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9. Coupled Environment-Ecology Modelling  
Iñaki Arto, H. Boonman,  Iñigo Capellán-Pérez, T.G. Husby, Tati-
ana Filatova, Mikel González-Eguinob, Klaus Hasselmann, Dmitry 
V Kovalevsky, Anil Markandya, Saeed M Moghayer, L. Niamir, 
Meron Belai Tariku and Alexey Voinov  

In various disciplines regime shifts (Folke 2006; Biggs et al., 
2009; Carpenter et al., 2011), critical transitions (Scheffer, 
2009), non-marginal changes (Stern, 2008) are the terms, 
which are used to denote an abrupt structural change 
(Andersen et al., 2009). Such a non-linear systemic change 
may occur either due to a incremental change in some un-
derlying variable(s) which gradually crosses a threshold, due 
to an external shocking event, or due to a combination of 
the two. While understanding of the nature of non-linear 
abrupt changes is essential for the proper estimate of cost 
and benefits of various policy actions, especially in the do-
main of climate change mitigation where impacts are inter-
generational, the quantitative modelling of regime shifts in 
coupled CEE system is challenging. The literature on model-
ling coupled human-environment systems experiencing such 
non-linear dynamics identifies several critical issues (Filatova 
& Polhill, 2012; Schlueter et al., 2012). They require a careful 
consideration when designing a software model, which is 
able to endogenously grow or capture non-linear responses 
of one of the subsystems or of a coupled system. On a mod-
el design stage it is vital to consider: 

x the sources of regime shifts (endogenous or exoge-
nous, originating in natural or social system, from a 
gradual change or a shocking event),  
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x the type of feedbacks between human and environ-
mental systems (which could either amplify or ab-
sorb non-linear dynamics), 

x methods for detecting and characterizing non-
marginal change, a regime shift, and 

x complexity aspects (thresholds, non-linearities and 
scales, including temporal scales to show if a phe-
nomena is reversible or not). 

The latter group is particularly relevant for this report. In 
what follows we review how various modelling approaches, 
which are most commonly used to design CEE models, treat 
the issues of non-linearity, thresholds and irreversibility. In 
particular, we look at Integrated Assessment Models (IAMs) 
including General Equilibrium Models, System Dynamics 
Models (SDs) and Agent-Based Models (ABMs). 

Modelling non-linearities 
Non-linear responses are strongly related with the feedbacks 
included in the modelling2; ultimately, all dynamics arise 
from the interaction of just two types of feedback loops, 
reinforcing (or positive) and balancing (or negative) loops. 
Among the high-resolution IA models the dominant ap-
proach has been the sequential (linear) representation from 
socioeconomic inputs to emission and climate impacts with-
out considering feedbacks (Damage Function) to the “Hu-
man Activities” or “Ecosystem” modules (see Figure  ). In 
these models (e.g. MiniCAM/GCAM, POLES, MESSAGE) 

                                                 
2 In welfare optimization models, the inclusion of non-linearities is in close relationship 
with the discount rate used. 
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feedbacks are usually restricted to the “Human Activities” 
module. 

 
Figure 9.1: Sequential characterization of IAMs. 

 

However, damage functions are implemented in some high-
aggregated models such as DICE, FUND, PAGE, MERGE, 
etc. Damage functions have the form of non-linear equa-
tions mostly based on damage estimates related to doubling 
the CO2 concentration from the pre-industrial level that are 
usually below the 2% of global GDP. The uncertainty on the 
damage functions currently used in IA models is extremely 
high (Arigoni & Markandya, 2009) and subject to concerns 
such as the degree of arbitrariness in the choice of parame-
ters or the functional form which limit models’ ability to 
portray discontinuities (Ackerman et al., 2009; Pindyck, 2013; 
Stanton et al., 2009; Stern, 2013).  

Some models distinguish between economic impacts and 
non-economic impacts; only the former are included directly 
in the GDP (e.g. FUND, PAGE-09). However, many valua-
ble goods and services (e.g. human health effects, losses of 
ecosystems and species) are not included in conventional 
national income, which suggests that usual damage functions 
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may underestimate the damage costs of climate change. As 
an example, DICE, and a majority of its descendants, as-
sumes that the exponent in the damage function is 2 –that is, 
damages are a quadratic function of temperature change: no 
damages exist at 0 ºC temperature increase, and damages 
equal to 1.8% of gross world output at 2.5 ºC (Nordhaus & 
Boyer, 2000; Nordhaus, 2008) (Figure ). On the contrary, 
(Stanton et al., 2009) review of the literature uncovered no 
rationale, whether empirical or theoretical, for adopting a 
quadratic form for the damage function.3 This is a key issue 
in IAM, since the results are significantly sensitive to this 
parameter (Dietz et al., 2007; Roughgarden & Schneider, 
1999). 

Feedbacks to the socioeconomic variables are not consid-
ered by IA models. For example, large scale population 
movement with likely associate conflict could happen at high 
levels of climate impact, being surely unreasonable to as-
sume that we can be confident that this scale will be very 
small and invalidating, for example, the regional population 
exogenous projections (Stern, 2013). 

