Ground-level ozone pollution in China: a synthesis of recent findings on influencing factors and impacts

Tao Wang¹*, Likun Xue², Zhaozhong Feng³, Jianing Dai¹,⁴ and Yingnan Zhang², Yue Tan¹
¹ Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
² Environment Research Institute, Shandong University, Qingdao 266237, China
³ School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
⁴ Environmental Modeling Group, Max Planck Institute for Meteorology, Hamburg, Germany

* Correspondence: cetwang@polyu.edu.hk

Supporting information

Table S1. List of major Chinese institutions and universities with active ozone research

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Institutions/Universities</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMS</td>
<td>Chinese Academy of Meteorological Sciences</td>
</tr>
<tr>
<td>CAS</td>
<td>Institute of Atmospheric Physics, Chinese Academy of Sciences</td>
</tr>
<tr>
<td>CCDC</td>
<td>Chinese Center for Disease Control and Prevention</td>
</tr>
<tr>
<td>CRAES</td>
<td>Chinese Research Academy of Environmental Sciences</td>
</tr>
<tr>
<td>FDU</td>
<td>Fudan University</td>
</tr>
<tr>
<td>GIP</td>
<td>Guangzhou Institute of Geochemistry, Chinese Academy of Sciences</td>
</tr>
<tr>
<td>HKUST</td>
<td>The Hong Kong University of Science and Technology</td>
</tr>
<tr>
<td>IAP</td>
<td>Institute of Atmospheric Physics, Chinese Academy of Sciences</td>
</tr>
<tr>
<td>JNU</td>
<td>Jinan University</td>
</tr>
<tr>
<td>LZU</td>
<td>Lanzhou University</td>
</tr>
<tr>
<td>NJU</td>
<td>Nanjing University</td>
</tr>
<tr>
<td>NUIST</td>
<td>Nanjing University of Information Science & Technology</td>
</tr>
<tr>
<td>OUC</td>
<td>Ocean University of China</td>
</tr>
<tr>
<td>PKU</td>
<td>Peking University</td>
</tr>
<tr>
<td>Poly U</td>
<td>The Hong Kong Polytechnic University</td>
</tr>
</tbody>
</table>
List of papers found through searches described in section 2 of the main manuscript

5. Bei, Naifang, Zhao, Linna, Wu, Jiarui, Li, Xia, Feng and Tian 2018 Impacts of sea-land and mountain-valley circulations on the air pollution in Beijing-Tianjin-Hebei (BTH): A case study Environmental Pollution
22. Chang L Y, He F F, Tie X X, Xu J M and Gao W 2021 Meteorology driving the highest ozone level occurred during mid-spring to early summer in Shanghai, China Science of the Total Environment 785
emission inventories *Atmospheric Environment* **246**

32. Chen P, Zhang Q, Quan J, Gao Y, Zhao D and Meng J 2013 Ground-high altitude joint detection of ozone and nitrogen oxides in urban areas of Beijing *J Environ Sci (China)* **25** 758-69

44. Chen Z, Cao J X, Yu H and Shang H 2018 Effects of Elevated Ozone Levels on Photosynthesis, Biomass and Non-structural Carbohydrates of Phoebe bournei and Phoebe zhennan in Subtropical

46. Chen Z Y, Li R Y, Chen D L, Zhuang Y, Gao B B, Yang L and Li M C 2020 Understanding the causal influence of major meteorological factors on ground ozone concentrations across China Journal of Cleaner Production 242

60. Dai J N and Wang T 2021 Impact of international shipping emissions on ozone and PM2.5 in East Asia during summer: the important role of HONO and CINO2. *Atmospheric Chemistry and Physics* 21 8747-59

72. Ding S, He J H and Liu D F 2021 Investigating the biophysical and socioeconomic determinants of China tropospheric O-3 pollution based on a multilevel analysis approach. *Environmental Geochemistry and Health* 43 2835-49

characteristics of carbon dioxide and ozone over a rural-cropland area in the Yangtze River Delta of eastern China Sci Total Environ 757 143750

