
1.  Introduction
Free-tropospheric relative humidity and its change with warming play an important role in determining Earth's 
climate sensitivity. Climate models exhibit significant differences in free-tropospheric humidity, the causes of 
which are poorly understood. The aim of this study is to better understand sources of uncertainties in mode-
ling processes that drive the distribution of tropical free-tropospheric relative humidity. Therefore, we examine 
how much and through which physical mechanisms the relative humidity in a global storm-resolving model 
(GSRM)—the newest generation of climate models with high horizontal resolution and explicit simulation of 
convection—is affected by changes in model resolution and parameterizations.

Abstract  We conduct a series of eight 45-day experiments with a global storm-resolving model (GSRM) to 
test the sensitivity of relative humidity 𝐴𝐴  in the tropics to changes in model resolution and parameterizations. 
These changes include changes in horizontal and vertical grid spacing as well as in the parameterizations 
of microphysics and turbulence, and are chosen to capture currently existing differences among GSRMs. 
To link the 𝐴𝐴  distribution in the tropical free troposphere with processes in the deep convective regions, 
we adopt a trajectory-based assessment of the last-saturation paradigm. The perturbations we apply to the 
model result in tropical mean 𝐴𝐴  changes ranging from 0.5% to 8% (absolute) in the mid troposphere. The 
generated 𝐴𝐴  spread is similar to that in a multi-model ensemble of GSRMs and smaller than the spread across 
conventional general circulation models, supporting that an explicit representation of deep convection reduces 
the uncertainty in tropical 𝐴𝐴  . The largest 𝐴𝐴  changes result from changes in parameterizations, suggesting that 
model physics represent a major source of humidity spread across GSRMs. The 𝐴𝐴  in the moist tropical regions 
is particularly sensitive to vertical mixing processes within the tropics, which impact 𝐴𝐴  through their effect on 
the last-saturation temperature rather than their effect on the evolution of the humidity since last-saturation. 
In our analysis the 𝐴𝐴  of the dry tropical regions strongly depends on the exchange with the extratropics. The 
interaction between tropics and extratropics could change with warming and presage changes in the radiatively 
sensitive dry regions.

Plain Language Summary  Water vapor is the most important greenhouse gas in the atmosphere. 
Therefore, for the prediction of future warming it is important that climate models capture the distribution of 
atmospheric humidity and its change under warming. However, climate models currently strongly disagree 
in their representation of humidity, causing uncertainty in climate predictions. A recent study has shown 
that, while there is better agreement among the newest generation of climate models, so called global 
storm-resolving models, the remaining inter-model differences are still relevant and therefore need to be better 
understood. To narrow down the causes of these differences, in this study we examine how much the humidity 
in a storm-resolving model changes in response to changes in different model components, which are chosen to 
reflect the differences that currently exist between models. We find the largest humidity changes in response to 
changes in the model's representation of sub-grid scale processes. In storm-resolving models these are turbulent 
motions and cloud microphysics. Our results suggest that differences in the representation of these processes 
cause a major part of the humidity differences between storm-resolving models.
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The combined effect of the water vapor and lapse rate feedbacks—the two most important feedbacks acting under 
clear-sky conditions—largely depends on how relative humidity responds to warming (Held & Shell,  2012). 
While to first order relative humidity is expected to stay constant under warming (Held & Soden, 2000), even 
small deviations from this constancy significantly impact the clear-sky feedback by altering the cancellation 
between water vapor and lapse rate feedbacks in the saturated parts of the emission spectrum (Bony et al., 2006). 
In line with that, model differences in the relative humidity response control the prevailing spread in clear-
sky feedback across general circulation models (GCMs; Vial et al., 2013). Since the relative humidity change 
simulated by GCMs is described by an upward shift following the rising isotherms (Romps, 2014), differences 
in the models' relative humidity response are closely related to differences in their climatology (Po-Chedley 
et al., 2019). Even if relative humidity does not change with warming, its present-day value might affect the 
clear-sky feedback. While no systematic relationship between present-day state and feedbacks has been found 
for GCMs (John & Soden, 2007), 1D radiative convective equilibrium (RCE) studies suggest that particularly 
at high surface temperatures characteristic of the tropics, the clear-sky feedback strongly depends on relative 
humidity (Bourdin et al., 2021; Kluft et al., 2019; McKim et al., 2021). At such high surface temperatures, vari-
ations in relative humidity are sufficient to significantly affect the width of the water vapor window, the spectral 
region in which absorption by water vapor is weak and to which the negative (stabilizing) clear-sky feedback is 
mostly confined (Koll & Cronin, 2018; McKim et al., 2021). Thus, to develop a more fundamental understand-
ing of climate and climate change, we need to understand what sets the distribution of relative humidity, how it 
might  change, and why it differs across models.

The sources of the relative humidity spread across models are poorly understood. Relative humidity is affected by 
transport of water vapor on a variety of scales as well as cloud microphysical processes, such as evaporation of 
cloud particles (liquid or ice) and precipitation (e.g., Emanuel & Pierrehumbert, 1996). The important processes 
of vertical transport by deep convection, smaller-scale turbulent transport and microphysics are not explicitly 
resolved by conventional models and therefore need to be parameterized. While the parameterizations of these 
processes are, in general, technically separated, both microphysics and turbulence are, at least to some part, 
represented by the convection parameterization. Therefore, it is difficult to obtain a detailed understanding of the 
physical mechanisms behind inter-model differences across GCMs.

An important step in climate modeling has been made with the development of global storm-resolving models 
(GSRMs; Satoh et al., 2019). With grid spacings of a few kilometers, these models start to resolve deep convec-
tion explicitly. Most GSRMs therefore run without convective parameterization (Satoh et al., 2019), though there 
is ongoing discussion about whether a scale-aware convective parameterization might improve certain model 
skills (e.g., Becker et al., 2021; Vergara-Temprado et al., 2020). One big advantage of resolving deep convection 
explicitly is that small-scale turbulent mixing and microphysical processes are directly coupled to the resolved 
circulation, rather than being partly represented by the convective parameterization. GSRMs therefore promise 
new insights into the role of these small-scale processes in setting the tropical humidity distribution and in 
controlling inter-model differences in this distribution.

A first intercomparison of GSRMs, the DYnamics of the Atmospheric general circulation Modeled On 
Non-hydrostatic Domains (DYAMOND; Stevens et al., 2019) project, indicates that the inter-model spread in 
tropical free-tropospheric humidity is reduced compared to GCMs (Lang et al., 2021). While this is a promising 
result that highlights the benefit of even approximately resolving deep convection, the same study also showed 
that the remaining differences in relative humidity are still an important source of uncertainty for the clear-sky 
outgoing longwave radiation (OLR).

In this study we therefore aim to better understand the mechanisms controlling the humidity differences across 
GSRMs. To this end, we examine how the tropical humidity simulated by a GSRM changes in response to modi-
fications in model resolution and model physics. These modifications are chosen to resemble currently existing 
differences across GSRMs. Using a trajectory approach, we investigate the physical mechanisms behind the 
humidity changes in the sensitivity experiments. A large ensemble of back-trajectories is started from the tropical 
mid troposphere, allowing us to trace the paths that air parcels have taken since they were last dehydrated in deep 
convection, and examine how microphysical processes and turbulent mixing affect the parcels' humidity along 
these paths.

For the trajectory-based investigation of the physical mechanisms we make use of the last-saturation or 
advection-condensation paradigm (Sherwood,  1996; Sherwood et  al.,  2010), which represents the simplest 
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model of what determines the distribution of free-tropospheric humidity. Assuming that water vapor behaves as 
a conservative tracer for which condensation is a permanent sink term, the water vapor content of an air parcel 
is determined by its temperature at the instant at which condensation last occurred. Inside a cloud, an air parcel's 
specific humidity is at saturation. As the parcel rises, it looses water vapor by condensation. Outside the cloud, 
the air parcel subsides and warms adiabatically, while maintaining the specific humidity it had when it was last 
saturated, so its relative humidity decreases. The regions where last-condensation events typically occur are 
often referred to as the “source regions” or “origins” of free-tropospheric air. The source regions of tropical 
free-tropospheric air are mainly located in the tropical deep convective regions, but a significant part of the air in 
the dry subtropical subsidence regions also originates from the extratropics (e.g., Aemisegger et al., 2021; Cau 
et al., 2007; Roca et al., 2012). According to the last-saturation model, the relative humidity in a given target 
region only depends on the properties—mainly the temperature—of the source region and the target region.

Numerical implementations of the last-saturation model, which used large-scale wind and temperature fields 
from meteorological analyses to calculate Lagrangian back-trajectories, have been successful in reproducing the 
observed free-tropospheric relative humidity distribution (e.g., Dessler & Sherwood,  2000; Pierrehumbert & 
Roca, 1998; Sherwood, 1996). This has led to the conclusion that the relative humidity distribution is determined 
by circulation and temperature structure, while any moisture sources or sinks changing the specific humidity of 
an air parcel after the last-saturation event are of minor importance. These sources and sinks include evaporation 
of cloud condensate or precipitation, as well as mixing due to motions on scales not resolved in the wind field 
used for the trajectory calculation. This is not to say that these processes are unimportant, rather to say that to the 
extent they are important, it is through their indirect influence on the atmospheric circulation and the temperature 
structure, which ultimately determine the location of last-saturation events.

While the moisture sources and sinks after last-saturation appear to play a secondary role in determining spatial 
variations of relative humidity in the real atmosphere or a given model, it is less clear whether they might be 
important when it comes to explaining the more subtle humidity differences between models, particularly when 
different parameterizations for the processes causing the sources and sinks, that is, microphysics and turbu-
lence, are used. To test this, we calculate back-trajectories to perform two types of Lagrangian relative humidity 
reconstructions for our model experiments. The first one is an implementation of the last-saturation model and 
therefore only takes into account the properties of air parcels in the source and target regions. The second one 
additionally accounts for parameterized moisture sources and sinks during the advection of air parcels to the 
target region. Comparing the two types of reconstructions allows us to quantify the importance of changes in 
moisture sources and sinks in causing the relative humidity changes in our sensitivity experiments. To our knowl-
edge, the last-saturation model has neither been used to understand differences between models, nor has it been 
implemented based on wind fields of simulations at storm-resolving resolution. This study therefore also repre-
sents a test of how useful the last-saturation model is in explaining differences between models as they begin to 
resolve the spectrum of vertical motions in the atmosphere.