Also, very few models explicitly assess the relationships be-
tween climate and ecosystem services, although modelers 
and policy makers have recognized that climate change 
problems have to be solved in harmony with other policy 
objectives such as economic development or environmental 

                                                 
3 This practice is endemic in IA models, especially in those that optimize welfare (e.g. 
DICE-family, MERGE, WITCH but also from other disciplines such as System 
Dynamics: ANEMI)PAGE2009 (Hope, 2011) uses a damage function calibrated 
to match DICE, but makes the exponent an uncertain (Monte Carlo) parameter. 
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conservation (e.g., nonlinear impacts of temperature on crop 
yields (e.g. (Rosenzweig et al., 2013)).4 In this sense, IMAGE 
and AIM can be considered among the most prominent 
models incorporating ecosystems services. These modes 
display a great spatial resolution in their ecosystem modules 
and have participated in all the IPCC Assessments and in the 
Millennium Ecosystem Assessment (MEA, 2005). In the 
case of IMAGE 2.4 (Bouwman et al., 2006), it includes the 
Nitrogen cycle and a Biodiversity module as well as changes 
in climate (precipitation and temperature) impacting crop 
and grass yields. Also, the Carbon cycle model includes dif-
ferent climate feedback processes that modify Net Primary 
Productivity (NPP) and soil decomposition (and thus NEP) 
in each grid cell (0.5 by 0.5 degree resolution).5 However, 
even in these models climate feedbacks to ecosystem ser-
vices have a partial scope, they do not consider explicitly 
fundamental impact feedbacks related with the albedo-effect, 
the increase in climate extremes or sea-rise impact in coastal 
zones. 

System dynamic models represent real-world applications 
of the formal mathematical theory of nonlinear dynamic 
systems, and thus, by definition, are designed to represent 
non-linearities. Coupled climate–socioeconomic system dy-

                                                 
4 For an overview of IAM shortcomings in this field see (Calvin et al., 2013). 

5 Also, the IIASA Integrated Assessment Modeling Framework (including 
MESSAGE-MACRO model) includes some feedbacks in terms of changes in 
agricultural production (Tubiello and Fischer, 2007) or in the corresponding changing 
water needs for agricultural production (Fischer et al., 2007). 
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namics models applied to the study of the economics of 
climate change include numerous non-linearities  both in the 
economic modules (e.g. economic crises, bubbles on asset 
markets etc.) and in the climate modules (e.g. abrupt climate 
change). As example, a simple climate-socioeconomic system 
dynamic model by Kellie-Smith and Cox (2011) integrated 
for a very long term (from year 2000 to year 3000) generated 
under certain scenarios pronounced persistent low-frequency 
nonlinear oscillations of climate and macroeconomic varia-
bles. 

Some system dynamic modelling studies suggest that the 
pronounced non-linearity of the real-word climate system 
(and supposedly even more pronounced non-linearity of 
real-world socioeconomic system) could surprisingly be ben-
eficial for global mitigation policies. For instance, simula-
tions with actor-based system-dynamic model MADIAM 
(Weber et al., 2005) revealed a strong non-linearity of the 
model towards properly designed mitigation strategies: reve-
nues from a moderate carbon tax, when re-circulated into 
the economy in the form of investments in endogenous car-
bon and energy efficiency improvement, had a more than 
linear impact in slowing down the global warming and accel-
erating the transition to a sustainable economy.  

ABMs are designed to model complex adaptive systems 
evolving along a non-linear path. Due to their technical abil-
ity to be implemented on a variety of spatial and temporal 
scales, they are naturally sited to be coupled with natural 
science models. In application to economics is it often real-
ized either through technology diffusion on the supply side 
of a market or behavioural change on the demand side. 
Thus, ABMs have a high potential to simulate non-linear 
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dynamics and responses in coupled CEE systems. Yet, it is 
not suited to model climatic systems, thus only non-linear 
response in socio-economic systems and energy markets can 
be considered. Abrupt shifts in climatic systems as a results 
of dynamics in energy and economy systems are never mod-
elled with ABM. 

While in other domains both technology diffusion and be-
havioural change have been studied, the applications of 
ABM to energy or climate mitigation, which also demon-
strate non-linear response, are at their initial stage of devel-
opment. A recent review of energy ABMs (Gerst et al., 2013) 
concludes that existing models can be divided into 4 groups: 
(1) ABMs focusing on technology diffusion in a single mar-
ket with little or no feedback to macro-economy, (2) ABMs 
having a broader focus on the electricity market or overall 
energy use with little or no macroeconomic feedback, (3) 
ABMs of entire macro-economy of a country or the world at 
the costs of omitting technological detail and household 
behaviour, (4) ABMs modelling interactions among coun-
tries with little or no feedback between domestic actors and 
international policy. While all ABMs have some sort of non-
linear functions or rule-based behavior on micro-level, here 
we focus on non-linear macro-dynamics of the emergent 
phenomena.  