78. Dufour G, Eremenko M, Orphal J and Flaud J M 2010 IASI observations of seasonal and day-to-day variations of tropospheric ozone over three highly populated areas of China: Beijing, Shanghai, and Hong Kong Atmospheric Chemistry and Physics 10 3787-801

84. Fei L, Chan L, Bi X, Guo H, Liu Y, Lin Q, Wang X and Sheng G 2016 Effect of cloud-to-ground lightning and meteorological conditions on surface NOx and O3 in Hong Kong Atmospheric research 182 132-41

103. Fu Y and Liao H 2014 Impacts of land use and land cover changes on biogenic emissions of volatile organic compounds in China from the late 1980s to the mid-2000s: implications for tropospheric ozone and secondary organic aerosol *Tellus B* 66

Climate Change on Surface Ozone during Summer in the Yangtze River Delta Region, China *Int J Env Res Pub He* 16

111. Gao J, Zhu B, Xiao H, Kang H, Hou X, Yin Y, Zhang L and Miao Q 2017 Diurnal variations and source apportionment of ozone at the summit of Mount Huang, a rural site in Eastern China *Environmental Pollution* 222 513-22

114. Gao L, Yue X, Meng X, Du L, Lei Y, Tian C and Qiu L 2020 Comparison of Ozone and PM2.5 Concentrations over Urban, Suburban, and Background Sites in China *Advances in Atmospheric Sciences* 37 1297-309

135. Gu Y X, Yan F X, Xu J M, Qu Y H, Gao W, He F F and Liao H 2020 A measurement and model study on ozone characteristics in marine air at a remote island station and its interaction with urban ozone air quality in Shanghai, China *Atmospheric Chemistry and Physics* **20** 14361-75

136. Guan Y, Xiao Y, Wang F Y, Qiu X H and Zhang N N 2021 Health impacts attributable to ambient PM2.5 and ozone pollution in major Chinese cities at seasonal-level *Journal of Cleaner Production* **311**

intercontinental transport of tropospheric ozone from Africa to Asia. *Atmospheric Chemistry and Physics* **18** 4251-76

147. He H D, Qiao Z X, Pan W and Lu W Z 2017 Multiscale multifractal properties between ground-level ozone and its precursors in rural area in Hong Kong. *J Environ Manage* **196** 270-7

China: Influence of Sea-land Breezes and Regional Transport *Aerosol Air Qual Res* **19** 1734-48

168. Itahashi S, Uno I and Kim S 2013 Seasonal source contributions of tropospheric ozone over East Asia based on CMAQ-HDDM *Atmospheric Environment* **70** 204-17

177. Jin X M and Holloway T 2015 Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument *J Geophys Res-Atmos* **120** 7229-46

184. Lee Y C, Chan K L and Wenig M O 2019 Springtime warming and biomass burning causing ozone episodes in South and Southwest China *Air Qual Atmos Hlth* **12** 919-31

66

1: Overview Atmospheric Chemistry and Physics 19 12993-3015

217. Li L, Manning W J, Tong L and Wang X K 2015 Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O-3) on growth and physiology in the suburb of Beijing, China Environmental Pollution 201 34-41

218. Li L Y, Xie S D, Zeng L M, Wu R R and Li J 2015 Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China Atmospheric Environment 113 247-54

222. Li M M, Song Y, Mao Z C, Liu M X and Huang X 2016 Impacts of thermal circulations induced by urbanization on ozone formation in the Pearl River Delta region, China Atmospheric Environment 127 382-92

228. Li P, Yin R, Shang B, Agathokleous E, Zhou H and Feng Z 2020 Interactive effects of ozone exposure and nitrogen addition on tree root traits and biomass allocation pattern: An experimental case study and a literature meta-analysis Sci Total Environ 710 136379

233. Li R, Cui L L, Fu H B, Li J L, Zhao Y L and Chen J M 2020 Satellite-based estimation of full coverage ozone (O3) concentration and health effect assessment across Hainan Island Journal of Cleaner Production 244
234. Li T W and Cheng X 2021 Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach Int J Appl Earth Obs 101
235. Li X B, Fan G Q, Lou S R, Yuan B, Wang X M and Shao M 2021 Transport and boundary layer interaction contribution to extremely high surface ozone levels in eastern China Environmental Pollution 268
Mellouki A, Ren Y G and Zhang Q Z 2021 Atmospheric nitrous acid (HONO) in an alternate process of haze pollution and ozone pollution in urban Beijing in summertime: Variations, sources and contribution to atmospheric photochemistry *Atmospheric Research* **260**

