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Abstract
Agent-based modeling is a simulation method in which autonomous agents interact with their environment and one
another, given a predefined set of rules. It is an integral method for modeling and simulating complex systems, such as
socio-economic problems. Since agent-based models are not described by simple and concise mathematical equations,
the code that generates them is typically complicated, large, and slow. Here we present Agents.jl, a Julia-based software
that provides an ABM analysis platform with minimal code complexity. We compare our software with some of the most
popular ABM software in other programming languages. We find that Agents.jl is not only the most performant but also
the least complicated software, providing the same (and sometimes more) features as the competitors with less input
required from the user. Agents.jl also integrates excellently with the entire Julia ecosystem, including interactive applica-
tions, differential equations, parameter optimization, and so on. This removes any ‘‘extensions library’’ requirement from
Agents.jl, which is paramount in many other tools.
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1. Introduction

Many processes in biology, ecology, sociology, and eco-

nomics are characterized by interactions between their

constituent parts.1–9 A large number of interactions lead to

numerous possible states within each system. Such sys-

tems, with many interacting components, are complex,

where a single component cannot generally determine the

system behavior. Each component may have a negligible

effect in isolation, but a significant effect when interacting

with other components.

To model and analyze complex systems, bottom-up

approaches such as agent-based simulations are common,

and sometimes the only feasible approach. Agent-based

models (ABMs) consist of autonomous agents or individu-

als that behave according to a set of predefined rules. The

rules specify how agents interact with one another, as well

as with their environment.

ABMs differ from other analytical models such as dif-

ferential equations. Analytical models use variables that

characterize the whole system, they are top-down. ABMs

use variables that describe the components of a system,

rather than the behavior of the whole system. A modeler

chooses ABM variables based on the understanding of the

system, but not to fit some expectations of outcome. The

outcome emerges10 from all these lower-level interactions,

which are often nonlinear and cannot be captured by

aggregating them. By incorporating spatial and temporal

heterogeneity, each agent may only interact with a local

neighborhood. Such heterogeneity allows for more realis-

tic models that can show behaviors not captured in top-

down approaches.11

An agent-based modeling framework helps define a

general structure for ABMs. Reducing the amount of code

needed to write an ABM, and providing a standardized

model template, makes it easier for model developers to

define models, explore parameters, and collect data, as

well as enabling the target audience to better understand,

compare, reproduce, and modify models (Figure 1). This is
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especially important at present, since increasingly complex

models are being developed in collaboration, where each

party focuses on a single component of the model. A well-

defined and simple framework fosters mutual understand-

ing between collaborators. ABMs can be computationally

heavy programs, and implementing one from scratch that

‘‘works’’ is seldom ‘‘fast’’ the first time around. A well-

designed agent-based simulation framework has taken care

of the largest performance bottlenecks one may encounter

as much as possible. Such a framework also separates the

tasks of defining a model from running it, collecting and

merging model outputs, and analysing the results.

We developed an agent-based simulation framework,

Agents.jl,12 that fulfills the aforementioned tasks. Various

agent-based simulation frameworks exist in different pro-

gramming languages.13 Notable examples include

Swarm,14 NetLogo,15 MASON,16 Repast,17 and Mesa18

(for a comprehensive review, see Abar et al.19). These fra-

meworks differ in their capabilities, scope, learning curve,

amount of code needed to develop a model, speed of exe-

cution, and data collection and visualization features. Our

framework is written purely in the Julia language. This

programming language choice brings advantages over

other frameworks: quick and intuitive model development,

fast model execution, and easy integration with many ana-

lytical tools in the Julia ecosystem (removing the need for

plugins or extensions). Finally, because Julia is a general

purpose language, coding skills developed while learning

and working with Agents.jl are directly transferable to

other situations outside ABMs (while this is in contrast

with, for example, NetLogo, which is mostly a GUI-based,

isolated piece of software).

Here we discuss Agents.jl20 version 4, with many more

features and improvements over the initial release.

Specifically, it supports three additional space types (con-

tinuous space, directed graphs, and OpenStreetMap), bet-

ter visualization functions, more flexible data collection,

simpler source code, automatic parameter exploration, and

interactive model execution and visualization. We show

the advantages of Agents.jl through a detailed comparison

with three other commonly used frameworks: Mesa,

NetLogo, and MASON (Tables 1 and 2 and comparison

section). We also demonstrate its integration with other

Julia packages to create powerful applications, including

differential equations in ABMs, optimization of model

parameters, and construction of novel space types.