This paper is organized as follows: Section 2 describes the model setup and the sensitivity experiments performed. 
In Section 3 the humidity changes produced in our sensitivity experiments are shown and discussed. The Lagran-
gian relative humidity reconstructions based on back-trajectories are introduced in Section 4. Section 5 presents 
insights on the mechanisms behind the humidity changes from the last-saturation model.

2.  Model and Experiments
To examine how changes in model parameterizations and model resolution affect tropical relative humidity in 
a GSRM, we run a series of sensitivity experiments with the ICOsahedral Nonhydrostatic model (ICON; Zängl 
et al., 2015) in its storm-resolving “Sapphire” configuration (Hohenegger et al., 2022) with prescribed sea surface 
temperature (SST).

2.1.  Control Experiments

The Control experiment is run with a quasi-uniform horizontal grid spacing of 5 km. For the analysis, the model 
output is interpolated from the native icosahedral ICON grid to a regular 0.1° × 0.1° latitude-longitude grid. 
The vertical grid consists of 110 hybrid sigma height levels between the surface and a height of 75 km. Over a 
flat surface at sea level, the distance between model levels in the free troposphere (between about 8 and 19 km) 
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is constant at 400 m, gradually decreasing toward the surface and increasing toward the model top. The model 
time step is 40 s. For the treatment of microphysical processes, a one-moment scheme with five hydrometeor 
categories as described by Baldauf et al. (2011) is used. Turbulent mixing is represented by a classical 3D Smago-
rinksy scheme (Smagorinsky, 1963) with the modification by Lilly (1962) to account for thermal stratification 
(Dipankar et al., 2015; Lee et al., 2022). Radiative transfer is calculated at every grid point every 15 min using the 
RTE-RRTMGP scheme (Pincus et al., 2019). The JSBACH land model (Raddatz et al., 2007) is used to represent 
the physical properties of the land surface and land-atmosphere interactions. Parameterizations for both deep 
convection and shallow convection are turned off.

The experimental protocol of our experiments closely follows that specified by the DYAMOND inter-model 
comparison (Stevens et al., 2019), with initial conditions taken from the global (9 km) analysis by the European 
Centre of Medium Range Weather Forecast (ECMWF). After initialization, the simulations run freely without 
further forcing. ECMWF operational daily SST and sea-ice concentration are used as boundary conditions. The 
simulations start at 00 UTC on 27 June 2021 and span a time period of 45 days. For the analysis, the first 5 days 
of the simulations are excluded to minimize the effects of model spin-up as well as constraints from the common 
initialization.

Due to its chaotic nature, the atmosphere can evolve differently in each 45-day experiment. Hence, the humid-
ity differences in the sensitivity experiments might, at least to a certain degree, result from a poor sampling of 
weather variability rather than representing systematic differences. To obtain a first estimate of the magnitude 
of weather variability on the time scale covered by the simulations, we perform a second control experiment 
(Control 2) with perturbed initial conditions. While the model configuration and the boundary conditions (SST 
and sea-ice) are kept identical to those in the Control run, the atmosphere is initialized from the ECMWF analysis 
for 00 UTC on 28 June 2021, that is, one day later than in the Control experiment.

2.2.  Sensitivity Experiments

The changes we apply in our sensitivity experiments are chosen to resemble differences in model configuration 
across the DYAMOND models (Stevens et al., 2019), which reflect current differences in modeling approaches 
between modeling groups. The DYAMOND models differ in various aspects of their configuration. On the one 
hand, they differ in the design of their dynamical core. While (with the exception of two models) they agree on 
the equations they solve (fully compressible Navier-Stokes equations), they differ in their numerical grids and 
the numerical methods they use to solve the equations. This not only influences their “effective” resolution, but 
also conditions the behavior of the parameterizations which act on the grid scale. On the other hand, the models 
differ in the parameterizations they use to represent the effects of subgrid-scale processes. For the sensitivity 
experiments we have to concentrate on a subset of these differences that can be tested with the ICON model. We 
attempt to cover the different types of uncertainties by examining the sensitivity of relative humidity to the model 
resolution as well as two different parameterizations. Our sensitivity experiments are described in the following 
and summarized in Table 1.

Even if at 5 km most of the energy in the spectrum of vertical motions is resolved (Stevens et al., 2020), the 
updrafts of most deep convective systems remain poorly resolved or aliased to larger scales. To test the extent to 

Name Description

Control Control simulation with 5 km horizontal grid spacing, 110 vertical levels (400 m grid spacing in the 
free troposphere), three-dimensional Smagorinsky turbulence and one-moment microphysics

Control 2 As control, but with perturbed initial conditions to estimate variability

Δx/2 Horizontal grid spacing halved to 2.5 km

2Δz Number of vertical levels reduced to 55 (800 m grid spacing in the free troposphere)

Δz/2 Number of vertical levels increased to 190 (200 m grid spacing in the free troposphere)

TTE Turbulence scheme exchanged by a one-dimensional total turbulent energy (TTE) scheme

2-mom Microphysics scheme exchanged by a two-moment scheme

2vice Increased (approximately doubled) fall speed of ice particles in the one-moment microphysics

Table 1 
Summary of Simulations Performed With the ICON Model
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which relative humidity is affected by changes in model resolution we perform three experiments. In the Δx/2 
experiment the horizontal grid spacing is halved relative to the Control experiment to 2.5 km. For the 2Δz and 
Δz/2 experiments the number of vertical levels is decreased to 55 and increased to 190, respectively. This results 
in a doubling and halving of the vertical grid spacing in the free troposphere relative to the Control experiment to 
800 and 200 m, respectively. Note that by GSRM standards (if not by GCM standards) a vertical grid spacing of 
800 m is exceptionally coarse and was not employed in any of the DYAMOND models.

In three further experiments we test the sensitivity of relative humidity to changes in the parameterizations of 
turbulence and microphysics. These parameterizations contain a large number of tunable parameters and we do 
not attempt to systematically test the sensitivity to all of them. Instead we focus on comparing different param-
eterizations, which we see as a more extreme case than parameter sensitivities for a given parameterization, 
although in one experiment (2vice, see below) we also explore a common parameter sensitivity.

Storm-resolving models typically use turbulence parameterizations that are not well adapted to global simula-
tions at kilometer-scales. On the one hand, regional storm-resolving models have often used turbulence closures 
designed for LES simulations (like the Smagorinsky-Lilly scheme used in the Control simulation), although the 
underlying assumption that the truncation scale lies within the inertial range of three-dimensional homogeneous 
and isotropic turbulence (Lilly, 1967) is not satisfied at storm-resolving scales (e.g., Bryan et al., 2003). On the 
other hand, many of the global DYAMOND models employed turbulence schemes that were inherited from their 
coarser-resolution predecessors. Similarly, the storm-resolving version of the ICON model was run with a total 
turbulent energy (TTE) scheme (Mauritsen et al., 2007) that was originally used at much coarser resolutions in 
the early stages of its development (Mauritsen et al., 2022). To examine the impact of different turbulence param-
eterizations on relative humidity, we exchange the Smagorinsky scheme used in the Control simulation with this 
TTE scheme. The two schemes differ in several aspects. The Smagorinsky scheme calculates both vertical and 
horizontal mixing of momentum and scalar variables (although we find that horizontal mixing tendencies of 
specific humidity are negligible compared to vertical mixing tendencies at 5 km horizontal resolution, see also 
Section 4.4). The exchange coefficients are specified using a mixing length scale that depends on height and the 
model grid spacing, the 3D wind shear and static stability. The TTE scheme, on the other hand, only represents 
vertical mixing. The turbulent exchange coefficients are specified using a height-dependent mixing length scale 
and a velocity scale. The latter is determined from a prognostic equation for TTE that takes into account shear 
production, dissipation, third-order flux divergence and buoyancy production, which allows for mixing in more 
stably stratified situations than in the ICON implementation of the Smagorinsky-Lilly model.

To test the sensitivity of relative humidity to the microphysics parameterization, in the 2-mom experiment we 
exchange the one-moment scheme with the two-moment scheme by Seifert and Beheng (2001). The two-moment 
scheme uses six hydrometeor categories (cloud water, cloud ice, rain, snow, graupel and hail) and predicts the 
specific mass and number of these categories, while the one-moment scheme predicts only the mass in five 
categories (no hail). The concentration of cloud condensation nuclei in the 2-mom scheme is prescribed assum-
ing a globally constant vertical profile, which is constant (at 2.5  ×  10 8  m −3) up to an altitude of 4  km and 
decreases exponentially above. While the DYAMOND models all use one-moment schemes, this mainly reflects 
the consensus that the scheme should be computationally efficient. The degree of complexity required in the 
cloud microphysics is an open question, and more complex two-moment schemes have also been proposed for 
storm-resolving simulations (e.g., Morrison et al., 2005; Phillips et al., 2007). The one-moment and two-moment 
microphysics implemented in ICON differ in many of their parameters, so changes emerging in the 2-mom exper-
iment do not only result from the fact that two moments instead of one moment of the particle size distributions 
are predicted.

