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Abstract. The global carbon budget (GCB) – including fluxes of CO2 between the atmosphere, land, and ocean
and its atmospheric growth rate – show large interannual to decadal variations. Reconstructing and predicting
the variable GCB is essential for tracing the fate of carbon and understanding the global carbon cycle in a chang-
ing climate. We use a novel approach to reconstruct and predict the variations in GCB in the next few years
based on our decadal prediction system enhanced with an interactive carbon cycle. By assimilating physical
atmospheric and oceanic data products into the Max Planck Institute Earth System Model (MPI-ESM), we are
able to reproduce the annual mean historical GCB variations from 1970–2018, with high correlations of 0.75,
0.75, and 0.97 for atmospheric CO2 growth, air–land CO2 fluxes, and air–sea CO2 fluxes, respectively, relative
to the assessments from the Global Carbon Project (GCP). Such a fully coupled decadal prediction system, with
an interactive carbon cycle, enables the representation of the GCB within a closed Earth system and therefore
provides an additional line of evidence for the ongoing assessments of the anthropogenic GCB. Retrospective
predictions initialized from the simulation in which physical atmospheric and oceanic data products are assim-
ilated show high confidence in predicting the following year’s GCB. The predictive skill is up to 5 years for
the air–sea CO2 fluxes, and 2 years for the air–land CO2 fluxes and atmospheric carbon growth rate. This is the
first study investigating the GCB variations and predictions with an emission-driven prediction system. Such a
system also enables the reconstruction of the past and prediction of the evolution of near-future atmospheric CO2
concentration changes. The Earth system predictions in this study provide valuable inputs for understanding the
global carbon cycle and informing climate-relevant policy.

1 Introduction

The CO2 fluxes between the atmosphere and the underlying
surface, and therefore the atmospheric carbon growth rate,
vary substantially on interannual to decadal time scales (Pe-
ters et al., 2017; Friedlingstein et al., 2019; Landschützer
et al., 2019; Friedlingstein et al., 2020). These variations re-
flect the combined effects of the internal variability of the
global carbon cycle (Li and Ilyina, 2018; Séférian et al.,
2018; Spring et al., 2020; Fransner et al., 2020) and its re-
sponses to external forcings (McKinley et al., 2020).

To constrain the past global carbon budget (GCB) and
facilitate its prediction and projection into the future, the
Global Carbon Project (GCP) (Canadell et al., 2007) assesses
the anthropogenic GCB – i.e., CO2 emissions and their re-
distribution among the atmosphere, ocean, and land – ev-
ery year since 2007. The annual updates of the GCB inform
both the policy and society at large on the ongoing variations
in the carbon cycle. This information will be critical in the
decarbonization processes. This assessment is based on an-
thropogenic CO2 emissions, observations of the atmospheric
CO2 concentration, and individual standalone model simu-
lations of CO2 fluxes for the ocean and land. The net air–
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land CO2 fluxes are the sum of the natural fluxes and the
land-use-change-induced emissions. Within the framework
of the GCP, the land use change emissions are based on a
bookkeeping approach (Hansis et al., 2015). The standalone
simulations of the land and ocean that produce air–land and
air–sea CO2 fluxes are forced by different observation or re-
analysis data and their sum does not provide an estimate of
the CO2 fluxes that are consistent with changes in atmo-
spheric CO2. Moreover, the accumulated CO2 fluxes from
these standalone model simulations do not exactly match
the observations. Therefore, the GCB is not closed but ends
up with a budget imbalance term of up to 2 PgC yr−1 for
some years, although the climatological mean value is small,
0.17 PgC yr−1 (Friedlingstein et al., 2020), which hinders
the full attribution of the global carbon cycle variations. A
large part of the budget imbalance could also be attributed to
the mismatch of net biome production between the dynamic
global vegetation models (DGVMs) used in the GCBs and
inversions that match the atmospheric CO2 growth rate (Bas-
tos et al., 2020).

Reconstruction of the variable GCB within a closed Earth
system model (ESM) is of essential value in tracing the fate
of carbon. In addition to assessing the GCB variations in the
past, the GCP also makes a prediction of the GCB for the
next year; however, this prediction is based on statistical ap-
proaches and it is not possible to trace the changes in carbon
budget back to the physical processes. The decadal prediction
systems based on ESMs (Marotzke et al., 2016) show a po-
tential to reconstruct and predict the near-term global carbon
cycle (Li et al., 2016; Spring and Ilyina, 2020). By assimilat-
ing observational products of physical variables, the decadal
prediction systems are able to reproduce the variations in
CO2 fluxes as found in observation-based products. Decadal
prediction systems can then use states from an assimilation
simulation as initial conditions for further multi-year predic-
tions of the global carbon cycle (Li et al., 2016, 2019; Loven-
duski et al., 2019a, b; Ilyina et al., 2021). However, as of
now, the state-of-the-art decadal prediction systems are typ-
ically forced with a prescribed atmospheric CO2 concentra-
tion without an interactive carbon cycle, i.e., the effect of the
changes in CO2 fluxes are not reflected in the atmospheric
CO2 variations. With this conventional model setup, one can
assess the air–land and air–sea CO2 fluxes but not the result-
ing variations in atmospheric CO2 concentration and growth.

Prediction systems have proven their skill in predicting
air–sea and air–land CO2 fluxes (Ilyina et al., 2021). For the
first time, we extend our previously concentration-driven pre-
diction system to an emission-driven system. The emission-
driven system takes into account the interactive carbon cy-
cle and therefore determines atmospheric CO2 prognostically
and predicts atmospheric CO2 variations. In this study, we
assess the GCB in a simulation with assimilated observa-
tional products into the Max Planck Institute Earth System
Model (MPI-ESM) and further estimate the predictive skill
relative to the GCB from 2019 (GCB2019, Friedlingstein

et al., 2019) for CO2 fluxes and changes in atmospheric CO2
(Dlugokencky and Tans, 2020).

