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Abstract: The opacity of clouds is the main problem for optical and thermal space-borne

sensors, like the Moderate-Resolution Imaging Spectroradiometer (MODIS). Especially

during polar nighttime, the low thermal contrast between clouds and the underlying snow/ice

results in deficiencies of the MODIS cloud mask and affected products. There are different

approaches to retrieve information about frequently cloud-covered areas, which often operate

with large amounts of days aggregated into single composites for a long period of time.

These approaches are well suited for static-nature, slow changing surface features (e.g.,

fast-ice extent). However, this is not applicable to fast-changing features, like sea-ice

polynyas. Therefore, we developed a spatial feature reconstruction to derive information for

cloud-covered sea-ice areas based on the surrounding days weighted directly proportional

with their temporal proximity to the initial day of interest. Its performance is tested based on

manually-screened and artificially cloud-covered case studies of MODIS-derived polynya

area data for the polynya in the Brunt Ice Shelf region of Antarctica. On average, we are

able to completely restore the artificially cloud-covered test areas with a spatial correlation

of 0.83 and a mean absolute spatial deviation of 21%.
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1. Introduction

Cloud cover is the crucial deficit of optical and thermal-infrared space-borne remote sensing

compared to microwave systems. Satellite products, such as the Moderate-Resolution Imaging

Spectroradiometer (MODIS) cloud mask (MOD35), which incorporates a total of 19 different spectral

bands of passive-reflected and infrared radiation, show in general good results for polar daytime

(e.g., [1,2]). However, their performance decreases drastically during polar nighttime (e.g., [1,3–5]).

This results from the lack of visible channels in the analysis and testing, as well as the low thermal

contrast between clouds and the underlying snow/ice [1,2,6].

Liu et al. [2] further improved the MODIS cloud mask especially for nighttime polar cloud detection.

The addition of new tests and modifications showed drastic improvements in cloud detection for two

Arctic stations and one Antarctic station. However, despite an overall improvement, the MODIS cloud

mask still fails to detect very thin cloud cover and clouds during conditions of weak temperature

inversions, where the surface temperature is below 250 K. While strong improvements were achieved,

confident cloud cover detection in polar nighttime over snow and ice surfaces remains a problem [1].

Fraser et al. [7] introduced a compositing procedure of MODIS swaths from a customizable number

of days in order to achieve information of Antarctic fast-ice areas. For such an application, this method

is sufficient due to the static nature of fast ice and was successfully applied in a follow-up study [8].

However, in order to monitor or detect rather fast-changing features, such as polynyas, this method

turned out to be unsatisfactory due to its necessary large compositing intervals.

Previous studies that investigated polynya dynamics based on MODIS-derived thin ice thickness

data either did not correct their results for cloud-covered regions [9] or used a simple mathematical

scheme of proportional extrapolation [10]. In the latter approach, polynya area (POLA) is assigned to

cloud-covered areas in the same proportion as is detected in the cloud-free area. For example, if a region

is 80% cloud-free and 50% of this area features a polynya signal, then 50% of the cloud-covered 20%

is considered polynya area. However, polynyas are recurring areas of thin ice and open water that are

generally formed by divergent ice motion (e.g., [11–13]) and, therefore, have a higher probability of

occurrence in some regions than in others. With the approach used by Preußer et al. [10], polynya area

gets potentially assigned to regions that are very unlikely to feature a polynya.

Accurate estimation of POLA is crucial for the investigation of sea-ice properties and air-ice-ocean

interactions. Variations in polynya area influence, for example, the surface energy balance of sea ice and,

thereby, alter the ocean/atmosphere heat and moisture exchange, as well as the rate of ice production

and bottom water formation (e.g., [11,12,14–16]). POLA data are also used as boundary conditions in

simulations with numerical models [17]. They can also be assimilated into sea-ice/ocean models.

In this study, we present a simple, yet robust, statistical approach to reconstruct cloud-covered

surface features based on daily binary MODIS composites for adaptable time intervals. While the

algorithm is generally applicable to comparable problems, we will describe and discuss its application

and performance on the example of POLA time series with the focus on improving the monitoring of

polynya dynamics (e.g., [9,10,18]).
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2. Data and Methods

2.1. Input Data

In this study, we use thin-ice thickness (TIT) data to define POLA, which were derived from a

combination of satellite imagery and atmospheric reanalysis data. The procedure, as well as all equations

are thoroughly described in Adams et al. [9]. The thin-ice retrieval makes use of the ice-surface

temperature dataset (IST) in the MODIS Sea Ice product (MOD/MYD29, [4,5]), distributed by the U.S.

