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Abstract

Modelling rainfall extremes and dry periods over the Southeast Asia (SEA)

region is challenging due to the characteristics of the region, which consists of

the Maritime Continent and a mountainous region; it also experiences mon-

soonal conditions, as it is located between the Asian summer monsoon and the

Australian summer monsoon. Representing rainfall extremes is important for

flood and drought assessments in the region. This paper evaluates extreme

rainfall climatic indices from regional climate models from CORDEX

Southeast Asia and compares them with the results of high-resolution global

climate models with a comparable spatial resolution from the HighResMIP

experiment. Observations indicate a high intensity of rainfall over areas

affected by tropical cyclones and long consecutive dry day periods over some

areas in Indochina and the southern end of Indonesia. In the model simula-

tions, we find that both coupled and sea surface temperature-forced
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HighResMIP model experiments are more similar to the observations than

CORDEX model results. However, the models produce a poorer simulation of

precipitation intensity-related indices due to model biases in the rainfall inten-

sity. This bias is higher in CORDEX than in HighResMIP and is evident in both

the low- and high-resolution HighResMIP model versions. The comparable perfor-

mances of HighResSST (atmosphere-only runs) and Hist-1950 (coupled ocean–
atmosphere runs) demonstrate the accuracy of the ocean model. Comparable

performances were also found for the two different resolutions of HighResMIP,

suggesting that there is no improvement in the performance of the high-resolution

HighResMIP model compared to the low-resolution HighResMIP model.

KEYWORD S

CDD, climate index, CORDEX, CWD, extreme precipitation, GCM, HighResMIP, Indonesia,
R10mm, R195pTOT, R20mm, RCM, Rx1day, Rx5day, SDII, Southeast Asia

1 | INTRODUCTION

Precipitation plays a crucial role in flooding, droughts,
and the water supply used for consumption and sanita-
tion (e.g., see Lavers et al., 2021). Kim et al. (2019) stated
that changes in precipitation could have a more direct
negative impact on civilisation than most other meteoro-
logical factors. As many socioeconomic losses are linked to
extreme precipitation events (WMO, 2021), understanding
the magnitude and frequency of precipitation, for both the
present and future climate, is of immense importance to
society. The Intergovernmental Panel on Climate Change
(IPCC) Working Group I indicated that extreme precipita-
tion is projected to intensify in the future under a warming
climate (IPCC, 2021). Recent studies have indicated that
anthropogenic forcing has increased the drought risk over
Southeast Asia (SEA; see the formal definition in section 2)
by reducing precipitation and enhancing evapotranspira-
tion (Zhang et al., 2021).

The SEA region is exposed to several types of
precipitation-related hazards. Around 24 and 62% of the
population live in areas that are exposed to flooding and
droughts, respectively (ESCAP, UN, 2020). During the
monsoon season, extreme precipitation often causes a
series of floods and landslide events, like the large-scale
flooding of early 2021 in Jakarta during the peak of the
monsoon season; 1,300 people were evacuated (Davies,
2021). Similarly, the high-precipitation amounts associ-
ated with the cyclones in Vietnam during October 2020
caused severe floods. This was a one-in-80-year event
(Luu et al., 2021). Worldwide, US$115 billion in eco-
nomic losses were caused by floods from 1970 to 2019,
and the second-most expensive event occurred in
Thailand in 2011 (US$45.46 billion) (WMO, 2021). Con-
trasting with the excessive precipitation events are the

periods with extremely low levels of precipitation; during
the 2018 El Nino event, the Indonesian government
declared an emergency drought alert status for seven
provinces (IFRC, 2019).

In SEA, heavy precipitation events occur mostly in
the monsoon season. The monsoon season in SEA is a
transition from the Asian summer monsoon to the
Australian summer monsoon (Wang, 2006); it follows the
movement of the Intertropical Convergence Zone (ITCZ).
Both the monsoon season and the dry season are affected
by the conditions of the El Niño–Southern Oscillation
(ENSO) (Aldrian and Susanto, 2003). In addition, some
areas in SEA experience extreme precipitation due to
tropical cyclone events. For example, high-category tropi-
cal cyclones in the Bay of Bengal usually occur around
April and May and lead to extreme precipitation in
Myanmar (Li et al., 2013), and tropical cyclones in the
South China Sea bring extreme precipitation to the
Philippines and Vietnam (Nguyen-Thi et al., 2012;
Corporal-Lodangco and Leslie, 2017).

Agriculture is a sector that is heavily affected by cli-
matic extremes. A sustainable and secure food supply
strongly depends on natural resources. The IPCC climatic
scenarios demonstrate an increasing trend in the fre-
quency of extreme climatic events (IPCC, 2021). The
increasing frequency and intensity of extreme weather
due to climate change will have a devastating effect on
food security (FAO, 2021). Some of the impacts of
precipitation-related climatic extremes on sectors like
agriculture are captured in specific climate indices
(Moura Cardoso do Vale et al., 2020). Over the last
decade, the joint World Meteorological Organization
(WMO) Commission for Climatology and World Climate
Research Programme (WCRP) Expert Team on Climate
Change Detection and Indices (ETCCDI) has put forward
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a set of climate indices that provide a comprehensive
overview of precipitation and temperature information,
with a focus on extremes (Karl et al., 1999; Klein Tank
et al., 2009). A selection of these indices will be used in
this study.

A decrease in the abundance of rainy days in Jakarta
over the period from 1866 to 2010 has been observed
(Siswanto et al., 2016). However, the frequency of daily
rainfall exceeding 50 and 100 mm has significantly
increased, and so has the daily intensity of extreme rainfall
(Siswanto et al., 2016). In addition, Tangang et al. (2018)
studied multimodel simulations of the Southeast Asia
Regional Climate Downscaling/Coordinated Regional Cli-
mate Downscaling Experiment (SEACLID/CORDEX-SEA)
(http://www.ukm.edu.my/seaclid-cordex). They found that
under a 2�C global warming scenario in the near future,
northern Myanmar will experience more change and more
climate change impacts than other areas in SEA. This is
shown by the increase in the number of annual consecutive
dry days (CDD), the number of days for which the rainfall
is at least 50 mm (R50mm), and the maximum daily rain-
fall (RX1day) over the area. Meanwhile, drier conditions
will be found over Indonesia and higher extreme rainfall
will be found over most of Indochina (Tangang et al., 2018).

By utilizing the same regional climate model (RCM)
output as Tangang et al. (2018) and Supari et al. (2020)
showed that under extreme (RCP8.5) and medium
(RCP4.5) climate change scenarios, the annual total rain-
fall will decrease by 30 and 20%, respectively, for most
areas in SEA by the end of the 21st century. Additionally,
there are, respectively, 60 and 30% increases in the CDD
values. Moreover, Amnuaylojaroen and Chanvichit
(2019) found that in the near future, the projected
decrease of daily precipitation amounts and the projected
increase in temperature will create favourable conditions
for droughts. However, according to a crop water need
analysis, the SEA area will remain water-rich for agricul-
tural purposes and the region will remain suitable for
agriculture (Amnuaylojaroen and Chanvichit, 2019). Fur-
thermore, Amnuaylojaroen (2021) found that the
increase in the simple precipitation intensity index (SDII)
will be followed by a decline in the number of annual
consecutive dry days (CWD) over Thailand for the period
from 2020 to 2029 compared to the period from 1990
to 1999.

The ability of the climate models to simulate precipi-
tation systems often depends on their grid spacing and
parameterization of physical processes such as deep con-
vection (Rauscher et al., 2010). SEA has unique physio-
geographical characteristics that make it challenging to
assess the future climate impact using coarsely spaced
models (Ul Hasson et al., 2016). It is important to be con-
fident that models can realistically represent extreme

precipitation over the historical period before using them
for climate change impact assessments.

In this study, we evaluate how well models can simu-
late extreme rainfall-related climate indices. More pre-
cisely, we investigate whether the latest model
experiment of the High-Resolution Model Intercompari-
son Project (HighResMIP) outperforms the downscaled
results of the previous model experiment, Coupled Model
Intercomparison Project Phase 5 (CMIP5). Hariadi et al.
(2021) found that the HighResMIP models better repre-
sent the monsoon onset and cumulative rainfall com-
pared to the CORDEX models for SEA. While this
previous study focused on the onset and characteristics of
the rainy season (Hariadi et al., 2021), the current study
compares these two sets of experiments with observations
of extreme precipitation.

A list and descriptions of the rainfall-related climate
indices used in this study are given in section 2, along
with a description of the study area and the statistical
methods used to assess the models' performance. In sec-
tion 3, we present the observed spatial distributions of
the climate indices in SEA. Furthermore, we present the
performances of the models in terms of how well they
simulate the climate indices. Section 4 discusses the simi-
larities of the three gridded observational datasets that
are used to determine the climate indices. We also dis-
cuss the performance of the models for a number of cli-
mate indices. In the last section, we draw conclusions
from our findings.

2 | MATERIALS AND METHODS

2.1 | Description of the study area

The Southeast Asia (SEA) region is located from
12.5�S–24.5�N and 92.5�–142.5�E. This region contains
Vietnam, Cambodia, Laos, Thailand, Myanmar,
Malaysia, and Indonesia. The rainfall in this region is
dominated by the monsoon season (Hamada et al., 2002;
Aldrian and Susanto, 2003; Moron et al., 2009). The mon-
soon season starts in May for north SEA and November
for south SEA (Hariadi et al., 2021). SEA has one of the
longest monsoon seasons in the Asian region; the mon-
soon season ranges from 120 to 160 days for large parts of
SEA (Misra and DiNapoli, 2014). Based on the annual
rainfall pattern, Aldrian and Susanto (2003) divided
Indonesia into three rainfall regions: the semimonsoonal
region, monsoonal region, and antimonsoonal region.
The ITCZ crosses the equatorial region between 10�N
and 5�S twice, which means that this region has two
peaks of the monsoon season; one peak occurs during
boreal spring and one peak occurs in autumn. This
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region is called the semimonsoonal region (Aldrian and
Susanto, 2003). Every year, the monsoonal region in
Indonesia experiences two phases of the monsoon sea-
son; the wet phase coincides with the presence of the
ITCZ and occurs from November to March, and the dry
phase occurs when a dry southeasterly wind blows from
Australia from May to September. This region is located
from 5�S to the south. On the contrary, the antimonsoo-
nal region experiences a wet phase during boreal summer
from May to September. This region is located over part
of Sulawesi, the Moluccas, and Papua (5�S–2�N and
120�–135�E). Chang et al. (2005) stated that the topogra-
phy of the Moluccas shelters the region from the north-
east monsoon winds during boreal winter. On the contrary,
during boreal summer, the topography causes the oro-
graphic uplift of southeasterly monsoon winds. The
extreme rainfall in SEA is associated with the monsoonal
summer season. The characteristics of extreme rainfall over
SEA regions such as Indochina (You and Ting, 2021),
Thailand (Limsakul and Singhruck, 2016), and Borneo
(Supari et al., 2016) have been explored in previous studies.