The assimilation simulation is designed to reconstruct the
evolution of the Earth system in the real world by incor-
porating essential fields from observational products into
the MPI-ESM. The reconstruction from the fully coupled
model simulation (henceforth known as simply the assimila-
tion simulation) enables the representation of the GCB within
a closed Earth system. Therefore, by construction, this ap-
proach avoids the budget imbalance term arising from the
need to balance carbon fluxes from standalone models and
observations. Our reconstructions of the carbon budget pro-
vide an additional and novel estimate. The assimilation sim-
ulation’s states, which are close to the real world through
constraints from observations and data products, are used to
start the initialized simulations that predict the GCB changes.
These initialized predictions are expected to capture the evo-
lution of climate and carbon cycle more realistically than
freely evolving uninitialized simulations, due to their im-
proved initial conditions from reconstruction. In prediction
studies, the term “uninitialized” refers to simulations that are
not initialized from states constrained by observations or data
products. The novel approach of reconstructing and predict-
ing the GCB with an ESM-based prediction system has the
ability to provide complementary estimates of the terms of
the GCB for use in the assessments by the GCP.

2 Materials and methods

2.1 Model and simulations

We use the MPI-ESM1.2-LR model (Mauritsen et al., 2019),
which is the low-resolution version of the MPI-ESM used
for the sixth phase of the Coupled Model Intercomparison
Project (CMIP6). The atmospheric horizontal resolution has
a spectral truncation at T63 (approximately 200 km or 1.88◦

grid spacing at the Equator) with 47 vertical levels. The res-
olution of the ocean model MPIOM (Marsland et al., 2003)
is about 150 km with 40 vertical levels. The ocean biogeo-
chemistry component of the MPI-ESM is represented by
HAMOCC (Ilyina et al., 2013; Paulsen et al., 2017), and the
land and vegetation components are represented by JSBACH
(Reick et al., 2021).

Similar to our previous prediction system (Li et al.,
2016, 2019), we performed three sets of simulations (see
Fig. 1 and Table A1) to investigate the ability of our model
to reconstruct and predict the GCB: (i) uninitialized freely
evolving historical simulations, (ii) an assimilation simula-
tion (also referred to as reconstruction) performed by assim-
ilating the observational signal of climate variations into the
model, and (iii) initialized simulations (also referred to as
hindcasts or retrospective predictions) starting from initial
states obtained from the assimilation simulation. The assimi-
lation run is needed for the initialized prediction simulations,
and the uninitialized simulations provide a reference to com-
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pare to and assess the improved predictability due to initial-
ization.

The major difference relative to the previous system (Li
et al., 2016, 2019) is that the new prediction system is based
on emission-driven simulations, which are forced by CO2
emissions instead of prescribed atmospheric CO2 concentra-
tion. In this way, the atmospheric CO2 concentration evolves
in response to the magnitude and sign of the air–land and
air–sea CO2 fluxes. We use the CMIP6 (Eyring et al., 2016)
historical emissions forcing for our simulations, and for sim-
ulations extended to 2099 we use the emissions from the
SSP2-4.5 scenario (Jones et al., 2016). While the fossil fuel
emissions are prescribed, the land-use-change-induced emis-
sions are simulated interactively in our ESM and driven with
the Land-Use Harmonization 2 (LUH2) forcing (Hurtt et al.,
2020). We use transient land use transitions rather than land
use states and include natural disturbances with dynamic
vegetation (Reick et al., 2021). An ensemble of 10 members
is run for the uninitialized historical and initialized predic-
tion simulations. The uninitialized ensembles are generated
by starting from a different year of the pre-industrial con-
trol simulation (the model reached equilibrium as shown in
the time series of ocean net primary production and CO2
fluxes from the control simulation in Fig. A1). The individ-
ual members of an initialized ensemble are generated with
1 d lagged initializations from a given branching point of the
assimilation simulation, i.e., initialized from 31 October and
1 November–9 November. Note that the initialized 5-year-
long predictions start annually from 1 November for the pe-
riod 1960–2018. Figure 1 illustrates the evolution of the at-
mospheric carbon growth rate in uninitialized, assimilation,
and initialized simulations. More details of the simulations
are summarized in Fig. 1 and Table A1.

2.2 Assimilation methods

Similar to our previous concentration-driven decadal predic-
tion systems (Li et al., 2019), the assimilation is done by
nudging the simulated ocean 3-D temperature and salinity
anomalies towards the ECMWF ocean reanalysis system 4
(ORAS4) (Balmaseda et al., 2013). Additionally, we nudge
the simulated values towards atmospheric 3-D full-field tem-
perature, vorticity, divergence, and log of surface pressure
from ECMWF Re-Analysis ERA40 (Uppala et al., 2005)
during the period 1959–1979 and ERA-Interim (Dee et al.,
2011) during the period 1980–2018. The sea ice concentra-
tion is nudged towards the National Snow and Ice Data Cen-
ter (NSIDC) satellite observations (as described in Bunzel
et al., 2016). The nudging is applied at every model time step
but with a different relaxation time, i.e., a relatively longer
relaxation time of 10 d is used for the ocean temperature
and salinity, and shorter relaxation times of 6, 24, and 48 h
are used for the atmospheric vorticity, temperature and pres-
sure, and divergence, respectively. The chosen variables for
assimilation and their respective relaxation time are selected

based on previous investigations of decadal climate predic-
tions based on the MPI-ESM (Marotzke et al., 2016). Di-
rect assimilation of the carbon-cycle-related variables is not
included because of the limited available data; instead, we
found that the global carbon cycle is well captured by assim-
ilating only physical variables (Li et al., 2016, 2019; Loven-
duski et al., 2019b, a; Ilyina et al., 2021). Furthermore, a re-
cent study based on a perfect-model framework (i.e., based
on simulations in which the model tries to predict itself) re-
vealed that direct assimilation of the global carbon cycle only
brings trivial improvement to the predictive skill of the global
carbon cycle (Spring et al., 2021). To avoid spurious up-
welling in the equatorial region caused by assimilation (Park
et al., 2018), we exclude the equatorial band of 5◦ S–5◦ N
from being nudged towards observation-based ocean data.