National Snow and Ice Data Center (NSIDC). The provided data has a spatial resolution of 1 km × 1 km

at nadir, and each swath covers an area of 1354 km (across track) × 2030 km (along track), which equals

approximately 5 min of satellite travel time. The overall IST accuracy of the MOD/MYD29 sea-ice

product under ideal (i.e., clear-sky) conditions is 1–3 K [4,5]. The MOD/MYD29 data product was

already corrected for cloud cover using the MODIS cloud mask.

The set of input data is complemented by the European Centre of Medium Range Weather Forecast

(ECMWF) ERA-Interim Reanalysis data [19]. The ERA-Interim data are distributed at a spatial

resolution of 0.75◦ and were linearly interpolated to spatially and temporarily fit the MODIS data. All

MODIS swaths along with the ERA-Interim datasets were projected onto a common reference grid using

a nearest neighbor approach. No interpolation was applied.

We apply the TIT-retrieval technique to all available MODIS IST swaths in a sub-region of the

Southern Weddell Sea, namely the Brunt Ice Shelf region (Figure 1), for the austral winter (1 April

to 30 September) of the years from 2002 to 2013. The Brunt Ice Shelf region is located from 20–31◦W

and 73.4–76.6◦S, with a spatial extent of approximately 120,000 km2. Subsequently, daily median-TIT

composites are computed and binary POLA maps (BPM) are derived using a TIT threshold of 0.2 m [9].

For a maximum obtained ice thickness of 0.2 m, Adams et al. [9] state an uncertainty of ± 4.7 cm, while

ice thickness measurements above a 0.2-m threshold yield significantly higher uncertainties. Therefore,

we limit our investigation accordingly. A threshold of 0.2 m is also used by sea-ice model studies to

define the polynya area [14].
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Figure 1. Area of investigation in the Southern Weddell Sea around the Brunt Ice Shelf

with example MOD/MYD29-derived thin ice thickness composite (6 September 2012)

highlighting the most active polynya areas in the Brunt Ice Shelf region.
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In this study, we focus on the reconstruction of data gaps in the daily composites, which result from

detected cloud cover by the MODIS cloud mask. Additionally, we artificially introduce clouds to daily

composites in several case studies to set up and evaluate the approach.

2.2. Spatial Feature Reconstruction Algorithm

Polynya activity varies on a short time scale, specifically in the coastal regions of the Southern

Weddell Sea, as can be seen from the auto-correlation function (ACF, Figure 2) of POLA time series

from the Brunt Ice Shelf region. Hence, a gap-filling approach for daily POLA maps based on MODIS

composites requires a technique that aims at daily resolution, which makes the method as described by

Fraser et al. [7] not applicable here.

On average, a 3-day time lag in each year still shows a significant correlation to the initial polynya

signal (average ±1 standard deviation; Figure 2). However, this correlation drops quickly with increasing

temporal distance, i.e., the similarity in polynya size and shape between days decreases with increasing

temporal distance. Additionally, the per-pixel gap length resulting from cloud coverage is in most

instances equal to or below three consecutive days (91.79% of the total frequency distribution), with

a majority on 1-day (57.83%) and 2-day (23.62%) gaps.
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Figure 2. Auto-correlation function based on the MODIS-derived polynya area in the Brunt

Ice Shelf region (Figure 1) from 1 April to 30 September for the years 2002 to 2013.

Presented in gray bars are the auto-correlation coefficients against the absolute time lag

in days, i.e., a negative, as well as a positive displacement. Values above the blue line

indicate a significant correlation, given a level of significance (α) of 5%. Error bars indicate

±1 standard deviation.

Our approach aggregates daily BPMs of a fixed number of days surrounding an initial day of interest

(doi; Figure 3). The length of the applied time interval is variable and depends on the type and

change-rate of the investigated surface feature. In our case of coastal polynyas, we decided to use a

±3 day time interval. This was based on the fact that the POLA information is on average significantly

correlated within at least three days (Figure 2) and that >90% of gaps are shorter than four days. By
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weighting the aggregated information on polynya activity in those six surrounding days (doi−3...doi+3)

based on their temporal proximity, an inference of the cloud-covered areas can be derived for the center

day of interest (doi).
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Figure 3. Flow chart of the general algorithm procedure. Binary polynya area maps (BPM)

of the surrounding days (doi−3...doi+3, blue) are aggregated and weighted according to their

temporal proximity to the day of interest (doi, red). By passing a predefined threshold, each

cloud-covered pixel in the initial day of interest is classified as polynya area or thick ice,

resulting in a reconstructed BPM of the initial day of interest (green).

