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Abstract. The prediction of atmospheric CO2 concentrations is limited by the high interannual variability (IAV) of terrestrial

gross primary productivity (GPP). However, there are large uncertainties in the drivers of GPP IAV among Earth system models

(ESMs). Here, we evaluate the impact of these uncertainties on the predictability of atmospheric CO2 in six ESMs. We use

regression analysis to determine the role of environmental drivers on (i) the patterns of GPP IAV, and (ii) the predictability

of GPP. There are large uncertainties in the spatial distribution of GPP IAV. Although all ESMs agree on the high IAV in the5

tropics, several ESMs have unique hotspots of GPP IAV. The main driver of GPP IAV is temperature in the ESMs using the

Community Land Model, and soil moisture in IPSL-CM6A-LR and MPI-ESM-LR, revealing underlying differences in the

source of GPP IAV among ESMs. Between 13% and 24% of the GPP IAV is predictable one year ahead, with four out of six

ESMs between 19% and 24%. Up to 32% of the GPP IAV induced by soil moisture is predictable, while only 7% to 13% of the

GPP IAV induced by radiation. The results show that while ESMs are fairly similar in their ability to predict themselves, their10

predicted contribution to the atmospheric CO2 variability originates from different regions and is caused by different drivers.

A higher coherence in atmospheric CO2 predictability could be achieved by reducing uncertainties of GPP sensitivity to soil

moisture, and by accurate observational products for GPP IAV.

1 Introduction

Near-term predictions of atmospheric CO2 concentrations are an essential step towards the evaluation of climate mitigation15

efforts and the development of carbon monitoring programs (Ilyina et al., 2021). However, the high interannual variability

(IAV) of land-atmosphere carbon fluxes, specifically gross primary productivity (GPP), drives the variability of atmospheric
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CO2 and limits its predictability (Piao et al., 2020). The skilful prediction of GPP is therefore a crucial step towards the

real-time verification of anthropogenic carbon emissions and the evaluation of mitigation efforts.

The usual approach to evaluate the predictability of an earth system variable is to compare predictions with observed values.20

In the case of GPP, this is complicated by the uncertainty in GPP observations (Zhang and Ye, 2021). As an alternative to cal-

culating the actual predictability that is based on observations, the potential predictability can be assessed by evaluating how

well the models can predict themselves. To do this, an ensemble of simulations with an Earth system model (ESM) is initial-

ized from quasi-identical conditions. In a system with little predictability, the spread among the ensemble members increases

quickly, until the predictive capabilities are lost when the ensemble spread reaches the magnitude of the IAV. There are, how-25

ever, certain processes in the earth system which provide predictability and hinder the divergence of the ensemble members.

For example, the El Niño-Southern Oscillation (ENSO) produces predictable climate anomalies that have a sustained impact

on GPP (Zeng et al., 2008; Betts et al., 2016). Other processes extend predictability by providing “memory” that maintains

the initial conditions. Soils, for example, store initial moisture anomalies by acting as a buffer between the atmosphere and

the vegetation (Bellucci et al., 2015). Soil moisture anomalies are further extended through land-atmosphere coupling, which30

creates a feedback loop that enhances the persistence of these anomalies (Kumar et al., 2020). The initial conditions of the

simulations are maintained through the lagged response of plant growth to climatic conditions. Slowly reacting vegetation can

cause precipitation anomalies or prolonged drought (Alessandri and Navarra, 2008; Zhang et al., 2021). Given all of these

mechanisms of predictability, we find that terrestrial carbon fluxes are predictable for two years (Ilyina et al., 2021).

Although several ESMs reproduce the same predictability horizon for globally integrated terrestrial carbon fluxes (Séférian35

et al., 2018; Ilyina et al., 2021; Spring and Ilyina, 2020; Lovenduski et al., 2019), there are substantial differences in the spatial

patterns of GPP IAV (Anav et al., 2015; O’Sullivan et al., 2020). The reason for these differences lies in poorly constrained

ecosystem processes that have a large impact on GPP. One of these differences arises from the uncertainty in the sensitivity of

GPP to environmental drivers (Ahlström et al., 2015; Jung et al., 2017; Beer et al., 2010; Piao et al., 2020; Collalti et al., 2020).