In addition, some areas in SEA are also affected by
tropical cyclones, which lead to high extreme precipita-
tion. Myanmar is affected by tropical cyclones originating
in the Bay of Bengal. Tropical cyclones occur in this
region with a high frequency in October and November.
Stronger tropical cyclones (category 4 or above) tend to
occur in April and May (Li et al., 2013). Meanwhile, in
Vietnam, tropical cyclones occur from July to November.
The maximum rainfall contribution from the tropical
cyclones to the total rainfall occurs from July to
September for northern Vietnam, while for central
Vietnam, this occurs in October and November (Nguyen-
Thi et al., 2012). In the Philippines, tropical cyclones
occur in two periods. The first period is from January to
May, but in the second period (June–December), the fre-
quency of these events is more pronounced (Corporal-
Lodangco and Leslie, 2017).

Furthermore, Räsänen et al. (2016) found that over
Indochina, most of the extreme events (wet and dry)
occur during ENSO events, especially during the period
from March to May. Meanwhile, Supari et al. (2018)
found that over Indonesia, the ENSO impact is prominent
from June to August and September to November.
Extreme events are also magnified by the equatorial wave
(Ferrett et al., 2020; Lubis and Respati, 2021) and
Madden–Julian oscillation (MJO) conditions (Muhammad
et al., 2021). Lubis and Respati (2021) found that the prob-
ability of extreme rainfall events over Java increases by up
to 60% during the active phases of Kelvin waves. Another
study by Muhammad et al. (2021) showed that the active
phase of the MJO increases the probability of extreme pre-
cipitation events over the eastern part of Indonesia by up

to 50%, and this increase is even higher (up to 70%) over
the western and central parts of Indonesia.

2.2 | Data

2.2.1 | Observations

In SEA, the development of a comprehensive dataset
based on in situ surface observations of daily precipita-
tion amounts is challenging because of the limited den-
sity of gauges and the limited long-term availability of
rainfall time series (Van den Besselaar et al., 2017; Singh
and Xiaosheng, 2019). Similar to the method of Hariadi
et al. (2021), three gridded daily observational datasets
are combined to provide the observed rainfall and an
uncertainty estimate. The first dataset is the Southeast
Asia Observation (SA-OBS) dataset. SA-OBS is a daily
high-resolution land-only observational gridded precipi-
tation and temperature dataset covering the SEA region
(Van den Besselaar et al., 2017). This dataset is based on
the observation data collected for the South Asian Cli-
mate Assessment and Dataset (SACA&D) (Van Den Bes-
selaar et al., 2015; Marjuki et al., 2016). The second
dataset is the Asian Precipitation Highly Resolved Obser-
vational Data Integration toward Evaluation of Water
Resources (APHRODITE) dataset (Yatagai et al., 2012).
This dataset is based on rain gauge observations across
Asia. The third dataset is the Climate Hazards Group
Infrared Precipitation with Stations v2.0 (CHIRPS) data-
set (Funk et al., 2015). This dataset is based on rain gauge
data collected from Food and Agriculture Organization
(FAO) and Global Historical Climate Network (GHCN),
together with cold cloud duration information from Cli-
mate Prediction Center (CPC) and the National Oceanic
and Atmospheric Administration's (NOAA) National Cli-
mate Data Center (NCDC).

2.2.2 | Model results

Our study utilizes two datasets of climate model results.
The first dataset consists of results from the Coupled
Model Intercomparison Project. This study uses the
downscaled version of the CMIP5 results from the Coor-
dinated Downscaling Experiment (CORDEX) SEA simu-
lations. Six global climate models are used. The Centre
National de Recherches Météorologiques (CNRM), Com-
monwealth Science and Industrial Research Organisa-
tion (CSIRO), European Community Earth-System
(EC-Earth), and Max Planck Institute (MPI) models were
downscaled using the RegCM4 model (Giorgi et al., 2012)
from CORDEX SEA (Ngo-Duc et al., 2017; Supari

1642 HARIADI ET AL.

 10970088, 2023, 3, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7938 by M
PI 348 M

eteorology, W
iley O

nline L
ibrary on [16/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



et al., 2020; Tangang et al., 2020). The HadGEM model
was downscaled using the regional Weather Research
and Forecasting (WRF3.5) model (Skamarock
et al., 2008) from the Asia-Pacific Economic Cooperation
Climate Centre (Yang, 2012). We will refer to this model
generation as CORDEX.

The second set of models comes from the High-
Resolution Model Intercomparison Project (HighRes-
MIP) (Haarsma et al., 2016). These models have a
spatial resolution comparable to that of the CORDEX
dataset and are available from the H2020-founded Pri-
mavera project (Roberts et al., 2020). This dataset con-
tains two experiments at two resolutions. The first
HighResMIP experiment is the historically forced atmo-
sphere run for the period from 1950 to 2014
(HighResSST). This experiment used the daily 0.25�

HadISST2-based dataset for the Sea Surface Temperature
(SST) and sea-ice forcing. The second HighResMIP

experiment contains coupled historic runs for the period
from 1950 to 2014 (Hist-1950). We use high-resolution
and low-resolution datasets from both experiments. The
six models that we use from HighResMIP are EC-Earth
(Haarsma et al., 2020), MPI (Müller et al., 2018), Had-
GEM (Roberts et al., 2019), CMCC (Cherchi
et al., 2019), CNRM (Voldoire et al., 2019), and ECMWF
(Roberts et al., 2018).

We used bilinear interpolation to interpolate the
model and observation datasets to a uniform grid resolu-
tion; the reference resolution is 0.25�. Due to the limita-
tions of the models that are available from CORDEX and
HighResMIP, in this study, only four models are available
for both model generations; these models are CNRM,
EC-Earth, HadGEM, and MPI. CSIRO and GFDL are
only available for CORDEX, and CMCC and ECMWF are
only available for HighResMIP. Table 1 summarizes the
resolutions of the available models.

TABLE 1 Description of the models

Model CORDEX LR HighResSST HR HighResSST LR Hist-1950 HR Hist-1950

CMCC-CM2 1� × 1�, native
atmosphere,
regular grid

1 member

25 km, native
atmosphere,
regular grid

1 member

1� × 1�, native
atmosphere,
regular grid

1 member

25 km, native
atmosphere,
regular grid

1 member

CNRM5 (CORDEX)
CNRM-CM6-1 (HighResMIP)

25 km resolution
1 member

250 km regridded
from T127l

1 member

50 km regridded
from T359l

1 member

250 km regridded
from T127l

1 member

50 km regridded
from T359l

1 member

CSIROMk36 25 km resolution
1 member

EC-Earth (CORDEX)
EC-Earth3 (HighResMIP)

25 km resolution
1 member

100 km grid T255
3 members (physics
version)

50 km grid T511
3 members
(physics version)

100 km grid T255
3 members (physics
version)

50 km grid T511
3 members
(physics
version)

ECMWF-IFS 1� × 1� regridded
from Tco199

8 members
(realization)

0.5� × 0.5�

regridded from
Tco399

4 members
(realization)

1� × 1� regridded
from Tco199

8 members
(realization)

0.5� × 0.5�

regridded from
Tco399

6 members
(realization)

GFDL 25 km resolution
1 member

HadGEM2-AO (CORDEX)
HadGEM3-GC31 (HighResMIP)

25 km resolution
1 member

250 km grid N96
5 members

50 km grid N512
3 members

250 km grid N96
8 members

50 km grid N512
2 members

MPI-ESM (CORDEX)
MPI-ESM1-2 (HighResMIP)

25 km resolution
1 member

(initialisation)
100 km spectral
T127

1 member

(initialisation)
50 km spectral
T255

1 member

(initialisation)
100 km spectral
T127

1 member

(initialisation)
50 km spectral
T255

1 member

Note: The first column shows, for each model, the horizontal resolution of the global model used in the resolution of the regional model from CORDEX, for
which it provided lateral boundaries. The second, third, fourth, and fifth columns specify the global resolution and the number of available members of the
ensemble for historically forced low-resolution (LR) atmosphere-only simulations (HighResSST) and their high-resolution (HR) equivalents, and also for

ocean–atmosphere coupled low-resolution (LR) simulations using initial conditions from 1950 (Hist-1950) and their high-resolution (HR) equivalents,
respectively.

HARIADI ET AL. 1643
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2.3 | Methods

2.3.1 | Climate indices

Table 2 lists the names and definitions of the rainfall-
related climate indices computed in this study. The defi-
nitions of the climate indices have been adopted from the
ETCCDI team (Klein Tank et al., 2009). The indices were
calculated using the package developed by Schulzweida
and Quast (2015), which is part of the climate data opera-
tor (CDO) suite of routines (Schulzweida et al., 2006). In
addition to indices from ETCCDI, we also calculated the
number of periods of consecutive dry days (CDD) and
consecutive wet days (CWD) that exceed 5 days (CDD5D
and CWD5D), which are available in the package created
by Schulzweida and Quast (2015). Moron et al. (2009)
used a 5-day sequence to calculate the onset of the mon-
soon season using the agronomical definition
(Sivakumar, 1988). The climate indices were calculated
annually for the period from 1981 to 2005.