In an additional microphysics experiment, the 2vice experiment, we perturb the one-moment microphysics by 
increasing the terminal fall speed of ice particles vice. It has been used as a tuning parameter in the ICON model 
and is expected to affect the time available for the sublimation of ice particles. In the one-moment scheme vice is 
parameterized as a function of ice mass mixing ratio qice and air density ρ:

𝑣𝑣ice = 𝑎𝑎(𝜌𝜌𝜌𝜌ice)
𝑏𝑏(𝜌𝜌0∕𝜌𝜌)

𝑐𝑐� (1)

with ρ0 = 1.225 kg m −2 is the air density at surface conditions. The parameters a, b and c are set to 1.25, 0.16 and 
0.33, respectively. For our sensitivity experiment we increase a to 3.29, which corresponds to the value originally 
proposed by Heymsfield and Donner (1990), and c to 0.4, thereby moving it closer to the value of 0.5 used in the 
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two-moment scheme of ICON. Combined, these changes approximately double the fall speed of ice particles for 
a given qi and ρ.

3.  Sensitivity of Relative Humidity to Changes in Model Resolution and 
Parameterizations
3.1.  Produced Spread in Relative Humidity Across Experiments

Figure 1 shows how the tropical mean vertical profile of relative humidity changes in our sensitivity experiments. 
Here, relative humidity 𝐴𝐴  is calculated as

 =
𝑞𝑞

𝑞𝑞∗(𝑇𝑇 𝑇 𝑇𝑇)
� (2)

with the specific humidity q and the saturation specific humidity 𝐴𝐴 𝐴𝐴
∗ =

𝜖𝜖 𝜖𝜖
∗(𝑇𝑇 )

𝑝𝑝−(1−𝜖𝜖)𝑒𝑒∗(𝑇𝑇 )
≈ 𝜖𝜖

𝑒𝑒
∗(𝑇𝑇 )

𝑝𝑝
 , where e* is the satura-

tion water vapor pressure at temperature T, p is the pressure and ϵ ≈ 0.622 is the ratio of the molar masses of water 
vapor and dry air. The approximation is used for the calculations. For e* we take the value with respect to water 
for T above the triple point of water Tt and the value with respect to ice for T below Tt − 23 K. For intermediate T 
a combination of both is used following the documentation of the Integrated Forecast System (ECMWF, 2018). 
Note that a more common definition of relative humidity uses saturation water vapor pressure instead of specific 
humidity. We use Equation 2 to make the definition of 𝐴𝐴  consistent with the one we use for the Lagrangian recon-
structions in Section 4. This definition is typically used in last-saturation studies (e.g., Sherwood et al., 2010) 
since specific humidity is the conserved quantity after last-saturation. Numerically, the difference between the 
two definitions is typically within 1%.

The 𝐴𝐴  spread produced by our experiments is similar to the inter-model spread in the DYAMOND ensemble 
(Figure 1c). Based on the DYAMOND ensemble, Lang et al. (2021) showed that the 𝐴𝐴  spread across GSRMs is 
reduced compared to classical GCMs. This is possibly related to the omission of convective parameterizations, 
which represent a major source of uncertainty in GCMs. Our experiments support this by showing that even 
strong perturbations in GSRMs do not reproduce the spread across models with convective parameterizations.

3.2.  Sensitivity to Model Resolution

Of the experiments with changed model resolution the largest changes in 𝐴𝐴  are seen in the 2Δz experiment with 
reduced vertical resolution (Figures 1a and 1b). 𝐴𝐴  increases particularly in the upper troposphere, where the 
difference to the Control experiment exceeds 10%. In line with this, increasing the vertical resolution (Δz/2) 
reduces 𝐴𝐴  in the upper troposphere. However, the magnitude of the drying is much smaller than the moistening 
in the 2Δz experiment, so the 𝐴𝐴  profile shows signs of convergence at vertical resolutions around the one used 

Figure 1.  Changes in tropical mean relative humidity 𝐴𝐴

(



)

 and temperature 𝐴𝐴

(

𝑇𝑇

)

 resulting from changes in model resolution and parameterizations in the sensitivity 
experiments. (a) Vertical profiles of 𝐴𝐴  in control and sensitivity experiments, (b) change in 𝐴𝐴  compared to the Control experiment and (c) standard deviation of 𝐴𝐴  
across ICON experiments (solid) and the DYAMOND multi-model ensemble (dashed). (d) Change in temperature 𝐴𝐴 𝑇𝑇  compared to the Control experiment. (e) As (a), 
but 𝐴𝐴  is displayed as a function of 𝐴𝐴 𝑇𝑇  . Horizontal dashed lines in a-d mark the altitude region between 4 and 8 km, for which the mechanisms behind the 𝐴𝐴  changes are 
investigated based on back-trajectories.
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in the Control experiment. Increasing the horizontal resolution (Δx/2) also only leads to a minor increase of 𝐴𝐴   in 
the lower and mid troposphere. Given that the 2Δz experiment represents a rather extreme case, in the sense 
that GSRMs are not commonly run at such coarse vertical resolution, these results suggest that changing model 
resolution within the general scale of GSRM resolution does not represent a major uncertainty for 𝐴𝐴  , unless it is 
chosen exceptionally coarse. Note that this does not exclude the possibility that increasing resolution to even finer 
scales (on the order of 200 m) could make a significant difference, which cannot be tested with the chosen setup 
and available computational resources.

3.3.  Sensitivity to Parameterizations

Particularly large 𝐴𝐴  changes occur in the TTE and 2-mom experiments, in which the parameterizations of turbu-
lence and microphysics were changed (Figures 1a and 1b). The biggest changes occur in the lower and mid 
troposphere, where they have a stronger impact on the clear-sky OLR than those in the upper troposphere (Lang 
et al., 2021). Changing to the TTE turbulence scheme results in a strong increase in 𝐴𝐴  of up to 8% over a broad 
altitude layer between 2 and 6 km. This change will be examined in more detail in the following sections as part 
of our last-saturation analysis of the mid troposphere. Changing to the 2-mom microphysics scheme leads to a 
strong (up to 10%) decrease in 𝐴𝐴  that is concentrated in a rather shallow layer between 1 and 3 km in the lower 
free troposphere. Dividing the tropics into different moisture regimes also shows that this drying is concentrated 
in the dry subsidence regimes of the tropics, where shallow clouds prevail (not shown). This might indicate that 
the details in the formulation of the microphysics matter particularly in the shallow cloud regime, where humid-
ity is not as strongly constrained by the dynamics as in deep convective regimes. Increasing the fall speed of ice 
particles in the 1-mom scheme (2vice) has a smaller effect on 𝐴𝐴  than changing to the two-moment scheme. 𝐴𝐴  
slightly decreases in the mid to upper troposphere, whereas lower-tropospheric 𝐴𝐴  is hardly affected. This may be 
expected, since ice particles mainly exist at higher altitudes with temperatures below the melting point (located at 
a height of about 5 km in our experiments). Changing between one- and two-moment microphysics, on the other 
hand, potentially affects the characteristics of all types of hydrometeors.

3.4.  Influence of the Sampling of Weather Variability

𝐴𝐴  changes in most sensitivity experiments are larger than the difference between the two control experiments 
(Control and Control 2), which serves as an estimate of the magnitude of weather variability on the monthly time 
scale (Figures 1a and 1b). Exceptions are the very subtle changes in the 2vice and Δz/2 experiments in the lower 
free troposphere and in the Δx/2 experiment in the upper troposphere. We conclude that the differences we find 
in tropical mean 𝐴𝐴  mostly represent systematic differences resulting from the applied perturbations.

3.5.  Changes in the Temperature Profile

Temperature profiles differ substantially between the experiments (Figure 1d). Temperature differences that exist 
in the lower troposphere intensify with increasing height, as is to be expected from temperature profiles following 
moist adiabats to first order. Warmest and coldest temperatures are produced by the TTE and 2vice experiments, 
respectively. The 2-mom experiment stands out due to a positive temperature anomaly that is limited to the region 
between 1 and 3 km, where the largest negative 𝐴𝐴  anomaly is found. This points to a shallower trade inversion 
in the 2-mom experiment. This could be indicative of an earlier onset of precipitation in the 2-mom experiment, 
resulting in clouds growing less deep (Stevens & Seifert, 2008).

Based on a simple analytical model Romps (2014) showed that in radiative-convective equilibrium 𝐴𝐴  should be 
an invariant function of temperature as the atmosphere warms. An obvious question is therefore if the changes in 
our sensitivity experiments are explained by an upward or downward shift of the 𝐴𝐴  profile following an increase 
or decrease in temperature, respectively. This would mean that in experiments with a warmer troposphere 𝐴𝐴  
should increase in the lower and mid troposphere, where 𝐴𝐴  decreases with height, and 𝐴𝐴  should decrease in the 
upper troposphere, where 𝐴𝐴  increases with height. While the TTE and 2-mom runs show a corresponding pattern 
in their 𝐴𝐴  changes, the temperature differences between the experiments is by far not large enough to explain the 

𝐴𝐴  differences. This is evident when 𝐴𝐴  is plotted as a function of temperature (Figure 1e). We therefore conclude 
that the differences in 𝐴𝐴  are not explained by a vertical shift following isotherms.

In summary, our experiments suggest that a large part of the 𝐴𝐴  spread across today's GSRMs can be explained 
by different formulations of small-scale mixing and cloud microphysical processes. At least in the limited 
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number of experiments we performed, microphysical choices particularly impact 𝐴𝐴  in a rather narrow altitude 
region associated with shallow convection, whereas the choice of the turbulence scheme affects 𝐴𝐴  in a broader 
mid-tropospheric layer.

In the following we focus on 𝐴𝐴  differences in the mid troposphere (4–8 km, indicated by the gray lines in Figure 1). 
Although mid-tropospheric 𝐴𝐴  differences are, similar as in the DYAMOND ensemble, not particularly large, 
Lang et al. (2021) showed that 𝐴𝐴  differences in this region are particularly important for differences in OLR.

