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Abstract: To characterize a community-scale urban functional area using geo-tagged data and available

land-use information, several supervised and semi-supervised models are presented and evaluated

in Hong Kong for comparing their uncertainty, robustness and sensitivity. The following results are

noted: (i) As the training set size grows, models’ accuracies are improved, particularly for multi-layer

perceptron (MLP) or random forest (RF). The graph convolutional network (GCN) (MLP or RF) model

reveals top accuracy when the proportion of training samples is less (greater) than 10% of the total

number of functional areas; (ii) With a large amount of training samples, MLP shows the highest

prediction accuracy and good performances in cross-validation, but less stability on same training

sets; (iii) With a small amount of training samples, GCN provides viable results, by incorporating the

auxiliary information provided by the proposed semantic linkages, which is meaningful in real-world

predictions; (iv) When the training samples are less than 10%, one should be cautious using MLP to

test the optimal epoch for obtaining the best accuracy, due to its model overfitting problem. The above

insights could support efficient and scalable urban functional area mapping, even with insufficient

land-use information (e.g., covering only ~20% of Beijing in the case study).

Keywords: geotagged data; urban functional area; graph convolutional network; multi-layer perceptron;

semi-supervised learning

1. Introduction

Land use is defined by the function, or functions, characterizing humans’ use of an area
of land, which mostly falls within six main categories, including agricultural, residential,
recreational, commercial, industrial and transportation [1], in which the last four are the
main contributors for urban area coverage. Commercial land use is land being used for
the sale of goods or services for financial profit, including central business districts and
shopping centers. Residential land use is the land used for housing. Recreational land use
in urban areas includes city parks, playing fields, hiking and biking trails, etc. Industrial
land use is the land used in manufacturing and storing, etcetera. Transport land use is the
land delegated to the moving or transportation of goods and commuting people from one
spot to another; that is, roads, highways, railroads and airports.

Urbanization is a process whereby populations move from rural to urban areas, en-
abling cities and towns to grow [2,3], and the process typically brings the need for more
housing and jobs, associating with a need for land use change. That is, agricultural or
natural recreational types of land use must be converted to residential, business, industrial
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and transportation types [4,5]. During the renewal of a city, different functional areas with
relatively homogeneous internal functional land use are gradually formed to meet the vari-
ous needs of people’s daily life and they are considered as basic spatial units implementing
urban plans [6]. The combination and distribution of different areas constitute the structure
of the city [7].

Efforts have been made to monitor real urban functional land use patterns [8], and
to compare with the urban development plan, which is important for sustainable ur-
ban development. Some of the urban functional areas may be inevitably sculpted by
anthropogenic activities, rather than following the initial masterplan, due to multiple
driving factors, including local geographic/topographic conditions [9,10], economic pur-
poses [11,12], etc. Thus, diagnosing differences between plan and reality enables an im-
proved future urban planning, such as modifications for planning transportation and
recreational spaces [13,14]. Besides, detailed urban functional maps and the dynamics of
urban functional area change make a possible estimation for urban resilience in facing nat-
ural hazards or climate change [14–18], and for the ecological impact, due to urban sprawl,
developing pattern, clustering, trend and functional land use interrelationships [19–24].

Nevertheless, before commencing all those analyses, a precise knowledge of the distri-
bution of urban functional areas is necessary, which depends on the classification model,
the amount of training data, different combinations of training data, etc. The unsupervised
clustering methods exhibit the ability to discover various functional areas, yet ultimately
require manual identification of the properties of individual clusters, which could bring
about large uncertainty [25]. Recently, artificial intelligence (AI) and machine learning
(ML) developers have generated AI and ML to “think more intelligently”, like humans,
making decisions with supervised and semi-supervised models on urban functional area
analysis [26–28]. Later, GeoAI and artificial intelligence, together with a geographical
information system (GIS), performs well in numerous tasks via combining the strong
modeling ability of AI and geospatial characteristics (see for example [29–32]). Still, less
effort has been made for diagnosing the sensitivities of performances which are related
to the selection of the classification models, discrepancies in training data sets, and the
method for quantifying model uncertainty. Previous works assess classification accuracies
by comparing results with planning maps and online maps (e.g., [28,33–36]), or using land
use attributes extracted from human activities [27], but very few have leveraged standard-
ized land use datasets with non-empirical means to determine the viability of classification
models [37].

Research using geotagged training data adds new perspectives to data mining and to
categorizing urban functional land use on a community scale. Geotagging is the process of
appending geographic coordinates to media-based on the location of a mobile device [38].
Geotags usually consist of coordinates, such as latitude and longitude, but may also include
bearing, altitude and place names, which can be applied to photos, videos, or QR codes,
and could also include time stamps or other contextual information [38]. The point of
interest (POI) data is one of the most popular geo-tagged data [26,39], used for sensing
urban functional area characteristics associated with analysis methods based on GIS and
GeoAI [8,37,40].

However, data requirements in number and quality are different for diverse supervised
and semi-supervised ML models [41]. For example, traditional non-graph structured
supervised models may not capture the complex interactions and connections between
urban functional elements [30], which results in a larger requirement of training data. In
comparison, graph-based classification models require relatively less training samples (i.e.,
support a semi-supervised learning) due to their ability to combine semantic linkages
between urban functional areas [27,30]. Efficient methods, however, for building linkages
are essential for the performance of graph-based classification models [27].

In this study, first, the basic study unit (i.e., functional area) is designed in Hong Kong,
according to urban road networks, to obtain a relatively more homogeneous functional
property (see [36,42]), followed by data-labeling on the basic study unit, which is the process
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of identifying raw data and adding meaningful labels to provide context for machine
learning. After applying the supervised and semi-supervised ML models to achieve the
urban functional area classification, the models’ performances, in terms of uncertainty,
robustness and sensitivity, will be compared to give insights into model selection strategies
for different scenarios. The resulted insights are further supported by a case study carried
out in Beijing.