2.3.2 | Validation methods

The Taylor diagram (Taylor, 2001) and Kolmogorov–
Smirnov (K-S) statistic values are used for the validation

of the models. The Taylor diagram used the ensemble
mean of the observed climate indices. This is because this
analysis focuses on the pattern similarity between the
models and observations. The K-S statistic values
were calculated individually using the simulated climate
indices from the models and the observed climate indi-
ces from the three observational datasets (SA-OBS,
APHRODITE, and CHIRPS); then, the final K-S values
were calculated from the mean value of these individual
K-S scores. This step is intended to avoid biases among
the three observational datasets.

We used the Taylor diagram to compare the climatol-
ogy of the climate indices for the models and observa-
tions. The Taylor diagram has been frequently used to
evaluate climate models, and it is a suitable analysis tool
for this study, as it can summarize how well the modelled
and observed patterns match (Taylor, 2001) in terms of
the spatial correlation and spatial standard deviation
(SD). The Taylor diagram shows the spatial correlation
on the azimuthal axis, while the x-axis and y-axis show
the normalized SD. Both the spatial correlation and SD
are calculated over space of the climatological condition
of the indices on the model and observations. For the
normalization, we used the SD from the observations. A
normalized SD equal to one indicates the maximum simi-
larity between the models and observations.

TABLE 2 List of rainfall-related extreme climate indices computed in this study

Index ID Index name Index definition Unit

CDD Maximum dry spell length The largest number of consecutive days on which
rainfall is less than 1 mm

day

CDD5Da Number of CDDs >5 days The number of CDD periods with more than
5 days per time period

n

CWD Maximum wet spell length The largest number of consecutive days on which
rainfall is at least 1 mm

day

CDW5Da Number of CWDs >5 days The number of CWD periods with more than
5 days per time period

n

R10mm Number of heavy rainfall days The number of days on which rainfall is at least
10 mm

day

R20mm Number of very heavy rainfall days The number of days on which rainfall is at least
20 mm

day

Rx1day Maximum daily rainfall The highest 1-day precipitation amount mm

Rx5day Maximum 5-day rainfall The highest 5-day precipitation amount mm

R5day50mma Number of 5-day heavy precipitation periods The number of 5 day periods with precipitation
totals greater than 50 mm

n

R95pTOT Precipitation percentage due to R95p days The ratio of the cumulative rainfall on wet days
with RR > RR95percentile to the total rainfall

%

SDII Simple daily intensity index per time period The ratio of the annual total rainfall to the
number of wet days

mm�day−1

Note: The indices are calculated annually.
aNot derived from the ETCCDI climate indices.
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Furthermore, we applied the two-sample K-S statistic
to compare the modelled and observed indices. The K-S
test statistic shows the distance between two probability
distributions, with a low value of the test statistic indicat-
ing a high similarity between the two datasets. We
applied the K-S test to each grid cell in the study area.

3 | RESULTS

3.1 | Observed climate indices over
Southeast Asia

We estimate climatological values to investigate the spa-
tial distributions of the indices from the observations.
Figure 1 shows the spatial distribution of the CDD,
CDD5D, CWD, and CWD5D values. We find large CDD
values (greater than 50 days) over Myanmar, Thailand,
Cambodia, and southern Vietnam, where the dry season
period occurs from October to May. Meanwhile, for the
Indonesia region, large CDD values occur over East Java
and Nusa Tenggara in the southern part of the region,

which is the driest province in Indonesia. For CDD5D,
we find that the northern part of SEA experiences more
than nine of these dry events per year, which is relatively
high compared to other regions in SEA. Meanwhile, the
spatial distribution of CDD5D over Indonesia shows a sim-
ilar pattern to the spatial distribution of the CDD index.
Rainfall in the southern part of Indonesia has a strong cor-
relation with El Nino, especially during the peak of the
dry season from June to August and the onset of the rainy
season from September to November (Aldrian and
Susanto, 2003; Trouet and Van Oldenborgh, 2013). This
causes a series of dry days in the region.

Large climatological CWD values (greater than
30 days) are found over the west coast of Myanmar,
Borneo, Sumatra, and Java. Meanwhile, we found a
CWD5D value exceeding nine events per year over the
region between −5�S and 10�N (equatorial region). The
equatorial region is traversed by the ITCZ twice a year
(March and September); therefore, there are two mon-
soon seasons over this region (boreal spring and boreal
autumn), leading to high cumulative monthly precipita-
tion throughout the year (Aldrian and Susanto, 2003).

FIGURE 1 Climatological map of the observed annual maximum dry spell length (CDD), annual number of CDDs >5 days (CDD5D),

annual maximum wet spell length (CWD), and annual number of CWDs >5 days (CWD5D). The indices represent the mean values of

indices obtained from observational datasets (SA-OBS, APHRODITE, and CHIRPS) for the period from 1981 to 2005 [Colour figure can be

viewed at wileyonlinelibrary.com]
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As shown in Figure 2, heavy (≥10 mm) and very
heavy (≥20 mm) daily precipitation are more frequent
(R10mm > 100 days and R20mm > 30 days) over the
eastern part of the Philippines and Malaysia. Meanwhile,
for the Indonesia region, these events occurred more
often over the northern part of Borneo, West and Central
Java, and the central part of Papua.

Similar spatial patterns are found for the maximum
daily precipitation (Rx1day), maximum 5-day precipita-
tion (Rx5day), and number of 5-day heavy precipitation
periods (R5day50mm) (Figure 3). High Rx1day
(>80 mm), Rx5day (>200 mm), and R5day50mm (>6
events) values are found over the west coast of Myanmar
and the east coast of the northern part of Vietnam, the
Malaysian Peninsula, and the Philippines. This is associ-
ated with the tropical cyclones that occur in these areas
(Nguyen-Thi et al., 2012; Li et al., 2013; Corporal-
Lodangco and Leslie, 2017).

Contributions from extreme wet days (R95pTOT)
appear to be substantial over the northern part of Vietnam,
Thailand, Myanmar, and the Philippines, with values of
more than 20% (Figure 4). In addition, simple daily precipi-
tation index (SDII) values from 8 to 12 mm�day−1 are found
in most SEA areas. Higher values of the SDII
(>13 mm�day−1) occurred over the west coast of Myanmar
and the east coast of the Philippines (Figure 4).

In addition, we find high R95pTOT and SDII values
over the east coast of the northern part of Vietnam,
Thailand, and the Malaysian Peninsula. The extreme
rainfall has a high intensity (Rx1day > 80 mm and
Rx5day > 200 mm) over these areas, but the frequencies
of heavy and very heavy rainfall events are low
(R10mm < 100 days and R20mm < 40 days). These con-
ditions cause a high contribution of extreme wet days to
the total rainfall (R95pTOT) and a high SDII. Slightly

different conditions are found for the region over the
west coast of Myanmar. Over this area, high values of
Rx1day and Rx5day are followed by frequent heavy and
very heavy rainfall events. These conditions are respon-
sible for a high total yearly precipitation. As a result,
the R95pTOT value is low, whereas the SDII is high for
this area. For the eastern part of the Philippines,
although R10mm and R20mm are high, we observed a
high R95pTOT value. This is due to the very high inten-
sity of extreme rainfall over this area during tropical
cyclone events from May to November (Corporal-
Lodangco and Leslie, 2017); the proportion of the
extreme rainfall of the total precipitation is high even
though the total precipitation is also high. Along with a
high R95pTOT value, we also observed a high SDII over
this area.

Over the Indonesia region, R95pTOT varies from 15 to
25% and the SDII varies from 6 to 14 mm. High R95pTOT
values (from 20 to 25%) occur over Nusa Tenggara and
also over the southern and northern parts of Papua. Mean-
while, areas like Java, Borneo, Nusa Tenggara, and the
centre of Papua have a high SDII value (around 12 mm).
The high SDII and the low R95pTOT values over Java,
Borneo, and the centre of Papua are related to the high fre-
quency of heavy and very heavy rainfall events. However,
for Nusa Tenggara, the high SDII and R95pTOT values are
due to a few rainy days over the region, as shown by the
CDD, CDD5D, CWD, and CWD5D values.

3.2 | Model performance for climate
indices over SEA

The models simulated similar spatial distributions for the
majority of the climatological indices. Except for the CWD,

FIGURE 2 Climatological map of the observed annual number of days on which the precipitation is ≥10 mm (R10mm) and annual

number of days on which the precipitation is ≥20 mm (R20mm). The indices represent the mean values of indices obtained from

observational datasets (SA-OBS, APHRODITE, and CHIRPS) for the period from 1981 to 2005 [Colour figure can be viewed at

wileyonlinelibrary.com]
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R20mm, R5D50mm, and SDII values, the spatial correla-
tion is high (>0.50) for most of the models. Based on the
normalized SD values of the spatial distributions, the
models are close to the observations (0.8 < normalized

SD < 1.2) in terms of the CDD, CDD5D, CWD5D, and
R95pTOT indices.