4.  Lagrangian Reconstructions of Relative Humidity
4.1.  Reconstructions Based on the Last-Saturation Model

To obtain a better understanding of the physical mechanisms behind the humidity changes produced in our exper-
iments we use a last-saturation framework based on back-trajectories. For this analysis we focus on the altitude 
region between 4 and 8 km, where 𝐴𝐴  differences in the DYAMOND ensemble were shown to have a comparably 
large effect on the clear-sky radiation budget (Lang et al., 2021). A main goal is to understand to what extent the 
changes in 𝐴𝐴  are explained by changes in the properties of the source regions of air parcels, that is, the points of 
last-saturation/condensation, and by changes in moisture sources and sinks during subsequent advection.

To investigate this we perform Lagrangian reconstructions of 𝐴𝐴  for the ICON experiments described in Section 2. 
The reconstruction for each experiment is performed in two different ways. The first one is an implementation 
of the last-saturation paradigm similar to earlier studies (e.g., Dessler & Sherwood,  2000; Pierrehumbert & 
Roca, 1998; Sherwood, 1996), although the latter were based on much coarser wind fields from GCMs or reanal-
ysis data. The underlying assumption is that specific humidity q is conserved after the last condensation event. 
Hence, the specific humidity at a given target point qt equals the specific humidity the respective parcel had when 
it last experienced condensation ql. 𝐴𝐴  at the target point is then equal to

lc =
𝑞𝑞l

𝑞𝑞
∗
t

,� (3)

where 𝐴𝐴 𝐴𝐴
∗
t  denotes the saturation specific humidity at the target point. ql should generally equal its saturation value 

𝐴𝐴 𝐴𝐴
∗
l
 (though supersaturation can occur with respect to ice), so that Equation 3 can be written as

lc ≈
𝑞𝑞
∗
l

𝑞𝑞
∗
t

=
𝑒𝑒
∗(𝑇𝑇l)

𝑒𝑒∗(𝑇𝑇t )

𝑝𝑝t

𝑝𝑝l
,� (4)

where e* is the saturation water vapor pressure, Tl and Tt are the temperatures of the last-condensation point 
and the target point, respectively, and pl and pt are the corresponding air pressures. Thus, if the last-saturation 
reconstruction captures the humidity changes in the ICON experiments, this means that they are explained by 
temperature and pressure changes between the source and target regions.

For the reconstructions we use the actual ql rather than 𝐴𝐴 𝐴𝐴
∗
l
 , that is, Equation 3 rather than Equation 4, since 𝐴𝐴  is not 

always exactly 100% at the instant of last-condensation (see Section 4.3). This slightly improves our reconstruc-
tions, but our main conclusions do not depend on whether or not 𝐴𝐴 𝐴𝐴l = 𝑞𝑞

∗
l
 is assumed for the last-saturation events. 

The terms last-condensation and last-saturation are used interchangeably in the following.

For the second reconstruction of 𝐴𝐴  moisture sources and sinks s, which can change a parcel's water vapor content 
during its advection after the last-condensation event, are added:

lc+s =
𝑞𝑞l + 𝑠𝑠

𝑞𝑞
∗
t

.� (5)

s includes evaporation of hydrometeors that are transported with or sediment through an air parcel, as well as 
turbulent mixing. These processes are represented by the parameterizations of microphysics and turbulence in the 
ICON model. As we will show in Section 4.6, the inclusion of these sources and sinks brings the reconstructed 𝐴𝐴  
closer to the ICON-simulated 𝐴𝐴  (subsequently denoted by 𝐴𝐴 ICON ).

Using the reconstructions, the change in 𝐴𝐴  between a sensitivity experiment and the Control experiment can be 
decomposed into three contributions:

ΔICON = Δlc + Δ(lc+s −lc) + Δ𝑟𝑟𝑟� (6)
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The first term on the right hand side represents changes in source and/or target region pressure and temperature. 
The second term denotes the effect of changes in parameterized moisture sources and sinks acting during advec-
tion to the target region. The residual r is the difference 𝐴𝐴 ICON −lc+s . It results from shortcomings in the recon-
struction method (Sections 4.2–4.6), but also from the fact that the Lagrangian reconstruction does not include 
any numerical diffusion, as opposed to the Eulerian advection scheme in ICON. Hence, the Δr term includes 
changes in numerical diffusion, which might be important in the experiments with changed model resolution but 
is not captured by the Lagrangian reconstruction.

The methods used to determine the points of last-condensation and the moisture sources and sinks along 
back-trajectories are described in the following.

4.2.  Back-Trajectories

Back-trajectories are calculated offline using the ICON version of the trajectory tool LAGRANTO version 2.0 
(Sprenger & Wernli, 2015; Wernli & Davies, 1997). An ensemble of 150,000 back-trajectories is released once 
per day at 12 UTC from randomly selected points in the tropics (30°S to 30°N) between 4 and 8 km height. In the 
following we will refer to this region as the target region.

Comparing the 𝐴𝐴  distribution of the 150,000 trajectory starting points to the one obtained from the full field 
showed that the sampling error is small compared to the 𝐴𝐴  differences between the model experiments. By start-
ing the trajectories at 12 UTC only, depending on longitude we sample at different local times and thus capture 
different phases of the diurnal cycle of free-tropospheric humidity. A comparison showed that when sampling 
at 00 UTC, tropical mean 𝐴𝐴  is about 0.5% higher than when sampling at 12 UTC, which mainly reflects an 
increase in 𝐴𝐴  by about 2% in the moistest 20% of the tropics. This is likely a signature of the diurnal cycle of 
deep convection. The global diurnal cycle of precipitation shown in Stevens et al. (2019) reveals that, in the 
global mean, convective activity is at maximum around 19 UTC and at minimum around 03 UTC. Tropical 
mean mid-tropospheric 𝐴𝐴  in the ICON simulations peaks at around 05 UTC and is at a minimum at around 
15 UTC, which is in accordance with the observation that the maximum in free-tropospheric 𝐴𝐴  lags the time 
of maximum precipitation by about 10 hr (Zelinka & Hartmann, 2009). Thus, at 00 UTC the diurnal cycle of 
mid-tropospheric 𝐴𝐴  is sampled closer to its maximum than at 12 UTC. However, as the diurnal cycle is similar 
in each experiment, the effect of the sampling on the humidity differences between two experiments is small. 
As our main interest is in the differences between experiments we conclude that starting trajectories once per 
day is sufficient.

Trajectories are integrated backwards in time for 15 days based on 1-hourly instantaneous 3D model wind fields. 
Out of a total of 45 simulated days, due to the 15-day lead time for the back-trajectories and the omission of the 
first five simulated days due to model spin-up, a 25-day period remains for the Lagrangian reconstructions.

Given that the trajectory calculations are based on hourly model wind fields, and that the transport algorithms 
we use neither share the same numerical methods used by the ICON model nor are performed on the same grid, 
individual trajectories are not accurate, in the sense that they do not necessarily follow the exact paths they would 
follow if they were calculated online during model integration (Miltenberger et al., 2013). However, from a large 
ensemble of back-trajectories it is possible to infer the statistical properties of the points of last condensation and 
subsequent moisture sources and sinks, as we will show in the following.

4.3.  Last-Condensation Events

We define the point of last condensation to be the first point along a back trajectory, for which the local mois-
ture tendency from the microphysics parameterization 𝐴𝐴

(

d𝑞𝑞

d𝑡𝑡

)

mic

 takes on a negative value, that is, as the point at 

which condensation last occurred. We decided for this definition rather than using a threshold value on relative 
humidity, because the critical relative humidity for condensation in ICON can exceed 100% with respect to ice. 
As a result of the spatial interpolation of the model fields, both the interpolation from the native ICON grid 
to a latitude-longitude grid and the interpolation from the latitude-longitude grid onto the trajectory positions 
performed by LAGRANTO, there are points where 𝐴𝐴

(

d𝑞𝑞

d𝑡𝑡

)

mic

< 0 (and are therefore detected as condensation 

points), but the local relative humidity is significantly smaller than 100%. We therefore introduce the additional 

 19422466, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003443 by M
PI 348 M

eteorology, W
iley O

nline L
ibrary on [08/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

LANG ET AL.

10.1029/2022MS003443

10 of 23

condition that the local relative humidity must be higher than 80%. If this condition is not met, the search for a 
last-condensation event is continued backwards along the trajectory.

Last-condensation events identified by this method are subject to different uncertainties. Condensation events 
will be missed if they occur in between the 1-hourly model output time step, which our trajectories are calculated 
on. We expect this to introduce a dry bias in the reconstructed 𝐴𝐴  , since on average the identified last-condensation 
events occur too far in the past and therefore at too cold temperatures, assuming that most air parcels undergo 
subsidence on their way to the target region. Furthermore, the last-condensation events we determine are restricted 
to the 15-day period covered by the back-trajectories, so events occurring further in the past are not detected. 
We do not find a last-condensation event within 15 days for 7% of the trajectories. These are removed from the 
analysis. This is expected to introduce a moist bias in the reconstructed 𝐴𝐴  , assuming that the condensation events 
further back in time would occur at higher altitudes and therefore colder temperatures than the trajectory end 
points.

4.4.  Moisture Sources and Sinks From Parameterized Processes

To estimate the magnitude of moisture sources and sinks s (Equation 5), along each trajectory we sum up the 
local tendencies of q from the microphysics and turbulence parameterizations 𝐴𝐴

(

d𝑞𝑞

d𝑡𝑡

)

mic

 and 𝐴𝐴

(

d𝑞𝑞

d𝑡𝑡

)

turb

 , respectively, 

between the time of last condensation tl and the target point (t = 0):

𝑠𝑠 =

𝑡𝑡l
∑

𝑡𝑡=0

((

d𝑞𝑞

d𝑡𝑡

)

mic, t

+

(

d𝑞𝑞

d𝑡𝑡

)

turb, t

)

Δ𝑡𝑡𝑡� (7)

where Δt = 1 hr is the model output interval. The moisture tendency from the turbulence scheme 𝐴𝐴

(

d𝑞𝑞

d𝑡𝑡

)

turb

 output 

by ICON only includes the contribution from vertical mixing, although the Smagorinsky turbulence scheme also 
performs horizontal mixing. Including the contribution from horizontal mixing for one of the ICON experiments 
showed it to be negligible compared to the effect of vertical mixing.