255. Lin M, Holloway T, Oki T, Streets D G and Richter A 2009 Multi-scale model analysis of boundary layer ozone over East Asia *Atmospheric Chemistry and Physics* **9** 3277-301

260. Ling Z H, Guo H, Cheng H R and Yu Y F 2011 Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China *Environmental Pollution* **159** 2310-9

262. Ling Z H, Zhao J, Fan S J and Wang X M 2017 Sources of formaldehyde and their contributions to photochemical O-3 formation at an urban site in the Pearl River Delta, southern China *Chemosphere* 168 1293-301

268. Liu H Z, Liu J F, Liu Y, Ouyang B, Xiang S L, Yi K and Tao S 2020 Analysis of wintertime O-3 variability using a random forest model and high-frequency observations in Zhangjiakou-an area with background pollution level of the North China Plain *Environmental Pollution* 262

276. Liu R, Ma Z, Liu Y, Shao Y, Zhao W and Bi J 2020 Spatiotemporal distributions of surface ozone
levels in China from 2005 to 2017: A machine learning approach Environ Int 142 105823

277. Liu R R, Chen J Y, Li G Y, Wang X M and An T C 2019 Cutting down on the ozone and SOA formation as well as health risks of VOCs emitted from e-waste dismantlement by integration technique J Environ Manage 249

apply O-3 and PM2.5 collaborative control to practical management in China: A study based on meta-analysis and machine learning Science of the Total Environment 772

control strategies. *Journal of Environmental Sciences* **105** 138-49

307. Lv B, Cobourn W G and Bai Y 2016 Development of nonlinear empirical models to forecast daily PM2.5 and ozone levels in three large Chinese cities *Atmospheric Environment* **147** 209-23

313. Ma J and van Aardenne J A 2004 Impact of different emission inventories on simulated tropospheric ozone over China: a regional chemical transport model evaluation *Atmospheric Chemistry and Physics* **4** 877-87

316. Ma M L, Bai K X, Qiao F X, Shi R H and Gao W 2018 Quantifying impacts of crop residue burning in the North China Plain on summertime tropospheric ozone over East Asia *Atmospheric Environment* **194** 14-30

317. Ma M L, Yao G B, Guo J P and Bai K X 2021 Distinct spatiotemporal variation patterns of surface ozone in China due to diverse influential factors *J Environ Manage* **288**

319. Ma S, Shao M, Zhang Y, Dai Q and Xie M 2021 Sensitivity of PM2.5 and O3 pollution episodes to meteorological factors over the North China Plain *Sci Total Environ* **792** 148474

321. Ma Y, Lu K, Chou C C-K, Li X and Zhang Y 2017 Strong deviations from the NO-NO2-O3 photostationary state in the Pearl River Delta: Indications of active peroxy radical and chlorine radical chemistry *Atmospheric Environment* **163** 22-34

324. Ma Z Q, Xu J, Quan W J, Zhang Z Y, Lin W L and Xu X B 2016 Significant increase of surface ozone at a rural site, north of eastern China *Atmospheric Chemistry and Physics* **16** 3969-77

326. Madaniyazi L, Nagashima T, Guo Y, Pan X and Tong S 2016 Projecting ozone-related mortality in East China *Environ Int* **92-93** 165-72

332. Miao Y C, Che H Z, Zhang X Y and Liu S H 2021 Relationship between summertime concurrent PM2.5 and O-3 pollution and boundary layer height differs between Beijing and Shanghai, China *Environmental Pollution* **268**

Ni R J, Lin J T, Yan Y Y and Lin W L 2018 Foreign and domestic contributions to springtime ozone over China Atmospheric Chemistry and Physics 18 11447-69

Pan L, Zou X J, Lie G W, Xue L and Chen H Y 2020 Ozone-induced changes in physiological and biochemical traits in Elaeocarpus sylvestris and Michelia chapensis in South China Atmospheric Pollution Research 11 973-80