WFR6d =
3∑

j=1

wj(doij + doi−j) (1)

This procedure of a weighted feature reconstruction (WFR) is summarized in Equation (1) for the case

of a ±3-day time interval (WFR6d). Here, wj are the daily weighting factors and doi−j and doij are

the daily BPMs surrounding the initial day of interest that needs to be reconstructed due to the presence

of clouds (Figure 3). However, the application is bound to some necessary constraints to better explain

the algorithm:

• The total sum of all weighting factors should add up to one, which yields a probability for each

pixel to be POLA.

• The weighting factors are mirrored corresponding to their temporal distance to the initial day

of interest, i.e., the same weighting factor w2 is assigned to the BPMs of doi−2 and doi+2.

The mirrored setup is in accordance with the results of the auto-correlation function, showing

a significant correlation with positive, as well as negative temporal displacement.
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• Weights increase with increasing temporal proximity to the initial day of interest on the basis of

Figure 2.

We artificially introduce cloud cover into BPMs (i.e., we set the present POLA to zero) in order

to investigate the potential to properly restore the known polynya signal of the day of interest from

the surrounding days. We chose two investigation approaches by either introducing cloud cover to

the complete day of interest BPM or by just covering three spatially constant areas that comprise

approximately 50% of the sea-ice area with artificial clouds. However, an assessment following this idea

strongly depends on the amount and quality of the selected case studies. These case studies preferably

comprise a large amount of clear-sky input BPMs.

In total, we chose a selection of 66 7-day long manually-screened case studies in the Brunt Ice Shelf

region from the years 2002 to 2013. Out of those 66, 10 case studies feature almost constantly present

clear-sky conditions over the majority of the 7-day time interval. The remaining 56 case studies also

feature cloud-covered days in the 7-day time interval, which presumably is closer to reality in terms of

general cloud and weather conditions. The spatial correlation coefficient of POLA (based on a Spearman

pairwise correlation) of each surrounding day to the POLA of the initial day of interest, i.e., the day in

the center of the 7-day time interval, for each of the ten clear-sky case studies is shown in Table 1. From

the high variability in correlation coefficients, it becomes clear that there is a high daily variability in

POLA, which is due to the prevailing polynya dynamics.

Table 1. Summary of the spatial correlation coefficients between the polynya area of the

initial day of interest (doi) and the polynya area of the surrounding days (doi−3 ... doi+3)

for the ten constant clear-sky case studies. Numbers in parenthesis indicate the percentage

cloud-covered fraction (%) in the respective daily MODIS composite.

Case doi
−3 doi

−2 doi
−1 doi+1 doi+2 doi+3

1 0.69 (7) 0.82 (11) 0.91 (13) 0.91 (13) 0.76 (15) 0.10 (8)

2 0.77 (13) 0.53 (5) 0.88 (14) 0.82 (17) 0.58 (13) 0.18 (1)

3 0.81 (21) 0.81 (23) 0.87 (21) 0.87 (21) 0.79 (20) 0.46 (7)

4 0.65 (15) 0.68 (33) 0.81 (21) 0.80 (30) 0.71 (15) 0.69 (19)

5 0.66 (52) 0.62 (40) 0.86 (37) 0.76 (30) 0.68 (32) 0.46 (14)

6 0.32 (2) 0.88 (14) 0.90 (14) 0.85 (13) 0.82 (13) 0.80 (19)

7 0.72 (14) 0.77 (19) 0.88 (17) 0.60 (7) 0.41 (5) 0.03 (2)

8 0.74 (16) 0.76 (16) 0.90 (13) 0.79 (9) 0.50 (4) 0.35 (3)

9 0.43 (6) 0.56 (10) 0.91 (24) 0.91 (27) 0.78 (23) 0.28 (3)

10 0.19 (1) 0.73 (13) 0.85 (20) 0.90 (19) 0.71 (13) 0.50 (9)

Applying different weights (wj; Equation (1)) permits control over the necessary amount of available

POLA information and their temporal position relative to the center day of interest for a pixel to be

classified as POLA, given a predefined POLA probability threshold (th). In order to optimize the

combination of weighting factors and threshold, i.e., to calibrate the approach, the method is evaluated

based on two statistical measures:

• A summarized spatial root-mean-squared error (RMSE) that represents the total POLA difference.