2.3 Carbon budget decomposition with CBALONE
simulations

The GCB from GCP is decomposed into five terms plus an
imbalance term: the two emission terms from fossil fuel and
land use changes and the three sink terms for the natural
terrestrial sink, ocean sink, and atmospheric growth on an-
nual timescales. The fossil fuel emissions are prescribed as
forcing, and the terrestrial and ocean carbon sinks and at-
mospheric growth terms are simulated and can therefore be
directly derived from the ESM. However, only the net land–
atmosphere exchange is directly deducible from an ESM,
which is the sum of land use change emissions and the nat-
ural terrestrial sink. In order to separate the two land-related
fluxes, we use a standalone component of JSBACH called
CBALONE as a diagnostic for a direct comparison with the
land-use emissions term from the GCP (Friedlingstein et al.,
2019). CBALONE is forced by the MPI-ESM daily outputs
including 2 m air temperature, soil temperature, precipita-
tion, net primary productivity (NPP) per plant functional type
(PFT), leaf area index (also per PFT), and maximum wind.
We run two parallel simulations, i.e., one with anthropogenic
land use changes and another without those changes, differ-
encing the two simulations results in the land-use-change-
induced emissions from the land sink. More details on this
method of separating the land-use-change-induced emissions
can be found in Loughran et al. (2021).

2.4 Predictive skill quantification

The focus of this study is on global mean variations in at-
mospheric CO2 and globally integrated air–sea and air–land
CO2 fluxes on annual timescales. The initialized simulations
are investigated according to their lead time, i.e., for how
many model years they have been freely integrated after
restarting from the assimilation simulation. The time series
of initialized simulations at a lead time of 1 year (2, 3, 4, and
5 years) combine the first year (second, third, fourth, and fifth
year) predictions from initialized simulations of all the start-
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Figure 1. Illustration of the decadal prediction system based on the MPI Earth system model. The illustrated time series of the atmospheric
CO2 growth rate shows annual means from model simulations plotted together with observations from the Global Carbon Project (GCP).
We conduct three sets of simulations (from left to right in sequential order): (a) uninitialized “free” simulations, which are the same as the
freely evolving Coupled Model Intercomparison Project (CMIP) historical type simulations, (b) an assimilation simulation to reconstruct the
evolution of the climate and carbon cycle towards the real world by nudging the model towards observation and reanalysis data during its
integration, and (c) initialized predictions started from reconstruction states produced by the assimilation simulation and integrated freely
(i.e., no nudging towards observations) for 5 years. The time series in (a) shows that the uninitialized simulations capture the long-term trend
well, but the year-to-year variations are out of phase with the observations. The time series in (b) shows that the assimilation simulation forces
the variations in the uninitialized freely run simulation towards the real world and results in a reconstruction that is closer to the observations.
Panel (c) shows the reconstruction together with the 5-year-long initialized predictions (i.e., hindcasts). To make the illustration more clear,
only predictions with starting years at 10-year intervals are shown.

ing years from 1960–2018. Therefore, the time series at lead
time of 1 year (2, 3, 4, and 5 years) corresponds to the period
1961–2019 (1962–2020, 1963–2021, 1964–2022, and 1965–
2023). Illustration of how the time series are concatenated is
shown in Fig. 1C. The analyses of predictive skill quantifica-
tion are based on the combined time series. Bias correction
is an unavoidable topic for decadal predictions due to an ini-
tial shock, which varies with lead time (Boer et al., 2016;
Meehl et al., 2021). The decadal prediction studies mostly
present anomalies with a focus on variations by removing
the climatological mean and/or trend bias due to model drift
caused by the initialization of the model based on observa-
tions. The anomalies are calculated relative to the respective
climatology according to the lead time (Boer et al., 2016;
Meehl et al., 2021). To infer predictions of absolute values of
the atmospheric CO2 concentration, the respective anomalies
from the predictions are added to the best estimates of clima-
tology and trend from data; here the atmospheric CO2 obser-
vations from NOAA_GML (Dlugokencky and Tans, 2020)
are used.

The predictive skill is quantified by the anomaly correla-
tion coefficient, and the anomalies are calculated by remov-
ing the respective climatological mean state. In that sense,
the climatological mean bias is removed and the coherence
reflects the multi-year variations for which we evaluate the
predictions. Here the climatological mean state is based on
the ensemble mean of the focus time period: 1970–2018 for
Figs. 1–6 and the last 10 years for Figs. 7–8. We exclude the
first 12 years, i.e., 1958–1969, from the analyses and focus
on the period from 1970–2018 because the assimilation in
the first decade is affected by model adjustment. As an ex-
ample, the spatial pattern of climatological mean ocean net
primary production and phosphate nutrient concentration are
shown in Fig. A2 in comparison with the respective obser-
vations. For the atmospheric CO2 concentration, which has
high correlations close to 1 with observations because of the
coherent linear trends, we have also added the root-mean-
square error (RMSE) metric to investigate the added value
of assimilation and initialization. In this study, the signifi-
cance of the predictive skill is tested with a nonparametric
bootstrap approach (Goddard et al., 2013). The analyses are
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based on annual mean data with a focus on the frequency of
interannual to multi-year variations.