2. Simulations with Agents.jl

The design of Agents.jl separates a simulation into simple

components, following the philosophy of giving as much

freedom to the user as possible while also minimizing the

usage complexity. Each of these components integrates

with each other through the help of the Agents.jl API, as

illustrated in Figure 1. In this section, we will describe the

design of Agents.jl, by going through a typical workflow

of an Agents.jl simulation, referencing all aspects of

Figure 1. Our goal here is not to highlight the full list of

Figure 1. Flow chart representation of the Agents.jl framework.
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features of Agents.jl (for this, please see the comparison

section and the online documentation) but instead to high-

light the simplicity of using Agents.jl.

We will use the Schelling segregation model as an

example (a fully detailed version of this model is available

in our documentation, and the example herein is provided

solely to outline the basic principles of Agents.jl). Below

we will be including code snippets that implement the

Schelling model in Agents.jl. These code snippets are typi-

cally stored in a single script and could also be inputted

interactively into a Julia console or separated into multiple

files. All code snippets are based on standard, generic

Julia functions, as Agents.jl can be used like any other

Julia package. This is in contrast to requiring you to code

in a specific environment (NetLogo), defaulting to using a

dedicated ‘‘server’’ (Mesa) or distributing model files in a

binary format (MASON). This makes models from

Agents.jl easier to share and reproduce and also easier to

integrate with the Julia ecosystem and therefore easier to

learn.

2.1. Model creation

In Agents.jl, an ABM is represented by a bundle called

AgentBasedModel that contains all currently alive

agents, the space they reside in, and other model-level

parameters. To create such an AgentBasedModel, the
user must provide the following:

1. The type of agents the model will contain (but not

the agents themselves);

2. The properties of the space they can occupy;

3. The order the agents will activate (optional);

4. The Model-level parameters (optional).

The agent type is defined via a Julia mutable struct,
which in principle is a container of arbitrary data (in the

case of a mixed-agent model, one struct for each agent

type needs to be provided). Such a struct must always

have a field id and pos (for position). For our Schelling

model, the struct looks like:

mutable struct Schelling \: AbstractAgent
id::Int
pos::Dims{2}
mood::Bool
group::Int

end

Notice that the fields of such a struct (besides the man-

datory fields id and pos) can be any possible data struc-

ture supported by the Julia language. Their value can be

altered at any point during the simulation. Rather than

writing this out manually, Agents.jl also provides an

@agent macro that simplifies this process. Next, the user

creates a space structure which can be populated by agents.

Agents.jl currently provides four spaces: grid, graph, con-

tinuous, and open street map. A grid space (for example)

is initialized by:

dims = (10, 10)
space = GridSpace(dims; periodic = false)

All spaces have their appropriate set of configuration

options.

The final setup step is to choose the model-level para-

meters and agent activation order. In Agents.jl, agents acti-

vate sequentially, according to a dynamically determined

order (arbitrary user-defined function which can include

arbitrary events at arbitrary times). In this example, the

activation order does not matter and we use the default

(random) activation. After creating a model-parameter

container, we instantiate the AgentBasedModel with:

properties = Dict(:min_to_be_happy =. 3)
schelling = ABM(Schelling, space; properties)

where ABM is an alias of AgentBasedModel. In the

Julia console, the output of the above command would be:

AgentBasedModel with 0 agents of type Schelling
space: GridSpace with size (10, 10),
metric=chebyshev and periodic=false
scheduler: fastest
properties: Dict(:min_to_be_happy =. 3)

One can populate the model immediately now, by tak-

ing advantage of the API of Agents.jl and functions like

add_agent! or fill_space!, but we skip this step

here for brevity.

Before actually running a simulation, the user must also

define the dynamics of the model. This is done by providing

two functions (which of course themselves can be composed

of simpler parts). First, an agent-stepping function which

decides what happens when each agent is activated, and sec-

ond, a model-step function which is called either before or

after every scheduled agent has performed its operations and

acts on the model as a whole (all agents are still accessible by

the model if needed). Both functions are optional, depending

on the requirements of the simulation. The user creates these

two functions by taking advantage of the API of Agents.jl.

For example, the Schelling model has the rules that:

1. Agents belong to one of two groups (0 or 1);

2. If an agent is in a location with at least three neigh-

bors of the same group, then it is happy;

3. If an agent is unhappy, it keeps moving to new

locations until it is happy.

Datseris et al. 3



This can be implemented with the function shown in

Listing 1.