Figure 5 shows the Taylor diagrams for the simulated
CDD, CDD5D, CWD, and CWD5D values. In terms of

FIGURE 3 Climatological map of the observed annual maximum daily rainfall (Rx1day), annual maximum 5-day rainfall (Rx5day), and

annual number of 5-day heavy precipitation periods (R5day50mm). The indices represent the mean values of indices obtained from

observational datasets (SA-OBS, APHRODITE, and CHIRPS) for the period from 1981 to 2005 [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 4 Climatological map of the observed annual precipitation percentage due to R95p days (R95pTOT) and annual simple daily

intensity index per time period (SDII). The indices represent the mean values of indices obtained from observational datasets (SA-OBS,

APHRODITE, and CHIRPS) for the period from 1981 to 2005 [Colour figure can be viewed at wileyonlinelibrary.com]

HARIADI ET AL. 1647

 10970088, 2023, 3, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7938 by M
PI 348 M

eteorology, W
iley O

nline L
ibrary on [16/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


the spatial correlation, HighResMIP (HighResSST and
Hist-1950) provides a better simulation than CORDEX.
For the CDD and CDD5D values, most of the HighRes-
MIP models show a spatial correlation that is greater
than 0.8, whereas all the CORDEX models show a spatial
correlation that is less than 0.8. For the CWD values, all
model simulations show a low spatial correlation. The
majority of the HighResMIP models show a spatial corre-
lation that is greater than 0.35, while only one CORDEX
model (CSIRO) reached this value. For CWD5D, a spatial
correlation coefficient of greater than 0.5 is seen in all
HighResMIP models, whereas only two CORDEX models
(HadGEM and MPI) reach this level of agreement with

the observations. We find that Hist-1950 shows a slightly
higher spatial correlation than HighResSST. Meanwhile,
we find similar spatial correlations for the low-resolution
(LR) and high-resolution (HR) HighResMIP models. In
general, based on the spatial correlation, the Hist-1950
LR simulations show a stronger resemblance to the
observations than the other model experiments.

Based on the normalized SD, CORDEX and HighRes-
MIP have similar performances. The normalized SD
values of four CORDEX models for the CDD index range
from 0.8 to 1.2, whereas three out of six HighResMIP
models for each experiment (HighResSST and Hist-1950
for HR and LR models) are in that range. Similarly, for

FIGURE 5 Taylor diagrams of the spatial distributions of the simulated annual maximum dry spell length (CDD), annual number of

CDDs >5 days (CDD5D), annual maximum wet spell length (CWD), and annual number of CWDs >5 days (CWD5D). The x-axis (y-axis)

shows the normalized SD and the azimuthal axis shows the spatial correlation between the models and observations for the indices [Colour

figure can be viewed at wileyonlinelibrary.com]
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CDD5D, all CORDEX models have a normalized SD from
0.8 to 1.2, and most of the HighResMIP models have SD
values within this range as well, except for HadGEM
(HighResSST-LR) and CNRM (Hist-1950-HR). For the
CWD index, HighResMIP shows a lower SD value for the
majority of the models, which have normalized SD values
that are less than 3.5, while all CORDEX models show
normalized SD values that are greater than 3.5. For the
number of wet periods (CWD5D), all the HighResSST-LR
models show normalized SD values from 0.8 to 1.2, while
in CORDEX, HighResSST-LR and Hist-1950-LR, there
are five out of six models in this range; four out of six
models are in this range for Hist-1950-LR. In the High-
ResMIP experiments, HighResSST shows a better SD
value than Hist-1950. Furthermore, for HighResMIP, we
find that LR HighResMIP appears to have a slightly bet-
ter SD value than HR HighResMIP. In general, according
to the normalized SD values of the CDD, CDD5D, CWD,
and CWD5D indices, HighResSST-LR provides a better
simulation than the other model experiments.

Figure 6 shows the Taylor diagrams for the model
simulations of R10mm and R20mm. The HighResMIP
models show a higher spatial correlation and lower nor-
malized SD than the CORDEX models. In terms of the
spatial correlation, for R10mm, only two out of six
models in the CORDEX experiment have a spatial corre-
lation that is greater than 0.55, while the majority of the
HighResMIP models have spatial correlations exceeding
0.55. The contrast is slightly larger for R20mm. All of the
CORDEX models show a spatial correlation that is less
than 0.3, whereas the majority of the HighResMIP
models show a spatial correlation that is greater than 0.4
and a normalized SD that is considerably smaller. Except
for the CNRM model (experiment Hist-1950, both HR and
LR), all HighResMIP models show SD values that are well
below those of the CORDEX models, which have normal-
ized SD values that are greater than 2 for R10mm
and greater than 3 for R20mm. Within the models of
HighResMIP, we find similar performances for the
HighResSST and Hist-1950 experiments, and the LR and
HR experiments. In general, HighResSST-HR shows a
higher spatial correlation for R10mm and R20mm than the
other experiments. Among the HighResMIP model experi-
ments, HighResSST has an SD that is slightly closer to the
observations compared to Hist-1950. LR HighResMIP
has a slightly smaller normalized SD value than HR
HighResMIP. In general, for R10mm and R20mm,
HighResSST-LR shows a better SD than the other
experiments.

Figure 7 shows that in general, HighResMIP has a
higher spatial correlation and a lower normalized SD
than CORDEX for Rx1day, Rx5day, and R5day50mm. In
terms of the spatial correlation, for Rx1day, while none

of the CORDEX models show a spatial correlation that is
greater than 0.5, the majority of the HighResMIP models
show spatial correlations that are greater than 0.5. For
Rx5day, only one model from CORDEX shows a spatial
correlation that is greater than 0.4. For HighResMIP, four
models (not MPI and CMCC) show spatial correlations
that are greater than 0.4. For R5Day50mm, only one
model from CORDEX shows a spatial correlation that is
greater than 0.2. This index is also not particularly well sim-
ulated by HighResMIP. The spread in the correlation with
the observations ranges from close to 0 to 0.6, but the overall
similarity to the observations is higher for these models than
it is for CORDEX. HighResMIP also outperforms CORDEX
in terms of the normalized SD for Rx1day, Rx5day, and
R5Day50mm. Among the HighResMIP experiments,
HighResSST shows a higher spatial correlation than Hist-
1950, but the normalized SD values for both experiments
are comparable. HR HighResMIP shows a higher spatial
correlation than LR HighResMIP, except for R5Day50mm.
However, LR HighResMIP shows an SD value that is
closer to the observations compared to HR HighResMIP.

Confirming the findings for the previous indices, we
find that HighResMIP has a stronger spatial correlation
with the observations than CORDEX for the R95pTOT
and SDII values (Figure 8). For R95pTOT, the spatial cor-
relation for all CORDEX models is less than 0.65, while
the majority of the HighResMIP models show spatial cor-
relations that are greater than 0.65. For the SDII, only
one model from the CORDEX suite (CNRM) shows a spa-
tial correlation that is greater than 0.3, while the majority
of HighResMIP models show spatial correlations that are
greater than 0.3. Among the HighResMIP model experi-
ments, HighResSST has a slightly higher spatial correla-
tion than Hist-1950. Among the HighResMIP resolutions,
LR shows a higher spatial correlation for R95pTOT and a
lower spatial correlation for the SDII than HR. In gen-
eral, for R95pTOT, HighResSST-LR shows a higher spa-
tial correlation than the other experiments. For the SDII,
HighResSST-HR shows a higher spatial correlation than
the other experiments.

In terms of the SD, we find that the CORDEX and
HighResMIP models have similar performances for
R95pTOT. Except for HadGEM, the CORDEX models
show normalized SD values from 0.8 to 1.2. For HighRes-
MIP, 66% of the models also show normalized SD values
from 0.8 to 1.2. In terms of the SDII, HighResMIP has a
better SD than CORDEX. All CORDEX models show nor-
malized SD values that are greater than 2, while the
majority of the HighResMIP models show normalized
SD values that are less than 2, which means that High-
ResMIP is closer to the observations than CORDEX. We
find that HighResSST and Hist-1950 have similar perfor-
mances for R95pTOT and the SDII based on the SD. LR
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HighResMIP is closer to the observations than HR
HighResMIP for the SDII, but both resolutions show sim-
ilar performances for R95pTOT. In general, based on
R95pTOT and the SDII, HighResSST-LR shows a better
SD than the other experiments.

3.3 | Kolmogorov–Smirnov test of the
simulated climate indices over SEA

The K-S test is a method for investigating if two probabil-
ity distributions can be regarded as indistinguishable
from each other or if an underlying probability distribu-
tion differs from a hypothesised distribution. In this
study, the K-S statistic values are calculated from the
yearly time series of the climate indices for each grid box
over land. The K-S distributions are plotted using box-
plots in Figures S1–S11, Supporting Information.
Figure 9 shows the median values of the spatial distribu-
tion of the K-S statistics for each climate index for each
model. Based on the K-S analysis, the HighResMIP exper-
iments (HighResSST and Hist-1950) show consistently
lower values than CORDEX, which shows that the simu-
lated climate indices from HighResMIP have distribu-
tions that are closer to the observations compared to the
CORDEX simulation. This shows that the HighResSST
and Hist-1950 experiments are closer to the distribution
of the observed climate indices compared to the COR-
DEX models.

For the CDD and CDD5D indices, the majority of the
CORDEX models show K-S values above 0.5. For

HighResMIP, except for CMCC with HighResSST, all of
the models show K-S values below 0.5 (Figures 9, S1, and
S2). On the contrary, most of the models for both
CORDEX and HighResMIP show K-S values that are
greater than 0.75 for the CWD index. Except for Had-
GEM, all of the CORDEX models show K-S values
greater than 0.85; they show higher K-S values than
HighResMIP. There is one model for HighResSST LR and
HR that has a K-S value of greater than 0.85. For the
Hist-1950 experiment, there are three LR models and two
HR models that have K-S values that are greater than
0.85 (Figures 9 and S3). In addition, for CWD5D, most of
the median K-S values for CORDEX are greater than 0.4.
The following HighResMIP models have a median K-S
value of greater than 0.4: one model for HighResSST LR,
two models for HighResSST HR, four models for Hist-1950
LR, and three models for Hist-1950 HR (Figures 9 and S4).
For the CDD, CDD5D, CWD, and CWD5D indices, we
find similar performances for different HighResMIP exper-
iments and for the LR and HR HighResMIP experiments.

In terms of R10mm and R20mm, all CORDEX models
show median K-S values that are greater than or equal to
0.7. For HighResMIP, only one model (HadGEM in the
HighResSST LR experiment) shows a similar disagree-
ment with the observations on R10mm (Figures 9 and
S5). For R20mm, there are two models (HadGEM and
MPI) for HighResSST LR that have median K-S values of
greater than or equal to 0.7 and one model (MPI) that
reaches this K-S value for the other experiments
(Figures 9 and S6). Based on R10mm and R20mm,
HighResSST has a slightly better performance than

FIGURE 6 Similar to Figure 5, but for the annual number of days on which the precipitation is ≥10 mm (R10mm) and annual number

of days on which the precipitation is ≥20 mm (R20mm) [Colour figure can be viewed at wileyonlinelibrary.com]
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Hist-1950. We find similar performances for LR and HR
HighResMIP.