2. Materials and Methods

Three data sets are used as inputs: the point of interest (POI) dataset, the open street
map (OSM) dataset and a public land use dataset. The POI data used in this study is col-
lected from the Amap platform, which consists of attributes including longitudes, latitudes,
type (see Appendix A, Table A1) and rating scores, etc., which provide information about
real-world geographical locations on which human activities take place [10]. A Python
language-based web crawler is developed for accessing and storing the JSON-formatted POI
data: (https://gitee.com/pickup20/multi-modal-paper/tree/mastere/data, POI data was
accessed on 1 March 2022). The OSM dataset includes detailed world-wide road network
and part of the land use information. The road network consists of multiple classes of roads,
of which the classes of primary, secondary and tertiary are used. The main drawbacks of land
use information in OSM data are the inadequacy in some areas and incorrect records. The re-
cently updated OSM data is downloaded from https://www.openstreetmap.org/ accessed
on 3 April 2022. Finally, the land use dataset of Hong Kong (Land Utilization in Hong Kong,
LUHK) with 10 × 10 m spatial resolution is used for testing the classification accuracy, which
is downloaded from https://www.pland.gov.hk/pland_en/info_serv/open_data/landu/
accessed on 16 April 2022.

The identification and classification scheme of an urban functional area (see Figure 1)
consists of commercial, residential, public service, recreational and transportation. Here,
for diagnosing more details about urban central areas, agricultural and industrial urban
functional land use types mentioned in the first chapter are excluded and replaced by
public service land use type, including schools, institutions and administration facilities.
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Figure 1. A flowchart illustrating the five stages of the functional area type identification and
classification conducted in this paper.

https://gitee.com/pickup20/multi-modal-paper/tree/mastere/data
https://www.openstreetmap.org/
https://www.pland.gov.hk/pland_en/info_serv/open_data/landu/
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2.1. Preprocessing

The input data (e.g., OSM and POI) attain a unified coordinate system by map projec-
tion transformation as the known functional land use datasets; then, they are reclassified
into a unified classification scheme (see Table 1) for further categorizing, feature extraction,
semantic linkage and model comparison. The following processes are introduced:

Segmentation: Urban road network data is used to divide the study area into basic
study units (i.e., areas), according to the segmentation method proposed by [42]. The initial
OSM road networks are line vector features. Followed by transforming the line vectors to
polygon vectors (using the ArcGIS 10.7 software), polygons with an area less than 0.001 km2

are merged into the closest polygon through a morphological closing manipulation, which
eliminates the scattered objects while preserving the shapes and sizes of larger objects.

Labeling: The segmented polygons are labeled/categorized (using the Zonal Statistic
Tool in ArcGIS 10.7), by retrieving the functional land use type with the highest coverage
within them. Occupation percentage of the labeled class is calculated for further possible
bias testing (see Section 3.1.4). Note that in our case study, only when the highest coverage
of the functional land use type exceeds 50%, a valid functional area is attained; otherwise,
the function of this area remains unknown.

Table 1. Functional land use types in this study associated with OSM functional land use dataset and
the Land Utilization in Hong Kong (LUHK) dataset.

Functional Land Use Types in This Paper OSM Land Use Category Land Utilization in Hong Kong (LUHK) Category

Commercial Retail Commercial/Business and Office

Residential Residential
Private Residential
Public Residential
Rural Settlement

Public service
University

Government, Institutional and Community FacilitiesMuseum
Public

Recreational

Garden

Open Space and RecreationLeisure
Park

Recreation Ground

Transportation Railway

Roads and Transport Facilities
Railways
Airport

Port Facilities

Not available (NA) Other Other

2.2. Feature Extraction

2.2.1. POI Embedding for Functional Area Vectorizing

Representation methods, such as the Word2Vec and the Term Frequency-Inverse
Document Frequency (TF-IDF), in the natural language-processing field, enable the parse
or process of natural language to a standard feature vector format for present models. Here,
the Term Frequency-Inverse Document Frequency (TF-IDF) is used to obtain a standard
feature vector for each functional area from its related POI categories.

Importance of POI categories within the functional area (represented by the TF

value): The frequency of occurrence for the ith POI category, POIi, providing a weight of
its importance within the specific functional area, which is calculated as:

TFAREAj , POIi
=

Freq
(

AREAj, POIi

)

∑
C
i=0 Freq

(

AREAj, POIi

) (1)

where AREA represents one specific functional area out of all areas, with a total number of
N, and j is a counting integer ranging from 0 to N. Freq

(

AREAj, POIi

)

is the number of
occurrences of a specific POI category (POIi) in a given area (AREAj), with the integer i
ranging from 0 to C.
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Importance of POI category among all functional areas (represented by the IDF
value): the Inverse Document Frequency (IDF) value of a given POI category, IDFPOIi

, is
calculated as:

IDFPOIi
= ln

N

1 + ∑
N
j=0 IsPresent

(

AREAj, POIi

) (2)

where:

IsPresent
(

AREAj, POIi

)

=

{

1, Freq
(

AREAj, POIi

)

> 0
0, Freq

(

AREAj, POIi

)

= 0
(3)

This value indicates the overall view of a POI category in the whole study region. That
is, the more frequently the POI category occurs among all the functional areas, the lower is
the IDF value.

Combination (TF-IDF): Thus, a normalized Term Frequency-Inverse Document Fre-
quency (TF-IDF) feature vector for each functional area, TFIDFAREAj

, can be calculated for
a further supervised or semi-supervised classification:

TFIDFAREAj
=

1
√

∑
C
i=0

(

TFAREAj , POIi
·IDFPOIi

)2

(

TFAREAj , POI0 ·IDFPOI0 , TFAREAj , POI1 ·IDFPOI1 , . . . , TFAREAj , POIC
·IDFPOIC

)T
(4)

The similarity among TF-IDF feature vectors from each functional area is also used for
a further mapping of the land use distribution (detailed information see Section 2.2.2).

2.2.2. Similarity Measurement for Functional Area Semantic Linkage

Pairwise relations or linkages of functional areas have been considered to be useful
information in big data based urban computation [27]. Together with the TF-IDF feature
vector of the functional areas, a graph could be obtained for further exploration of the
implicit information among all functional areas, so as to improve the final urban func-
tional area classification. The linkages could be simply derived by the normalized TF-IDF
feature vectors.