4.5.  Spatial Averaging

Figures 2a and 2b show the (randomly chosen) start positions of back-trajectories for an exemple simulation 
time step on a map. Each dot corresponds to one start position, colored by the ICON-simulated relative humidity 

𝐴𝐴 (ICON) and reconstructed relative humidity 𝐴𝐴 (lc+s) , respectively, for the respective position. Target regions for 
which 𝐴𝐴 ICON takes on intermediate values show up as a mixture of very high and very low values in 𝐴𝐴 lc+s . This 
is likely due to the fact that gradients and extremes in 𝐴𝐴 ICON are smoothed out due to the limited resolution of the 
ICON model. While each value of 𝐴𝐴 ICON in Figure 2a represents a grid-cell average, values of 𝐴𝐴 lc+s in Figure 2b 
represent structures (or “filaments”) on smaller scales, which are not resolved on the ICON grid. To smooth the 
reconstructed fields the sampling would need to be improved by increasing the number of trajectories per ICON 
grid cell and averaging over them. Another source of noise in the reconstructed 𝐴𝐴  are inaccuracies in the trajec-
tories, which result from the coarse (1-hourly) temporal resolution and spatial interpolation of the input data (see 
Section 4.2). These inaccuracies can result in last-condensation points being spatially displaced from their true 
position.

To minimize sampling biases and to make our analysis framework more commensurate with the information 
content in the input data we coarsen our analysis region by averaging all results within boxes that span an area of 
2° × 2° in the horizontal and the complete altitude range between 4 and 8 km in the vertical. These boxes will be 
referred to as target boxes in the following. We predict the horizontally and vertically averaged relative humidity 
in each target box as the mean of 𝐴𝐴 lc , respectively 𝐴𝐴 lc+s , of all back-trajectories released from within the box. As 
shown in Figures 2c and 2d, there is good agreement between the spatially averaged 𝐴𝐴 ICON and 𝐴𝐴 lc+s , though the 
reconstructed field is still a bit noisier.

For some trajectories, the Lagrangian reconstruction yields extreme, unphysically high values of 𝐴𝐴  . In these 
cases the last-condensation event occurred at higher temperatures than that of the target point, so the air parcels 
have ascended after the last-condensation event. The ascent and associated cooling would not be possible without 
further condensation, which would keep the air parcel's relative humidity at around 100%. However, due to the 
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Figure 2.  Illustration of spatial averaging performed to reduce noise in the reconstructed relative humidity field for an exemplary time step (17 July 2021, 12Z). 
Scatterplots of (a) ICON-simulated relative humidity 𝐴𝐴 (ICON) and (b) reconstructed relative humidity 𝐴𝐴 lc+s at the start positions of back-trajectories. Spatially averaged 
(c) 𝐴𝐴 ICON and (d) 𝐴𝐴 lc+s over 2° × 2° boxes. (e) Difference between spatially averaged 𝐴𝐴 lc+s and 𝐴𝐴 ICON .
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shortcomings in our method described in Sections 4.2 and 4.3, these further condensation events are missed and 
an extremely high value of 𝐴𝐴  is predicted. We remove these cases prior to the spatial averaging by discarding 
trajectories for which 𝐴𝐴 lc+s is more than 10% higher than the maximum of 𝐴𝐴 ICON , which is about 130% in the 
Control experiment. This is the case for 5% of all trajectories for which a last-condensation event was determined.

4.6.  Reconstructed Relative Humidity

To evaluate the methods described above, we examine how well 𝐴𝐴 ICON is reproduced by Equations 3 and 5 in our 
Control experiment. The distribution of 𝐴𝐴 ICON is bimodal with a prominent peak at values below 20% (Figure 3). 
Such a bimodal distribution is well known from observations (e.g., Ryoo et al., 2009; Zhang et al., 2003) and has 
been attributed to the rapid drying by radiative subsidence; after being moistened by upward transport, air parcels 
dry out rapidly and spend a short time at intermediate humidity (Mapes, 2001).

Both kinds of Lagrangian reconstructions reproduce the ICON-simulated 𝐴𝐴 ICON well (Figure 3). While the distri-
bution of 𝐴𝐴 lc is shifted to lower values compared to 𝐴𝐴 ICON , the distribution of 𝐴𝐴 lc+s is closer to, but shifted to 
slightly higher values than 𝐴𝐴 ICON . The improvement of the reconstruction by including moisture sources and 
sinks is encouraging, as this would be expected if the approach was working as intended. The fact that the 
inclusion of moisture sources and sinks from the parameterizations increases the predicted relative humidity is 
not surprising. Per definition, microphysical processes can only increase an air parcel's q after the point of last 
condensation. Turbulent mixing can generally either increase or decrease q. However, vertical mixing, which 
dominates along our trajectories (see Section 4.4), primarily moistens air parcels that subside through the free 
troposphere due to a down gradient moisture flux and the exponential decrease of q with height. Why 𝐴𝐴 lc+s tends 
to overestimate 𝐴𝐴 ICON is less clear and likely reflects uncertainties in our method and/or the fact that the Lagran-
gian reconstruction does not incorporate numerical diffusion. However, the aim of the Lagrangian reconstruction 
in this study is not to obtain a perfect reproduction of 𝐴𝐴 ICON , but rather to explain humidity differences between 
different ICON experiments. As we will show in Section 5.2, this is possible despite some small deviations of the 

𝐴𝐴 lc+s distribution to the 𝐴𝐴 ICON distribution.

4.7. 𝑨𝑨  -Space

To distinguish between different tropical humidity regimes, we divide the target boxes and the correspond-
ing back-trajectories into ten equal-sized bins of 𝐴𝐴 ICON . The driest bins in this “𝐴𝐴  -space” correspond to the 
(sub-)tropical subsidence regions, whereas the moistest bins correspond to deep convective regions in the 

Figure 3.  ICON-simulated and reconstructed relative humidity distributions in the Control experiment. (a) Probability density of tropical relative humidity simulated 
by the ICON model (𝐴𝐴 ICON , black) as well as from Lagrangian reconstructions based on the plain last-saturation model (𝐴𝐴 lc , red) and taking into account moisture 
sources and sinks from parameterized processes (𝐴𝐴 lc+s , blue). (b) Probability density of the differences 𝐴𝐴 lc −ICON (red) and 𝐴𝐴 lc+s−ICON (blue). All histograms are 
based on 2° × 2° spatially averaged relative humidity (see text for details).
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Intertropical Convergence Zone (ITCZ) and the Indo-Pacific Warm Pool. In our experiments, which are performed 
for a period in northern-hemisphere summer, the regions of highest 𝐴𝐴  are centered around about 10° N and the 
driest regions are concentrated south of the equator, where the subsiding branch of the strong cross-equatorial 
Hadley cell is located (Figure 4a). Regions of intermediate 𝐴𝐴  are more widely distributed across the tropics, with 
a larger proportion located north of the equator.

The back-trajectories demonstrate how the origins of air parcels differ between regions of low and high 𝐴𝐴  . For the 
driest target regions south of the equator, last condensation occurs in two different regions remote from the target 
region: on the southern edge of the tropical deep convective regimes close to the equator, and in the sub- and 
extratropics (Figure 4b). Toward regions of higher 𝐴𝐴  , the fraction of air parcels originating from within the trop-
ics increases (Figure 4c). Air parcels arriving in the driest regimes have on average traveled for about one week 
since last condensation (Figure 4c), which is consistent with the time periods found by Cau et al. (2007) based 
on reanalysis fields. These air parcels have subsided from high altitudes, as evident from low last-condensation 
temperatures of about 220 K. The large difference between source and target temperature causes the extremely 
low target 𝐴𝐴  of these parcels (Equation 4). In summary, regions of low 𝐴𝐴  are characterized by source regions that 
are cold and remote. Toward regions of higher 𝐴𝐴  , last-condensation events occur closer to the target regions and 
at temperatures more similar to that of the target region (Figures 4b and 4c). Air parcels arriving in the moistest 
target regions have traveled for less than a day since last condensation.

Figure 5a shows mean and standard deviation of the reconstructed 𝐴𝐴 lc and 𝐴𝐴 lc+s , respectively, plotted against 
mean 𝐴𝐴 ICON for each bin in 𝐴𝐴  -space for the Control experiment. The spread in the reconstructed 𝐴𝐴  in each bin 
is comparable to the difference in 𝐴𝐴 ICON between neighboring bins, demonstrating that the Lagrangian recon-
struction succeeds in predicting the 𝐴𝐴  of a given target box. Again, it is evident that the plain last-saturation 
reconstruction underestimates 𝐴𝐴  , particularly in moist regimes, while the reconstruction with moisture sources 
and sinks slightly overestimates 𝐴𝐴  , particularly in dry regimes.

The difference between 𝐴𝐴 lc+s and 𝐴𝐴 lc provides an estimate of the effect of parameterized moisture sources on 
relative humidity. It increases from about 0.5% in the driest decile to about 6% in the moistest decile (Figure 5b). 
Although parcels that end up with low 𝐴𝐴  also originate from moist regions, where microphysical processes and 
turbulent mixing are potentially active, they passed these regions at much colder temperatures (cf. Figure 4c), at 
which water vapor concentrations (and hence also sources) are small. Therefore, the effect from parameterized 
moisture sources on 𝐴𝐴  increases from dry to moist regions when it is measured in absolute units. When the 
change in 𝐴𝐴  from parameterized sources is measured relative to the final (reconstructed) value of 𝐴𝐴  it decreases 
from about 15% in the driest decile to about 5% in the moistest decile. This reflects that the probability to encoun-
ter moisture sources is enhanced for parcels that end up with low 𝐴𝐴  , because they have been transported over 
a longer time since last condensation (cf. Figure 4c). In general, the difference between 𝐴𝐴 lc+s and 𝐴𝐴 lc is small 
compared to the range of 𝐴𝐴  values occurring throughout the tropics. This is in line with many earlier studies, 
which concluded that moisture sources and sinks are not relevant for explaining spatial variations of tropical 𝐴𝐴  
(e.g., Dessler & Sherwood, 2000; Sherwood, 1996), corroborating the general validity of the last-saturation para-
digm. Nevertheless, they might be relevant for explaining more subtle 𝐴𝐴  differences between model experiments. 
This will be examined in the course of this study.