• The degree of spatial correlation (R) between actual POLA and restored data based on a Spearman

pairwise correlation coefficient.
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In order to find the best combination of weighting factors and POLA probability threshold, we

chose to iteratively minimize the RMSE and maximize the spatial correlation (R) between actual POLA

(i.e., the POLA of the BPM of the initial day of interest) and reconstructed POLA (i.e., the resulting

BPM of the WFR approach). The iterative procedure starts with a predefined set of weighting factors

and threshold (e.g., w3 = 0.01, w2 = 0.02, w1 = 0.47 and th = 0.01) that are in agreement with the

previously-defined restrictions. In this setup, the sum of all weighting factors for the six surrounding

days is equal to 1; weights increase with temporal proximity to the initial day of interest and are mirrored

for equal temporal distance. In order to minimize computation time, the threshold value can only adopt

values of possible weighting factor summations. For each set of weighting factors and threshold, the

RMSE and the mean spatial POLA correlation for all available case studies were calculated. Weighting

factors are then modified in steps of 0.01, e.g., to w3 = 0.01, w2 = 0.03, w1 = 0.46 and th = 0.01.

Subsequently, RMSE and R were calculated for each threshold again. We did these calculations for all

possible weighting factors and threshold combinations and for both datasets of 66 and 10 case studies.

In order to highlight the advantage of our WFR6d procedure, we calculated RMSE and R also for

three reference runs comprising a ±2 weighted time interval (WFR4d), as well as for an equally-weighted

reconstruction (EWR) based on a ±3-day time interval (EWR6d) and a ±1-day (EWR2d) time interval.

WFR6d and EWR6d are then applied to a five-year period of POLA data in the Brunt Ice Shelf region

(1 April to 30 September 2006–2010), to compare estimates of unaccounted POLA due to detected

cloud cover.

3. Results

3.1. Evaluation of Weights/Threshold Combinations

While a number of combinations showed good results in a small range of R and RMSE, three

combinations of daily weighting factors and threshold achieved the best overall result and were chosen

for further investigation and comparison (Table 2):

• Based on the complete 66 case study dataset, two combinations showed best results in minimum

RMSE and high spatial POLA correlation. Combination 1 (CMB1, w3 = 0.02, w2 = 0.16,

w1 = 0.32 and th = 0.34) showed the second smallest RMSE, as well as the largest spatial

correlation (R).

• Combination 2 (CMB2, w3 = 0.04, w2 = 0.14, w1 = 0.32 and th = 0.36) showed the smallest RMSE

along side the largest spatial correlation (R) for the complete 66 case study dataset.

• For the subset case study dataset, Combination 3 (CMB3, w3 = 0.01, w2 = 0.05, w1 = 0.44 and

th = 0.46) showed the smallest RMSE.

When elaborating on CMB1 and CMB2 and why we chose to investigate and use both combinations,

the difference comes down to the necessary amount of covered surrounding days that feature a polynya

signal, for the WFR approach to classify a cloud-covered pixel in the initial day of interest as POLA.

This necessary amount of available POLA information and their temporal position relative to the center

day of interest is different for each of the three combinations. An explanation is presented in Figure 4:
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• A gap of five consecutive days (i.e., only the outer days contain cloud-free information for the

WFR6d composite) will not result in the classification of that pixel as POLA for either of the three

combinations (Figure 4a).

• Gaps of three consecutive days (i.e., cloud-free information from both inner days is unavailable

for the WFR6d composite; Figure 4b,c) may result in the classification of that pixel as POLA,

depending on the combination. The example in Figure 4b will not result in a POLA classification

for CMB2 and CMB3. However, the Figure 4c example will be classified as POLA using either

CMB1 or CMB2.

• For gaps of two consecutive days (i.e., cloud-free information from one inner day is unavailable

for the WFR6d composite; Figure 4d,e), any additional spatial information of one other day will

result in the classification of that pixel as POLA for each of the three combinations.