Semantic similarity: A graph consists of nodes and their linkages. Here, the nodes are
areas with the associated normalized TF-IDF feature vectors TFIDFAREA, and the linkages
are calculated as the cosine similarity of TF-IDF feature vectors from two different areas,
Sim(TFIDFAREAm

, TFIDFAREAn):

Sim(TFIDFAREAm
, TFIDFAREAn) =

TFIDFAREAm
·TFIDFAREAn

‖TFIDFAREAm
‖·‖TFIDFAREAn

‖
(5)

where m, n representing different functional areas, are integers ranging from 0 to N. Thresh-
old is set as 0.7 for separating the final interdependencies or similarities among all the
functional areas (see similar link prediction strategy in [43]). Values exceeding the threshold
indicate that there is a noticeable interrelationship between two functional areas. The final
linkages are organized by an adjacency matrix, A, with each element calculated as:

Am,n =

{

Sim(AREAm, AREAn), Sim(AREAm, AREAn) > 0.7
0, Sim(AREAm, AREAn) ≤ 0.7

(6)

2.3. Urban Functional Area Prediction Models

Both supervised and semi-supervised models are commonly used for classification
tasks. The differences here are that only the normalized TF-IDF feature vectors (calcu-
lated from Section 2.2.1) are required by supervised models, e.g., support vector machine
(SVM, [44]), random forest (RF, [45]) and multi-layer Pperceptron (MLP, [46]), while both
the normalized TF-IDF feature vectors and their linkages (Section 2.2.2) should serve as
input for semi-supervised models, e.g., graph convolutional network (GCN, [41]), and
comparison (see Table 2). Followed by an introduction, five models (four supervised versus
one semi-supervised) are built and compared in the application analysis (Section 3).
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Table 2. Characteristics and implementation details of 5 models compared in this study.

Model Training Sample Quantity Hyperparameters Python Library

Supervised

SVM Large
Value of the slack variable

(In Soft Margin term)
Scikit-learn

RF-128 Large Number of Decision Trees Scikit-learnRF-200

MLP Large

(a) Number of Hidden Layers
(b) Corresponding Neurons
(c) Weighting and Focusing

Factors (In Focal Loss Function)

Pytorch

Semi-supervised GCN Relatively Less
Similarity Thresholds
(In Semantic Linkage)

Pytorch-Geometric

2.3.1. Supervised Models

Support Vector Machine (SVM): A SVM is a supervised machine learning algorithm
used for both classification and regression, which has become exceedingly popular, due to
its relative simplicity and flexibility in addressing a range of classification problems, even
in studies where sample sizes may be limited [44,46]. After providing the SVM model sets
of labeled training data for each category, it defines a decision boundary (i.e., a hyperplane)
by maximizing the width of the gap between two categories to best separate them. Note
that SVM is a binary classification method, which classifies objects into two groups of
“True” and “False”. Thus, a simple workaround of One-vs.-Rest is implemented to obtain a
multi-class classification (for details, see [47]).

Random Forest (RF): RF is a classic ensemble learning model, which is built based on
decision trees to provide results about modeling predictions and behavior analysis [45].
Each decision tree in RF represents a distinct instance of the classification of data input
into the random forest by integrating the entropy function to measure the loss between the
prediction and the true label. RF considers the instances individually, taking the one with
the majority of votes from decision trees as the selected prediction.

Multi-layer Perceptron (MLP): MLP is a widely applied supervised neural network
model, which consists of three types of layers: (a) the input layer receives the input signal
to be processed; (b) the output layer displays results from the required task, e.g., prediction
and classification; (c) the hidden layers (with arbitrary number) are placed in between the
input and output layer, which are the true computational engine of the MLP [46]. Training
data flows in the forward direction from input to output layer, and the neurons in the
MLP are trained with the back propagation learning algorithm; thus, they approximate
any continuous function for unknown pattern classification, recognition, prediction and
approximation. Note that a focal loss function (proposed by Lin, et al. [48]) is used to
address the class imbalance problem during the training process [37,49], which poses a
problem in machine learning when the numbers of training samples for different classes
vary greatly:

FL(pt) = −αt(1 − pt)
γlog(pt) (7)

where t represents the classified type. The focal loss adds a factor, αt(1 − pt)
γ, to the

standard cross entropy criterion, −log(pt), to reduce the relative loss for well-classified
examples. Here, pt is the softmax-normalized t-th output of the model, and αt is a weighting
factor corresponding to the model’s t-th output. γ is for reducing well-classified examples
loss, thus, forcing the model to focus on hard and misclassified objects, thereby improving
the model performance.

2.3.2. Semi-Supervised Model: Graph Convolutional Network

Unlike traditional machine learning (e.g., SVM, RF, MLP) lacking consideration of
graph structured semantic linkage, graph-based models have the potential to predict urban
land use types with a small number of training data, which is meaningful in the real-world
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prediction. This could be achieved via measuring the semantic linkages or their similarity
distances, etc. [27]. The requirements of training data are largely reduced for these models
compared to others, i.e., they could be trained in a semi-supervised manner.

Kipf and Welling [41] proposed a multi-layer graph convolutional network to scale
linearly in the number of graph edges and learn hidden layer representations that encode
both features of nodes and the graph structure. For a GCN model with L hidden layers, the
forward propagation rule of graph convolution is given by:

H(l+1) = f
(

H(l), A
)

= σ

(

D− 1
2 AD− 1

2 H(l)W(l)
)

(8)

where H(0) represents TF-IDF in each area, and H(l) is for i-th neural network layer outputs.
σ(·) is a non-linear activation function, like the ReLU (see [41]). A is a representative
description of the graph structure in the form of an adjacency matrix (self-connection is
included, see Section 2.2.2). D is the diagonal node degree matrix of A, and W(l) is a weight
matrix for the i-th convolutional layer.