Figure 4.  Characteristics of target and source regions in the Control experiment in 𝐴𝐴  -space. Histograms showing meridional distributions of (a) target regions and (b) 
last-condensation points for ten decile-bins of 𝐴𝐴 ICON . (c) Bin-averages of last-condensation temperature (Tl, black solid) and time passed since last condensation (tl, 
blue), as well as fraction of last-condensation points located within the tropics, defined as 30° S to 30° N (f, gray). The temperature of the target region is denoted by the 
black dashed line.
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5.  Mechanisms Controlling Mid-Tropospheric Relative Humidity Differences
5.1.  Changes in Mid-Tropospheric Relative Humidity

The representation of mid-tropospheric 𝐴𝐴  differences in 𝐴𝐴  -space (Figure 6a) shows that for most experiments 
changes in 𝐴𝐴  are larger in moist than in dry regions. Therefore, differences in tropical mean 𝐴𝐴  (Figure 1) mainly 
reflect differences in the moist regions. A similar behavior was also found for mid-tropospheric humidity differ-
ences among the DYAMOND models (Lang et al., 2021). The robustness of 𝐴𝐴  in dry regions is related to their 
cold source temperatures, which will be discussed in more detail in Section 5.3.

As already evident from the tropical mean 𝐴𝐴  profiles, mid-tropospheric 𝐴𝐴  changes are largest in the experiment 
with the TTE turbulence scheme. The representation in 𝐴𝐴  -space shows that 𝐴𝐴  increases throughout the tropics, 
but the strongest increase (about 10%) occurs in rather moist regimes around the 80th percentile of 𝐴𝐴  . In compari-
son, the sensitivity of mid-tropospheric 𝐴𝐴  to changes in the microphysics (2-mom and 2vice) is weaker and limited 
to regions of intermediate and high 𝐴𝐴  . The experiment with halved vertical resolution (2Δz) is the only one in 
which changes in 𝐴𝐴  are larger in dry than in moist regimes. The increase in mid-tropospheric 𝐴𝐴  in the experiment 
with doubled horizontal resolution (Δx/2) is concentrated in moist regimes.

The difference between the Control and Control 2 experiments suggests that 𝐴𝐴  changes associated with weather 
variability are larger in dry than in moist regions. This may be expected given that the source regions of dry air 

Figure 5.  ICON-simulated and reconstructed relative humidity 𝐴𝐴  for the Control experiment in 𝐴𝐴  -space. (a) Reconstructed 
𝐴𝐴  𝐴𝐴 (rec) versus ICON-simulated 𝐴𝐴  𝐴𝐴 (ICON) for ten decile-bins of 𝐴𝐴 ICON . Points correspond to bin-mean values, the shading 

indicates ± one standard deviation of 𝐴𝐴 rec . Colors distinguish reconstructions based on the plain last-saturation model (𝐴𝐴 lc , 
red) and taking into account moisture sources and sinks from parameterized processes (𝐴𝐴 lc+s , blue). (b) The difference 

𝐴𝐴 lc+s −lc 𝐴𝐴 (Δs) in absolute units (black, left x-axis) and relative to 𝐴𝐴 lc+s (gray, right x-axis).
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are remote (Figure 4) and therefore strongly influenced by the transient nature of the large-scale circulation. The 
latitudinal position of the ITCZ and the midlatitude jet stream strongly impact the favored circulation patterns 
affecting the dry regions of the tropics over timescales that are longer than our simulation period (Aemisegger 
et al., 2021; Villiger et al., 2022). While in the moist regions (and therefore also in the tropical mean) changes in 

𝐴𝐴  are larger than the estimated weather variability in all sensitivity experiments, in the dry regions this is only the 
case for the TTE and 2Δz experiments. Thus, the 𝐴𝐴  differences we find in dry regions are strongly influenced by 
the sampling of weather variability and systematic differences could only be quantified based on longer experi-
ments. This should be kept in mind for the discussions in the following.

5.2.  Changes in Source and Target Regions Versus Changes During Advection

The two types of Lagrangian reconstructions (Equations 3 and 5) are used to shed light on the physical processes 
behind the 𝐴𝐴  changes in the sensitivity experiments. The reconstructions were performed for all experiments 
except the Δx/2 experiment for reasons of limited resources as the doubled horizontal resolution increases the 
model output by a factor of four. Additionally, to obtain the same accuracy of trajectories as for the Control exper-
iment the timestep for the trajectory calculation would need to be halved. In total, the required model output for 
the Δx/2 experiment would increase by a factor of 8 and the trajectory calculations would get correspondingly 
expensive.

For most experiments the 𝐴𝐴  differences that were reconstructed based on the plain last-saturation model (𝐴𝐴 Δlc , 
Figure 6b) explain a large part of the actual differences (𝐴𝐴 ΔICON , Figure 6a), whereas the effect from changes in 
parameterized processes given by 𝐴𝐴 Δlc+s − Δlc is small (Figure 6c). This means that the 𝐴𝐴  changes must be 
mainly caused by changes in the source and/or target temperature (see also Section 5.3), whereas changes in mois-
ture sources and sinks that affect an air parcel's water vapor content on its way to the target region are of minor 
importance. Most importantly, different from what one might expect, the strong mid-tropospheric moistening in 
the TTE experiment is not a direct consequence of enhanced vertical turbulent mixing that moistens air parcels 
as they are transported from source to target regions. Instead, it must be explained by changes in the properties 
of source and/or target regions themselves, which we will investigate further in later sections. Similarly, one 
might expect that the moistening in the 2Δz experiment with coarser vertical resolution results from enhanced 
numerical diffusion during vertical advection after last condensation. However, the moistening is at least partly 
reproduced by the Lagrangian reconstructions, which do not account for changes in numerical diffusion after last 
condensation. Having said this, the reconstructions do not fully capture the strong moistening of dry regions, 
which is also evident from the positive residual term (Figure 6d). Hence, a part of the moistening might well be 
explained by enhanced numerical diffusion on the pathway from the source to the target point.

From the fact that the last-saturation model successfully reproduces the 𝐴𝐴  changes between experiments, one 
could also conclude that they are caused by changes in the resolved circulation and the temperature structure. This 
is true under the assumption that the location (and hence temperature) of last-condensation points only depends 
on the resolved circulation and temperature structure. However, as we will explain in Section 5.5, this assumption 
does not always hold.

Figure 6.  ICON-simulated and reconstructed changes in mid-tropospheric 𝐴𝐴  in the sensitivity experiments displayed in 𝐴𝐴  -space. (a) Changes in ICON-simulated 𝐴𝐴  
compared to the Control experiment 𝐴𝐴 (ΔICON) . (b) Changes in 𝐴𝐴  reconstructed by a plain last-saturation model 𝐴𝐴 (Δlc) and (c) changes in the effect of moisture sources 
and sinks after last condensation 𝐴𝐴 (Δ(lc+s−lc)) . (d) Changes in the residual (Δr), that is, in the difference between ICON-simulated and reconstructed 𝐴𝐴  . The sum of 
the terms shown in (b) to (d) yields the ICON-simulated 𝐴𝐴  changes shown in (a). Lagrangian reconstructions were not performed for the Δx/2 experiment (see text for 
explanation).
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There are exceptions, where changes in parameterized moisture sources and sinks after last condensation do play 
a role in changing 𝐴𝐴  . As one would expect, this mainly concerns the experiments with changes in the param-
eterizations of turbulence and microphysics. In the TTE experiment, turbulent moistening during advection is 
enhanced for dry and intermediate regimes and reduced for moist regimes. Overall, the contribution from the 
changing moisture sources to the total 𝐴𝐴  change is small. The (rather weak) drying of the mid troposphere in the 
2-mom experiment is mainly due to a reduction in moisture sources (Figure 6c), while the plain last-saturation 
reconstruction predicts almost no change (Figure 6b). Hence, the drying is caused by reduced evaporation of 
cloud condensate or precipitation. However, additional trajectory calculations showed that the stronger reduc-
tion in 𝐴𝐴  in the layer between 1 and 3 km in the 2-mom experiment (Figure 1) is to a large extent captured by 
the plain last-saturation model. The ratio of air parcels that have subsided from the free troposphere since last 
condensation to air parcels that have very recently experienced saturation during ascent increases in the 2-mom 
experiment, indicating that the microphysical perturbation also affects the resolved transport associated with 
shallow convection. This would be consistent with the microphysics limiting the depth of shallow convection as 
mentioned in Section 3.

The Δr term includes any changes in 𝐴𝐴 ICON that are not explained by either of the two Lagrangian reconstructions 
(with or without moisture sources along the trajectory). As explained above, the positive Δr in the 2Δz experi-
ment might result from an increase in numerical diffusion, which is not captured by the Lagrangian reconstruc-
tion. However, there are also a positive, albeit smaller Δr for the TTE, 2-mom and 2vice experiments, for which 
we do not expect changes in numerical diffusion.

In summary, the 𝐴𝐴  changes in our experiments are largely explained by the last-saturation model, and only 
slightly modulated by changes in moisture sources after last condensation. In the 2Δz experiment the part of 
the 𝐴𝐴  change that cannot be explained by either of the two mechanisms is likely related to changes in numerical 
diffusion.