In addition, for Rx1day, Rx5day, and R5day50mm,
compared to CORDEX, whose models show K-S values
that are greater than 0.5 (Rx1day and R5day50mm) and
greater than or equal to 0.75 (Rx5day), the HighResSST
models show a stronger similarity with the observations.
In terms of Rx1day, three Hist-1950 models (CNRM,
HadGEM, and ECMWF) and two models (CNRM and
ECMWF) from other HighResMIP experiments show
median K-S values that are less than 0.5 (Figures 9 and
S7). For Rx5day, there is only one model (CMCC) from
the HR HighResSST and Hist-1950 experiments that
shows a median K-S value of greater than or equal to

0.75 (Figures 9 and S8). Meanwhile, for R5day50mm,
there is only one LR model (CMCC) and two models
(HadGEM and CMCC) from the HighResSST and
Hist-1950 experiments that have median K-S values of
greater than 0.5 (Figures 9 and S9). Based on the K-S
analysis of the Rx1day, Rx5day, and R5day50mm indices,
we find that all HighResMIP experiments perform about
equally well. LR HighResMIP shows slightly lower K-S
values than HR HighResMIP, especially for R5day50mm.

In contrast to the results of the analysis of the previ-
ous indices, the performance of HighResMIP does not
exceed the performance of CORDEX for R95pTOT and
the SDII according to the K-S values. In terms of
R95pTOT, all CORDEX models show median K-S values

FIGURE 7 Similar to Figure 5, but for the annual maximum daily rainfall (Rx1day), annual maximum 5-day rainfall (Rx5day), and

annual number of 5-day heavy precipitation periods (R5day50mm) [Colour figure can be viewed at wileyonlinelibrary.com]
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of less than 0.45 (Figures 9 and S10). Meanwhile, for
HighResMIP, two models (EC-Earth and MPI) show
median K-S values that are greater than or equal to 0.45.
In addition, similar performances in terms of the SDII

are found for CORDEX and HighResMIP (Figures 9 and
S11). Based on R95pTOT and the SDII, HighResSST has a
slightly better performance than Hist-1950. We find simi-
lar performances for LR and HR HighResMIP.

FIGURE 8 Similar to Figure 5, but for the annual precipitation percentage due to R95p days (R95pTOT) and annual simple daily

intensity index per time period (SDII) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Median K-S statistic values of the simulated climate indices. The K-S statistic is calculated for each grid point that is located

over land. The median value is calculated from the spatial distribution of the K-S statistic [Colour figure can be viewed at

wileyonlinelibrary.com]
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4 | DISCUSSION

We used three gridded precipitation observational data-
sets in this study to account for the low dispersion of gauge
data in SEA. SA-OBS and APHRODITE were developed
from rain gauges. SA-OBS, which was developed specifically
for the SEA region, has a higher station density compared
to APHRODITE, which was developed for the Asia region.
However, due to the restriction in the interpolation method,
the spatial coverage of SA-OBS is lower than that of
APHRODITE over SEA. The CHIRPS dataset is based on a
satellite rainfall retrieval algorithm that combines climatol-
ogy data, satellite precipitation estimates, and an in situ rain
gauge. This means that CHIRPS provides more complete
coverage over SEA compared to SAO-BS and APHRODITE.
However, the amount of rain gauge data used for calibra-
tion in CHIRPS is considerably lower than the amount of
rain gauge data used in SA-OBS and APHRODITE. For the
extremes, the precipitation value of a grid square should be
seen as an area average for that grid square. This means
that extremes will be “smeared” out more in datasets with a
coarser resolution (Van den Besselaar et al., 2017).

We determine the similarity of the three gridded pre-
cipitation observational datasets using K-S values for
the eleven rainfall-related climate indices. We find that
the similarity between APHRODITE and CHIRPS is the
lowest; they have the highest K-S index in this compari-
son of observational datasets. SA-OBS and APHRODITE
have the highest similarity (Figure S12). This confirms
the results of a previous study by Van den Besselaar
et al. (2017), who found that the similarities between
gauge-based datasets are higher than the similarities
between gauge-based datasets and satellite-based
datasets.

Based on the K-S indices for the observational data-
sets, we find that the three observational datasets have

a low similarity in the area over south China and
the southwest coast of Myanmar (Figure S13). The
area of low similarity is spread over more of SEA
for APHRODITE and CHIRPS. For SA-OBS and
APHRODITE, some low-similarity zones are also found
in some areas of Indonesia, such as the centre of Suma-
tra. For SA-OBS and CHIRPS, zones of low similarity
were also found in some areas in Vietnam, Cambodia,
and Indonesia (Papua Island). The low similarity
between the observational datasets for some areas like
Papua and Myanmar is caused by the low density of the
data available over the area that are used to develop the
observation datasets. However, the areas where the
observational datasets diverge most are not the areas
where the spatial patterns of the model precipitation
fields differ most from the mean in the observational
datasets. Nevertheless, this shows the need for the further
development of the observational datasets for this region.
In addition, the use of multiple observational datasets of
the region can reduce the uncertainty.

Eleven different rainfall-related climate indices were
used to investigate the performance of different genera-
tions of climate models. Among the 11 indices, the
CORDEX and HighResMIP models are better at simulat-
ing rainfall indices that show climatological characteristics
(climatic rainfall indices: CDD, CDD5D, CWD, CWD5D,
and R95pTOT) and slightly worse at simulating rainfall
indices that are more directly related to the rainfall inten-
sity (R10mm, R20mm, Rx1day, Rx5day, and R5day50mm).

For the climatic rainfall indices, both the CORDEX
and HighResMIP models are better at simulating
R95pTOT and worse at simulating CWD compared to the
other indices. In general, the models produce worse sim-
ulations over the antimonsoon region (5�S–2�N and
120�–135�E). This poor performance is worse in the COR-
DEX simulation because the low performance of the

FIGURE 10 Kolmogorov–Smirnov index map of CORDEX simulations of (a) climate indices that are related to climatological

conditions (CDD, CDD5D, CWD, CWD5D, and R95pTOT) and (b) climate indices that are directly related to the rainfall intensity (R10mm,

R20mm, Rx1day, Rx5day, R5day50mm, and SDII) [Colour figure can be viewed at wileyonlinelibrary.com]
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simulation is spread out over the equatorial region
(5�S–10�N). The advantage of the prescribed SST in High-
ResSST is shown; it results in a better simulation than
CORDEX. The comparable performances of Hist-1950
and HighResSST show the skill of the ocean model in
Hist-1950. In a previous study, Hist-1950 also demon-
strated a better seasonal southward migration of the rain
band from the Asian summer monsoon to the Australian
summer monsoon and better monsoon season rainfall
simulations over SEA compared to CORDEX (Hariadi
et al., 2021). We assume that one of the reasons for this is
that HighResMIP has the advantage of a global-scale run,
while CORDEX has only a regional-scale run. Further-
more, Kamruzzaman et al. (2021) found that CMIP6 pro-
vides a better simulation of the Indian summer monsoon
than CMIP5. CMIP6 also simulated better seasonal char-
acteristics over the western North Pacific and East Asia
region (Chen et al., 2021).

In addition, both model experiments also show a
poorer simulation of Vietnam and the northern
Philippines. This poor performance is worse in CORDEX
than in HighResMIP. The area is affected by tropical
cyclones. A previous study by Park et al. (2021) found that
CMIP6 models are better than CMIP5 models at simulat-
ing the pattern correlations and thermodynamic condi-
tions of the tropical cyclones that affect the South Korean
region.

For rainfall indices that are directly related to the
intensity characteristic, both climate model experiments
(CORDEX and HighResMIP) are generally worse at sim-
ulating the extreme precipitation over the mountainous
region (Figures 10, 11, S14, and S15). This highlights the
need for improvement in the representation of the physi-
cal processes of orographic regions in climate models
(Raäisaänen, 2007; Elvidge et al., 2019). CORDEX per-
forms worse than HighResMIP. Demory et al. (2020a)

found a similar result when they studied heavy precipita-
tion in Europe. They found that the heavy rainfall that is
simulated by HighResMIP is closer to the observati-
ons than the heavy rainfall that is simulated by
EURO-CORDEX.

Even though HighResMIP shows better climatic rain-
fall indices than CORDEX, and the previous study by
Hariadi et al. (2021) also shows a better simulation of
monsoon characteristics, finding that Hist-1950 has bet-
ter and comparable performances compared to CORDEX
for intensity-related precipitation indices is unexpected.
This is because Hist-1950 was the higher resolution ver-
sion of the CMIP6 General Circulation Models (GCM)
that was originally developed at a coarser resolution and
has little additional tuning. On the other hand, CORDEX
is the downscaling result of CMIP5, which was developed
at a higher resolution and potentially tuned at each reso-
lution (Demory et al., 2020b). However, the tuning that
was performed during the downscaling process of the
CORDEX-SEA version that was used in this study caused
more uncertainty in the results. Juneng et al. (2016)
found a large positive precipitation bias due to the con-
vection scheme that was used in the RegCM4 configura-
tion. This explains the large precipitation biases in the
CORDEX-SEA simulation that were found in previous
studies (Amsal et al., 2019; Hariadi et al., 2021; Nguyen-
Thi et al., 2021). Furthermore, Nguyen et al. (2022) found
more intensity of daily precipitation in CORDEX-SEA
than their forcing GCM. They suggest that the RCM
setup (e.g., parameterization scheme) has a more signifi-
cant role in the model's ability to simulate precipitation
compared to its forcing GCM. Tangang et al. (2020) dis-
cussed the need to improve the RCM simulation in the
future for the CORDEX-SEA model and the need to use
the latest CMIP models, which helps to reduce the biases.
Bias correction on climate model results dataset over this

FIGURE 11 Kolmogorov–Smirnov index map of Hist-1950 HR simulations of (a) climate indices that are related to climatological

conditions (CDD, CDD5D, CWD, CWD5D, and R95pTOT) and (b) climate indices that are directly related to the rainfall intensity (R10mm,

R20mm, Rx1day, Rx5day, R5day50mm, and SDII) [Colour figure can be viewed at wileyonlinelibrary.com]
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region is also recommended for the further use of the
dataset (Ratri et al., 2019; 2021; Trinh-Tuan et al., 2019;
Tangang et al., 2020).