2.4. Accuracy Assessment

The proposed supervised and semi-supervised models will be trained on a series of
training sets, while being evaluated on the test sets in chapter 3. Two widely used metrics
are used for measuring the prediction precision and precision for each individual type:

prediction accuracy =
#(correct predictions)

#(total predictions)
(9)

user accuracytypei
=

#
(

correct predictionstypei

)

#
(

predictionstypei

) ·100% (10)

where #(·) is the count of the corresponding predictions. As suggested by [50], the prediction
accuracy is the fraction of the number of correct predictions over all the predictions. User
accuracy is the probability that a value predicted to be in a certain class really is in that class.
The probability is based on the fraction of correctly predicted values to the total number of
values predicted to be in a class.

3. Results

For a model comparison and sensitivity test, the above-mentioned four supervised
and one semi-supervised models are applied over the central urban region of Hong Kong
(~91.13 km2), for which locally complete data sets of urban functional land use are available
and accessible. Specifically, the study region includes the Central and West, Wanchai,
Eastern District, Kwun Tong, Kowloon City, Sham Shui Po and Yau Tsim Mong districts
(see Figure 2a). After segmentation, this region is divided into 469 functional areas, which
will be labeled and represented by feature vectors for further classification (for related
histogram see Figure 2b). The frequency distribution of the logarithm area of the basic
study units (functional areas) is plotted in Figure 2b; the mean (standard deviation) and
median values are 0.139 (0.625) and 0.064 km2, respectively. There is a total number of
171,704 POI points located in the study region. The related kernel density distribution
shows hotspots in the economic central regions of Mongkok, Central district and Causeway
Bay (see Figure 2c). Local urban functional land use is 100% (available from the LUHK
dataset, Figure 2d), which provides an ideal study area for validating the candidates of
the supervised and semi-supervised models. The total urban functional areas consist of
53.3% residential, 11.9% recreational, 17.1% commercial, 15.8% public service and 1.9%
transportation areas (Figure 2d).
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Figure 2. (a) Geographical setting of the study region, Hong Kong, China. The research is carried
out within the red lines; (b) histogram statistics of the size for the functional area; (c) kernel density
distribution of Point of Interest (POI) points; and (d) the functional land use distribution derived
from the dataset of Land Utilization in Hong Kong (LUHK), including five categories: commercial,
residential, public service, recreational and transportation.

3.1. Model Comparison

The five selected supervised and semi-supervised models are trained on a series of
training sets with increasing number of training samples (ranging from 2% to 90% of the
469 functional areas). For the cases whose number of training samples are critically small
(less than 5%), we manually select areas as training samples to ensure there are no types
missing in the training set. Otherwise, the training/test sets are randomly split from all
areas in the study region (see Appendix A, Table A2).

3.1.1. Sensitivity on Training Set Size

Figure 3a displays the accuracy changes along an increasing number of training
samples, from which the following results are noted:

1. Although models’ accuracies are improved as the amount of training data increases,
disparities could be diagnosed from the model comparison. RF, MLP and GCN
show an obvious higher accuracy and improving potential (see the tendency of the
accuracies to the training sample percentage) as the number of training samples
increases;

2. Supervised models (e.g., RF and MLP) indicate advantages with large number of
training samples in terms of the accuracies. For example, MLP is with the top accura-
cies when the number of training samples is beyond around 10%. The RF-128 and
RF-200 models show slightly improvements compared with MLP with the percentage
of training samples equal to 30% and 40%. As the number of training samples keeps
rising (greater than 40%), MLP wins again in terms of accuracy;

3. Semi-supervised models indicate advantages with a small number of training samples.
That is, the GCN model is within the top accuracy, from 0.65 to 0.70, when the number
of training samples is less than 10%. However, the potential of the GCN model is of
underperformance when the number of training samples increases, compared with
supervised models of RF and MLP;
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4. All models are tested five times with the same amount and combination of training
data for monitoring model stability by calculating the standard deviations (Std.) of the
result accuracies (see the colored shadows in Figure 3a). SVM and GCN reveal better
model stability (smaller Std.), compared with RF and MLP. As the model stability of
MLP depends on the number of training data, it shows high instability with a small
number of training data, but it improves (and become even better than RF) with a
large number of training data.
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Figure 3. (a) Comparing training set size dependence associated with five functional area classification
models: support vector machine (SVM), random forest (RF-128 and RF-200), multi-layer perceptron
(MLP) and graph convolutional network (GCN), indicating a best performance with GCN under
semi-supervised situation and a best performance with MLP under supervised situation; (b) and
(c) the testing accuracy and testing loss curves for MLP and GCN during model trainings.

In general, RF and MLP (GCN) are better choices when presented with sufficient
(insufficient) amounts of training data, while lacking training data (<10%) can significantly
reduce the supervised model’s accuracy.

3.1.2. Training Performances: Small vs. Large Number of Training Data

Different training performances under the same number of training sample conditions
(here 10% and 50% are selected for comparison, and the prediction accuracy is the fraction of
the number of correct predictions over the total number of samples) indicate (Figure 3b,c):
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Small number of training data (10%): The best testing accuracy of MLP and GCN are
similar with the number of epochs of ~200. However, GCN is better, because the testing
accuracy of MLP first increases as the epoch increases but then decreases, which indicates
an overfitting phenomenon: the production of an analysis that corresponds too closely or
exactly to a particular set of data may, therefore, fail to fit to additional data or to predict
future observations reliably [51].

Large number of training data (50%): GCN is approaching the highest accuracy
around ~150 epochs, with which MLP indicates similar testing accuracy. However, the
testing accuracy of MLP keeps improving as the number of training data increases and
approaches 0.8, while GCN is facing a stagnation at less than 0.7.

3.1.3. Robustness to Different Selection of Training Data

To evaluate the performance of the 5 models, a further validation is conducted. 10
independent training sets, each consisting of 10% out of all samples, are generated, based
on the stratified sampling [52] strategy. Another 10 training sets, each consisting of 50% out
of all samples (one sample may occur in many sets), are generated similarly for a further
cross-validation (Figure 4). The models are estimated on the test sets, which consist of the
other 90% or 50% samples, to observe the stability and generalization ability [53,54]. The
following results are noted:

Condition of small number of training data (10%): Accuracies for all the models
(SVM, two RFs, MLP and GCN) are roughly divided into three levels: MLP and GCN are in
the 1st class, RFs (with 128 and 200 decision trees) are in the 2nd class, and SVM should be
the last choice in terms of accuracy. For MLP and GCN (the 1st class), GVN (MLP) shows a
relatively higher (lower) accuracy and a relatively higher (lower) variability. For RFs (the
2nd class), more decision trees do not necessarily increase the accuracy, but may increase
the variability.