3 Reconstruction of the global carbon budget

By incorporating observation-based information, the assim-
ilation simulation from the decadal prediction system based
on the MPI-ESM captures the evolution of the GCB as well
as the climate in observations. The time series of carbon
fluxes from the MPI-ESM assimilation simulation in com-
parison to the data and suite of simulations from GCB2019
are shown in Fig. 2.

The CO2 emissions from fossil fuels and industry are gen-
erally consistent with those from GCB2019 but with a slight
difference in the 1960–1990s since the assimilation simula-
tion uses the CO2 emission forcing provided by CMIP6 for
historical and SSP2-4.5 simulations. This highlights the un-
certainty in the CO2 forcing, which affects the change in
the simulated atmospheric CO2 concentration as it is a cu-
mulative quantity. The CMIP6 CO2 emission forcing yields
8.20 PgC higher cumulative emissions than those from the
GCB2019, which is equivalent to a difference of atmospheric
CO2 of about 1.93 ppm assuming that 50 % of the emissions
stay in the atmosphere (i.e., by dividing 4.10 PgC with a fac-
tor of 2.124 PgC ppm−1, Ballantyne et al., 2012). This dis-
crepancy in CO2 emissions might explain to some extent why
the simulated atmospheric CO2 concentration is a few parts
per million higher than the NOAA_GML observations (Dlu-
gokencky and Tans, 2020) (Fig. A3). However, this small dif-
ference of a few parts per million in atmospheric CO2 con-
centration magnitude does not noticeably affect the interan-
nual variations in CO2 fluxes and the corresponding atmo-
spheric carbon increment (see Fig. 2d–f).

The land-use-change-induced emissions diagnosed by
CBALONE are within the range of GCB2019 multi-model
(including JSBACH) simulations from Dynamic Global Veg-
etation Models (DGVMs) (Fig. 2b). The estimates from
bookkeeping models show smaller variations than those pro-
duced by the DGVMs. Note that the GCP uses the bookkeep-
ing approach for the land-use emissions term. The term book-
keeping implies that carbon fluxes are determined from area
changes in vegetation types with different vegetation and soil
carbon densities, and specific response curves characterizing
the evolution of decay of deforested biomass and recovery of
natural vegetation thereafter. Biomass and soil carbon densi-
ties may be based on recent observations or models but are
generally kept fixed in time, i.e. the effect of changes in en-
vironmental conditions are not accounted for. The DGVMs
by contrast (which are used to provide only an uncertainty
range around the bookkeeping models in the GCBs from the
GCP) calculate land use emissions under transient environ-
mental conditions. This implies first that interannual variabil-
ity in bookkeeping models is only driven by land use change
but not by climate variability, which makes the DGVM esti-

mates of land use change (LUC) emissions in general more
variable from year to year than the bookkeeping estimates.
Second, the DGVM-based land-use emissions estimates in-
clude the so-called “loss of additional sink capacity” (Pon-
gratz et al., 2014), which refers to the carbon that could have
been stored in forests additionally over the course of history
(e.g., due to the “CO2 fertilization” effect) had these forests
not been cleared by the expansion of agriculture and forestry.
This loss of additional sink capacity generally increases over
time and amounts to about 40 % (0.8± 0.3 PgC yr−1) of the
emissions calculated by the DGVMs over 2009–2018 (Ober-
meier et al., 2021). This explains why DGVM estimates in
Fig. 2b show higher emissions than bookkeeping estimates
in recent decades. The DGVM- and expert-based uncertainty
range around the GCP bookkeeping estimates for LUC emis-
sions is large and MPI-ESM-based land use change emission
estimates have been found to be at the high end of the GCP
estimates for all decades by Loughran et al. (2021), consis-
tent with our findings.

The annual assessment from GCP has a budget imbal-
ance term. This is because the individual budget terms are
based on separate measurements, together with ocean and
land model simulations, which are not linked to each other in
an internally consistent manner (Friedlingstein et al., 2019).
In this study, we assimilate atmosphere and ocean data prod-
ucts within a fully coupled ESM that considers their inter-
actions. The assimilation ensures the evolution of the carbon
cycle and climate towards the real world, and in contrast to
the GCP, the budget is closed within the Earth system, i.e.,
no budget imbalance occurs by design (Fig. 2c). Therefore,
the assimilation simulation based on a fully coupled ESM en-
ables better attribution of the GCB variations than when an
imbalance is present. The current method used by the GCP
(Friedlingstein et al., 2019) is based on the directly mea-
sured atmospheric CO2 increment and has the advantage of
representing the actual evolution of atmospheric CO2. Our
ESM-based assimilation shows a high correlation of 0.75
with the atmospheric CO2 measurements but still needs to
be improved. Further efforts are required to constrain the at-
mospheric CO2 from observations.

Atmospheric carbon growth rate and carbon fluxes are
reasonably well reproduced in emission-driven assimilation
with prognostic atmospheric CO2 (Fig. 2d–f). The atmo-
spheric carbon growth and the land carbon sink show more
pronounced variations on interannual timescales; however,
the ocean carbon sink has more pronounced variations on
decadal timescales. These variations are captured in the as-
similation, with high correlations between the results from
the assimilation simulation and the GCB2019 of 0.75, 0.75,
and 0.97 for the atmospheric growth, air–land CO2 fluxes,
and air–sea CO2 fluxes, respectively.