The ENGAGE ABM by Gerst and colleagues (2013) is the 
most developed ABM of CEE system to date, which also 
tries to connect across the 4 level of energy ABMs men-
tioned above. ENGAGE simulates heterogeneous firms and 
households while having an evolutionary representation of 
economic growth, energy technology, and international ne-
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gotiations regarding climate change. It goes beyond conven-
tional economic assumptions of many IAMs and CGE mod-
els such as homogenous households and firms, perfect in-
formation and are perfect rationality. Yet, it still represents 
an economy in a stylized manner (firms cover only two sec-
tors – producers of capital and consumer goods). House-
holds and firms are connected via labor and commodity and 
services markets. Energy enters as a cost factor in the pro-
duction of goods and machines and is also consumed by 
households. Energy supply is represented by three energy 
technology firms (‘carbon-heavy’, ‘carbon-light’, and ‘car-
bon-free’) and one energy production firm. On the energy 
demand side households use a certain floor space and a cer-
tain number of appliances and cars, while good-producing 
firms use energy to run machinery, which can be replaced 
when its lifecycle is over. ENGAGE is applied to study the 
effect of domestic actors energy-related behavior on interna-
tional and domestic climate policies, including carbon tax. 
Simulated energy technology market shares and energy in-
tensity (ratio of annual energy use to real GDP) trajectories 
exhibit abrupt shifts. Emergent average household energy 
consumption and CO2 emissions also follow non-linear 
trends. This happens due to endogenous energy technology 
evolution, and is highly influenced by a policy scenario. For 
example, only when carbon tax is used as an investment in 
carbon-free R&D, economy a swift transition away from 
carbon-based-energy technologies. In this case low-carbon-
energy fuels exponential economic growth by the end of the 
21st century.  

Chappin and Dijkema (2007) design an ABM of a decentral-
ized System of Electricity Production Systems (SoEPS) in 
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the Netherlands to explore the impact of CO2 emission trad-
ing (CET) to in reducing CO2 emissions. Their ABM shows 
that the impact of CET is small and visible only in a long 
time. However, authors admit that technological innovation 
among electricity producers, which is one of the crucial ele-
ments driving GHG emission reduction in the presence of 
CET, was not included in the model. Thus, this ABM is able 
to model only long-history of incremental innovation leading 
just to a smooth change. If diffusion of new technologies is 
implemented, this would imply a dramatic non-linear shift 
from fossil-fuel-based electricity production.  

Castesana and Puliafito (2013) propose an ABM of endoge-
nous economic growth studying the influence of population 
dynamics and growth of physical capital consumption on 
energy use and CO2 emissions. This one-sector model oper-
ates on a global level and is partially parameterized with em-
pirical data. A population of heterogeneous individuals goes 
through various life-stages potentially deciding to invest in 
human capital (education and development of technologies) 
that correspond to the investments in R&D at macro level. 
Agents make choices regarding their reproductive, economic 
and energy development driven by personal preferences and 
family influence. The trajectories of energy consumption and 
corresponding CO2 emissions do not have linear correlation 
with smooth curves of population and GDP growth. The 
latter follow more volatile dynamic paths due to the fact that 
increase in energy consumption is partially offset by the im-
provements in technology. Moreover, authors highlight that 
agent-level factors may speed up or slow down a certain 
trajectories of energy use and CO2 emissions, potentially 
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amplifying non-linearities. In general a likely pathway to-
wards a drop in anthropogenic carbon emissions is to en-
courage investments in human capital through education and 
low-carbon technologies. 

Chappin and Afman (2013) developed an ABM of a con-
sumer behaviour regarding purchase of lamps. Their paper 
explores the nature and speed of possible transitions to low-
electricity consumer lighting. This ABM explicitly model 
behavioral change on the demand side by assuming hetero-
geneous and dynamic preferences on lamps, which change 
with experience and through interactions via social network. 
As a result this ABM goes beyond simulating linear paths 
and is able to grow abrupt shifts to a non-conventional 
lightening technology under various policy scenarios. Au-
thors highlight that complex market dynamics emerges as a 
result of interactions among consumers and bulb manufac-
turers, opinion exchange among consumers, and interactions 
between technologies. Non-linear transitions may not occur 
under specific assumptions about agents’ heterogeneity and 
dynamics of individual perceptions. 

Jackson (2010) designed an ABM to quantitatively evaluate 
electric utility energy efficiency and smart-grid programs. A 
forecast of annual electricity use and peak residential load 
over 15 years was simulated under an assumption of a resi-
dential customer growth rate of 1.2%. The results of a ‘fro-
zen’ scenario (when equipment efficiencies and its utilization 
remain constant) show non-linear changes in annual electric-
ity use (2.3% increase), while peak residential load changed 
almost linearly (1.3% increase). In contrast the ‘baseline’ 
scenario (smart grid 20% participation scenario) forecasts 
annual energy increases of 1.6% and annual peak load in-
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creases of 0.6%. In the ‘smart grid 50% participation’ scenar-
io the peak annual growth is reduced to 0.2%. These non-
linear response of the energy market driven by disaggregat-
ing the demand function into individual interacting consum-
ers, which can be influenced by other agents leading to the 
dissemination of information on new technologies and utility 
programs. These complex dynamic is likely to be omitted 
when a traditional aggregated customer is used on the de-
mand side.  