5.3.  Changes in Source Temperature Versus Changes in Target Temperature

The fact that 𝐴𝐴  differences are largely explained by the last-saturation model leaves changes in the saturation 
specific humidity in the source regions and in the target region as possible causes (Equation 4). With a linear 
expansion the relative humidity change predicted by the last-saturation model can be approximated as follows:

Δlc ≈
𝐿𝐿𝑣𝑣

𝑅𝑅𝑣𝑣

lc

𝑇𝑇
2
l

Δ𝑇𝑇l −
𝐿𝐿𝑣𝑣

𝑅𝑅𝑣𝑣

lc

𝑇𝑇
2
t

Δ𝑇𝑇t = Δlc,l + Δlc,t,� (8)

where Rv is the gas constant of water vapor and Lv is the specific heat of vaporization of water. The first term 
𝐴𝐴 Δlc,l corresponds to the change in 𝐴𝐴 lc due to changes in source temperature, the second term 𝐴𝐴 Δlc,t is the change 

in 𝐴𝐴 lc due to changes in target temperature. From Equation 4 there should be a third term representing changes in 
source pressure, which we found to be negligible compared to the temperature terms. Changes in target pressure 
do also not play a role since our target region is a fixed altitude region in all experiments.

𝐴𝐴 Δlc,l and 𝐴𝐴 Δlc,t are shown in Figure 7. Their sum is a good approximation of 𝐴𝐴 Δlc (not shown). The two terms 
tend to have opposite signs, indicating that an increase in last-condensation temperature, which increases 𝐴𝐴 lc , 
is typically accompanied by an increase in the target temperature, which decreases 𝐴𝐴 lc . However, 𝐴𝐴 Δlc,l over-
compensates 𝐴𝐴 Δlc,t for all experiments. This is likely related to the fact that the source regions are generally 
located above the target regions (Figure  4c) and temperature differences between experiments increase with 
height (Figure 1d).

The overcompensation described above is also evident from the fact that changes in 𝐴𝐴  (Figure  6a) follow a 
similar pattern as changes in last-condensation temperature ΔTl (Figure 8a). The 2-mom experiment is an excep-
tion, because its 𝐴𝐴  change is controlled by a change in parameterized moisture sources after last condensation 
(Section 5.2). As noted already in Section 5.2, the magnitudes of 𝐴𝐴  changes are damped toward dry regimes, 
although the magnitudes of ΔTl hardly change throughout 𝐴𝐴  -space. This is because the absolute temperature of 
the source regions Tl increases from dry to moist regimes (Figure 4c). Due to the non-linear dependence of e* on 
T the same temperature change results in a smaller change in 𝐴𝐴 𝐴𝐴

∗
l
 at lower temperatures than at higher temperatures, 

and hence in a smaller change in 𝐴𝐴  . Thus, the robustness of 𝐴𝐴  in dry regions is a consequence of the low water 
vapor concentrations in the cold source regions.
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5.4.  Changes in Tropical Source Regions Versus Changes in Extratropical Source Regions

The source regions of tropical mid-tropospheric air lie both within the tropics (here defined as 30°S to 30°N) 
and in the extratropics (Figure 4). Hence, changes in Tl could result from changes in tropical last-condensation 
temperatures Tl,trop, extratropical last-condensation temperatures Tl,extra or the share of tropical last-condensation 
points f:

Δ𝑇𝑇l ≈ 𝑓𝑓Δ𝑇𝑇l,trop + (1 − 𝑓𝑓 )Δ𝑇𝑇l,extra + Δ𝑓𝑓
(

𝑇𝑇l,trop − 𝑇𝑇l,extra

)

� (9)

In moist regimes, the changes in Tl are dominated by changes in Tl,trop (Figure 8b), whereas in the driest 40 percen-
tiles changes in Tl,trop and Tl,extra are commensurately important (Figure 8c). Note that the fraction of tropical 
last-condensation events f shapes the lines in Figures 8b and 8c. While the absolute changes in Tl are similar for 
tropics and extratropics (not shown), extratropical changes do not affect the moist regions because f is close to 1 
there (Figure 4). Changes in f between experiments play a minor role in changing Tl (Figure 8d).

Changes in Tl that are associated with random weather variability (as estimated by the Control and Control 2 
simulations) are larger in dry regions both for tropical and extratropical source regions (Figures 8b and 8c). For 
the extratropics, changes in most sensitivity experiments are similar in magnitude and go in the same direction 
as in the Control 2 experiment, which may indicate that the climate in the Control simulation was an outlier with 
colder extratropical source temperatures. This explains why in the Control experiment the driest regions have a 
lower 𝐴𝐴  than in all the sensitivity experiments (Figure 6). Thus, to a large extent, changes in Tl,extra in our sensi-
tivity experiments can be explained by, or at least not differentiated from, weather variability. This variability is 

Figure 7.  Contributions from source and target temperature changes to changes in mid-tropospheric 𝐴𝐴  in the sensitivity 
experiments shown in 𝐴𝐴  -space. (a) Contribution from change in last-condensation temperature 𝐴𝐴 (Δlc,l) and (b) contribution 
from change in target temperature 𝐴𝐴 (Δlc,t) . The sum of two terms approximates the 𝐴𝐴  changes that were reconstructed based 
on the last-saturation model (𝐴𝐴 lc in Figure 6b). Note the different in y-axis ranges in this figure and Figure 6.

Figure 8.  Changes in last-condensation temperature Tl in sensitivity experiments shown in 𝐴𝐴  -space. (a) Total change of Tl compared to the Control experiment, (b) 
contribution from changes in tropical last-condensation temperatures Tl,trop, (c) contribution from changes in extratropical last-condensation temperatures Tl,extra and (d) 
contribution from changes in f, the share of tropical last-condensation events.
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likely caused by changes in the dynamic mechanisms that bring air to satura-
tion in the extratropics and transport it to the tropics. The fact that the relative 
humidity of the dry regions is disproportionately affected by these changes 
emphasizes the important role of the exchange between extra tropics and 
tropics in controlling the humidity of the dry regions, which has been high-
lighted in several studies (e.g., Cau et al., 2007; Roca et al., 2012; Villiger 
et al., 2022; Waugh, 2005). In particular, a change in these exchange mecha-
nisms under warming represents a possible pathway for changing the relative 
humidity of the dry regions.

A change in Tl,trop can generally result from a change in the tropical temper-
ature profile and/or a change in the height distribution of last-condensation 
points. Additional analysis showed that both mechanisms are of similar 
importance in our experiments. Depending on the experiment they either 
counteract or reinforce each other. In the TTE experiment, for example, trop-
ical temperature increases (see Figure 1d) and last condensation occurs at 
lower altitudes on average. Both effects increase Tl,trop. In the 2vice exper-
iment, on the other hand, the two effects counteract; tropical temperature 
decreases, but last-saturation takes place at lower altitudes on average. This 
explains why the 𝐴𝐴  change in the 2vice experiment is relatively small despite 
the large temperature change (Figure 1).

5.5.  Mechanisms Behind the Moistening in the TTE Experiment

Mid-tropospheric 𝐴𝐴  increases most strongly in the experiment with the TTE turbulence parameterization. The 
analysis above has shown that this moistening is largely explained by an increase in the average temperature at 
last condensation. The full distribution of tropical last-condensation temperature Tl,trop for the Control and the 
TTE experiment are shown in Figure 9. It is apparent that the distribution is bimodal in both experiments, imply-
ing that there are two distinct source regions for tropical mid-tropospheric air. The warm mode at around 265 K 
corresponds to “young” air parcels with high 𝐴𝐴  that either experienced last condensation very recently and have 
since subsided over only a short distance or are even saturated at the time considered. The cold mode at around 
220 K represents “old” air parcels that have subsided from the upper troposphere, where deep convection detrains 
preferentially, and hence end up with a low 𝐴𝐴  in the mid troposphere. In the TTE experiment the two modes stay 
at roughly the same temperature as in the Control experiment, but the share of young air parcels increases at the 
expense of old air parcels. In line with that, snapshots of 𝐴𝐴  and moisture tendencies from microphysics reveal that 
condensation occurs over a larger area of the tropical mid troposphere at any given time in the TTE experiment 
(see Section S1 and Figures S1 to S3 in Supporting Information S1).

A mechanism that could explain this enlargement of saturated mid-tropospheric regions is an enhanced turbulent 
mixing between lower and mid troposphere performed by the TTE scheme. Figure 10a shows vertical profiles 
of the specific humidity tendencies produced by the turbulence scheme in the control and TTE experiments for 
an exemplary model output time step. To distinguish between different tropical large-scale circulation regimes, 
profiles were averaged within five 20-percentile ranges of column-integrated water vapor. In the Control experi-
ment the Smagorinsky turbulence scheme only acts within the boundary layer throughout all circulation regimes; 
the air within the boundary layer is moistened by mixing water vapor upward from the surface. The TTE scheme 
behaves very differently. Most importantly, it performs a strong mixing between the lower and mid troposphere, 
particularly in the moist tropics, which manifests as a drying of the lower troposphere and a moistening of the 
mid and upper troposphere. In other words, the TTE scheme unintentionally acts similarly to a deep convection 
parameterization that performs a sub-grid scale transport of moisture over a large vertical distance, thereby drying 
the boundary layer and moistening the free troposphere. (However, a deep convective parameterization would also 
dry the free troposphere through precipitation. In this sense, the TTE scheme is not substituting for a deep convec-
tive scheme.) Apart from the stronger turbulent moistening, another mechanism that could potentially explain the 
larger proportion of saturated regions in the mid troposphere would be a broadening of the area covered by resolved 
convective updrafts in the TTE experiment. However, a corresponding analysis showed that this is not the case.

The mid-tropospheric moistening by turbulent mixing in the TTE experiment is accompanied by increased 
condensation, as evident from the specific humidity tendencies produced by the microphysics parameterization 

Figure 9.  Probability density distribution of last-condensation temperature Tl 
for tropical last-condensation points in the Control (black) and total turbulent 
energy (orange) experiments.
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shown in Figure 10b. This suggests that the strong vertical mixing creates a moist background that favors conden-
sation whenever air is displaced upward, such that condensation is not restricted to convective updrafts in the TTE 
experiment. This explains why the share of young air parcels with last condensation within the mid troposphere 
is increased.