Tangang et al. (2018) investigated anomalies in four
indices of extreme precipitation: the annual total precipi-
tation on wet days (PRCPTOT), the CDD index, the
annual number of days on which the daily precipitation
exceeded 50 mm (R50mm), and RX1day. They found that
CORDEX-SEA simulations reasonably captured the char-
acteristics of the extreme rainfall anomalies over SEA
during the period from 1986 to 2005. Furthermore, in this
study, we found that the HighResMIP simulation of
extreme precipitation over the region was better than the
CORDEX simulation.

5 | CONCLUSION

This study explored how well the HighResMIP and
CORDEX models simulated extreme rainfall-related cli-
mate indices over the SEA region for the period from
1981 to 2005. There is also a further investigation into
whether the latest HighResMIP model experiment is bet-
ter than the downscaled results of the previous model
experiment, CMIP5. These indices cover both the high/
wet end of the spectrum and the dry spells. The number
of heavy rainfall days (R10mm), number of very heavy
rainfall days (R20mm), maximum daily rainfall (Rx1day),
maximum 5-day rainfall (Rx5day), number of 5-day
heavy precipitation periods (R5day50mm), and simple
daily intensity index (SDII) are directly related to the
rainfall intensity, and together with the precipitation per-
centage due to R95p days (R95pTOT), they represent
extreme wet conditions. The other four indices (maxi-
mum dry spell length [CDD], number of CDDs >5 days
[CDD5D], maximum wet spell length [CWD], and num-
ber of CWDs >5 days [CWD5D]) are related to the rainy/
dry spells. We find that areas affected by tropical cyclones
show high extreme rainfall indices (Rx1day and Rx5day)
compared to other areas. As a result, R95pTOT and the
SDII are also high for most of these areas, except for the
west coast of Myanmar, which has a relatively low
R95pTOT value due to high R10mm and R20mm values.
For the majority of the Indonesia region, high values of
the simple SDII are found, and the contribution of rainfall
on extreme wet days to the total precipitation (R95pTOT)
is low, except for Nusa Tenggara, which is the driest area
in the region. This is due to the high R10mm and R20mm
values found for the majority of the Indonesia region; they
result in a high total yearly precipitation.

The similarity between the CORDEX and HighRes-
MIP models and the observations is higher for the CDD,
CDD5D, CWD5D, and R95pTOT indices than it is for the

R10mm, R20mm, Rx1day, Rx5day, Rx50mm5day, and
SDII values. We can conclude that the models are worse
at simulating the rainfall climate indices that are directly
related to the rainfall intensity, and they are better at
simulating other indices that are not directly related to
the rainfall intensity. However, the models provide a
good representation of the climatic rainfall conditions.
The models can simulate the rainfall pattern and distri-
bution well but still show bias when it comes to the rain-
fall intensity. This bias is shown in all model experiments
but is higher in CORDEX than in HighResMIP.

Overall, HighResMIP is consistently better than
CORDEX at simulating the rainfall-related climate indi-
ces. Within the HighResMIP experiment, we do not find
a significant difference in performance between coupled
(Hist-1950) and non-coupled (HighResSST) models when
they are used to simulate the indices. This shows the high
accuracy of the ocean model used in the coupled models.
Moreover, we also find no difference between using HR
HighResMIP and using LR HighResMIP.
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Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T.,
Leung, L.R., Lu, J., Luo, J.J., Mao, J., Mizielinski, M.S.,
Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T.,

1656 HARIADI ET AL.

 10970088, 2023, 3, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7938 by M
PI 348 M

eteorology, W
iley O

nline L
ibrary on [16/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-3617-1277
https://orcid.org/0000-0003-3617-1277
https://orcid.org/0000-0003-3617-1277
https://orcid.org/0000-0002-4532-854X
https://orcid.org/0000-0002-4532-854X
https://orcid.org/0000-0002-4532-854X
https://doi.org/10.1002/joc.950
https://doi.org/10.3389/fenvs.2021.657810
https://doi.org/10.3389/fenvs.2021.657810
https://doi.org/10.1007/s10584-019-02442-5
https://doi.org/10.1175/JCLI-3257.1
https://doi.org/10.1029/2018MS001369
https://doi.org/10.1029/2018MS001369
https://floodlist.com/asia/indonesia-greater-jakarta-floods-update-february-2021
https://floodlist.com/asia/indonesia-greater-jakarta-floods-update-february-2021
https://doi.org/10.5194/gmd-13-5485-2020
https://doi.org/10.5194/gmd-13-5485-2020
https://doi.org/10.5194/gmd-2019-370
https://doi.org/10.5194/gmd-2019-370
https://doi.org/10.1029/2019MS001661
https://hdl.handle.net/20.500.12870/3952
https://hdl.handle.net/20.500.12870/3952
https://doi.org/10.1002/qj.3699
https://doi.org/10.1002/qj.3699
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.3354/cr01018
https://doi.org/10.5194/gmd-2019-350
https://doi.org/10.5194/gmd-2019-350


Small, J. and von Storch, J.S. (2016) High Resolution Model
Intercomparison Project (HighResMIP v1. 0) for CMIP6. Geos-
cientific Model Development, 9(11), 4185–4208. https://doi.org/
10.5194/gmd-9-4185-2016.

Hamada, J.-I., Yamanaka, M., Matsumoto, J., Fukao, S., Winarso, P.
A. and Sribimawati, T. (2002) Spatial and temporal variations
of the rainy season over Indonesia and their link to ENSO.
Journal of the Meteorological Society of Japan. Ser. II, 80(2),
285–310. https://doi.org/10.2151/jmsj.80.285.

Hariadi, M.H., van der Schrier, G., Steeneveld, G.J.,
Sopaheluwakan, A., Klein Tank, A.M.G., Roberts, M.J.,
Moine, M.P., Bellucci, A., Senan, R., Tourigny, E. and
Putrasahan, D. (2021) Evaluation of onset, cessation and sea-
sonal precipitation of the Southeast Asia rainy season in CMIP5
regional climate models and HighResMIP global climate
models. International Journal of Climatology, 42, 3007–3024.
https://doi.org/10.1002/joc.7404.

IFRC. (2019) Indonesia: drought information bulletin. Available
at: https://reliefweb.int/report/indonesia/indonesia-
drought-information-bulletin.

IPCC. (2021) In: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O.,
Yu, R. and Zhou, B. (Eds.) Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate
Change. Geneva: IPCC. https://doi.org/10.1017/9781009157896.

Juneng, L., Tangang, F., Chung, J.X., Ngai, S.T., Tay, T.W.,
Narisma, G., Cruz, F., Phan-Van, T., Ngo-Duc, T.,
Santisirisomboon, J., Singhruck, P., Gunawan, D. and
Aldrian, E. (2016) Sensitivity of Southeast Asia rainfall simula-
tions to cumulus and air-sea flux parameterizations in RegCM4.
Climate Research, 69(1), 59–77. https://doi.org/10.3354/cr01386.

Kamruzzaman, M., Shahid, S., Islam, A., Hwang, S., Cho, J.,
Zaman, M., Uz, A., Ahmed, M., Rahman, M., and Hossain, M.
(2021) Comparison of CMIP6 and CMIP5 model performance
in simulating historical precipitation and temperature in
Bangladesh: a preliminary study. Theoretical and Applied Cli-
matology, 145(3), 1385–1406.

Karl, T.R., Nicholls, N. and Ghazi, A. (1999) Clivar/GCOS/WMO
workshop on indices and indicators for climate extremes work-
shop summary. In: Weather and Climate Extremes. Dordrecht,
Netherlands: Springer, pp. 3–7. https://doi.org/10.1007/978-94-
015-9265-9_2.

Kim, I.-W., Oh, J., Woo, S. and Kripalani, R. (2019) Evaluation of
precipitation extremes over the Asian domain: observation and
modelling studies. Climate Dynamics, 52(3), 1317–1342. https://
doi.org/10.1007/s00382-018-4193-4.

Klein Tank, A.M.G., Zwiers, F.W. and Zhang, X. (2009) Guide-
lines on Analysis of Extremes in a Changing Climate in Sup-
port of Informed Decisions for Adaptation. Geneva: World
Meteorological Organization. WCDMP No. 72. WMO-TD
No. 1500, p. 56.

Lavers, D.A., Harrigan, S. and Prudhomme, C. (2021) Precipitation
biases in the ECMWF integrated forecasting system. Journal of
Hydrometeorology, 22(5), 1187–1198. https://doi.org/10.1175/
JHM-D-20-0308.1.

Li, Z., Yu, W., Li, T., Murty, V. and Tangang, F. (2013) Bimodal
character of cyclone climatology in the Bay of Bengal modu-
lated by monsoon seasonal cycle. Journal of Climate, 26(3),
1033–1046. https://doi.org/10.1175/JCLI-D-11-00627.1.

Limsakul, A. and Singhruck, P. (2016) Long-term trends and vari-
ability of total and extreme precipitation in Thailand. Atmo-
spheric Research, 169, 301–317. https://doi.org/10.1016/j.
atmosres.2015.10.015.

Lubis, S.W. and Respati, M.R. (2021) Impacts of convectively
coupled equatorial waves on rainfall extremes in Java,
Indonesia. International Journal of Climatology, 41(4),
2418–2440. https://doi.org/10.1002/joc.6967.

Luu, L.N., Scussolini, P., Kew, S., Philip, S., Hariadi, M.H.,
Vautard, R., Mai, K.V., Vu, T.V., Truong, K.B., Otto, F., van der
Schrier, G., van Aalst, M.K. and van Oldenborgh, G.J. (2021)
Attribution of typhoons-induced torrential precipitation in
Central Vietnam, October 2020. Climatic Change, 169, 24.