The sensitivity of GPP to temperature and precipitation varies among studies, leading to the ongoing discussion concerning40

the dominant driver of global carbon fluxes (Piao et al., 2020). The different sensitivity of GPP to precipitation across ESMs

is further exacerbated by the large disagreement in water storage anomalies (Wu et al., 2021). The simulated annual cycle of

water storage anomalies of major river basins is between 0.1 and 2 times that of the observed variability. These deviations in

hydrological variability between models are likely to cause similar deviations in GPP IAV, especially in semi-arid watersheds.

Further differences in GPP IAV are due to variations in ecosystem boundaries and the related spatial distribution of plant pro-45

ductivity. The Amazon rainforest, for instance, is a hotspot of land-atmosphere carbon fluxes and provides a large contribution

to the predictability of atmospheric CO2 (Zeng et al., 2008; Séférian et al., 2018; Ilyina et al., 2021). However, the transition

zone between the wet tropical forest and semi-arid tropics within the Amazon basin varies among the models due to differences

in their representation of land cover (Collier et al., 2018; Hu et al., 2022). Such differences in biome boundaries also modify

the impact of ENSO on GPP IAV. ENSO produces a distinct spatial pattern of climatic anomalies which influences the GPP50

on 32% of the vegetated land area significantly (Zhang et al., 2019). These ENSO-related climate patterns will have a different

impact on GPP depending on the type of biomes under their influence. In addition to the spatial variability, many ESMs strug-
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gle to reproduce the seasonal variability of carbon fluxes. This can be seen in the large biases in phenology (Song et al., 2021).

Several models overestimate the seasonal amplitude of leaf area index (LAI) in the tropics, and mismatch the timing of LAI

maxima and minima (Peano et al., 2019, 2021).55

All of these uncertainties suggest, that there are large differences in the patterns of GPP IAV among the ESMs. With this

study, we want to extend our understanding of GPP predictability by considering the different patterns of GPP IAV among the

ESMs as well. In a multi-model analysis, we investigate which processes drive the IAV of GPP and which processes allow the

GPP IAV to be predictable. Regression analysis is used to determine the role of three environmental variables (soil moisture,

temperature, and radiation) on GPP IAV and GPP predictability. We analyse the cause of differences in GPP predictability60

across ESMs, identify the areas of large discrepancies, and determine the factors contributing to the attached uncertainties. The

aim of this study is to reveal which factors of GPP representation are limiting the predictability of atmospheric CO2.

2 Methods

2.1 Data sources

We analyse model output from the Decadal Climate Prediction Project (DCPP, boer2016decadal). This protocol-driven multi-65

model approach aims at studying the decadal predictability of the earth system with hindcasts, quasi-real-time forecasts, and

case studies on predictability mechanisms. The hindcasts are initialized annually from 1960 to 2017 or 2019 with the starting

dates between November and January and at least 10 ensemble members. Simulations are driven by CMIP5 or CMIP6 historical

forcing and extended by RCP4.5 or SSP2-4.5 afterwards. The DCPP framework does not prescribe any specific initialization

or data assimilation methods and leaves these details to be decided by the respective modelling centres.70

We additionally use the CESM2 model output from the Seasonal-to-Multiyear Large Ensemble (SMYLE) prediction system

(Yeager et al., 2022). The SMYLE hindcasts ensembles are initialized four times per year with 20 ensemble members between

1970 and 2019. In this study, the November initializations are used to achieve the highest comparability with the DCPP

hindcasts.