Condition of large number of training data (50%): Apart from the SVM, all models
yield higher accuracies and lower variabilities with rising training set sizes (Figure 4b).
The RF-200 exhibits higher accuracies than the RF-128, while the two RFs still show the
highest variabilities among all models. Two neural networks (MLP and GCN) show clear
improvements on the robustness, whereas the accuracies of GCN are no more competitive.
The MLP exhibits the highest accuracies of around 0.8, and a low sensitivity on the selection of
training samples; therefore, it is preferred under the large number of training data conditions.
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Figure 4. Cross validation results associated with five classification models (a) using small number of
samples (10%) for training and (b) using large number of samples (50%) for training.
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3.1.4. Impact from Different Levels of Functional Heterogeneity

To study the impact of the functional heterogeneity inside areas on the classification
accuracy, 5 training sets, each consisting of 10%, are selected out of all samples (using
the same stratified sampling method in Section 3.1.3) to train the GCN, and another 5,
each consisting of 50% samples, are generated similarly to train the MLP. The occupation
percentage of the labeled class (or purity) is calculated for the remaining 90% and 50%
samples, based on the same method described in Section 2.1. The purity values are then
segmented with an equal interval of 10% to form different purity ranks. The trained models
are applied on those samples to observe the relationship between the accuracy and the
purity rank. The results are plotted together with a frequency distribution of samples per
purity rank in Figure 5.

                     
 

 

 
                           

                             

               
                         
                               

                             
                          ‐

                              ‐
                              ‐

                             
                           

                           
         

 
                          ‐
       

Figure 5. The correlation between accuracy and different functional purities with the frequency
distribution of purity ranks.

Results reveal that, whether using 10% or 50% samples (to train GCN and MLP model,
respectively), the classification accuracy increases with higher ranking of functional purity,
and (or) larger number of samples per purity rank. On the one hand, mixed functions could
blur the important features, making it more difficult for the model to distinguish the main
function among compound functions. On the other hand, since there is an observed bias
in the number of samples of different purities (fewer samples have low purity, as seen in
Figure 5), the models may fail to learn enough knowledge to correctly classify low-purity
samples. Therefore, we argue that the estimation of functional heterogeneity inside functional
areas should be an important procedure in the entire workflow to indicate the confidence of
classification results. For example, our experiment in Hong Kong showcases that using road
network to divide and generate functional areas, the averaged purity is ~76.1%, and 90.4%
samples have higher purity than 50%, meaning a reasonable overall confidence.

3.1.5. Visual Comparison

Figure 6 illustrates the details of urban functional area predictions and the comparisons
with the reality maps (derived from the LUHK dataset of Hong Kong following the labeling
methods in Section 2.1). In this comparison, to maximize model output differences, the
number of training samples is set as 4.7% (known/unknown: 22/469) within the whole
region. Images acquired from Sentinel-2A satellite with the spatial resolution of 10 × 10 m is
used as a background. Given such a low quantity of training sample, the accuracy ranking
from high to low is: GCN (0.68) > MLP (0.63) = RF-128 (0.63) > RF-200 (0.62) > SVM (0.55).
As shown in the visual comparison, the GCN exhibits abilities to distinguish functional
areas that other models fail to classify correctly. For example, the GCN model effectively
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identified areas characterized by hospitals and schools (universities) (as indicated by the
red boxes, located near Yau Ma Tei area), as well as major business and industrial areas (as
indicated by yellow boxes, located at Kwun Tong district). In addition, despite introducing
the one-vs.-rest strategy, the SVM classifier failed to distinguish multi-classes within the
study area (Figure 6), which may be because it lacks the ability to handle the class imbalance
problem introduced in Section 2.3.1.
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Figure 6. Visual comparison between ground truth and five functional land use prediction results
obtained from SVM, RF-128, RF-200, MLP and GCN. The number of training samples is set as 4.7%
(known/unknown: 22/469) of the total region, and the accuracy is highlighted accordingly.

3.2. Case Study: Beijing

The above analyses have compared and explained model sensitivity (on the training
sample size), stability or reproducibility, accuracy, and robustness (from cross validation).
Constraints on model applicability are comprehensively studied, which encouraged us to
test the classification framework on a very different city in China. Unlike the relatively
narrower roads, denser road network and smaller blocks observed in Hong Kong, the urban
structure in Beijing is much less affected by terrain factors, but more by anthropological
motivations [55,56].

The GCN is outstanding with a small number of training samples, which is important
because, in real-world scenarios, lacking training samples of urban functional land use is
one of the significant problems, especially in China. Here, for Beijing, the functional land
use information of only ~20% of the central urban area (within the 5th ring, ~1140 km2)
is known (Figure 7). This small amount of training samples brings challenges and less
accuracies if a supervised model (e.g., SVM, RF, MLP) is applied (see Section 3). Thus, the
semi-supervised model of graph convolutional network (GCN) is selected in the following
urban functional area prediction.
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Figure 7. (a) Geographical setting of the study region, Beijing, China. The research is carried out
within the 5th ring road (marked by the red line); (b) histogram statistics of the size for the functional
area; (c) kernel density distribution of local point of interest (POI) points; and (d) the functional
land use distribution obtained from the open street map land use dataset, including five categories:
commercial, residential, public service, recreational and transportation.

Applications are carried out in parallel for three sub-regions of Beijing to promote
the computing efficiency and highlight the heterogeneities within sub-regions. After data
processing, 1571 functional areas are generated, with 9.4% (14/149), 8.81% (52/590) and
13.21% (110/833) of the three sub-regions (inside the 2nd ring, 2nd to 4th ring, and outside
the 4th ring) selected as training samples. Three sub-regions cover different periods and
degrees of development of the city. The 2nd ring encircles the famous Forbidden City and
other archaeological landmarks, and outside the 4th ring the area shows less POI data
(Figure 7b). Therefore, TF-IDF is calculated on the entire study region scale (within the 5th
ring), while the semantic linkage of the cosine similarity is calculated on sub-region scale
for highlighting the heterogeneities within sub-regions (see [57,58]).