Marjuki, van der Schrier, G., Klein Tank, A.M.G., van den
Besselaar, E.J., Nurhayati and Swarinoto, Y. (2016) Observed
trends and variability in climate indices relevant for crop yields
in Southeast Asia. Journal of Climate, 29(7), 2651–2669. https://
doi.org/10.1175/JCLI-D-14-00574.1.

Misra, V. and DiNapoli, S. (2014) The variability of the Southeast
Asian summer monsoon. International Journal of Climatology,
34(3), 893–901.

Moron, V., Robertson, A.W. and Boer, R. (2009) Spatial coherence
and seasonal predictability of monsoon onset over Indonesia.
Journal of Climate, 22(3), 840–850. https://doi.org/10.1175/
2008JCLI2435.1.

Moura Cardoso do Vale, T., Helena Constantino Spyrides, M., De
Melo Barbosa Andrade, L., Guedes Bezerra, B. and Evangelista
da Silva, P. (2020) Subsistence agriculture productivity and cli-
mate extreme events. Atmosphere, 11(12), 1287. https://doi.org/
10.3390/atmos11121287.

Muhammad, F.R., Lubis, S.W. and Setiawan, S. (2021) Impacts of
the Madden–Julian oscillation on precipitation extremes in
Indonesia. International Journal of Climatology, 41(3), 1970–
1984. https://doi.org/10.1002/joc.6941.

Müller, W.A., Jungclaus, J.H., Mauritsen, T., Baehr, J., Bittner, M.,
Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H.,
Ilmmarlyyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K.,
Notz, D., Pohlmann, H., Roeckner, E., Stemmler, I., Tian, F.
and Marotzke, J. (2018) A higher-resolution version of the
Max Planck Institute Earth System Model (MPI-ESM1.2-HR).
Journal of Advances in Modeling Earth Systems, 10(7), 1383–
1413.

Ngo-Duc, T., Tangang, F.T., Santisirisomboon, J., Cruz, F., Trinh-
Tuan, L., Nguyen-Xuan, T., Phan-Van, T., Juneng, L.,
Narisma, G., Singhruck, P., Gunawan, D. and Aldrian, E.
(2017) Performance evaluation of RegCM4 in simulating
extreme rainfall and temperature indices over the CORDEX-
Southeast Asia region. International Journal of Climatology,
37(3), 1634–1647. https://doi.org/10.1002/joc.4803.

Nguyen, P.-L., Bador, M., Alexander, L.V., Lane, T.P. and Ngo-
Duc, T. (2022) More intense daily precipitation in cordex-sea
regional climate models than their forcing global climate
models over southeast asia. International Journal of Climatol-
ogy, 42, 6537–6561. https://doi.org/10.1002/joc.7619.

HARIADI ET AL. 1657

 10970088, 2023, 3, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7938 by M
PI 348 M

eteorology, W
iley O

nline L
ibrary on [16/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5194/gmd-9-4185-2016
https://doi.org/10.5194/gmd-9-4185-2016
https://doi.org/10.2151/jmsj.80.285
https://doi.org/10.1002/joc.7404
https://reliefweb.int/report/indonesia/indonesia-drought-information-bulletin
https://reliefweb.int/report/indonesia/indonesia-drought-information-bulletin
https://doi.org/10.1017/9781009157896
https://doi.org/10.3354/cr01386
https://doi.org/10.1007/978-94-015-9265-9_2
https://doi.org/10.1007/978-94-015-9265-9_2
https://doi.org/10.1007/s00382-018-4193-4
https://doi.org/10.1007/s00382-018-4193-4
https://doi.org/10.1175/JHM-D-20-0308.1
https://doi.org/10.1175/JHM-D-20-0308.1
https://doi.org/10.1175/JCLI-D-11-00627.1
https://doi.org/10.1016/j.atmosres.2015.10.015
https://doi.org/10.1016/j.atmosres.2015.10.015
https://doi.org/10.1002/joc.6967
https://doi.org/10.1175/JCLI-D-14-00574.1
https://doi.org/10.1175/JCLI-D-14-00574.1
https://doi.org/10.1175/2008JCLI2435.1
https://doi.org/10.1175/2008JCLI2435.1
https://doi.org/10.3390/atmos11121287
https://doi.org/10.3390/atmos11121287
https://doi.org/10.1002/joc.6941
https://doi.org/10.1002/joc.4803
https://doi.org/10.1002/joc.7619


Nguyen-Thi, H.A., Matsumoto, J., Ngo-Duc, T. and Endo, N. (2012)
A climatological study of tropical cyclone rainfall in Vietnam.
Solaiat, 8, 41–44.

Nguyen-Thi, T., Ngo-Duc, T., Tangang, F.T., Cruz, F., Juneng, L.,
Santisirisomboon, J., Aldrian, E., Phan-Van, T. and
Narisma, G. (2021) Climate analogue and future appearance of
novel climate in Southeast Asia. International Journal of Clima-
tology, 41, E392–E409. https://doi.org/10.1002/joc.6693.

Park, D.-S.R., Kim, H.-S., Kwon, M., Byun, Y.-H., Kim, M.-K.,
Chung, I.-U., Park, J.-S. and Min, S.-K. (2021) A performance
evaluation of potential intensity over the tropical cyclone passage
to South Korea simulated by CMIP5 and CMIP6 models. Atmo-
sphere, 12(9), 1214. https://doi.org/10.3390/atmos12091214.

Raäisaänen, J. (2007) How reliable are climate models? Tellus A:
Dynamic Meteorology and Oceanography, 59(1), 2–29. https://
doi.org/10.1111/j.1600-0870.2006.00211.x.

Räsänen, T.A., Lindgren, V., Guillaume, J.H., Buckley, B.M. and
Kummu, M. (2016) On the spatial and temporal variability of
ENSO precipitation and drought teleconnection in mainland
Southeast Asia. Climate of the Past, 12(9), 1889–1905. https://
doi.org/10.5194/cp-12-1889-2016.

Ratri, D.N., Whan, K. and Schmeits, M. (2019) A comparative verifi-
cation of raw and bias-corrected ECMWF seasonal ensemble
precipitation reforecasts in Java (Indonesia). Journal of Applied
Meteorology and Climatology, 58(8), 1709–1723.

Ratri, D.N., Whan, K. and Schmeits, M. (2021) Calibration of
ECMWF seasonal ensemble precipitation reforecasts in Java
(Indonesia) using bias-corrected precipitation and climate indi-
ces. Weather and Forecasting, 36(4), 1375–1386.

Rauscher, S.A., Coppola, E., Piani, C. and Giorgi, F. (2010) Reso-
lution effects on regional climate model simulations of sea-
sonal precipitation over Europe. Climate Dynamics, 35(4),
685–711.

Roberts, C.D., Senan, R., Molteni, F., Boussetta, S., Mayer, M. and
Keeley, S.P. (2018) Climate model configurations of the
ECMWF Integrated Forecasting System (ECMWF-IFS cycle
43r1) for HighResMIP. Geoscientific Model Development, 11(9),
3681–3712. https://doi.org/10.5194/gmd-2018-90.

Roberts, M.J., Baker, A., Blockley, E.W., Calvert, D., Coward, A.,
Hewitt, H.T., Jackson, L.C., Kuhlbrodt, T., Mathiot, P.,
Roberts, C.D., Schiemann, R., Seddon, J., Vannière, B. and
Vidale, P.L. (2019) Description of the resolution hierarchy of
the global coupled HadGEM3-GC3.1 model as used in CMIP6
HighResMIP experiments. Geoscientific Model Development,
12(12), 4999, 10.5194/gmd-12-4999-2019–5028.

Roberts, M.J., Camp, J., Seddon, J., Vidale, P.L., Hodges, K.,
Vannière, B., Mecking, J., Haarsma, R., Bellucci, A.,
Scoccimarro, E., Caron, L.P., Chauvin, F., Terray, L., Valcke, S.,
Moine, M.P., Putrasahan, D., Roberts, C.D., Senan, R.,
Zarzycki, C., Ullrich, P., Yamada, Y., Mizuta, R., Kodama, C.,
Fu, D., Zhang, Q., Danabasoglu, G., Rosenbloom, N., Wang, H.
and Wu, L. (2020) Projected future changes in tropical cyclones
using the CMIP6 HighResMIP multimodel ensemble. Geophysi-
cal Research Letters, 47(14), e2020GL088662.

Schulzweida, U., Kornblueh, L. and Quast, R. (2006) CDO user's
guide. Climate Data Operators, Version, 1(6), 205–209.

Schulzweida, U. and Quast, R. (2015). Climate indices with
CDO. Available at: https://earth.bsc.es/gitlab/ces/cdo/raw/
b4f0edf2d5c87630ed4c5ddee5a4992e3e08b06a/doc/cdo_eca.pdf.

Singh, V. and Xiaosheng, Q. (2019) Data assimilation for construct-
ing long-term gridded daily rainfall time series over Southeast
Asia. Climate Dynamics, 53(5), 3289–3313.

Siswanto, S., van Oldenborgh, G.J., van der Schrier, G., Jilderda, R.
and van den Hurk, B. (2016) Temperature, extreme precipita-
tion, and diurnal rainfall changes in the urbanized Jakarta city
during the past 130 years. International Journal of Climatology,
36(9), 3207–3225. https://doi.org/10.1002/joc.4548.

Sivakumar, M. (1988) Predicting rainy season potential from the onset
of rains in southern Sahelian and Sudanian climatic zones of West
Africa. Agricultural and Forest Meteorology, 42(4), 295–305.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M.,
Duda, M.G., Yu Huang, X., Wang, W. and Powers, J.G. (2008)
A description of the Advanced Research WRF version 3. Boulder,
CO: NCAR. Technical Note NCAR/TN-475+STR.