The CITA ABM developed by Bravo and colleagues (Bravo 
et al., 2013) explores the relationships between household 
consumption (of food, transportation and energy) and the 
related GHG emissions under carbon tax and information 
campaign policies. CITA explores the behavioural change 
towards green alternatives or absence of such due to self-
reinforcement and social influence, where heterogeneous 
preferences of agents for 3 domains are parameterized using 
Eurobarometer data. The effect of price policies on GHG 
emission reduction is moderate in the domains of transport 
and energy (3% and 5% respectively) and only in the food 
domain the effect is a non-linear significant reduction in the 
adoption of the brown leading to 17% GHG emission re-
duction. However, the policies aimed at behavioural change 
(changes in households preferences) lead to abrupt structural 
changes in emission reduction: in the transport domain de-
clined by 15%, in the energy domain by 24%. 
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Modelling thresholds 

 Stanton et al. (2009) in an IAM review finds that in only a 
few models damages are treated as discontinuous, with tem-
perature thresholds at which damages show a major shift 
from lower temperatures. For example, DICE-2007 
(Nordhaus, 2008) models catastrophe in the form of a speci-
fied (moderately large) loss of income, which is multiplied by 
a probability of occurrence (an increasing function of tem-
perature), to produce an expected value of catastrophic loss-
es. This expected value is combined with estimates of non-
catastrophic losses to create the DICE damage function (i.e. 
it is included in the quadratic damage function discussed 
above). However, for much of Nordhaus’s work using the 
DICE model the loss via the Damage Function at 5°C is only 
in the region of 5–10 percent GDP (see Error! Reference 
source not found..2). In much of Tol’s work (see e.g. (Dietz 
et al., 2007)) on the FUND model damages at 5°C are still 
lower, around 1–2 percent of GDP (Error! Reference 
source not found..2). 

In the PAGE-2009 model (Hope, 2011), the probability of a 
catastrophe increases as temperature rises above a specified 
temperature threshold (3 ºC above pre-industrial levels). For 
every 1°C rise in temperature beyond this, the chance of a 
large-scale discontinuity occurring rises by 20%, so that with 
modal values it is 20% if the temperature is 4°C above pre-
industrial levels, 40% at 5°C, and so on. The threshold at 
which catastrophe first becomes possible, the rate at which 
the probability increases as temperature rises above the 
threshold, and the magnitude of the catastrophe when it 
occurs, are all Monte Carlo parameters with ranges of possi-
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ble values. PAGE-2009 assumes that only one discontinuity 
occurs, and if it occurs it is permanent, aggregating long- 

 
Figure 1.2. Annual Consumption Loss as a Fraction of Global 
GDP 2100 due to an increase in annual global temperature in the 
DICE, FUND and PAGE models. Source: (Stern, 2013) 

 

term discontinuities, as ice-sheets loss, with short-term ones, 
such as monsoon disruption and thermohaline circulation. 
In fact, Nicholas Stern selected this model (PAGE-2002 
version) for his Review “guided by our desire to analyse risks 
explicitly - this is one of the very few models that would 
allow that exercise” (Stern, 2007). However, still, climate 
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feedbacks are poorly represented in this model in particular6 
and in climate IAMs in general (Whiteman et al., 2013). 

However, as stated by (Stern, 2013) “most reasonable modelers 
will accept that at higher temperatures the models go beyond their useful 
limits; Nordhaus suggests that we have insufficient evidence to extrapo-
late reliably beyond 3°C”. Since the climate science states that 
there are major risks of temperatures well above 3°C, the 
main concern thus lies in the incorrect extrapolation of these 
damage functions (Pindyck, 2013; Stanton et al., 2009; Stern, 
2007). To illustrate this, whilst recognizing the wise caution-
ary advice of Nordhaus on making such extrapolations, 
(Ackerman et al., 2010) show that in a standard model, such 
as DICE-2007, temperature increases of up to 19°C might 
involve a loss in output of only 50 percent, against a baseline 
where the world is assumed to be many times richer by 2100. 
This illustrates both the modest nature of damages and the 
perils of such extrapolation since such temperatures could 
even involve complete human extinction, indeed at much 
lower temperatures than that. 

The key point is the exogeneity of a key driver of growth 
combined with weak damages. With exogenous growth that 
is fairly high (say at 1 percent or more over a century or 
more) and modest damages, future generations are more or 
less assumed to be much better off (Fig. 9.3). Exogenous 
growth of any long-term strength is challenged in the face of 
the scale of the disruption that could arise at these higher 
temperatures (e.g. potential large scale destruction of capital 

                                                 
6 Better models are needed to incorporate feedbacks that are not included in PAGE09, 
such as linking the extent of Arctic ice to increases in Arctic mean temperature, global sea-
level rise and ocean acidification,” (Whiteman et al., 2013) 



  

 95 

and infrastructure, mass migration, conflict) (Pindyck, 2013; 
Stern, 2013). 

 
Figure 9.3. Output after a Century relative to now (base value = 
100). Source: (Stern, 2013) 

Some researchers have responded to the apparent absurdi-
ties of such weak damage functions by invoking higher order 
terms (see (Weitzman, 2012)), but the models still appear to 
suffer from the omission of the scale of damage that could 
arise from catastrophes, mass migration and serious conflict, 
most retain exogenous drivers of growth, and most have 
inherently narrow risk descriptions (Stern, 2013). 