GCN based classification and validation results are shown in Figure 8. The validation is
achieved through field surveys and refers to the online map provided by the Amap platform
close to the POI acquisition date. 20/149, 40/590 and 50/833 areas are randomly selected
for validation, and the confusion matrixes of each sub-region are derived (Figure 8b). The
following results are noticed:

5. Inside the 2nd ring, commercial, residential, public service, recreational and trans-
portation areas are 51.0%, 8.1%, 35.6%, 4.7% and 0.7% of the related sub-region. From
the 2nd to 4th ring, commercial, residential, public service, recreational and trans-
portation areas are 62.7%, 3.1%, 19.7%, 13.9% and 0.7% of the related sub-region.
And outside the 4th ring, commercial, residential, public service, recreational and
transportation areas are 60.3%, 6.7%, 15.2%, 11.6% and 6% of the related sub-region;

6. The classification accuracies for three sub-regions are 0.60, 0.83 and 0.69, respectively,
and 0.73 for the whole study area. The belt sub-region between the 2nd and 4th ring
roads contains a complex distribution of various functional regions, yet exhibits the
highest accuracy among three sub-regions. This is in agreement with the relatively
high variability observed in the robustness test in Section 3.1.3;
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7. Confusion matrixes indicate relatively higher user accuracies of residential (and
recreational) functional land use from 64% to 88% (67% to 100%). The user accuracy
of commercial (and public service) functional land use varies in three subareas from
40% to 80% (and 50% to 83%). Transportation functional land use is with less accuracy,
which is probably because its low density;

8. More specifically, public service is located more in the north of the city, while trans-
portation occurs more on the south. On the east side of the 2nd ring, Beijing Central
Business District is clearly displaced (the clustered dark red colors). From the 2nd to
4th ring, the well-identified public service areas show the existence of corresponding
institutes and universities, especially in the north. To the northwest part of the third
sub-region, recreational areas, such as the Summer Palace and Yuanmingyuan, com-
pose distinctive clusters (see the areas colored with dark green). POI point density is
relatively low in this region, indicating a lower density of buildings and commercial
activities. Areas in the south part of the city are more irregular in shape (Figure 8a),
which may be explained by the fact that this region is relatively less planned and
developed compared with other regions.
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Figure 8. (a) Functional area prediction result within the 5th ring road of Beijing; (b) confusion
matrixes of the 3 sub-regions, respectively. The row-normalized matrixes where diagonal element are
user accuracies of the corresponding functional land use types.
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4. Discussion

4.1. Sensitivity and Accuracy

The accuracy-efficiency tradeoff: Neural networks are complex architectures and
require enormous amounts of training data with good quality to produce viable results. For
one neural network, as the size of the training data grows, so does the output accuracies.
This is in agreement with [59,60]. However, in choosing different supervised and semi-
supervised models, it is not necessarily the more training data the better. An efficient
training set size could be selected, according to the cost of the training data and the required
output accuracy (Figure 3a). For example, with a 5% training sample, GCN reaches an
accuracy of 0.68; with a 40% training sample, RF reaches an accuracy of 0.8; while, with a
80% training sample, MLP reaches an accuracy of 0.85. In this study, the semi-supervised
GCN model has better performance in urban functional land use prediction, using only
a small number (5%) of training samples, which is meaningful in large-scale, real-world
applications.

Reproducibility: Lack of reproducibility in machine learning, which is a complex and
growing issue exacerbated by a lack of code transparency, can affect safety, reliability and
the detection of bias. In choosing supervised and semi-supervised models, reproducibility
comes from two aspects: applying a model multiple times with the same training set
(Figure 3a), and a different combination of the same amount of training data (see the
cross validation in Figure 4). That is, to obtain a more reliable urban functional land use
classification, a model with high reproducibility (less variable in the cross validation) is
recommended. In this study, GCN is more stable with the same training set, but varies
more in cross-validation with 10% training samples (Figure 4a). MLP is less stable with
the same training set, but varies less in cross-validation. And for RF, the increasing of the
number of decision tree may not increase the final accuracy, but may increase the model’s
instability. This is also reported in previous papers such as [61].

4.2. When Is Machine Learning Application the Best Choice?

As the size of a neural network’s architecture grows, so does its requirement for the
amounts of training data. Thus, with a large amount of training samples, model selection
and validation would be easy. For example, in modifying present urban functional land use
plans with keeping most of the original designs, supervised models such as RF and MLP
could be selected. However, there is normally limited training data available in real-world
applications. In such cases, supervised classifiers that once have performed well may fail,
while exploiting the limited data by incorporating their sematic linkages will produce viable
results; see, for example, with 5% training sample, GCN reaches an accuracy of 0.68. This is
in agreement with previous research [27], which feeds both feature vectors and different
linkages of functional areas (such as the origin and destination pairs of taxi trips) into a GCN
model and obtains a lower error. As also implied in previous research [31], the forward and
backward training processes of GCN are effectively equivalent to geographical weighted
regression (GWR), which makes it suitable in understanding geographical phenomena.

4.3. Limitation and Future Work

Almost always labeled data is essential for machine learning (ML) models. Without
enough high-quality labeled data, the use of ML is not recommended. Meanwhile, most
ML algorithms work better when there is a spatial balanced or quantitatively equaled
distribution for each urban functional area types. In addition, the overfitting problem is
noticed when applying MLP over Hong Kong, but in the real application, there may not
be enough samples for a validation set to monitor the training process and the overfitting
problem. Thus, one should be cautious to apply MLP when there is less than 10% of the
whole regions with known classification categories.