This function uses several functions from the API of

Agents.jl. Specifically,

� model.x returns the model-level property called x

(agent.x behaves in the same manner).
� nearby_agents(agent,model) returns an

iterator of agents nearby the given agent.
� move_agent_single!(agent, model) moves

the agent to a random, but empty location (if

possible).

In a similar manner, one defines a model-step function. A

full list of functions available from the API is described in

our documentation.

2.2. Simulation run and data collection

Once the aforementioned structures and functions have

been defined, the model can be evolved for one step by

simply doing:

step!(model, agent_step!)

which internally takes care of scheduling agents, activat-

ing them one by one, and applying the given rules to them.

The full form of step! is as follows:

step!(model, agent_step!, model_step!, n)

where n is either an integer (step for n steps) or an arbi-

trary Julia function n(model, s) with s the current step

number. In this case, evolution goes on until n returns

true. Model evolution is in a sense interactive (since

Julia is an interactive language, all data structures involved

in Agents.jl are mutable). Thus, after stepping the model,

the contained agents and/or model parameters have chan-

ged values according to model rules.

Data collection in Agents.jl is also as simple and as gen-

eral as constructing a model. This is accomplished via a

two-step process. First, the user decides which data should

be collected, which can be any combination of:

1. Agent properties;

2. Aggregated agent properties;

3. Aggregated agent properties, conditional on a user-

defined filter;

4. Model properties.

This is done by providing vectors of appropriate entries for

data collection. For example, if the user wanted to collect

data for the property mood and position of the agents, they

would define:

adata = [:mood, :pos]

It is also possible to collect arbitrary data from an agent

by providing a function, for example:

f(agent) = agent.pos[2]- agent.pos[1]
adata = [:mood, f]

This process works identically for model parameters.

As noted above, it is also possible to aggregate agent

data during data collection. For example, while getting the

‘‘mood’’ of each individual agent as data are sometimes

desired, other scenarios may only require an aggregated

result. We can achieve this by modifying the adata vec-

tor above, so that its entries are (:value, aggrega-
tion_function) instead of just:value. For example:

Listing 1. Agent stepping function for the Schelling model.

function agent_step!(agent, model)
agent.mood == true && return # do nothing if already happy
minhappy = model.min_to_be_happy
neighbor_positions = nearby_positions(agent, model)
count_neighbors_same_group = 0
# For each neighbor, get group and compare to current agent’s group
# and increment count_neighbors_same_group as appropriately.
for neighbor in nearby_agents(agent, model)
if agent.group == neighbor.group

count_neighbors_same_group += 1
end

end
# After counting the neighbors, decide whether or not to move the agent.
# If count_neighbors_same_group is at least the min_to_be_happy, set the
# mood to true. Otherwise, move the agent to a random position.
if count_neighbors_same_group >= minhappy

agent.mood = true
else

move_agent_single!(agent, model)
end

end
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using Statistics # access ‘mean‘
right(a::Schelling) = a.pos[1] . 5
adata = [(:mood, sum), (f, mean),

(:mood, sum, right)]

would sum the mood property (and thus in our example

count how many agents are happy), provide the average

value of the f function, and finally the number of agents that

are happy, provided they are in the right side of the space.

Once the user has defined adata (and mdata for

model parameters), they can simply call:

run!(model, agent_step!, model_step!, n;
adata, mdata)

The run! function evolves the model in the same manner

as step!, but collects data in addition. It provides the

results in the form of a DataFrame: the most common

Julia tabular data format. An example output of the execu-

table version of the Schelling model (from our documenta-

tion) is as follows:

2.3. Visualization

Visualization follows the same principles as data collec-

tion. The user provides a few simple functions which

decide how an agent should be represented. These user-

defined functions are then given to the main plotting func-

tion abm_plot that is provided by InteractiveDynamics.jl

(a package providing visualization and interactive applica-

tions for the packages of the JuliaDynamics organization).

Using the current Schelling example, we can define two

functions for the color and shape of the agents as follows:

# access plotting functions & backend
using InteractiveDynamics, GLMakie
groupcolor(a) =
ifelse(a.group == 1, :blue, :orange)

groupmarker(a) =
ifelse(a.group == 1, :circle, :rect)

fig, _ abm_plot(model; ac = groupcolor,
am = groupmarker, as = 4)

fig # display figure

The keywords ac, am, and as decide the agent color,

marker type, and size, respectively. The output of the

above code block (for the documentation version of the

Schelling model) is an image like Figure 2.