Pan X B, Mu Y J, Zhang Y J, Lee X Q and Yuan J 2009 Contribution of isoprene to formaldehyde and ozone formation based on its oxidation products measurement in Beijing, China Atmospheric Environment 43 2142-7

Peng J, Xu Y, Shang B, Qu L and Feng Z 2020 Impact of ozone pollution on nitrogen fertilization
management during maize (Zea mays L.) production *Environ Pollut* **266** 115158

368. Ren J, Hao Y F, Simayi M, Shi Y Q and Xie S D 2021 Spatiotemporal variation of surface ozone and its causes in Beijing, China since 2014 *Atmospheric Environment* 260

372. Sahu S K, Liu S, Liu S, Ding D and Xing J 2021 Ozone pollution in China: Background and transboundary contributions to ozone concentration & related health effects across the country *Sci Total Environ* 761 144131

374. Shan W P, Yin Y Q, Zhang J D and Ding Y P 2008 Observational study of surface ozone at an urban site in East China *Atmospheric Research* 89 252-61

375. Shan W P, Yin Y Q, Zhang J D, Ji X and Deng X Y 2009 Surface ozone and meteorological condition in a single year at an urban site in central-eastern China *Environ Monit Assess* 151 127-41

376. Shan W P, Zhang J D, Huang Z X and You L N 2010 Characterizations of ozone and related compounds under the influence of maritime and continental winds at a coastal site in the Yangtze Delta, nearby Shanghai *Atmospheric Research* 97 26-34

377. Shang B, Feng Z Z, Gao F and Calatayud V 2020 The ozone sensitivity of five poplar clones is not related to stomatal conductance, constitutive antioxidant levels and morphology of leaves *Science of the Total Environment* 699

378. Shang B, Xu Y, Peng J, Agathokleous E and Feng Z 2021 High nitrogen addition decreases the ozone flux by reducing the maximum stomatal conductance in poplar saplings *Environ Pollut* 272 115979

389. Shen L L and Wang Y X 2012 Changes in tropospheric ozone levels over the Three Representative Regions of China observed from space by the Tropospheric Emission Spectrometer (TES), 2005-2010 *Chinese Sci Bull* 57 2865-71

in the Yangtze River Delta region, China *Atmospheric Chemistry and Physics* **16** 15801-19

410. Sun M, Cui J N, Zhao X M and Zhang J B 2020 Impacts of precursors on peroxyacetyl nitrate (PAN) and relative formation of PAN to ozone in a southwestern megacity of China *Atmospheric Environment* **231**

413. Sun Y, Wang L L, Wang Y S, Quan L and Liu Z R 2011 In situ measurements of SO2, NOx, NOy, andO(3) in Beijing, China during August 2008 Science of the Total Environment 409 933-40

production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches Glob Chang Biol 19 2739-52
442. Unger N, Zheng Y Q, Yue X and Harper K L 2020 Mitigation of ozone damage to the world’s land ecosystems by source sector Nat Clim Change 10 134+
452. Wang H Y, Ding K, Huang X, Wang W K and Ding A J 2021 Insight into ozone profile climatology over northeast China from aircraft measurement and numerical simulation Science of the Total Environment 785

476. Wang P F, Qiao X and Zhang H L 2020 Modeling PM2.5 and O-3 with aerosol feedbacks using WRF/Chem over the Sichuan Basin, southwestern China *Chemosphere* 254

478. Wang Q, Li Z, Li X, Ping Q, Yuan X, Agathokleous E and Feng Z 2021 Interactive effects of ozone exposure and nitrogen addition on the rhizosphere bacterial community of poplar saplings *Sci Total Environ* 754 142134

source and effect on ozone in the planetary boundary layer of southern China. J Geophys Res-Atmos 121 2476-89
of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU) Environmental Pollution 148 390-5

506. Wang X P and Mauzerall D L 2004 Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020 Atmospheric Environment 38 4383-402

515. Wang Y and Liao H 2020 Effect of emission control measures on ozone concentrations in Hangzhou during G20 meeting in 2016 Chemosphere 261 127729