Coupled climate-economic models 

There is relatively little discussion of threshold effects in the 
literature on coupled climate-economic models. Below we 
provide two interesting exceptions.  

An interesting example is provided by Kellie-Smith and Cox 
(2011) for a highly stylized system dynamics model of a cou-
pled global climate–socioeconomic system. With exogenous 
decarbonisation of the economy built into the model equa-
tions, projections of coupled climate-economic dynamics are 
computed for the 21st and 22nd century for two background 
economic growth rates: low (1% per year) and high (4% per 
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year). For the low background economic growth rate, the 
global development is sustainable (a regime of “soft landing” 
at an equilibrium where the economy steadily grows at the 
decarbonisation rate). In contrast, for the high background 
economic growth rate, the global economy initially booms, 
but this is followed by an economic crash, and the resulting 
depression lasts for the entire 22nd century. 

Another example of a threshold effect is the bifurcation of 
GDP losses caused by extreme weather and climate events 
simulated with the NEDyM model (Hallegatte et al., 2007): 
GDP losses increase sharply beyond a certain threshold val-
ue of the intensity and frequency of extremes. 

In the ABM literature in CEE domain thresholds are usually 
mentioned only with respect to the dynamics of socio-
economic system and sometimes possible CO2 emissions 
trajectories. Since ABMs are not directly used to model cli-
matic systems (e.g. 2 degree Celsius threshold), there are no 
climate system thresholds considered directly. However, the 
latter may be used as a target for tested low-carbon policies 
entering ABM dynamics indirectly. The ABM examples be-
low concern thresholds in energy-economy systems only. 

The ABM of Chappin and Afman (2013) is driven by evolv-
ing preferences regarding low-cost electricity lams due to 
personal experiences and exchange of opinions with a social 
network. Yet, while agent’s perceptions evolve incrementally 
over time, the dramatic shift in market shares occur when an 
endogenous threshold value of adopters is reached. Changes 
in consumer preferences can be amplified or suppressed by 
changes in individual cost-effectiveness moving towards 
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certain threshold values, e.g. when a decrease in electricity 
costs outweighs a jump in lamp purchasing costs. 

When studying CEE system dynamics with their ABM Gerst 
and colleagues (2013) admit that the effect of the carbon tax 
on machine and goods consumptions, and consequently 
large-scale technological change, is dependent on how tax 
revenue is invested. While there is a linear relationship be-
tween firms’ R&D activity and economy-wide annual growth 
rates, the dynamic paths of market shares of various energy 
technologies under some policies (e.g. investing carbon tax 
into R&D) pass through certain threshold values. Various 
thresholds are also seen in aggregated energy intensities, 
which peak around year 2020. This is associated with lifecy-
cle of machinery (20 years) and the fact that carbon tax is 
not high enough to trigger premature machine replacement.  

Micro-level agent behaviour is sometimes designed to exhib-
it thresholds. For example the CITA ABM assumes that 
consumer agents have two exogenously defined thresholds 
for need satisfaction and uncertainty (which impacts the 
forecasting ability regarding the consequences of agents’ 
choices) with respect to food, transportation and energy 
consumption (Bravo et al., 2013). The threshold values were 
calibrated to match the empirical consumption trends. How-
ever, we are mainly interested in the thresholds in the re-
sponse variables, i.e. macro-level dynamics. Such thresholds 
appear in the results of the CITA model under the scenario 
with households preferences change modeled as an infor-
mation campaign to agents with low environmental prefer-
ences. Specifically, when the intensity of a policy reaches a 
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certain value (ı3 > 0.5) the brown consumption pattern dis-
appears in all domains (food, transportation and energy use).  

Modelling irreversibility 
One of the most controversial conclusions to emerge from 
many of the first generation of climate IAMs was the per-
ceived economic optimality of negligible near-term abate-
ment of greenhouse gases. Typically, such studies were con-
ducted using smoothly varying climate change scenarios or 
impact responses. Abrupt changes observed in the climatic 
record and documented in current models could substantial-
ly alter the stringency of economically optimal policies de-
rived from IAMs. Such abrupt climatic changes—or conse-
quent impacts—would be less foreseeable and provide less 
time to adapt, and thus would have far greater economic or 
environmental impacts than gradual warming (Mastrandrea 
& Schneider, 2001). 