Changing abm_plot to abm_video will instead pro-

duce a video of the time evolution of the ABM using same

visualization without any extra effort from the user. If the

model posses some property that has a value at every part of

the space (e.g., the amount of grass), it is trivial to visualize

this property as a heatmap below the agents simply by pro-

viding the argument heatarray =:grass to the plotting

functions. Agents.jl will also automatically animate changes

in the property by changing the color of the heatmap.

Making composable animations with multiple sub-plots is

also straightforward, and we refer to the ‘‘Sugarscape’’

example in our online documentation for additional details.

2.4. Interactive applications

By adding only a couple of lines of code (LOC) to the

existing simple interface for data collection and plotting

within Agents.jl, we can immediately explore an ABM in

an interactive application that looks like Figure 3. The

data-collection flags adata and mdata are reused to

make the timeseries plot in the right side of the window.

The arguments ac, am, and as of the function abm_-
plot are reused as is. Finally, the user can choose some

model-level parameters to vary interactively during the

simulation, by providing a dictionary that maps parameter

names to value ranges. All in all, the only extra LOC the

user has to write can be expressed as (we continue with

the Schelling example used throughout the article):

Figure 2. An example plot of the implementation of the
Schelling segregation model in Agents.jl.

Step
Int64

sum_mood
Int64

maximum_x
Int64

0 0 20
1 219 20
2 278 20
3 299 20
4 312 20
5 313 20
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using InteractiveDynamics, GLMakie
parange = Dict(:min_to_be_happy =. 0:8)
alabels = ["happy", "avg. x"]

fig, adf, mdf = abm_data_exploration(
model, agent_step!, dummystep, parange;
ac=groupcolor, am=groupmarker, as=10,
adata, alabels

)

The only new thing the user had to define was the

parange and alabels variables, where the latter only

affects the shown labels of the timeseries. This is in strik-

ing contrast to the user-defined input necessary by, for

example, Mesa, which requires much more user input for

the same level of interaction.

3. Framework comparison

ABMs have had a long history, with many tools which

enabled their construction along the way. In Table 1, we

compare the software Agents.jl with three current and pop-

ular ABM software, Mesa, NetLogo, and MASON, to

assess where Agents.jl excels and also may need some

future improvement. This assessment is quantitative where

it can be, although many aspects of the comparison are

qualitative by nature. To keep the table as objective as

possible, we only consider features that are directly avail-

able from the exported API of each software, and do not

consider things a user could do with the software with an

arbitrary amount of effort, as this is subjective and also

depends on the user’s level of expertise. We categorize

our results first by having either poor/none (red color),

basic (yellow color), or good functionality (green color). If

there is a clear category winner, this is labeled as Current

Best (blue color).

Our major goal in this paper is to highlight that

Agents.jl is a framework that is simple and easy to use

(something hard to showcase in a comparison table, but

already illustrated in the ‘‘Simulations with Agents.jl’’ sec-

tion). Regardless, even though Agents.jl is a new-comer

ABM software (development started December 201820), it

becomes clear from Table 1 that we already match the

main functionality of decades-old competitors (all of

which are under active development), most of the time

exceeding it, with only a few aspects being available in the

competitors and not in Agents.jl (e.g., GIS integration).

Clarifications mapping to the superscript numbers in

Table 1 are given below:

1. We score Dimensionalty ‘‘Current Best’’ for

Agents.jl since it provides true N-dimensional

spaces with higher-order search functions and

grouping utilities. In addition, the Battle Royale

example in our documentation showcases a novel

application of this capability. An N-dimensional

space, with a 2D spatial grid and the higher-order

dimensions representing agent categories. While

Figure 3. An interactive application of an agent-based model. Controls on the bottom left are created automatically and the
simulation speed is tuned. Red vertical lines in the timeseries of the collected data denote when the ‘‘reset’’ button was pressed.
Here it was pressed after the slider of the parameter ‘‘minimum to be happy’’ was changed from 3 to 6, and then to 8.
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Table 1. A comparison of four ABM frameworks covering the objective and subjective categories focusing on ease of use, available
functionality, and performance.