D R 2017 Long-term O3–precursor relationships in Hong Kong: field observation and model simulation Atmospheric Chemistry and Physics 17 10919-35

528. Wang Y Q, Xu K and Li S M 2020 The Functional Spatio-Temporal Statistical Model with Application to O3 Pollution in Beijing, China Int J Env Res Pub He 17

530. Wang Y X, Song Q L, Frei M, Shao Z S and Yang L X 2014 Effects of elevated ozone, carbon dioxide, and the combination of both on the grain quality of Chinese hybrid rice Environmental Pollution 189 9-17

534. Wang Y Y, Zu Y Q, Huang L, Zhang H L, Wang C H and Hu J L 2018 Associations between daily outpatient visits for respiratory diseases and ambient fine particulate matter and ozone levels in Shanghai, China Environmental Pollution 240 754-63
536. Wang Z F, Li J, Wang X Q, Pochanart P and Akimoto H 2006 Modeling of regional high ozone episode observed at two mountain sites (Mt. Tai and Huang) in East China J Atmos Chem 55 253-72
545. Wei X L, Lam K S, Cao C Y, Li H and He J J 2016 Dynamics of the Typhoon Haitang Related High Ozone Episode over Hong Kong Advances in Meteorology 2016
547. Wei X L, Liu Q, Lam K S and Wang T J 2012 Impact of precursor levels and global warming on peak ozone concentration in the Pearl River Delta Region of China Advances in Atmospheric Sciences 29 635-45
emissions scenarios and climate change Environmental Research Letters 14

556. Wu R, Agathokleous E and Feng Z 2021 Novel ozone flux metrics incorporating the detoxification process in the apoplast: An application to Chinese winter wheat Sci Total Environ 767 144588

560. Xia N, Du E, Guo Z and de Vries W 2021 The diurnal cycle of summer tropospheric ozone concentrations across Chinese cities: Spatial patterns and main drivers Environ Pollut 286 117547

563. Xie M, Zhu K G, Wang T J, Chen P L, Han Y, Li S, Zhuang B L and Shu L 2016 Temporal characterization and regional contribution to O-3 and NOx at an urban and a suburban site in

episodes over the Beijing area *Sci Total Environ* **399** 147-57

584. Xu S, He X Y, Du Z, Chen W, Li B, Li Y, Li M H and Schaub M 2020 Tropospheric ozone and cadmium do not have interactive effects on growth, photosynthesis and mineral nutrients of Catalpa ovata seedlings in the urban areas of Northeast China *Science of the Total Environment* **704**

590. Xu X B, Zhang H L, Lin W L, Wang Y, Xu W Y and Jia S H 2018 First simultaneous measurements of peroxyacetyl nitrate (PAN) and ozone at Nam Co in the central Tibetan Plateau: impacts from the PBL evolution and transport processes *Atmospheric Chemistry and Physics* **18** 5199-217

601. Yamaji K, Ohara T, Uno I, Kurokawa J, Pochanart P and Akimoto H 2008 Future prediction of surface ozone over east Asia using models-3 community multiscale air quality modeling system and regional emission inventory in Asia J Geophys Res-Atmos 113
602. Yamaji K, Uno I and Irie H 2012 Investigating the response of East Asian ozone to Chinese emission changes using a linear approach Atmospheric Environment 55 475-82
622. Yang Y, Liao H and Li J 2014 Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China Atmospheric Chemistry and Physics 14 6867-79
of one-year observation of VOCs, NOx, and O-3 at an urban site in Wuhan, China Journal of Environmental Sciences 79 297-310
626. Yang Z, Yang J, Li M M, Chen J J and Ou C Q 2021 Nonlinear and lagged meteorological effects on daily levels of ambient PM2.5 and O-3: Evidence from 284 Chinese cities Journal of Cleaner Production 278
634. Yin C Q, Deng X J, Zou Y, Solmon F, Li F and Deng T 2019 Trend analysis of surface ozone at suburban Guangzhou, China Science of the Total Environment 695
638. Yin Y Q, Lu H X, Shan W P and Zheng Y 2009 Analysis of Observed Ozone Episode in Urban Jinan, China B Environ Contam Tox 83 159-63