In addition to POI data used in this study, other geographical and remote sensing
indexes could also improve the classification accuracy [62]. Other similarity methods
could also be used to measure the linkage among urban functional areas (see the Moran’s
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I index and high-resolution image features for example [62,63]). In addition, different
segmentation (e.g., OSM based in this study) and different study scale (e.g., sub-regions
in Beijing) and urban functional characteristics in neighborhoods, communities, or even
regions [37,62], result in varied prediction accuracy. Therefore, each specific method should
be considered simultaneously with the available data source, the cost and efficiency for a
better outcome. And for future work, within the basic study units, functional characteristics
are actually mixed and require more detailed decomposition techniques to better represent
the development intensities and interactions in a downscaled situation [27,39]. Furthermore,
to deal with the current poor performance diagnosing low-purity samples (Figure 5), new
techniques may be needed in the model training process, to specifically improve the ability
to discriminate them

5. Conclusions

Formal land use refers to the qualitative attributes of land surface, while functional
land use indicates its socioeconomic function. The formal land use map can be created with
aerial or remote sensing images, but it is difficult to infer any functional attributes from
these observations, especially for urban land use. City planners and other agencies have un-
dertaken surveys to assign or infer the functional characteristics on basic urban areas under
their jurisdiction [39]. Such an endeavor is often time-consuming, as the urban landscape
is constantly changing with the construction/renovation of infrastructures, new commer-
cial/residential/industrial developments, and the modification of existing uses [20,57,64].
Present geotagged data, e.g., point of interest (POI) data, bring new perspectives in data
mining and supplement for defining urban functional area characteristics by associating
with machine learning techniques. However, to our knowledge, there are still questions
that need to be answered in using present geotagged data to diagnose urban functional
areas, such as: When is a machine learning application the best choice? How to select a
machine learning model? And what is the model’s uncertainty, robustness and sensitivity?

Therefore, in this study, three supervised (SVM, RF, MLP) and one semi-supervised
machine learning model (GCN) are selected. For both supervised and semi-supervised
models, a normalized Term Frequency-Inverse Document Frequency (TF-IDF) feature
vector for each functional area is calculated as model inputs for the three supervised
(SVM, RF, MLP) models. Both the TF-IDF feature vector and the cosine similarity of the
TF-IDF feature vectors from two different areas are calculated as model inputs for the
semi-supervised GCN model. Followed by the uncertainty, robustness and sensitivity tests
(see Section 3), the following results are noticed:

1. As the amount of training sample grows, models’ accuracies are improved, but with
different potentials. GCN model is with the top accuracy, from 0.65 to 0.70, when the
number of training samples is less than 10%, while MLP and RF show top accuracies
when the number of training samples exceeds around 10%;

2. With a large amount of training samples, which is normally in the modification of
existing urban functional area maps, RF and MLP could be the best selection. However,
one should note that MLP is less stable with the same training set, but varies less
in cross-validation. For RF, the increasing of the number of decision trees may not
increase the final accuracy, but may increase the model’s instability;

3. With a small amount of training samples, which is normally the case in the real
world, GCN could provide viable results by incorporating the auxiliary information
provided by the proposed semantic linkages. For example, with the incorporating of
the similarity-based semantic linkage, the model could be trained using only 5% of
the total samples and produce an accuracy of 0.68;

4. In the perspective of the model overfit problem, which could be ignored in the real
application due to lacking enough testing samples, when the training samples is less
than 10%, we suggest choosing GCN for the urban functional land use prediction,
and one should be cautious using MLP, by testing the optimal epoch for obtaining the
best accuracy.
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Appendix A

Table A1. POI categories used in this paper.

ID POI Category ID POI Category

0 Automobile Service Related 135 Stationary Store

1 Filling Station 136 Sports Store

2 Other Energy Station 137 Commercial Street

3 Automobile Maintenance/Decoration 138 Clothing Store

4 Car Wash 139 Franchise Store

5 Automobile Club 140 Special Trade House

6 Automobile Rescue 141 Personal Care Items Shop

7 Automobile Parts Sales 142 Daily Life Service Place

8 Automobile Rental 143 Travel Agency

9 Used Automobile Dealer 144 Information Centre

10 Charging Station 145 Ticket Office

11 Automobile Sales 146 Post Office

12 Volkswagen Franchised Sales 147 Post Office

13 Honda Franchised Sales 148 Logistics Service

14 Audi Franchised Sales 149 Telecom Office

15 General Motors Franchised Sales 150 Professional Service Firm

16 BMW Franchised Sales 151 Job Center

17 Nissan Franchised Sales 152 Water Supply Service Office

https://gitee.com/pickup20/multi-modal-paper/tree/mastere/data
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Table A1. Cont.