Agents.jl 4.4 Mesa 0.8 NetLogo 6.2 Mason 20.0

Objective property comparison

Continuous space Yes Yes Yes Yes
Graph space Yes, mutable Only undirectional Link agents (not

space)
Networks (not space)

Grid space Yes Yes (+ hexagonal) Yes Yes (+ hexagonal,
triangular)

OpenStreetMap space Yes No No No
Dimensionality Any1 2D 2D and 3D (separate

applications)
2D and 3D (complicated
installation for 3D)

License permissiveness MIT Apache v2.0 GPL v2 Academic Free License
Mixed-agent models Yes Yes Yes Yes
Simulation termination After ‘‘n’’ steps or

user-provided Boolean
condition of model
state

Explicitly written user
loop

Manually by pressing a
button on the
interface, stop
command in code

When schedule is empty,
or user provided custom
finish function

Parameter types Anything Anything Float64, Lists,
Hashtables, and Assoc.
Arrays in the table
extension

Anything

Modeling and analysis
in the same language

Yes, Julia v1.5+ Yes, Python v3+ No Yes, Java but designed to
work within the console
or GUI of the applet

Maximum memory
capacity

Hardware limits Hardware limits 1 GB, manually
expanded by
increasing JVM heap

1 GB, manually expanded
by increasing JVM heap

Distributed
computing2

Yes No. BatchRunnerMP is
only multithreaded

No. BehaviorSpace is
only multithreaded

Yes

Interop with external
libraries

Yes, also couples to
anything in Python/R/
C/C+ + seamlessly

Yes, modular design Partial, via the
Extensions API. JVM
languages (Scala,
Clojure) and Python

Partial. Extensions in the
‘‘contrib’’ directory. No
simple user API

Language ecosystem
integration

By design. Examples:
black box optimization
and differential
equations

Any of Python’s
analytical tools can be
used

Complex. Must create
plugins or use Control
API

Warned against (e.g.,
Random), provides
custom types in place of
Java primitives

Browser-based online
ABM execution

No No Yes (NetLogo Web) No

Data collection Any chosen
parameter/property or
function mapped over
them. Aggregating and
filtered aggregate
functions

Any chosen
parameter/property.
Aggregating functions.
No conditional
options

Boolean, number,
string and lists of
these types

Inspectors track and
chart any parameter/
property. Entire model
saved to disk via
checkpointing, no custom
export

Checkpoints (model
IO)

Yes No Yes Yes

Scheduling As added, by property,
by type, filtered,
random, custom
function

As added, random,
staged

Custom function Custom function

Finding nearest
neighbors

Same API for all
spaces, custom ranges

Covers all spaces Covers graphs,
cardinal directions and
city blocks on grids
and continuous space

Cardinal, city block, Von
Neumann, and radial
types. No 3D search in
continuous space

Adding agents to
space

Specified position,
random, random
empty, fill

Specified position Specified position Specified position

(continued)
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agent categories can be represented as standard

agent properties, using additional ‘‘spatial’’ dimen-

sions for them instead allows finding nearest neigh-

bors along these dimensions, which would become

cumbersome to do via the property approach.

2. Julia is known to provide tools for easily achieving

excellent performance through parallelization.

Agents.jl contains a documentation page dedicated to

model performance and parallelization tips instructing

users to appropriate sources. Furthermore, we provide

automatic distributed computing (i.e., across multiple

CPUs) for ensemble simulations or parameter scan-

ning. Notice that in-model parallelization is outside

the control of Agents.jl as it depends on the actual

model operations. This stems from the nature of

ABMs, where same-memory-location modifications

are done all the time by killing and/or adding agents

and is an active concern for all ABM frameworks.

3. Agent sampling is one of the many unique features

of Agents.jl. It is the ability to select randomized

subsets of the model population based on certain

properties. Useful in biological applications, for

example.

4. Our design of space types allows fundamentally

new spaces to be created with relatively low effort.

Specifically, a new space can be created by defin-

ing a new Julia struct and extending only 5 meth-

ods (i.e., defining 5 functions). The resulting space

Table 1. Continued

Agents.jl 4.4 Mesa 0.8 NetLogo 6.2 Mason 20.0

Automatic agent
creation and addition
from given attributes

Yes No Yes No

Moving agents Unified API for all
space types. Also
move along pre-
planned routes

Unified API for all
space types

Specify position, only
Turtle Agents move

Specify position, move
with mouse in GUI

Killing agents Individual, all, specified
by function

Individual, all Individual, all, specified
by function

Individual, all

Random number
distributions

Any Any Normal, Poisson,
Exponential, Gamma

Uniform, Gaussian Can
use COLT library but not
recommended

Agent sample and
replacement3

Yes No No No

GIS data No No GIS Extension GeoMason Extension
Parameter scanning Yes Yes Yes Yes
New space-type API4 Yes No No No
Advanced API for
continuous space

Yes No No No

Path-finding Yes No No No
Data collection low-
level API

Yes No Yes Yes, but only via
checkpointing

GUI for simulation
setup5

No User implemented Yes User implemented

Subjective property comparison; LOC: lines of code

Ease of installation One-click for Julia,
one command for
package

One-click for Python,
one command for
package

One-click JRE install
Run jar file

One-click JRE, install
libraries, complex Java3D
install Run jar file

Documentation
quality6

Short, with tutorials,
15+ executable
examples, API listings,
and integration
examples

Short, has a tutorial
but no hosted run
examples online.
Space documentation
does not exist.