641. Yin Z C and Ma X Q 2020 Meteorological conditions contributed to changes in dominant patterns of summer ozone pollution in Eastern China *Environmental Research Letters* 15

644. Yu H, Cao J X, Chen Z and Shang H 2018 Effects of elevated O-3 on physiological and biochemical responses in three kinds of trees native to subtropical forest in China during non-growing period *Environmental Pollution* 234 716-25

650. Yuan X, Feng Z, Hu C, Zhang K, Qu L and Paoletti E 2021 Effects of elevated ozone on the emission of volatile isoprenoids from flowers and leaves of rose (Rosa sp.) varieties *Environmental Pollution* 291

651. Yuan X, Li S, Feng Z, Xu Y, Shang B, Fares S and Paoletti E 2020 Response of isoprene emission from poplar saplings to ozone pollution and nitrogen deposition depends on leaf position along the vertical canopy profile *Environ Pollut* 265 114909

655. Zeng J and Bao R 2021 The impacts of human migration and city lockdowns on specific air pollutants during the COVID-19 outbreak: A spatial perspective *J Environ Manage* 282 111907

growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl.) Sarg, a native tree species of subtropical China Photosynthetica 49 29-36

700. Zhang Z, Yao M, Wu W, Zhao X and Zhang J 2021 Spatiotemporal assessment of health burden and
economic losses attributable to short-term exposure to ground-level ozone during 2015-2018 in China

BMC Public Health 21 1069

Zhao H, Chen K, Liu Z, Zhang Y, Shao T and Zhang H 2021 Coordinated control of PM2.5 and O3 is urgently needed in China after implementation of the “Air pollution prevention and control action plan” Chemosphere 270 129441

Zhao H, Zheng Y and Wu X 2018 Assessment of yield and economic losses for wheat and rice due to ground-level O-3 exposure in the Yangtze River Delta, China Atmospheric Environment 191 241-8

Zhao H, Zheng Y F, Zhang Y X and Li T 2020 Evaluating the effects of surface O-3 on three main food crops across China during 2015-2018 Environmental Pollution 258

Zhao Q Y, Bi J, Liu Q, Ling Z H, Shen G F, Chen F, Qiao Y Z, Li C Y and Ma Z W 2020 Sources of volatile organic compounds and policy implications for regional ozone pollution control in an urban location of Nanjing, East China Atmospheric Chemistry and Physics 20 3905-19

Zhao S P, Yin D Y, Yu Y, Kang S C, Qin D H and Dong L X 2020 PM2.5 and O-3 pollution during 2015-2019 over 367 Chinese cities: Spatiotemporal variations, meteorological and topographical impacts Environmental Pollution 264

Zhao S P, Yu Y, Qin D H, Yin D Y, Dong L X and He J J 2019 Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China Atmospheric Pollution Research 10 374-85

on the North China Plain. Journal of Environmental Sciences 83 152-60

721. Zhao Z J and Wang Y X 2017 Influence of the West Pacific subtropical high on surface ozone daily variability in summertime over eastern China Atmospheric Environment 170 197-204

Processes on Summer Tropospheric Ozone Trend in North China *Advances in Meteorology* 2019

732. Zhou M G, Huang Y G and Li G L 2021 Changes in the concentration of air pollutants before and after the COVID-19 blockade period and their correlation with vegetation coverage *Environmental Science and Pollution Research* 28 23405-19

742. Zhu X W, Ma Z Q, Li Z M, Wu J, Guo H, Yin X M, Ma X H and Qiao L 2020 Impacts of meteorological conditions on nocturnal surface ozone enhancement during the summertime in Beijing *Atmospheric Environment* 225

750. Zou Y, Charlesworth E, Yin C Q, Yan X L, Deng X J and Li F 2019 The weekday/weekend ozone differences induced by the emissions change during summer and autumn in Guangzhou, China Atmospheric Environment 199 114-26

751. Zou Y, Deng X J, Deng T, Yin C Q and Li F 2019 One-Year Characterization and Reactivity of Isoprene and Its Impact on Surface Ozone Formation at A Suburban Site in Guangzhou, China Atmosphere 10