ID POI Category ID POI Category

18 Renault Franchised Sales 153 Electric Supply Service Office

19 Mercedes-Benz Franchised Sales 154 Beauty and Hairdressing Store

20 Toyota Franchised Sales 155 Repair Store

21 Subaru Franchised Sales 156 Photo Finishing

22 Peugeot Citroen Franchised Sales 157 Bath & Massage Center

23 Peugeot Citroen 158 Laundry

24 Mitsubishi Franchised Sales 159 Agency

25 Fiat Franchised Sales 160 Move Service

26 Ferrari Franchised Sales 161 Lottery Store

27 Hyundai Franchised Sales 162 Funeral Facilities

28 KIA Franchised Sales 163 Baby Service Place

29 Ford Franchised Sales 164 Shared Device

30 JAGUAR Franchised Sales 165 Sports & Recreation Places

31 Land Rover Franchised Sales 166 Sports Stadium

32 Porsche Franchised Sales 167 Golf Related

33 DFM Franchised Sales 168 Recreation Center

34 Geely Franchised Sales 169 Holiday & Nursing Resort

35 Chery Franchised Sales 170 Recreation Place

36 Chrysler Franchised Sales 171 Theatre & Cinema

37 ROEWE Sales 172 Medical and Health Care Service Place

38 MG Sales 173 Hospital

39 JAC Sales 174 Special Hospital

40 Hongqi Sales 175 Clinic

41 Chang’an Sales 176 Emergency Center

42 Haima Sales 177 Disease Prevention Institution

43 BAIC MOTOR Sales 178 Pharmacy

44 Great Wall Sales 179 Veterinary Hospital

45 Luxgen Sales 180 Accommodation Service Related

46 GAC Trumpchi Sales 181 Hotel

47 Truck Sales 182 Hostel

48 Dongfeng Truck Sales 183 Tourist Attraction Related

49 SINOTRUK Sales 184 Park & Square

50 FAW Jiefang Sales 185 Park & Plaza

51 Foton Truck Sales 186 Scenery Spot

52 Shaanxi Heavy-duty Truck Sales 187 Commercial House Related

53 Beiben Trucks Sales 188 Industrial Park

54 JAC Truck Sales 189 Building

55 CAMC Sales 190 Residential Area

56 Chengdu Dayun Automotive Sales 191 Governmental & Social Groups Related

57 Mercedes-Benz Truck Sales 192 Governmental Organization

58 MAN Sales 193 Foreign Organization
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Table A1. Cont.

ID POI Category ID POI Category

59 SCANIA Sales 194 Democratic Party

60 Volvo Truck Sales 195 Social Group

61 Qoros Sales 196 Public Security Organization

62 Automobile Repair 197 Traffic Vehicle Management

63 Automobile Comprehensive Repair 198 Industrial and Commercial Taxation Institution

64 Volkswagen Franchised Repair 199 Science & Education Cultural Place

65 Honda Franchised Repair 200 Museum

66 Audi Franchised Repair 201 Exhibition Hall

67 General Motors Franchised Repair 202 Convention & Exhibition Center

68 BMW Franchised Repair 203 Art Gallery

69 Nissan Franchised Repair 204 Library

70 Renault Franchised Repair 205 Science & Technology Museum

71 Mercedes-Benz Franchised Repair 206 Planetarium

72 Toyota Franchised Repair 207 Cultural Palace

73 Subaru Franchised Repair 208 Archives Hall

74 Peugeot Citroen Franchised Repair 209 Arts Organization

75 Peugeot Citroen 210 Media Organization

76 Mitsubishi Franchised Repair 211 School

77 Fiat Franchised Repair 212 Research Institution

78 Ferrari Franchised Repair 213 Training Institution

79 Hyundai Franchised Repair 214 Driving School

80 KIA Franchised Repair 215 Transportation Service Related

81 Ford Franchised Repair 216 Airport Related

82 JAGUAR Franchised Repair 217 Railway Station

83 Land Rover Franchised Repair 218 Port & Marina

84 Porsche Franchised Repair 219 Coach Station

85 DFM Franchised Repair 220 Subway Station

86 Geely Franchised Repair 221 Light Rail Station

87 Chery Franchised Repair 222 Bus Station

88 Chrysler Franchised Repair 223 Commuter Bus Station

89 ROEWE Repair 224 Parking Lot

90 MG Repair 225 Border Crossing

91 JAC Repair 226 Taxi

92 Hongqi Repair 227 Ferry Station

93 Chang’an Repair 228 Ropeway Station

94 Haima Repair 229 Loading & Unloading Area

95 BAIC MOTOR Repair 230 Finance & Insurance Service Institution

96 Great Wall Repair 231 Bank

97 Luxgen Repair 232 Bank Related

98 GAC Trumpchi Repair 233 ATM

99 Truck Repair 234 Insurance Company
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100 Dongfeng Truck Repair 235 Securities Company

101 SINOTRUK Repair 236 Finance Company

102 FAW Jiefang Repair 237 Enterprises

103 Foton Truck Repair 238 Famous Enterprise

104 Shaanxi Heavy-duty Truck Repair 239 Company

105 Beiben Trucks Repair 240 Factory

106 JAC Truck Repair 241
Farming, Forestry, Animal Husbandry and

Fishery Base

107 CAMC Repair 242 Road Furniture

108 Chengdu Dayun Automotive Repair 243 Warning Sign

109 Mercedes-Benz Truck Repair 244 Toll Gate

110 MAN Repair 245 Service Area

111 SCANIA Repair 246 Traffic Light

112 Volvo Truck Repair 247 Signpost

113 Qoros Repair 248 Place Name & Address

114 Motorcycle Service Related 249 Natural Place Name

115 Motorcycle Sales 250 Transportation Place Name

116 Motorcycle Repair 251 Address Sign

117 Food & Beverages Related 252 City Center

118 Chinese Food Restaurant 253 Landmark Buildings

119 Foreign Food Restaurant 254 The hot names

120 Fast Food Restaurant 255 Public Facility

121 Leisure Food Restaurant 256 Newsstand

122 Coffee House 257 Public Phone

123 Tea House 258 Public Toilet

124 Icecream Shop 259 Emergency Shelter

125 Bakery 260 Incidents and Events

126 Dessert House 261 Public Event

127 Shopping Related Places 262 Emergency

128 Shopping Plaza 263 Indoor facilities

129 Convenience Store 264 Pass Facilities

130 Home Electronics Hypermarket 265 Gate of Buildings

131 Supermarket 266 Gate of Street House

132 Plants & Pet Market 267 Virtual Gate

133 Home Building Materials Market 268 Special corridor

134 Comprehensive Market
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Table A2. Statistics of the training sets used for model comparison experiment.

Percentage of
Raining Sample (%)

Area Type Number of Samples
Percentage of

Raining Sample (%)
Area Type Number of Samples

2

Commercial 1

40

Commercial 34
Residential 3 Residential 97

Public service 3 Public service 30
Recreational 2 Recreational 23

Transportation 1 Transportation 4

4.7

Commercial 6

50

Commercial 42
Residential 4 Residential 123

Public service 4 Public service 32
Recreational 4 Recreational 32

Transportation 4 Transportation 5

10

Commercial 8

80

Commercial 65
Residential 19 Residential 196

Public service 8 Public service 62
Recreational 8 Recreational 46

Transportation 4 Transportation 5

20

Commercial 25

90

Commercial 79
Residential 42 Residential 222

Public service 19 Public service 63
Recreational 6 Recreational 48

Transportation 2 Transportation 9

30

Commercial 24
Residential 69

Public service 25
Recreational 20

Transportation 2
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