The spatial distribution of climatological mean CO2
fluxes, their variability expressed as standard deviation, and
the comparison in carbon fluxes between GCB2019 and the
MPI-ESM assimilation are shown in Fig. 3. The mean states
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Figure 2. Time series of (a) fossil fuel and industry CO2 emissions (EFF), (b) emissions from land use change (ELUC), (c) the budget
imbalance (BIM) that is not accounted for by the other terms, (d) atmospheric carbon growth rate (GATM), (e) the natural terrestrial carbon
fluxes (SLAND), and (f) air–sea CO2 fluxes (SOCEAN) from MPI-ESM1.2-LR assimilation in comparison to the Global Carbon Budget (GCB
2019, Friedlingstein et al., 2019). Emissions (a, b) are positive into the atmosphere, while sinks (d, e, f) are positive into their respective
compartments. A positive BIM means a higher sum of emissions than sinks. The thin grey curves in (b), (e), and (f) show individual GCB
standalone model results. The numbers in the legend show the correlation coefficients between carbon fluxes from the assimilation simulation
and GCB2019.

show a CO2 influx into the ocean and land in the mid- to
high-latitudes, and outgassing into the atmosphere in tropi-
cal areas, especially over the tropical Pacific (Fig. 3a–b). The
variability of CO2 over land is larger than that over the ocean;
and the magnitude of variability is larger in the assimilation
simulation than in the GCB2019 (Fig. 3c–d). This is expected
as the GCB2019 is a multi-model mean estimate and there-
fore smooths out part of the high-frequency variability. The
correlation of CO2 fluxes between the assimilation simula-
tion and GCB2019 is high over the ocean, while the correla-
tion is relatively low over the land (Fig. 3e). The root-mean-

square deviation (RMSD) scales with the magnitude of car-
bon fluxes, i.e., with larger values on land than over ocean
(Fig. 3f). The large RMSD, especially over land, is because
of the relatively low coherence of CO2 fluxes and the larger
values of CO2 fluxes in the MPI-ESM single model simu-
lation than in a smoothed magnitude of fluxes in GCB2019
from the multi-model mean simulations. The difference in
the magnitude of fluxes between assimilation and GCB2019
data is more prominent in local areas (Fig. 3a–d) than in the
global average (Fig. 2e).

Earth Syst. Dynam., 14, 101–119, 2023 https://doi.org/10.5194/esd-14-101-2023



H. Li et al.: Reconstructions and predictions of the global carbon budget 107

Figure 3. Spatial distribution of the CO2 fluxes from model assimilations compared to GCB2019. Climatological mean CO2 fluxes into the
land and ocean from the atmosphere in assimilation (a) and Global Carbon Budget (GCB 2019, Friedlingstein et al., 2019) estimates (b).
Temporal variability, i.e., standard deviation, of CO2 fluxes in the assimilation simulation (c) and GCB2019 (d). Correlation and root-mean-
square deviation (RMSD) between assimilation and GCB2019 are shown in (e) and (f), respectively. The results are based on annual mean
data for the time period 1970–2018. Positive values in (a) and (b) refer to CO2 fluxes into the ocean or land.

In general, the historical GCB is well reproduced by the
MPI-ESM when assimilating observational products, which
enables a quantification of the GCB within a closed Earth
system, showing that prediction systems yield internally con-
sistent estimates of the air–sea and air–land CO2 fluxes and
are able to provide complementary information, in addition
to the estimates provided by the GCP, for evaluating annual
GCB.

4 Predictability of the global carbon budget

The initialized predictions start from assimilation states
which are close to observations. Therefore, information from
the observations is incorporated into the prediction system
through realistic initial states of the components of the cli-
mate system, which enables a more realistic evolution of the
global carbon cycle and climate that follows the trajectory of
observations until the predictability horizon is reached.

To support the GCP in predicting the next year’s GCB one
year in advance, we also investigate the predictability, focus-
ing on model hindcasts at a lead time of 1 year. As shown
in Figs. 4 and 5, the initialized simulations at a lead time
of 1 year show high correlations with GCB2019. The corre-
lations of global atmospheric CO2 growth, net air–sea CO2
fluxes and net air–land CO2 fluxes are 0.59, 0.52, 0.70 after
removing the linear trends (Fig. 5a, c, e); the correlation of
the original time series are 0.76, 0.97, and 0.66 (Fig. 4a, c,
e). The initialized simulations at a lead time of 2 years still
resemble the variations in the GCB2019, with correlations of
0.49 and higher (Fig. 6a, c, e), and the detrended time series
also show higher correlations than the detrended uninitial-
ized simulations (Fig. 6b, d, f). This suggests that internal
variability can be constrained by initialization. As for atmo-
spheric carbon growth, the initialized simulations at a lead
time of 2 years show coherent interannual variations com-
pared to GCB2019, albeit with a smaller correlation (0.49)
than that of the historical freely evolving run (0.61), primar-
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Figure 4. Time series of atmospheric carbon growth rate, i.e., GATM (a), net air–sea CO2 fluxes, i.e., SOCEAN (b), and net air–land CO2
fluxes, i.e., ELUC+SLAND (c), from the initialized simulations at a lead time of 1 year together with values from the uninitialized simulations
and estimates from the 2019 Global Carbon Budget (GCB 2019, Friedlingstein et al., 2019). Positive values in (b) and (c) indicate CO2 fluxes
into the ocean or land. The numbers in the legend show the correlation coefficients between the simulations and GCB2019, and the ensemble
mean data are used for this correlation calculation. Predictive skill of the atmospheric carbon growth rate, i.e., GATM (d), air–sea CO2 fluxes,
i.e., SOCEAN (e), and net air–land CO2 fluxes, i.e., ELUC+SLAND (f), in reference to the Global Carbon Budget (GCB 2019, Friedlingstein
et al., 2019). The filled red circles on top of the open red circles show that the predictive skill is significant at a 95 % confidence level,
and the additional larger blue circles indicate an improved significant predictive skill due to initialization in comparison to the uninitialized
simulations. We use a nonparametric bootstrap approach (Goddard et al., 2013) to assess the significance of predictive skill. The results are
based on annual mean data for the time period of 1970–2018.

ily due to the trends in atmospheric CO2 growth rate in the
freely evolving run and in GCB2019. After detrending, the
correlations are higher in the initialized simulations than in
the uninitialized simulations (comparing Fig. 6a, d).