Extensive, split over
website and GitHub
wiki (hard to search).
Community adoption
covers up for it.

Extensive, over 350 pages
in pdf and a developer
dump of class properties.
Hard to navigate.

Code complexity of
the model (see Abar
et al.19)

Simple Moderate Simple High

Complexity of
visualization

Simple API for both
plotting and
interactions (5 LOC)

Simple API for
plotting, complex for
interactions

Simple, function based.
Extend agent
properties and plots

Complex API, many LOC

Colors represent the implementation quality. Red: poor/none; yellow: basic; green: good; blue: clear class leader. Further details corresponding to

the superscript numbers are given in the main text.
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then integrates with all of the Agents.jl API as any

other space would. For example, the entire imple-

mentation of our graph space is only 75 Lines Of

Code (LOC).

5. Notice that the lack of a GUI present for simula-

tion setup in Agents.jl is not really a lack of feature

but rather a more natural consequence of the inte-

gration of Agents.jl with the entire Julia ecosys-

tem. Julia is run in several diverse settings, from

the console (REPL), to many standard IDEs like

VSCode, to Jupyter and Pluto notebooks. It is also

extremely straightforward to run any of these on a

remote server via ssh. A GUI would not be able to

run in any of these scenarios, which is in fact a

downside of NetLogo and MASON (headless

scripts accompany both we concede, but are con-

sidered an afterthought and have little support or

flexibility). The fact that Agents.jl run in any envi-

ronment that Julia can run allows it integrate in a

straightforward manner into larger decision-

support systems as only a sub-component of the

whole process.

6. While the actual documentation of NetLogo is not

on par with that of Agents.jl (according to our com-

parison), NetLogo has several associated external

resources like books introducing ABMs based on

NetLogo as well as educational courses. These

resources however cannot be considered as part of

the software (which is what we compare here), as

they are not under its license. Nevertheless, they

make it easier to learn.

Table 2 provides the benchmarks for four standard ABMs:

� Flocking, a ContinuousSpace model, chosen over

other models to include a MASON benchmark.

Agents must move in accordance with social rules

over the space;

� Wolf Sheep Grass, a GridSpace model, which

requires agents to be added, removed, and moved,

as well as identify the properties of neighboring

positions;
� Forest Fire, which provides comparisons for cellu-

lar automata type ABMs (i.e., when agents do not

move and every location in space contains a single

agent);
� Schelling, an additional GridSpace model to com-

pare with MASON. Simpler rules than Wolf Sheep

Grass.

The results are characterized in two ways: how long it took

for each model to perform the same scenario (initial condi-

tions, grid size, run length, etc. are the same across all fra-

meworks), and how many LOC it took to describe each

model and its dynamics. We use this result as a metric

(albeit imperfect) to represent the complexity of learning

and working with a framework. The time taken is pre-

sented in normalized units, measured against the runtime

of Agents.jl. In other words, the results do not depend on

any computers specific hardware.

For LOC, we use the following convention: code is for-

matted using standard practices and linting for the associ-

ated language. Documentation strings and in-line

comments (residing on lines of their own) are discarded, as

well as any benchmark infrastructure. NetLogo is assigned

two values since its files have a code base section and an

encoding of the GUI. Since many parameters live in the

GUI, we must take this into account. Thus, 375 (785) in a

NetLogo count means 375 lines in the code section, a total

of 785 lines in the file. An additional complication to this

value in NetLogo is that it stores plotting information (col-

ors, shapes, and sizes) as agent properties, and as such the

number outside of the bracket may be slightly inflated.

Analyzing the performance between the frameworks

was difficult, since each system implements example mod-

els in their own unique manner. This highlights the lack of

Table 2. Benchmarks of four model types across four ABM frameworks.