Supari, F.T., Juneng, L., Faye, C., Jing Xiang, C., Sheau Tieh, N.,
Ester, S., Mohd, S.F.M., Jerasorn, S., Patama, S., Tan, P., Ngo-
Duc, T., Gemma, N., Edvin, A., Dodo, G. and Ardhasena, S. (2020)
Multi-model projections of precipitation extremes in Southeast Asia
based on CORDEX-Southeast Asia simulations. Environmental
Research, 184, 109350. https://doi.org/10.1016/j.envres.2020.109350.

Supari, F.T., Salimun, E., Aldrian, E., Sopaheluwakan, A., and
Juneng, L. (2018) ENSO modulation of seasonal rainfall and
extremes in Indonesia. Climate Dynamics, 51(7), 2559–2580.
https://doi.org/10.1007/s00382-017-4028-8.

Supari, T.F., Juneng, L. and Aldrian, E. (2016) Spatio-temporal
characteristics of temperature and precipitation extremes in
Indonesian Bornea. AIP Conference Proceedings, 1784, 060050.
https://doi.org/10.1063/1.4966888.

Tangang, F., Chung, J.X., Juneng, L., Supari, S.E., Ngai, S.T.,
Jamaluddin, A.F., Mohd, M.F.S., Cruz, F., Narisma, G.,
Santisirisomboon, J., Ngo-Duc, T., Tan, P.V., Singhruck, P.,
Gunawan, D., Aldrian, E., Sopaheluwakan, A., Grigory, N.,
Remedio, A.R.C., Sein, D.V., Hein-Griggs, D., McGregor, J.L.,
Yang, H., Sasaki, H. and Kumar, P. (2020) Projected future
changes in rainfall in Southeast Asia based on CORDEX-SEA
multi-model simulations. Climate Dynamics, 55, 1247–1267.
https://doi.org/10.1007/s00382-020-05322-2.

Tangang, F., Supari, S., Chung, J.X., Cruz, F., Salimun, E., Ngai, S.T.,
Juneng, L., Santisirisomboon, J., Santisirisomboon, J., Ngo-
Duc, T., Phan-Van, T., Narisma, G., Singhruck, P., Gunawan, D.,
Aldrian, E., Sopaheluwakan, A., Nikulin, G., Yang, H., Remedio,
A.R.C., Sein, D., and Hein-Griggs, D. (2018) Future changes in
annual precipitation extremes over Southeast Asia under global
warming of 2�C. APN Science Bulletin, 8(1), 3–8. https://doi.org/
10.30852/sb.2018.436.

Taylor, K.E. (2001) Summarizing multiple aspects of model perfor-
mance in a single diagram. Journal of Geophysical Research:
Atmospheres, 106(D7), 7183–7192. https://doi.org/10.1029/
2000JD900719.

Trinh-Tuan, L., Matsumoto, J., Tangang, F. T., Juneng, L., Cruz, F.,
Narisma, G., Santisirisomboon, J., Phan-Van, T., Gunawan, D.,
Aldrian, E., and Ngo-Duc, T. (2019). Application of quantile
mapping bias correction for mid-future precipitation projec-
tions over Vietnam. SOLA 15, 1 6

Trouet, V. and Van Oldenborgh, G.J. (2013) KNMI Climate
Explorer: a web-based research tool for high-resolution paleo-
climatology. Tree-Ring Research, 69(1), 3–13. https://doi.org/10.
3959/1536-1098-69.1.3.

1658 HARIADI ET AL.

 10970088, 2023, 3, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7938 by M
PI 348 M

eteorology, W
iley O

nline L
ibrary on [16/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/joc.6693
https://doi.org/10.3390/atmos12091214
https://doi.org/10.1111/j.1600-0870.2006.00211.x
https://doi.org/10.1111/j.1600-0870.2006.00211.x
https://doi.org/10.5194/cp-12-1889-2016
https://doi.org/10.5194/cp-12-1889-2016
https://doi.org/10.5194/gmd-2018-90
https://earth.bsc.es/gitlab/ces/cdo/raw/b4f0edf2d5c87630ed4c5ddee5a4992e3e08b06a/doc/cdo_eca.pdf
https://earth.bsc.es/gitlab/ces/cdo/raw/b4f0edf2d5c87630ed4c5ddee5a4992e3e08b06a/doc/cdo_eca.pdf
https://doi.org/10.1002/joc.4548
https://doi.org/10.1016/j.envres.2020.109350
https://doi.org/10.1007/s00382-017-4028-8
https://doi.org/10.1063/1.4966888
https://doi.org/10.1007/s00382-020-05322-2
https://doi.org/10.30852/sb.2018.436
https://doi.org/10.30852/sb.2018.436
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1029/2000JD900719
https://doi.org/10.3959/1536-1098-69.1.3
https://doi.org/10.3959/1536-1098-69.1.3


Ul Hasson, S., Pascale, S., Lucarini, V. and Böhner, J. (2016) Seasonal
cycle of precipitation over major river basins in South and South-
east Asia: a review of the CMIP5 climate models data for present
climate and future climate projections. Atmospheric Research,
180, 42–63. https://doi.org/10.1016/j.atmosres.2016.05.008.

Van Den Besselaar, E. J., Klein Tank, A. M., Van Der Schrier, G.,
Abass, M. S., Baddour, O., Van Engelen, A. F., Freire, A.,
Hechler, P., Laksono, B. I., Jilderda, R., , Foamouhoue, A. K.,
Kattenberg, A., Leander, R., Güingla, R. M., Mhanda, A. S.,
Nieto, J. J., Sunaryo, SA., Swarinoto, Y. S., and Verver, G.
(2015). International climate assessment & dataset: climate ser-
vices across borders. Bulletin of the American Meteorological
Society, 96(1):16–21.

Van den Besselaar, E.J., Van der Schrier, G., Cornes, R.C., Iqbal, A.
S. and Klein Tank, A.M. (2017) SA-OBS: a daily gridded surface
temperature and precipitation dataset for Southeast Asia. Jour-
nal of Climate, 30(14), 5151–5165. https://doi.org/10.1175/JCLI-
D-16-0575.1.

Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A.,
Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M.,
Moine, M.-P., Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian, R.,
Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C.,
Cattiaux, J., Deshayes, J., Douville, H., Ethé, C., Franchistéguy, L.,
Geoffroy, O., Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R.,
Ribes, A., Sanchez-Gomez, E., Terray, L. and Waldman, R. (2019)
Evaluation of CMIP6 DECK experiments with CNRM-CM6-1.
Journal of Advances in Modeling Earth Systems, 11(7), 2177–2213.
https://doi.org/10.1029/2019MS001683.

Wang, B. (2006) The Asian Monsoon. Berlin-Heidelberg: Springer
Science & Business Media.

WMO. (2021) Weather-related disasters increase over past 50 years,
causing more damage but fewer deaths [Press Release]. Available at:
https://public.wmo.int/en/media/press-release/weather-related-
disasters-increase-over-past-50-years-causing-more-damage-fewer.

Yang, H. (2012). Revision of climate change by dynamic downscaling
over the maritime continents. Available at: adss.apcc21.org/

DataSet/Cordex/CORDEX-SEA_25km.pdf [Accessed on 22nd
June 2020].

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N.
and Kitoh, A. (2012) APHRODITE: constructing a long-term daily
gridded precipitation dataset for Asia based on a dense network of
rain gauges. Bulletin of the American Meteorological Society, 93(9),
1401–1415. https://doi.org/10.1175/BAMS-D-11-00122.1.

You, Y. and Ting, M. (2021) Low pressure systems and extreme precipi-
tation in Southeast and East Asian monsoon regions. Journal of Cli-
mate, 34(3), 1147–1162. https://doi.org/10.1175/JCLI-D-20-0206.1.

Zhang, L., Chen, Z., and Zhou, T. (2021). Human influence on the
increasing drought risk over Southeast Asian monsoon region.
Geophysical Research Letters, 48(11):e2021GL093777. doi :
10.1029/2021GL093777.

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Hariadi, M. H., van
der Schrier, G., Steeneveld, G.-J., Ratri, D. N.,
Sopaheluwakan, A., Tank, A. K., Aldrian, E.,
Gunawan, D., Moine, M.-P., Bellucci, A., Senan, R.,
Tourigny, E., Putrasahan, D. A., & Linarka, U. A.
(2023). Evaluation of extreme precipitation over
Southeast Asia in the Coupled Model
Intercomparison Project Phase 5 regional climate
model results and HighResMIP global climate
models. International Journal of Climatology, 43(3),
1639–1659. https://doi.org/10.1002/joc.7938

HARIADI ET AL. 1659

 10970088, 2023, 3, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7938 by M
PI 348 M

eteorology, W
iley O

nline L
ibrary on [16/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.atmosres.2016.05.008
https://doi.org/10.1175/JCLI-D-16-0575.1
https://doi.org/10.1175/JCLI-D-16-0575.1
https://doi.org/10.1029/2019MS001683
https://public.wmo.int/en/media/press-release/weather-related-disasters-increase-over-past-50-years-causing-more-damage-fewer
https://public.wmo.int/en/media/press-release/weather-related-disasters-increase-over-past-50-years-causing-more-damage-fewer
http://adss.apcc21.org/DataSet/Cordex/CORDEX-SEA_25km.pdf
http://adss.apcc21.org/DataSet/Cordex/CORDEX-SEA_25km.pdf
https://doi.org/10.1175/BAMS-D-11-00122.1
https://doi.org/10.1175/JCLI-D-20-0206.1
https://doi.org/10.1002/joc.7938

	Evaluation of extreme precipitation over Southeast Asia in the Coupled Model Intercomparison Project Phase 5 regional clima...
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Description of the study area
	2.2  Data
	2.2.1  Observations
	2.2.2  Model results

	2.3  Methods
	2.3.1  Climate indices
	2.3.2  Validation methods


	3  RESULTS
	3.1  Observed climate indices over Southeast Asia
	3.2  Model performance for climate indices over SEA
	3.3  Kolmogorov-Smirnov test of the simulated climate indices over SEA

	4  DISCUSSION
	5  CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	REFERENCES