The initialized and uninitialized simulations show a com-
parably good match to GCB2019 with respect to the net
CO2 flux into the ocean (with a high correlation up to 0.98)
(Fig. 4b). The variations in the globally integrated ocean car-

bon sink are driven primarily by external forcing rather than
internal variability, as found in McKinley et al. (2020). Fig-
ures 4b and 5b show that the ocean carbon sink variations (es-
pecially on decadal timescales) in the historical freely evolv-
ing uninitialized run are simulated reasonably well.

The net carbon flux into land shows higher correlations for
initialized simulations at lead time of 1 year and 2 years than
those for uninitialized simulations (Figs. 4c, 5c and 6c, f).
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Figure 5. The same as Fig. 4 but with linearly detrended time series.

This indicates that the interannual variations are better cap-
tured in the initialized model system even after 2 years of free
integration. This result implies a predictability of the air–land
CO2 flux for up to 2 years. The air–land CO2 fluxes are reg-
ulated by El Niño–Southern Oscillation (ENSO) variations
(Loughran et al., 2021; Dunkl et al., 2021), and the poor skill
in predicting ENSO limits the predictability of the air–land
CO2 fluxes. However, the predictive skill of air–land CO2 of
2 years is beyond the predictability horizon of ENSO, which
is limited to a seasonal scale.

We further quantify the predictive skill of the GCB
through all the lead times up to 5 years (Fig. 4b, d, f and
Fig. 5b, d, f). The correlation skill relative to GCB2019 is
significant for the lead time of 5 years in the atmospheric
carbon growth and the ocean carbon sink. However, the skill
for the air–land CO2 flux is not statistically significant at the
95 % level after lead time of 2 years (Fig. 4d–f). The im-

proved predictive skill of initialized hindcasts compared to
the historical uninitialized run occurs at a lead time of 1 year
for atmospheric carbon growth and at a lead time of 2 years
for air–land CO2 flux. The detrended results (Fig. 5d–f) are
similar to those from the original time series. The correla-
tion of atmospheric carbon growth at a lead time of 2 years
in the initialized hindcasts, compared to the estimates from
the GCB2019, is higher than the uninitialized historical run
when detrended. This indicates the contribution of a linear
trend to the skill of atmospheric carbon growth in uninitial-
ized historical runs as shown in Fig. 4d. Although the im-
provement in predictive skill in the initialized simulation rel-
ative to the uninitialized simulation is not significant for at-
mospheric CO2 growth rate, the correlations of both initial-
ized simulations at a lead time of 2 years and the uninitialized
simulations are significantly high, as indicated with solid red
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Figure 6. Time series at a lead time of 2 years for atmospheric carbon growth rate, i.e., GATM (a), net air–sea CO2 fluxes, i.e., SOCEAN (b),
and net air–land CO2 fluxes, i.e., ELUC+SLAND (c), from the initialized simulations together with values from the uninitialized simulations
and estimates from the 2019 Global Carbon Budget (GCB 2019, Friedlingstein et al., 2019). Panels (d), (e), and (f) are the same as (a), (b),
and (c) but show the linearly detrended time series. The time series shown are based on annual mean data for the time period of 1970–2018.
Positive values in panels (b), (c), (e), and (f) imply CO2 fluxes into the ocean or land. The numbers in the legend show the correlation
coefficients between the simulations and GCB2019, and the ensemble mean data are used for the calculation.

dots. This suggests the predictability of atmospheric carbon
growth for up to 2 years.

From our MPI-ESM1.2-LR initialized hindcasts, we find
that predictive skill of the air–sea CO2 flux is relatively high
for up to 5 years and that of the air–land CO2 fluxes is up
to 2 years. This is consistent with previous studies with-
out an interactive carbon cycle (Ilyina et al., 2021; Loven-
duski et al., 2019a, b). Here we have extended the prediction
system for emission-driven simulations, enabling prognostic
CO2 and preserving features of predictability. The prognostic
CO2 from the novel emission-driven decadal prediction sys-

tem suggests a predictive skill of 2 years for the atmospheric
CO2 growth rate.

5 Atmospheric CO2 concentration

Figure 7 shows the spatial pattern and time series of
atmospheric CO2 concentration from MPI-ESM simula-
tions, including uninitialized, assimilation, and initialized
simulations, together with the satellite XCO2 (i.e., atmo-
spheric column-average dry-air mole fraction CO2) and
NOAA_GML observations for the period 2015–2018. The
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Figure 7. Spatial distribution of 2015–2018 mean satellite-based Obs4MIPs XCO2 (a), model assimilation of XCO2 (resampled according
to satellite data availability) (b), and model assimilation of atmospheric CO2 concentration at 1000 hPa level (c). A short time period of 2015–
2018 is used because of the limited temporal coverage of satellite data. The satellite XCO2 data product is obtained from the Climate Data
Store Copernicus Climate Change Service (Reuter et al., 2013). The conversion of model-simulated CO2 to XCO2 is performed according
to Gier et al. (2020) (their Appendix A). Atmospheric CO2 concentration as a global average (d), at Mauna Loa (e), and at the South Pole (f)
from the uninitialized (Uninit) and assimilation (Assim) simulations and initialized simulations at a lead time of 1 year (Init_LY1) compared
to observations over the 2010–2018 period. The locations of Mauna Loa and the South Pole are shown in (c). The numbers in the legend
show the correlation (left) and root-mean-square error (RMSE, right) of the simulations relative to observational data from NOAA_GML
(Dlugokencky and Tans, 2020). The simulated time series from the MPI-ESM simulations, including uninitialized, assimilation, and initial-
ized simulations, are bias corrected by removing the difference in mean states and the linear trend between observations and simulations
according to Boer et al. (2016).