Despite critical uncertainties in the assessment of relation-
ships such as climate sensitivity or damage functions (e.g. 
(Pindyck, 2013; Stern, 2013)), for the most part, IAMs adopt 
best guesses about likely outcomes (Ackerman et al., 2009; 
Kelly & Kolstad, 1998; Lomborg, 2010; Nordhaus, 2007; 
Tol, 2002; Webster et al., 2012). IPCC’s focus in this issue 
has also being decisive: most visibly attention has been given 
to the communication of uncertainties by the natural scien-
tists in the areas of climate science and impacts, and to a 
lesser extent, or at least very differently, by economic models 
and social scientists in the assessment of vulnerability, 
sources of greenhouse gas emissions, and adaptation and 
mitigation options (Pindyck, 2013; Stern, 2013; Swart et al., 
2009).  
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Uncertainty, if incorporated at all, is usually analysed by run-
ning Monte Carlo simulations in which probability distribu-
tions are attached to one or more parameters. For example, 
the Stern Review (Stern, 2007), using the model PAGE-02, 
represents a step forward over the standard practice in this 
respect, employing a Monte Carlo analysis to estimate the 
effects of uncertainty in many climate parameters. As a re-
sult, the Stern Review finds a substantially greater benefit from 
mitigation than if it had simply used “best guesses”.7 Anoth-
er recent applications are (Webster et al., 2012) with MIT-
IGSM or (Cai et al., 2013), who developed a stochastic dy-
namic programming version of the DICE model. But these 
are rather exceptions: (Stanton et al., 2009) review did not 
identify any model assuming fat-tailed distributions that reli-
ably samples the low probability tails, thus failing into 
providing an adequate representation of worst case extreme 
outcomes. 

The probabilities of eventual warming of 4°C or more, on 
current emissions paths, may be of the order of 20–60% 
(e.g., (Rogelj et al., 2012; WEO, 2012)); thus, if the damage 
functions are not included or calibrated to temperature in-
crease until approximately 3 ºC (altogether with the common 
use of likely values instead of risk assessment), there is a 
wide range of possibilities currently outside the scope of the 
models. Therefore, it can be concluded that risk is under-
stated in IAMs and models largely ignore the possibility of a 

                                                 
7 Stern Review found that “without action, the overall costs of climate change will be 
equivalent to losing at least 5% of global gross domestic product (GDP) each year, now 
and forever.” Including a wider range of risks and impacts could increase this to 20% of 
GDP or more, also indefinitely. 
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catastrophic climate outcome (Ackerman et al., 2009; 
Pindyck, 2013; Stanton et al., 2009; Stern, 2013). (Lenton & 
Ciscar, 2013) review the limitations of the models and state 
that there is a “…huge gulf between natural scientists’ un-
derstanding of climate thresholds or tipping points and 
economists’ representations of climate catastrophes in 
IAMs.” (Stern, 2013) summarizes: “the economic models 
add further underassessment of risk on top of the underas-
sessment embodied in the science models, in particular be-
cause they generally assume exogenous drivers of growth, 
only modest damages from climate change and narrow dis-
tributions of risk”.  

The problem of abrupt/irreversible climate change is has 
not been widely addressed in the existing literature on climate-
economic SD models. Indeed, up to now most modeling exer-
cises based on climate modules able to represent ab-
rupt/irreversible climate dynamics or including discontinu-
ous climate damage functions, have been performed within 
the utility maximization paradigm – a conventional wisdom 
of neoclassical economic growth theory. However, both of 
these climate modeling forms can be straightforwardly 
adopted in SD models. An interesting research agenda 
would therefore be to develop such system dynamic versions 
of traditional climate-socioeconomic models rooted in the 
utility maximization paradigm. These should then be able to 
provide a more realistic description of the impacts of ab-
rupt/irreversible climate change and its interaction with the 
non-linear socio-economic system.  

The problem of possible irreversible global change was orig-
inally addressed using system-dynamic modelling in the 
neighbouring area of environmental and resource econom-
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ics. An example that received extremely high visibility (and at 
the same time was severely criticized by many mainstream 
economists) is the “Limits to Growth” report and its follow-
ups (Meadows et al., 1972, 1992, 2002). The  authors argued, 
on the basis of  simulations with the SD model World3,  that 
maintaining the exponential growth of population, capital, 
resource use and pollution on a finite planet is unsustainable 
and will inevitably lead to an irreversible catastrophe,  unless 
the timely correction measures are implemented at the global 
level. 

Many ABMs are characterized lock-in effects and strong 
path-dependency. Therefore the sequence of previous states 
constraint future states, and even gradual changes in behav-
ior or technology may lead to irreversible changes in energy-
economy system. As before irreversibility in climate systems 
is hardly ever considered in ABMs as they are not the best 
tools to simulate climatic systems. 

The ABM of the carbon emission trading impact on shifting 
from carbon-intensive electricity production (Chappin & 
Dijkema, 2007) suggests that as soon as investments in new 
technology are made, the switch from the old technology is 
irreversible. Various scenarios produced by the ENGAGE 
ABM by Gerst and colleagues (2013) all produce irreversible 
transitions to low-carbon economy. While depending on a 
policy, the transition can be swift or more gradual, the return 
back to carbon-intensive economy is unforeseeable.  

The ABM of transition to low-electricity lightening (Chappin 
& Afman, 2013) produces non-linear paths under various 
policies (banning, tax, subsidy). While this market system 
moves along transition pathways, this transition is irreversi-
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ble. The shift to low-electricity lamps happen when either it 
becomes cost-efficient for consumers or when their dynam-
ics preferences reach a certain level. There is no reverse dy-
namics modelled, also probably since it is unrealistic.  

