength
of the relationships. In the South Pacific Ocean we find low
r2
= 0.07. This low r2 is a result of the high variability in the

change in the regenerated component (Fig. 14h) which cor-
rupts the regression. Therefore we omit the South Pacific in
the calculation of SEtotal.
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Table E1. Water masses and their definitions in the model.

Water mass Definition in the model

Indian Ocean ventilated waters

Upwelling regions north of 10◦ N in the Arabian Sea; north of 8◦ N
in the Bay of Bengal

STGW (Subtropical Gyre Water),
SAMW (Sub-Antarctic Mode Water)a

σθ ≤ 27.0

AAIW (Antarctic Intermediate Water) 27.0< σθ ≤ 27.45 b

IDW (Indian Deep Water),
CDW (Circumpolar Deep Water)

σθ > 27.45 b

North Pacific ventilated waters

Upwelling regions east of 160◦W, south of 25◦ N, σθ > 26.4

STGW σθ ≤ 26.7

NPIW (North Pacific Intermediate Water) σθ > 26.7

South Pacific ventilated waters

Upwelling regions east of 160◦W, north of 15◦ S, σθ > 26.5;
east of 90◦W, north of 40◦ N, σθ > 26.5

STGW, SAMWa σθ ≤ 27.15

AAIW 26.7< σθ ≤ 27.7, salinity< 35.0 psu

PDW (Pacific Deep Water), CDW σθ > 27.7

North Atlantic ventilated waters

STGW σθ ≤ 27.2, south of 45◦ N

SPMW (Subpolar Mode Water) 26.95< σθ ≤ 27.5 b

NSOW (Nordic Seas Overflow Water),
NADW (North Atlantic Deep Water),
LSW (Labrador Sea Water)

σθ > 27.5 b

South Atlantic ventilated waters

STGW σθ ≤ 26.9

SAMW, AAIWa 26.9< σθ < 27.4

AABW (Antarctic Bottom Water), CDW σθ > 27.4

a Water masses are combined together rather than separately defined as in Eide et al. (2017a).
b A different σθ threshold is used here compared to Eide et al. (2017a).
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Figure E2. Regressional relationships δ13Cpref
1994 ∼ apref · pCFC-121994+ bpref for the Indian Ocean (a), the North Pacific (b), the South

Pacific (c), the North Atlantic (d) and the South Atlantic (e). Different colours and symbols indicate different water masses. The full names,
as well as the definitions, of the water masses are listed in Table E1. The regression slopes apref are used to calculate SEpref in Eq. (16). In
the Indian Ocean the regression relationship for the Subtropical Gyre Water and Sub-Antarctic Mode Water (red upward triangle in panel a)
is y =−0.65×10−3x+1.98, r2

= 0.49. In the North Pacific the regression relationship for the Subtropical Gyre Water (red upward triangle
in panel b) is y =−0.44× 10−3x+ 1.66, r2

= 0.26.

Figure E3. As Fig. E2 but for the regression relationships δ13CSE(1994−1940) ∼ atotal · pCFC-121994+ btotal. The regression coefficients
atotal and btotal are used to calculate SEtotal following Eq. (19).
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Data Analysis Project version 1 (https://www.ncei.noaa.gov/access/
ocean-carbon-data-system/oceans/glodap/, last access: 18 Novem-
ber 2004, Key et al., 2004), net air–sea CO2 flux (now available
at https://www.ncei.noaa.gov/access/ocean-carbon-data-system/
oceans/SPCO2_1982_2011_ETH_SOM_FFN.html, 19 April 2018,
Landschützer et al., 2015), ocean primary production and growth
rate (http://sites.science.oregonstate.edu/ocean.productivity/, last
access: 13 November 2019, Westberry et al., 2008), δ13CPOC (data
provided by Andreas Schmittner in September 2019; this data set
was originally compiled by Goericke and Fry, 1994), δ13CDIC
(https://andreasschmittner.github.io/publications.html, last access:
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