Agents.jl 4.4 Mesa 0.8 NetLogo 6.2 Mason 20.0

Flocking (continuous)
implementation

1 (normalized) 62 LOC 26.8× 102 LOC 10.3× 82 (689) 2.1× 369 LOC

Wolf-Sheep-Grass
(grid) implementation

1 (normalized) 122
LOC

31.9× 227 LOC 10.3× 137 (871)
LOC

No implementation
available

Forest Fire (grid)
implementation

1 (normalized) 23 LOC 125.6× 35 LOC 53.0× 43 (545) LOC No implementation
available

Schelling (grid)
implementation

1 (normalized) 31 LOC 24.9× 56 LOC 8.0× 60 (743) LOC 14.3× 248 LOC

Run-times are normalized against the Agents.jl time, thus a value of 2× means it took twice as long to complete the benchmark in the respective

framework. Lines of code (LOC) are provided for each model implementation. NetLogo stores configuration data in the GUI, so we provide the

model stepping LOC together with the complete file LOC in parenthesis.
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standardized bench-marking models, perhaps stemming

from the lack of communication between the ABM com-

munities. Since the Wolf-Sheep-Grass model requires fra-

meworks to utilize most of the common machinery

(multiple agent types, adding, deleting, and moving

agents), we would appreciate if the MASON community

(and ABM communities as a whole) could provide an

implementation of this model for future comparisons.

From the analysis we present here, Agents.jl is a clear

winner in performance, most of the time by an order of

magnitude. Since typical ABM simulations can cover

hours of run time, even a 23 speed up is a large gain.

JuliaDynamics hosts the ABM Framework Comparisons

repository21 for anyone who wishes to validate these

results, improve implementations, or add new comparisons.

4. Ecosystem interaction examples

In this section, we want to showcase how easily Agents.jl

interacts with the rest of the Julia ecosystem. This is possi-

ble for two reasons: first, the minimal design of Agents.jl,

as well as the support it provides for low-level interfaces.

Second, the design of the core of the Julia language itself,

which allows straightforward inter-package communica-

tion. Note that the examples we showcase here have fully

detailed documentation online, explaining precisely how

they work. Our goal here is to highlight how easy it is for

Agents.jl to ‘‘communicate’’ with other Julia packages,

removing any need for a plugin or extension ecosystem

and thus making the user experience smoother.

4.1. Ordinary differential equations with
DifferentialEquations.jl

Coupling a set of differential equations (DEs) to an ABM

has historically led to a complex set of validation and sen-

sitivity tests,22 which stem from discretizing a DE in some

manner (predominantly via the forward Euler method) to

conform with the step function of the ABM framework.

The tests outlined in Martin and Schlüter22 concerning

sensitivity can be handled automatically by integrating

Agents.jl with DifferentialEquations.jl.23

To demonstrate this, our documentation (under the

‘‘Ecosystem Integration’’ section) describes a small fishery

model where fish stocks are managed on a yearly basis. A

number of fishers, with differing competence at catching

fish, work in a common catchment. This is managed by

some agency that makes sure the catchment is not over-

fished. The fish population in the catchment is modeled

via a logistic function:

ds

dt
= s 1� s

120

� �
� h ð1Þ

where s is the fish stock with some maximum carry capac-

ity (120 here) and a harvest rate h.

The status-quo method to implement such a hybrid

dynamical system, ABM, is to discretize this equation to:

st+ 1 = st + st(1� st=120)� h ð2Þ

with a timestep of 1 normalized unit initially. To validate

this result, it would be important to undertake a step size

analysis as a bare minimum, and to be thorough, use a

scheme such as the one outlined in Martin and Schlüter.22

Thankfully, the issues caused by discretization do not need

to exist within an Agents.jl model, as we can couple our

model with a continuous implementation of the DE from

DifferentialEquations.jl.

We can see from Figure 4 that a forward Euler method

with no step size optimization performed (or further sensitivity

checks as discussed above) will yield an average discrepancy

of 30 fish. Integration with DifferentialEquations.jl has pro-

vided us with a stable, valid solution—with an added bonus

of efficiency. Since the chosen solver (in this case, Tsit5)
required less allocations and computations to obtain the result,

we achieved a 63 speedup for this model.

4.2. Agents on Open Street Maps

With our new space type API, building ABMs on novel

spaces is no longer a months-long development process.

An OpenStreetMapSpace has been introduced in

Agents.jl 4.0, which is a continuous space that constrains

agents onto roads and streets of any provided real-world

map obtained from Open Street Map. We leverage the

OpenStretMapX.jl package and build methods specific to

agent navigation and neighbor searching, which culminates

in incredibly simple, yet powerful map-based models.