XCO2 from the assimilation simulation (Fig. 7b) shows the
spatial distribution of atmospheric CO2 concentration, which
compares well with the satellite XCO2 (Fig. 7a). High CO2
concentrations are found in the tropics to midlatitudes of
the Northern Hemisphere. Relatively low CO2 concentra-
tions are found in the Southern Hemisphere and the polar
regions. Note the model simulation is several parts per mil-
lion higher than the satellite data, and this deviation can
be attributed back to the uninitialized historical simulation
(see Fig. A3). Additionally, the satellite data do not cover
all the seasons in high latitudes, and therefore the sampled
values from the assimilation simulation also better represent
the summer season’s XCO2 in those regions. The surface
level CO2 shows a more dominant higher concentration in
the Northern Hemisphere than in the Southern Hemisphere
(Fig. 7c). Here we also compare the surface atmospheric CO2

concentration with the measurements at the Mauna Loa and
South Pole stations (locations are shown as stars in Fig. 7c).

The atmospheric carbon burden and therefore CO2 con-
centration is an accumulative quantity and mainly shows a
linear increasing trend in recent decades in response to in-
creasing anthropogenic emissions. Systematically lower or
higher simulated carbon uptake by land and ocean compared
to the real world therefore accumulates over the time period
while the model is integrated. The simulated atmospheric
CO2 concentration can deviate relative to observations. In the
MPI-ESM, simulated global mean atmospheric CO2 concen-
tration is around 8 ppm higher compared to the observations
in the 2010s (see Fig. A4). The NOAA_GML data represent
the average of atmospheric CO2 over marine surface sites
(Dlugokencky and Tans, 2020), and these values are slightly
lower than the values over land since the anthropogenic CO2
emissions occur mainly on land. The time series shown in
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Figure 8. (a) Time series of atmospheric CO2 concentration anomalies from initialized simulations at a lead time of 1 year and 2 years
compared to the NOAA_GML observations (Dlugokencky and Tans, 2020) over the last 10 years. Anomalies are calculated by detrending
the time series and with the climatological mean removed. (b) Time series of CO2 fluxes from initialized simulations at a lead time of 1 year
and 2 years together with estimates from the GCB2019. The red curves present the sum of predictions at a lead time of 2 years and the
previous year of prediction at a lead time of 1 year (air–land_ly1n2). (c) Time series of nino3.4 SST from model simulations and HadISST
(Rayner et al., 2002). The time series are original model outputs and concatenated according to the lead time of years.

Fig. 7d–f are bias corrected by removing the difference of
mean states and linear trends between observations and sim-
ulations according to Boer et al. (2016).

The atmospheric CO2 concentration from assimilation
shown follows the evolution of NOAA_GML observations
well, with a RMSE of 0.22 ppm, which is better than
the uninitialized historical run with a RMSE of 0.47 ppm
(Fig. 7d). In general, the RMSE increases from a lead time
of 1 year to 2 years and decreases until a lead time of 5 years
at both the global and observatory sites of Mauna Loa and
the South Pole (Figs. A5 and A6). The relatively low pre-
dictive skill at a lead time of 2 years in atmospheric CO2
concentration is because the model failed to predict the neu-
tral ENSO events in 2010 and La Niña in 2011 and instead
predicts a strong El Niño in both years (Fig. 8c). The corre-
sponding air–land CO2 fluxes are reversed, i.e., the land takes
up less CO2 than expected in 2011 (Fig. 8b solid blue curve
and solid black curve). As the atmospheric CO2 concentra-
tion is a cumulative quantity, the magnitude of atmospheric
CO2 concentration is affected by the CO2 fluxes in the cur-
rent and previous years. We also present the cumulative air–
land CO2 fluxes of the first- and second-year prediction (see
the red curves in Fig. 8b), and the variations in cumulative
air–land CO2 fluxes are reversed compared to those in atmo-
spheric CO2 concentration changes at a lead time of 2 years,
as shown in Fig. 8a (blue curves). The results indicate that
the air–land CO2 flux and corresponding atmospheric CO2
has predictive skill, though the skill at a lead time of 2 years
is degraded by the poor predictive skill of ENSO in some
starting year predictions.

This retrospective prediction demonstrates the ability of
an ESM-based decadal prediction system in reconstructing
and predicting the global carbon cycle via only assimilating

the physical atmosphere and ocean fields. As presented in
Fig. 5b, d, and f, the hindcasts also show a predictive skill of
5 years for air–sea CO2 fluxes and 2 years for air–land CO2
fluxes and atmospheric carbon growth. Hence, the ability of
ESMs to predict the next year’s GCB is high.

6 Conclusions

For the first time, we have extended a decadal prediction sys-
tem based on the MPI-ESM to include an interactive carbon
cycle driven by fossil fuel emissions that enables prognos-
tic atmospheric CO2 predictions. The new assimilation and
initialized predictions have one more degree of freedom, i.e.,
prognostic atmospheric CO2, and this framework represents
the global carbon cycle as it operates in the real world.