Table 2. Summary of resulting statistics of the spatial root-mean-squared error (RMSE,

km2) and spatial correlation coefficient (R) of polynya area for the complete set of 66

case studies (RMSE66/R66) and a 10-day subset of almost constant clear-sky conditions

(RMSE10/R10). Results are shown for the weighted ±3-day time interval WFR6d (weighted

feature reconstruction (WFR)) based on our three “best fit” combinations (CMB1-CMB3)

and three comparison runs comprising the weighted ±2-day time interval (WFR4d), as well

as equally-weighted reconstruction runs based on a ±3- and a ±1-day time interval (EWR6d

and EWR2d). EWR6d is shown based on a minimum threshold of two (M2) or three days

(M3) with polynya area (POLA). Numbers in parenthesis indicate the reconstruction results

for an only partially-introduced cloud cover (about 50% of the sea-ice area).

WFR6d-CMB1 WFR6d-CMB2 WFR6d-CMB3 EWR6d-M2 EWR6d-M3 WFR4d EWR2d

RMSE66 1904 (1285) 1902 (1285) 1988 (1321) 2079 (1386) 2855 (1827) 1988 (1321) 2267 (1556)

RMSE10 859 (705) 858 (704) 812 (683) 1907 (1058) 1355 (795) 812 (683) 1467 (992)

R66 0.83 (0.85) 0.83 (0.85) 0.82 (0.84) 0.80 (0.83) 0.75 (0.77) 0.82 (0.84) 0.79 (0.81)

R10 0.92 (0.93) 0.92 (0.93) 0.91 (0.93) 0.88 (0.90) 0.88 (0.91) 0.91 (0.93) 0.89 (0.91)
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All of these examples were made under the assumption that each of the available pixels shows a POLA

signal. Otherwise, the assigned daily weights of those pixels will not be added to the WFR6d approach.

This is the same for pixels in the surrounding days that are covered by clouds. Both pixel states, not

featuring a polynya signal or being cloud covered, decrease the likelihood for the day of interest pixel to

be classified as POLA.

3.2. Comparison Based on R and RMSE

In Table 2, the results of RMSE and R are presented for the WFR6d approach (based on CMB1,

CMB2 and CMB3) and the four reference runs based on a shorter time interval (WFR4d) and without

applying the weighting scheme (EWR6d-M2, EWR6d-M3, EWR2d). The WFR approaches generally

achieve the best results of minimum RMSE and maximum spatial correlation (R), when compared to the

EWR reference runs. However, the differences are relatively small. While the ±2 and ±1 reference runs

(WFR4d and EWR2d) achieve good results, their application is limited to two-day and one-day gaps in

the data. While this is also true for WFR6d-CMB3, the results of the ±3-day approach are slightly better.

However, the initial situation in the 10 case study sample size cannot be considered representative for

the general cloud situation in the Brunt Ice Shelf region. These results underline also the importance of

the kernel edges (doi±3), which allow covering larger gaps despite their small weighting factors. The

WFR6d results vary only for the RMSE results and show consistent results for the spatial correlation (R).

For the equal weight reconstruction approach (EWR6d), the best result for the 66 case study dataset was

achieved when a pixel is classified as POLA, when at least two out of the six input days contain a POLA

signal (EWR6d-M2). For the clear-sky subset of 10 case studies, EWR6d shows the best result when

based on a minimum of three days with POLA signal (EWR6d-M3).

We draw the same conclusions by investigating only partially cloud-covered day of interest

BPMs (Table 2, numbers in parenthesis), only with overall better results. Considering the average

auto-correlation (Figure 2) and the gap-length distribution, we focus on the use of WFR6d-CMB1 and

WFR6d-CMB2, as both combinations are applicable to three-day coverage gaps. In general, although

both statistics (RMSE and R) are important, we consider the spatial correlation more accurate and

important. This is due to the fact that the stated RMSE value is without any spatial reference, i.e., the

summarized spatial extent might be accurate, but its per-pixel distribution in the BPM can be incorrect.