Discussions and conclusions 
Occasionally, dramatic shifts occur in natural system as well 
social and economic systems. As reviewed in this report, the 
literature on critical transition theory suggests that such 
shifts can be associated to the existence of alternative stable 
state, thresholds and hysteresis in the system.  For the man-
agement of such system and more specifically for the climate 
mitigation policies and measures, it implies a radically differ-
ent view on policy options, and on the potential effects of 
global change on such systems.  For instance, although the 
gradual changes in temperature might show little and pro-
portional impact, once a threshold is reached and a flip oc-
curred the large impact might be difficult  or even impossi-
ble to reverse. Examples are the collapse of an overharvest-
ed population, ancient climatic transitions, and the collapse 
of Saharan vegetation. The critical transition in such systems 
can ultimately derive from how it is organized — and usually 
from feedback mechanisms, stabilizing or distabilising, with-
in it. 

In climate system, the critical transition is usually associated 
to the destabilising (positive) and stabilising (negative) feed-
backs. For example, Rial et al. (2004)) proposes a metaphor 
of a net feedback. According to this metaphor, in unper-
turbed conditions the net negative climate-driving feedback 
of the Earth is slightly stronger than the net positive feed-
back, at least for small values of external/internal forcing. 
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However if the forcing grows beyond the point at which the 
two competing feedbacks are balanced, then the explosive 
amplification produced by positive feedbacks leads to strong 
nonlinear effects. Even below this critical threshold, the 
negative impacts of human induced climate change can be-
come so strong at some critical adaptation threshold that 
societies are no longer able to respond to the climate change 
impacts at an acceptable cost. Thus mitigation policies 
should be implemented such that this critical adaptation 
threshold is not exceeded.  

Predicting such critical thresholds in a system and occur-
rence of catastrophic shift before they are reached is ex-
tremely difficult as the state of the system may show little 
change before the bifurcation points. However, recent at-
tempts  to assess whether alternative stable states and hence 
critical transitions  are present in a system are now converg-
ing in different fields such as desertification, limnology, 
oceanography and climatology.  These studies are now sug-
gesting the existence of generic early-warning signals that 
may indicate for a wide class of systems if a critical threshold 
is approaching. The theoretical studies show that the dynam-
ics of systems near a critical point have generic properties, 
regardless of differences in the details of each system. There-
fore, sharp transitions in a range of complex systems are in 
fact related. In models, critical thresholds for such transi-
tions correspond to ‘catastrophic bifurcations’.  

Earlier we reviewed one of the prototype models of such 
systems, the lake system, and used it to analyse and classify 
the economic outcomes of such a shift. 
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Scheffer et al. (2009) reviews some of the generic early-
warning indicators. The main indicator that is mentioned in 
the review is the so-called critical slowing down that might 
lead to three possible early-warning signals in the dynamics 
of a system approaching a critical threshold: slower recovery 
from perturbations, increased autocorrelation and increased 
variance in the resulting pattern of fluctuations. Although, 
these indicators are examined in some strong but stylized 
models, more work is needed to test the robustness of  these 
signals. Also, detection of the patterns in real data is chal-
lenging and may lead to false results. In the Copenhagen 
Accord (UNFCCC, 2010) the critical threshold, based on 
recommendations, among others, of Bruckner et al. (1999), 
was set at 2 degrees C.  Jaeger and Jaeger (2011) provide an 
interesting overview of the history of emergence of 2C tar-
get, including a review of the criticism of this target. Wheth-
er the 2C threshold is well justified as a mitigation policy 
target or not, there is now increasing scepticism on the 
chances of retaining the global mean surface air temperature 
at or below this limit (Anderson & Bows, 2011; Peters et al., 
2013). At the same time, some recent studies (Mann, 2009; 
Smith et al., 2009) have revised the climate change impacts 
associated with 2C temperature rise above the pre-industrial 
level towards higher severity levels. On this basis, Anderson 
and Bows (2011) suggest redefining the 2C limit as a thresh-
old not between “acceptable” and “dangerous” climate 
change, but between “dangerous” and “extremely danger-
ous” climate change. 

In order to assess the  economic impacts of climate change 
and the mitigation and adaptation related policies, the issue 
of non-linearity in the presence of tipping points is essential 
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for the definition of optimal mitigation and adaptation strat-
egies as the impact climate change could become extremely 
severe, however, there are a lot of  uncertainties regarding 
the critical thresholds (Pindyck, 2007). Moreover, many cli-
mate impacts such as the damage to ecosystems may be irre-
versible. This means that adopting a policy now rather than 
waiting has a sunk benefit, that is a negative opportunity 
cost. This implies that traditional cost-benefit analysis will be 
biased against policy adoption (Pindyck, 2007).  

While understanding of the nature of non-linear abrupt 
changes is essential for the proper estimate of cost and bene-
fits of climate related policy actions, especially in the domain 
of climate change mitigation where impacts are intergenera-
tional, the quantitative modeling of regime shifts in coupled 
CEE system and impact assessment models and tools is 
challenging. Current impact assessment models are not fully 
able to present non-linearities, thresholds and irreversibility 
or run catastrophe climate scenarios. Numerous studies have 
indicated that in the case of non-linear climate change im-
pacts, optimal abatement increases substantially (Baranzini et 
al., 2003; Gjerde et al., 1998; Keller et al., 2004; Kolstad, 
1994; Mastrandrea, 2001; Tol, 2003; Yohe, 1996; Zickfield & 
Bruckner, 2003). The potential for non-linear and low-
probability climate responses to anthropogenic greenhouse 
gas forcing, however, has received little attention in the cli-
mate change damage cost literature to date (Alley et al., 2003; 
Higgins et al., 2002; Tol, 2009; Wright & Erikson, 2003).  