The variations in atmospheric carbon growth rate and CO2
fluxes among the atmosphere, ocean, and land are well re-
constructed in our assimilation simulations, with high corre-
lations (0.75, 0.97, and 0.75) compared to the estimates from
the GCB2019. This provides confidence in the quantification
of the GCB in a closed system within an Earth system model.
Reconstructions of the GCB based on ESMs are therefore
able to potentially provide additional lines of evidence for
quantifying the annual GCB and open new opportunities in
assessing the efficiency of carbon sinks. In particular, this
approach eliminates the budget imbalance term that arises in
GCBs of the GCP due to the combination of various and not
fully consistent model and data approaches.

To further support the GCP in predicting next year’s GCB,
the focus of the predictability investigations is on the lead
time of 1 year. The results show high confidence in predicting
the GCB for the next year with the MPI-ESM prediction sys-
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tem. We further demonstrate that retrospective predictions of
the GCB have a predictive skill for up to 5 years for air–sea
CO2 fluxes and up to 2 years for air–land fluxes and atmo-
spheric carbon growth rate. This indicates that the variations
in atmospheric CO2 are better reproduced in the assimilation
and retrospective predictions than in the uninitialized freely
evolving historical simulations.

The MPI-ESM decadal prediction framework preserves
the high predictive power in an emission-driven configura-
tion, simulating the atmospheric CO2 growth rate with rea-
sonable accuracy. In addition, the emission-driven decadal
prediction system delivers the huge advantage of simulating
the air–land and air–sea CO2 fluxes in response to fossil fuel
and land use change emissions, including all feedbacks in a
consistent framework. Further future efforts that assimilate
more observations to initialize ESMs and assess their predic-
tive skill will lead to more reliable reconstructions and pre-
dictions of global estimates and spatial distributions of CO2
fluxes and atmospheric CO2. This study is based on simula-
tions from a single ESM. Multi-model simulations that adopt
a framework similar to that used in this study will allow for
the identification of robust changes in the global carbon cycle
expected to occur over the next few years.

We have demonstrated that the MPI-ESM-based emission-
driven decadal prediction system exhibits the capability to
reconstruct and predict the GCB and atmospheric CO2 con-
centration variations. Such ESM-based applications will be a
useful tool in supporting global carbon stocktaking in com-
pliance with the goals of the Paris Agreement.

Appendix A

Figure A1. Time series of model simulations of ocean net primary
production, air–sea CO2 flux, and air–land CO2 flux in the pre-
industrial control run. The thin lines are annual mean time series,
and the thick lines are their 20-year running means.
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Figure A2. Climatological mean of ocean net primary production (NPP, a–c) and phosphate concentration (d–f) from observations and
from model simulations. Observation-based NPP data are estimated from ocean color measurements obtained by the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS) instrument of the OrbView-2 satellite for the September 1997–December 2002 period and the Moderate
Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite for the 2003–2014 period (Behrenfeld and Falkowski, 1997, http:
//science.oregonstate.edu/ocean.productivity/index.php, last access: 12 November 2019). Phosphate observations are from the World Ocean
Atlas 2018 (Garcia et al., 2019). The corresponding NPP data from model simulations are averaged over the 1998–2017 period, and phosphate
data are averaged over the 1970–2018 period according to the availability of the observation data.

Figure A3. Time series of atmospheric CO2 concentration from model simulations and observations from 1850 to 2020. The assimilation and
uninitialized simulations are shown with solid orange and blue lines, respectively. The CMIP6 input4MIPs atmospheric CO2 concentration
forcing and the NOAA_GML observation (Dlugokencky and Tans, 2020) are shown with dashed blue lines and solid black lines, respectively.
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Figure A4. Atmospheric CO2 concentration from the assimilation and initialized simulations at a lead time of 1 year together with
NOAA_GML observations (Dlugokencky and Tans, 2020) over the last 10 years. The time series are original model outputs and concatenated
according to the lead time of years.

Figure A5. Atmospheric CO2 concentration from initialized simulations at a lead time of 2–5 years together with NOAA_GML observations
(Dlugokencky and Tans, 2020) over the last 10 years. The time series are original model outputs and concatenated according to the lead time
of years.
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Figure A6. The same as Fig. A5 but with bias-corrected mean states and linear trends.

Table A1. Simulations based on MPI-ESM1.2-LR. The resolution for the atmosphere is T63L47 and for the ocean is GR15L40. The design
of the prediction simulations is according to previous studies (Marotzke et al., 2016; Li et al., 2019). The assimilation starts from the end of
the year 1958 in an uninitialized simulation. The nudging is strong; therefore, assimilation starting from a different uninitialized simulation
would end up with similar evolution of the climate and carbon cycle. Figure 1 illustrates the simulations with evolution of atmospheric CO2
growth rate together with observations. The initialized simulations start from the assimilation yearly from October 31st and run freely for
2 months plus 5 years afterwards. We have 59 runs for each ensemble of initialized simulations starting from 1960 to 2018 annually, and
these run for 5 years and 2 months each, i.e., November 1960–December 1965 for starting year 1960, November 1961–December 1966
for starting year 1961, and so forth until November 2018–December 2023. The ensembles are generated with lagged 1 d initialization, i.e.,
the simulations start from 10 consecutive days from 31 October to 9 November. The ensembles for uninitialized simulations (shown as in
Fig. A3) are generated by starting from different years of the control simulation (Fig. A1).

Simulations Ensemble members Nudging Initial condition Time period

Uninitialized 10 n/a Pre-industrial 1850–2099
Assimilation 1 Atm.: ERA Uninitialized 1959–2018

Ocean: ORAS4 anomalies
(without 5◦ N–5◦ S band)
Sea ice: NSIDC

Initialized 10 n/a Assimilation 1960–1965 . . . 2018–2023

n/a: not applicable.
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