The summarized results of the 66 case studies between WFR6d-CMB1 and EWR6d-M2 are shown

in Figure 5. In Figure 5a, the resulting spatial correlation coefficients of POLA between WFR6d and

EWR6d and the initial day of interest (RWFR and REWR) are plotted against the maximum correlation

coefficients of the respective surrounding days (Table 1). The WFR6d-CMB1 approach yields in 48 cases

a higher spatial correlation to the initial day of interest than any of the surrounding days. In 11 cases, the

spatial correlation is lower than the maximum of the surrounding days, and it is equal in seven cases. For

the EWR6d-M2 approach, only 43 cases show a higher spatial correlation, while 22 cases show a lower

spatial correlation than the maximum of the surrounding days. The spatial correlation is equal for only

one case.
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Figure 5. Summary of differences between weighted WFR6d-CMB1 and equally-weighted

EWR6d-M2 approaches. (a) Scatterplot of the resulting spatial correlation coefficients RWFR

and REWR with the day of interest against the maximum spatial correlation of any of

the six surrounding days with the initial day of interest. (b) Scatterplot of RWFR against

REWR. (c,d) Scatterplots of WFR6d-CMB1 achieved R and RMSE against the present cloud

coverage in the surrounding six days.

On average, based on a two-sided t-test, the combined information of several days is significantly

better (α = 5%) compared to just mirroring the best correlated single day for the WFR approach. The

EWR approach does not achieve a significant improvement.

In Figure 5b, the spatial correlation coefficients (RWFR and REWR) are plotted against each other.

Here, the WFR6d-CMB1 approach shows slightly better (45 cases) or equal (17 cases) results. The

EWR6d-M2 approach is only superior in four cases. This highlights the overall potential of a weighted

approach over a non-weighted approach to reconstruct polynya signals from the surrounding days due to

the high change rate of polynya dynamics (Figure 2).

The effect of cloud cover in the surrounding six days on the results of spatial POLA correlation

and RMSE is shown in Figures 5c,d, respectively. A clear clustering for both metrics is present in our

data, where low amounts of present cloud cover improve the results by means of minimized RMSE

and maximized spatial correlation in POLA. However, there are also exceptions where good results

can be achieved even with relatively high amounts of present cloud cover in some of the surrounding

days. On the other side, low amounts of cloud cover do not necessarily lead to optimal results. This

might have several reasons. For example, naturally-induced high polynya dynamics in between days

(e.g., by a change in the prevailing wind direction or general weather conditions) can of course decrease

the spatial correlation and increase the difference in spatial extent in the reconstruction. However, also

already mentioned errors in the classification of pixels due to deficiencies in the MODIS cloud mask

may potentially play a role.

A set of four example case studies (Figure 6) highlights some additional aspects of the WFR6d-CMB1

approach based on POLA investigations near the Brunt Ice Shelf. As shown in Figure 1, the main

polynya activity near the Brunt Ice shelf is a narrow north-south/northeast-southwest strip along the

ice-shelf edge. In Figure 6a, the initial polynya situation represents an almost complete cycle of polynya

activity from opening to closing. The reconstruction corresponds closely to the initial BPM, showing a
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spatial correlation of 0.94 and a spatial difference of only 75 km2. Figure 5b features an outlier where

the resulting spatial correlation between the WFR6d-CMB1 approach and the initial day of interest was

significantly better than the EWR6d-M2 reference run (0.78 to 0.57). Especially the center part, which is

widely present in the BPMs of doi−3 and doi−2, will impair the EWR6d-M2 reconstruction. A polynya

closing event is featured in Figure 6c, where the POLA constantly decreases over the course of our

seven-day interval. This is one example, where the EWR6d reference run yields a large difference in

POLA (1504 km2 compared to 96 km2 with WFR6d-CMB1), due to the large extent of thin ice during

doi−3 and doi−2. Especially opening and closing events are considered a primary reason for presumably

large differences in average added POLA between WFR6d and EWR6d. Finally, Figure 6d shows a

seven-day long (or longer) polynya event, but with varying POLA. The main difference is placed in the

center region, where most of the surrounding days feature a strong polynya signal.
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Figure 6. Set of four example case studies comprising binary POLA maps (BPM)

surrounding the initial day of interest (blue), BPM of the initial day of interest (red), the

WFR6d-CMB1 composite and its derived BPM (green), as well as the spatial correlation

(R) between derived BPM and actual BPM of the initial day of interest. Additionally, the

percentage amount of present cloud cover (cc) is stated for each BPM. Gray areas highlight

the partially artificially cloud-covered areas. Colors correspond to Figure 3; the geographic

region corresponds to Figure 1. (a) Case Study 10 of Table 1; (b) one of the two major outlier

examples in Figure 5b; (c) Case Study 8 of Table 1; and (d) Case Study 3 of Table 1.