The larger share of young air parcels and the more intense turbulent moistening of the free-troposphere in the TTE 
experiment provide additional insights on the role of moisture sources and sinks shown in Figure 6c. For the moist 
percentiles, the moistening from parameterized processes after last condensation is smaller in the TTE than in the 
Control experiment. Thus, the effect of the enhanced turbulent moistening in the TTE run is outweighed by the 
shorter time available for moistening in the younger air parcels. In the TTE experiment, parcels arriving in the moist-
est percentile have on average traveled for a more than 40% shorter time than in the Control experiment (Figure 11).

While the last-saturation model technically explains the 𝐴𝐴  increase in the TTE experiment, it does not do so 
for the reasons we expected. The original idea was that last-condensation points are determined by the resolved 
circulation and temperature structure. Thus, if the change in 𝐴𝐴  is explained by the last-saturation model, it must 
be caused by changes in circulation and temperature, while changes in parameterized processes can only play 
a role if they affect these resolved properties. In the TTE experiment, however, condensation is not exclusively 
driven by resolved upward motions, but also by the strong parameterized vertical mixing of water vapor. Thus, in 
this case, parameterized moisture sources directly influence the location of the last-condensation events. Never-
theless, the fact that the last-saturation model succeeds in reproducing the 𝐴𝐴  change still tells us that the change 
is driven by changes within the tropical source regions, that is, the ITCZ and warm pool region, whereas changes 
in moisture sources during subsequent advection play a minor role.

Figure 10.  Moisture tendencies from (a) turbulence and (b) microphysics parameterizations in the Control (black) and total turbulent energy (orange) experiment for 
an exemplary simulation time step (17 July 2021, 12Z). Each panel in (a) and (b) shows a vertical profile of specific humidity tendencies averaged over a 20-percentile 
range of column-integrated water vapor, sorted from dry profiles on the left to moist profiles on the right.
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The behavior of the TTE scheme is certainly unexpected and indicates that 
the scheme has not been sufficiently adapted to storm-resolving resolu-
tions. Whether this type of one-dimensional scheme is appropriate for use 
at storm-resolving resolution is a question to be addressed in other studies. 
Having said that, the fact that even this extreme perturbation did not change 

𝐴𝐴  far beyond the inter-model spread in DYAMOND is promising. Many of 
the DYAMOND models used turbulence parameterizations that were not 
specifically adapted to storm-resolving resolution due to their early develop-
ment stage. Hence, a better adaption of the schemes in future model versions 
might further reduce the spread in tropical 𝐴𝐴  .

In summary, the higher mid-tropospheric 𝐴𝐴  in the TTE experiment appear to 
result from an enhanced vertical turbulent mixing in the moist tropics, which 
leads to a moistening of the mid-troposphere and favors condensation. From 
a last-saturation perspective, this is reflected in an increase in the share of 
young air parcels that experienced last-saturation at high temperatures.

6.  Summary and Conclusions
In this study our aim was to better understand which model uncertainties 
cause the spread in tropical relative humidity 𝐴𝐴  across GSRMs, as has been 

quantified in a recent study based on DYAMOND, the first model intercomparison initiative for GSRMs. To this 
end, we test the sensitivity of 𝐴𝐴  to changes in model resolution and parameterizations in a series of six 45-day 
experiments with the ICON model in a storm-resolving configuration. The changes we apply to the model are 
inspired by differences among the DYAMOND models. They include changes in horizontal and vertical grid 
spacing, as well as in the parameterizations of microphysics and turbulence. We use a last-saturation model based 
on 3D backward trajectories to gain insight into the mechanisms behind the 𝐴𝐴  changes in the sensitivity experi-
ments. This analysis is restricted to the mid troposphere.

The rather strong perturbations applied in our sensitivity experiments result in changes in tropical 𝐴𝐴  that are 
of similar magnitude as the spread across the DYAMOND models. An earlier study had shown based on the 
DYAMOND ensemble that the 𝐴𝐴  spread across GSRMs is reduced compared to classical GCMs with convective 
parameterizations. Our experiments support this finding by showing that even strong perturbations in GSRMs 
cannot reproduce the spread in 𝐴𝐴  seen in models with convective parameterizations. Moreover, our experiments 
show that tropical 𝐴𝐴  is rather robust to changes in model resolution within the general scale of GSRM resolutions. 
The three experiments with different vertical grid spacing (800 m, 400 and 200 m in the free troposphere) show 
that 𝐴𝐴  changes are modest once the vertical grid spacing is less than 400 m in the free troposphere. The experi-
ments with 5 and 2.5 km horizontal grid spacing produce a very similar 𝐴𝐴  distribution. While these results suggest 
that differences in model resolution do not contribute significantly to the current 𝐴𝐴  spread across GSRMs, it does 
not exclude the possibility that reducing the horizontal grid spacing to much finer scales (on the order of 200 m) 
could make a difference, which needs to be tested in future experiments.

In our experiments, 𝐴𝐴  changes more strongly in response to exchanging the microphysics and turbulence 
schemes, indicating that the model physics rather than resolution (at storm-resolving scales) are the major source 
of 𝐴𝐴  spread across GSRMs. While microphysical changes affect 𝐴𝐴  most strongly in the altitude layer associated 
with shallow clouds, exchanging the turbulence scheme changes 𝐴𝐴  over a broad altitude region in the lower to 
mid troposphere. We could not test the extent to which the dynamical core, and choices it makes in how to solve 
the transport equations, systematically influences the distribution of source regions. However, the similarity of 
spread between our (parameterized) physics sensitivity studies, and the relatively modest effect of grid spacing 
lead us to believe that these effects are unlikely large.

Like the 𝐴𝐴  differences between DYAMOND models, the 𝐴𝐴  changes in our experiments are smallest in the dry 
subsidence regimes of the tropics. This is a consequence of the low water vapor concentrations in their cold 
source regions. However, since the sensitivity of OLR to changes in relative humidity is particularly high in dry 
background states (e.g., Spencer & Braswell, 1997), small 𝐴𝐴  differences in the dry zones are nevertheless impor-
tant from a radiative perspective (Lang et al., 2021). At the same time, this study highlights that understanding 

Figure 11.  Relative change in time since last condensation (tl) to the Control 
experiment for all sensitivity experiments depicted in 𝐴𝐴  -space.
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humidity differences between models is particularly challenging for the dry regions. The 𝐴𝐴  of the dry regions is 
subject to larger random weather variability on timescales of days to months, which storm-resolving simulations 
are currently limited to. This is because the source regions of dry air are located remotely (mainly on the edges 
of the inner-tropical deep-convective regimes and in the extratropics) and last-saturation temperature is therefore 
influenced by the transient nature of the large-scale circulation. Thus, while one simulated month is sufficient 
to quantify systematic 𝐴𝐴  differences in moist regions, longer simulations would increase our confidence in the 
sources of variability in the dry regions. Because changes in both tropical and extratropical origins need to be 
considered to understand 𝐴𝐴  differences in dry regions (see also Cau et al., 2007; Roca et al., 2012), changes in the 
mechanisms of exchange between tropics and extratropics in a warmer climate represent an important pathway 
for changing the relative humidity of the dry regions, which would have important implications for the clear-sky 
climate feedback.

The mid-tropospheric 𝐴𝐴  changes in our experiments, including the strong moistening in the experiment with 
the exchanged turbulence scheme, are largely captured by the last-saturation model. This means that most 𝐴𝐴  
changes are explained by changes in source temperature, that is, the temperature at which air parcels typically 
experience last condensation, whereas changes in the moistening or drying by parameterized processes after last 
condensation play a minor role. This is even true when the parameterized moisture sources are modified directly, 
like in our microphysics and turbulence experiments. Overall, this study shows that the last-saturation model is 
not only successful in explaining variations in tropical 𝐴𝐴  in the real atmosphere or a given model, as shown by 
many previous studies (e.g., Dessler & Sherwood, 2000; Pierrehumbert & Roca, 1998; Sherwood, 1996), but it 
can also be a helpful tool for explaining the causes of humidity differences between models. However, it has also 
become clear that last-saturation statistics can be directly affected by changes in parameterized moisture sources, 
for example, by enhanced turbulent moistening. Therefore, if the last-saturation model explains a change in 𝐴𝐴  , it 
does not necessarily mean that it is due to changes in the resolved circulation or the temperature structure.

In our experiments the most substantial change in 𝐴𝐴  was found in response to changing the turbulence parame-
terization from a Smagorinsky-type scheme to a total turbulent energy (TTE) scheme. The resulting increase in 

𝐴𝐴  was largest in the mid troposphere of moist regions. The reason appears to be that the TTE scheme produces a 
strong turbulent moistening of the mid troposphere in the inner, moist tropics. This moistening favors condensa-
tion, which is why from a last-saturation perspective the share of young air parcels with warm source temperatures 
increases in the TTE experiment. Thus, the 𝐴𝐴  of the moist tropical regions, while less radiatively important than 
the dry regions, is disproportionally sensitive to vertical mixing processes that structure the humidity through 
their effect on the last-saturation temperatures, that is, by increasing mid-level cloudiness, rather than their effect 
on the evolution of humidity since its last-saturation.

While the behavior of the TTE scheme is certainly unexpected and indicates that the scheme is poorly adapted to 
storm-resolving resolutions, the fact that even this extreme perturbation does not change 𝐴𝐴  beyond the differences 
in the DYAMOND ensemble is very promising. Due to their early development stage, many of the DYAMOND 
models in fact used turbulence parameterizations that were not specifically adjusted to storm-resolving resolu-
tion. This nourishes hopes that tropical relative humidity will become even more consistent across future model 
versions with better adapted schemes.

Data Availability Statement
The ICON model code is available on https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability. 
The simulation runscripts and the code producing the plots from post-processed model output and trajectories is 
available on Zenodo through https://doi.org/10.5281/zenodo.7732396.
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