We compare the spatial GPP IAV patterns of the ESMs with observation-based GPP products. Because of the uncertainty75

among observations, we include products based on three different sources. The Vegetation Photosynthesis Model (VPM, Zhang

et al. 2017) is remote sensing-based product that uses a light use efficiency (LUE) model to calculate GPP. VPD uses satellite

data from MODIS and an improved LUE algorithm that considers leaf quality. The second data set is GOSIF (Li and Xiao,

2019) which is based on data from MODIS and the Orbiting Carbon Observatory-2. GOSIF uses solar-induced chlorophyll

fluorescence, which is a more recent approach to calculate GPP. Lastly, we use FLUXCOM (version RS + METEO (ERA5),80

Jung et al. 2019), which uses machine learning to upscale flux tower observations with meteorological and remote sensing data.

Because FLUXCOM underestimates the IAV of GPP (Anav et al., 2015; O’Sullivan et al., 2020), it is recommended to scale

the data so that the IAV of its integrated fluxes resembles observations (Jung et al., 2019). The VPM, GOSIF, and FLUXCOM

data are linearly detrended before calculating the IAV. Due to the long time span, FLUXCOM is detrended over two periods

(1979 to 1999, and 2000 to 2018).85
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CanESM5

The Canadian Earth System Model version 5 (CanESM5; Swart et al. 2019) consists of the Canadian Land Surface Scheme

(CLASS) and Canadian Terrestrial Ecosystem Model (CTEM) with a T63 grid of an approximate resolution of 2.8◦. The atmo-

sphere is realized with the Canadian Atmospheric Model (CanAM5) with 49 vertical levels. Ocean physics is simulated with

CanNEMO, on a tripolar grid with a resolution of 1◦ to 1/3◦ and 45 vertical levels, and ocean biogeochemistry is represented90

by the Canadian Model of Ocean Carbon (CMOC).

The CanESM5 hindcast simulations are initialized every January between 1960 and 2017 with 20 members. 3D potential

temperature and salinity of the global oceans are nudged toward monthly Ocean Reanalysis System 5 (ORAS5; Zuo et al. 2019).

Sea surface temperatures are nudged to Extended Reconstructed Sea Surface Temperature (ERSSTv3; Xue et al. (2003); Smith

et al. (2008)) until 1981 and to Optimum Interpolation Sea Surface Temperature (OISST; Banzon et al. 2016) afterwards. Sea95

ice concentration is nudged to the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST.2; Titchner and

Rayner 2014), and sea ice thickness to monthly climatology until 1988 and to the SMv3 statistical model of Dirkson et al.

(2017) afterwards. For the atmosphere, temperature, horizontal wind components and specific humidity are nudged to ERA40

(Uppala et al., 2005) until 1978 and to 6-hourly ERA-Interim data (Dee et al., 2011) afterwards.

CESM1-CAM5100

The Community Earth System Model (CESM) version 1.1 (Hurrell et al., 2013) is used to produce 40-member simulations in

the Decadal Prediction Large Ensemble (DPLE) project (Yeager et al., 2018). The model components are the Community Land

Model version 4 (CLM4; Lawrence et al. 2011) with a 1◦ resolution, Community Atmosphere Model Version 5 (CAM5) with

30 vertical levels, the Parallel Ocean Program (POP2) with 60 vertical levels and sea ice with Community Ice Code (CICE4).

The CESM1-CAM5 hindcasts are initialized every November. There is no direct assimilation of observations to produce the105

initial conditions, instead, ocean and sea ice are obtained from simulation runs forced by historic atmospheric surface fields

(Yeager et al., 2018). Initial conditions for the land and atmosphere components are obtained from ensemble member #34 of

the CESM Large Ensemble (Kay et al., 2015; Lovenduski et al., 2019).