3.3. Application to POLA Time Series

Differences between WFR6d and EWR6d by means of average spatial POLA correlation (R) and

RMSE are not statistically significant (Table 2). When applying both procedures in their intended way

to account for cloud-covered areas in the initial day of interest by utilizing the surrounding days, large
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and also statistically significant differences arise. On average, the Brunt Ice Shelf region features an

average seasonal POLA of 9096 km2 between 1 April and 30 September for the years 2006 to 2010.

This value is based on the uncorrected MODIS-derived POLA time series used in this study. Therefore,

the presented average most likely underestimates the true average POLA due to present cloud cover

(Figure 7). On average, 22% of the area around the Brunt Ice Shelf (Figure 1) is cloud covered on each

day between 2002 and 2013, as well as between 2006 and 2010. After application of the here presented

WFR approach (in the WFR6d-CMB1 setup), an average coverage of 96% and 97% was achieved per

day for the time interval of 2002–2013 and 2006–2010, respectively.
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Figure 7. Present MODIS cloud coverage for the Brunt Ice Shelf region (blue line) and the

maximum achieved coverage using WFR6d-CMB1 (red line) in decimal cover fraction.

The WFR6d-CMB1 approach adds an average of 2433 km2 of potentially missed POLA due to

cloud-affected pixels. Results for the WFR6d-CMB2 and WFR6d-CMB3 are slightly lower due to

the stricter threshold with 1852 km2 and 1811 km2, respectively. Additionally, WFR6d-CMB2 and

WFR6d-CMB3 estimates are likely to be lower, because they were applicable in fewer cases than

WFR6d-CMB1. This was already mentioned for WFR6d-CMB3, but is also true for WFR6d-CMB2. On

the other hand, the EWR6d-M2 approach adds a seasonal average of 5047 km2, which is believed to be

too high by more than doubling the average POLA and given the aforementioned analysis. Based on the

EWR6d-M3 approach, an average of only 1058 km2 will be added. These numbers were computed based

on the raw BPMs without taking the newly added POLA information on previous days into account.

4. Discussion

Resulting from the deficiencies of the MODIS cloud mask, an existing cloud in any given pixel

might be misclassified as sea ice. This misclassification results in a false ice thickness retrieval of either
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potential thin ice from a warm and low cloud or thick ice from a cold and high cloud. Both types of

cloud artifacts deteriorate the resulting daily composite by adding false POLA to regions of pack ice or

by altering the derived daily median TIT. However, these classification problems are not easily captured

nor quantified without a large amount of in situ data and would therefore go beyond the scope of this

study. A potential example is shown in Figure 6d, where less thin ice is shown in the center region of the

day of interest compared to most of the surrounding days. This might be attributed to polynya dynamics

or, despite great effort, to a poor case study selection for clear-sky conditions. However, it might also be

a potential misclassification of clouds as thick ice, which was not detected by the MODIS cloud mask.

These mentioned artifacts are likely to be present in many daily composites and, therefore, presumably

reduce the results in spatial correlation in this study.

In general, the WFR approach can be applied to different time series datasets that need cloud-cover

compensation on a daily resolution in contrast to, e.g., the method presented by Fraser et al. [8].

Adaptations have to be made based on the auto-correlation function of the dataset under consideration of

the gap statistics to find the optimal time interval, as well as weighting factors and threshold. Compared

to the proportional extrapolation method for POLA estimates of cloud-covered areas in MODIS data

used by Preußer et al. [10], the WFR approach will not assign a polynya signal to regions that are

unlikely to feature a polynya. This should lead to more accurate estimates of polynya area, as well as

ice-production rates.

5. Summary

This study describes a simple and robust approach to compensate for information loss due to cloud

cover in daily maps. Cloud-cover-corrected binary daily images are created based on aggregated

information from the surrounding days weighted directly in proportion to their temporal proximity with

the initial day of interest. This is done on a daily basis with a running multi-day composite.

Binary polynya area maps from 66 manually-screened seven day-long case studies were used to

evaluate the algorithm’s performance by reconstructing the central day’s polynya signature from polynya

area information of the surrounding days. Results were evaluated based on spatial correlation and

summarized spatial root-mean-squared error between estimated polynya area and actual polynya area

of the central day of interest. Compared to the analyzed reference runs based on equally-weighted

days and/or shorter time intervals, the procedure presented here was superior in spatial correlation and

spatial difference.

This approach will be utilized in a follow-up study about MODIS-derived coastal polynya statistics

in the Southern Weddell Sea to account for cloud-covered areas during the investigation period for the

years 2002–2014.
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