Figure 4. Comparative result of a continuous DE solution
(Tsit5) and a non-optimal Eulerian discretization. This error
comes about due to the oversimplification of a continuous
function into a discrete solution, which occurs frequently in
published ABM examples.
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Our Zombie Outbreak example (see documentation

online) explains how a simple agent constructor:

@agent Zombie OSMAgent begin
infected::Bool

end

coupled with 8 lines of movement dynamics can depict a

city in chaos after a zombie infection (Figure 5).

4.3. Parameter optimization

Describing the logic of an ABM is usually not compli-

cated, even when ABMs have a large number of heteroge-

neous agents.24 However, exploring the effect of model

parameters has the possibility to become infeasible. ABMs

are often computationally more expensive than analytical

models, and brute force algorithms do not suit parameter

exploration since the size of the parameter space of a sim-

ple model with 10 parameters and 10 possible values per

parameter is 1010. Even if each simulation takes only 1 s,

exploring the entire parameter space would take more than

300 years. In addition, each parameter setting needs to be

run multiple times and an average taken, since most ABMs

are stochastic. Machine learning algorithms handle the

large parameter space by differentiation. ABMs, however,

are not (universally) differentiable.

We must resort to optimization strategies for non-

differentiable functions. One such strategy is evolutionary

algorithms.25 They are inspired from how living organisms

evolve in a constantly changing environment and with

large parameter spaces, similar to how ABMs often need

to explore large parameter spaces.

The Agents.jl documentation demonstrates how an epi-

demiological model can be optimized with evolutionary

algorithms using the BlackBoxOptim.jl package. We opti-

mize a number of parameters of a SIR model (SIR stands

for Susceptible-Infected-Recovered and is a simple model

for infection dynamics commonly used in ABMs) expli-

citly accounting for multiple cities/regions. Specifically,

we tune the transmission rate, death rate, migration rate,

infection and detection times, and reinfection probability

to minimize the number of infections. We note that to opti-

mize the ABM, the simulation code does not need to be

changed. All we need is a cost function that takes model

parameters as input, runs the model one or more times, and

returns one or more numbers as the objectives that need to

be minimized (here, the number of infected individuals

and the negative of the number of individuals). With our

initial values, 94% of the population gets the infection.

The optimization finds that reducing the transmission rate

is enough for reducing the death rate and infections to

0.3% and 0.04% of the population, respectively, despite

increasing the reinfection probability, migration rate, and

death rate. Accessibility of optimization tools in the Julia

ecosystem and their easy integration with Agents.jl make

ABM analysis much easier.

5. Conclusion and future work

We have presented an overview of the capabilities of

Agents.jl, showing the simplicity and power of this frame-

work compared to long-established frameworks (e.g.,

NetLogo and MASON), as well as contemporaries (Mesa).

From our perspective, the biggest take-away of this paper

is that Agents.jl is a framework that is simple to use,

requiring small amount of written code from the user, and

overall easy to learn. Despite this, our comparison shows

that Agents.jl always exceeds other frameworks in perfor-

mance, and often also in capability. An added bonus is

how simple it is for a user to incorporate other parts of the

already large, and constantly evolving, Julia ecosystem

into their model. With this, we hope to motivate more

users to try out Agents.jl, which will enable them to extend

the frontier of possibilities in the world of ABMs, due to

faster prototyping and faster code execution.

Several possible future directions already exist for

Agents.jl, some planned by the developers and others

requested by users. A useful new feature would be crowd

dynamics and obstacle avoidance, as well as a new type of

grid space based on hexagonal grids, rather than the exist-

ing rectangular. The ODD (Overview, Design concepts,

Details) protocol26 is a formal description of ABMs,

Figure 5. Agents following planned routes on a map, interacting
with passers-by. Black markers: agents, green markers: zombies!
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aiming to make models more understandable and less sub-

ject to criticism for being irreproducible. While Agents.jl

models are reproducible by design, a planned feature will

leverage Julia’s strong macro language capability to pre-

fill many aspects of the standard ODD template.

Integration into the greater Julia ecosystem is useful to

highlight as well: one upcoming integration will target

Bayesian inference for decision making. A performance

issue Agents.jl currently has is regarding multi-agent mod-

els (even though, it is still the fastest software in this

regard). In the future, we plan to re-work our multi-agent

internals from scratch to lead to more performant, but not

more complicated, designs.

Given that Agents.jl is an open-source project, we wel-

come new users to add to the wish-list of functionalities by

opening a new issue in our GitHub repository, or even bet-

ter, to contribute new features via a pull request.
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