In this report we reviewed the shortcoming of various mod-
eling approaches, which are most commonly used to design 
CEE models, treat the issues of non-linearity, thresholds and 
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irreversibility. In particular, we look at Integrated Assess-
ment Models (IAMs) including General Equilibrium Models, 
System Dynamics Models (SDs) and Agent-Based Models 
(ABMs).  

As mentioned earlier, non-linear responses are strongly re-
lated with all dynamics arise from the interaction of just two 
types of feedback loops, destabilising (or positive) and stabi-
lising (or negative) loops. Among the high-resolution IA 
models the dominant approach has been the sequential (line-
ar) representation from socioeconomic inputs to emission 
and climate impacts without considering feedbacks (Damage 
Function) to the “Human Activities” or “Ecosystem” mod-
ules. In these models feedbacks are usually restricted to the 
“Human Activities” module. Moreover, Stanton et al. (2009) 
IAM review finds that in only a few models damages are 
treated as discontinuous, with temperature thresholds at 
which damages show a major shift from lower temperatures 
(see for example Nordhaus, 2008). In particular the review 
concludes that IAMs as well as GE models largely ignore the 
possibility of a catastrophic climate outcome (Ackerman et 
al., 2009; Pindyck, 2013; Stanton et al., 2009; Stern, 2013). 
(Lenton & Ciscar, 2013) review the limitations of the models 
and state that there is a “…huge gulf between natural scien-
tists’ understanding of climate thresholds or tipping points 
and economists’ representations of climate catastrophes in 
IAMs.” (Stern, 2013) summarizes: “the economic models 
add further underassessment of risk on top of the underas-
sessment embodied in the science models, in particular be-
cause they generally assume exogenous drivers of growth, 
only modest damages from climate change and narrow dis-
tributions of risk”.  
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Unlike GE modes and IAMs , ABMs have a high potential 
to simulate non-linear dynamics and responses in coupled 
CEE systems. Yet, it is not suited to model climatic systems, 
thus only non-linear response in socio-economic systems 
and energy markets can be considered. However, In the 
ABM literature in CEE domain thresholds are usually men-
tioned only with respect to the dynamics of socio-economic 
system and sometimes possible CO2 emissions trajectories. 
Since ABMs are not directly used to model climatic systems 
(e.g. 2 degree Celsius threshold), there are no climate system 
thresholds considered directly. Irreversibility, however, are 
addressed in ABMs. The ABM of the carbon emission trad-
ing impact on shifting from carbon-intensive electricity pro-
duction (Chappin & Dijkema 2007) suggests that as soon as 
investments in new technology are made, the switch from 
the old technology is irreversible. Various scenarios pro-
duced by the ENGAGE ABM by Gerst and colleagues 
(2013) all produce irreversible transitions to low-carbon 
economy. While depending on a policy, the transition can be 
swift or more gradual, the return back to carbon-intensive 
economy is unforeseeable.  

System dynamic models represent real-world applications of 
the formal mathematical theory of nonlinear dynamic sys-
tems, and thus, by definition, are designed to represent non-
linearities. Coupled climate–socioeconomic system dynamics 
models applied to the study of the economics of climate 
change include numerous  non-linearities  both in the eco-
nomic modules (e.g. economic crises, bubbles on asset mar-
kets etc.) and in the climate modules (e.g. abrupt climate 
change). As example, a simple climate-socioeconomic system 
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dynamic model by Kellie-Smith and Cox (2011) integrated 
for a very long term (from year 2000 to year 3000) generated 
under certain scenarios pronounced persistent low-frequency 
nonlinear oscillations of climate and macroeconomic varia-
bles. However, the problem of abrupt/irreversible climate 
change is has not been extensively addressed in the existing 
literature on climate-economic SD models. Indeed, up to 
now most modelling exercises based on climate modules 
able to represent abrupt/irreversible climate dynamics or 
including discontinuous climate damage functions, have 
been performed within the utility maximization paradigm – a 
conventional wisdom of neoclassical economic growth theo-
ry. However, both of these climate modelling forms can be 
straightforwardly adopted in SD models.   

 In order to tackle the aforementioned shortcomings of the 
current CEE impact models, the main goal of COMPLEX 
WP5 is to developed a system of models combining insights 
from different field of research such as critical transition and 
catastrophe theory, and IAMs, GEs, ABM, and SD model-
ling approaches with the emphasis on utilising the non-linear 
climate responses and regime-shifts of economic-ecological 
systems, modelling processes of diffusion and pervasive 
technical change and its implication, and representation of 
economic sectors with a significant potential for mitigation 
and resource efficiency. The system of model will be de-
signed in such a way that it can serve as a so-called ‘fully 
integrated assessment model’ to evaluate mitigation policies, 
assessing the costs and inform policy makers in a more ef-
fective way. The next report will present the theoretical and 
conceptual framework for such a system. 
 