CESM2

CESM version 2 (Danabasoglu et al., 2020) runs on a 1◦ horizontal resolution of all components. The atmosphere is simulated110

by the Community Atmosphere Model Version 6 (CAM6) with 32 vertical levels. The ocean model is the Parallel Ocean

Program version 2 (POP2) with 60 vertical levels, with the biogeochemistry from the Marine Biogeochemistry Library and sea

ice by CICE version 5.1.2 (CICE5) with 8 vertical layers. The land component is simulated by the Community Land Model

version 5 (CLM5; Lawrence et al. 2019), which has several updates to its predecessor CLM4 and CLM4.5, leading to a better

representation of the global carbon cycle in benchmarks (Bonan et al., 2019).115

Hindcasts are initialized on the 1st of every November, February, May and August, and run for 24 months. Only the Novem-

ber initializations are used in this analysis to increase comparability with the DCPP simulations. Initial conditions for the
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atmosphere, ocean and sea-ice stem from the Japanese 55-year Reanalysis (JRA-55; Kobayashi et al. (2015), and JRA55do;

Tsujino et al. (2018)). The land surface and biogeochemistry are initialized from forced CLM5 simulations.

CMCC-CM2-SR5120

The Euro-Mediterranean Centre on Climate Change coupled climate model (CMCC-CM2, Cherchi et al. (2019), Lovato et al.

(2022)) is based on CESM and consists of the Community Land Model (CLM4.5) with a 1◦ resolution, the atmospheric model

CAM5.3 with 30 vertical levels. The distinguishing element of CMCC-CM is the ocean, which is simulated by NEMO3.6,

while sea ice is modelled by CICE4.

The 10-member hindcast simulations are initialized every November (Nicolì et al., 2022). The ocean initial conditions are125

from CHOR (Yang et al., 2017) until 2010 and from CGLORSv7 (Storto and Masina, 2016) afterwards. The atmosphere is

initialized from ERA-40 until 1978 and by ERA-Interim afterwards. The land surface is initialized using the reanalysis with

two different meteorological forcing. For this reason, only the ensemble members 1, 3, 5, 7, 8 and 9 are used, as the other

members start from a different state and this would not allow quantifying predictability by ensemble spread.

Because the CMCC-CM2-SR5 fields containing land-atmosphere carbon fluxes are not exported for the DCPP runs, the130

historical simulations are used to infer the relationship between environmental drivers and GPP.

IPSL-CM6A-LR

The ESM developed by the Institute Pierre Simon Laplace (IPSL; Boucher et al. 2020) uses the ORCHIDEE v2.0 (Cheruy

et al., 2020) land surface model (LSM) with an average resolution of 157 km. The atmosphere is simulated at the same

resolution by LMDZ6 with 79 vertical levels, the ocean with NEMO-OPA with a 1◦ resolution and 75 vertical levels and ocean135

biogeochemistry with PISCESv2.

The hindcast simulations of IPSL-CM6A-LR come from the DCPP project. The 10-member ensembles start annually in

January between 1960 and 2016. The hindcasts are initiated from an assimilation run with EN4 sea surface temperatures

(Good et al., 2013) and Atlantic sea surface salinity (Estella-Perez et al., 2020). Subsurface ocean, sea ice and atmosphere are

not assimilated.140

MPI-ESM-LR

MPI-ESM-LR is the Max Planck Earth System Model (MPI-ESM1.1; Giorgetta et al. 2013) used in a low-resolution configu-

ration. The land is simulated by JSBACH with dynamic vegetation (Reick et al., 2013). The ocean component is MPIOM with

a horizontal resolution of about 150 km and 40 vertical levels. The atmosphere is simulated by ECHAM at a T63 resolution

with 47 vertical layers, and ocean biogeochemistry is represented by HAMOCC.145

The utilized hindcast simulations of MPI-ESM-LR are conducted within the MiKlip project (Marotzke et al., 2016). The

decadal prediction system are 10-member ensembles starting every January between 1961 and 2014. Ocean temperature and
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salinity are initialized from the Ocean Reanalysis System 4 (ORAS4; Balmaseda et al. 2013) and the atmosphere by ERA-40

from 1960 to 1998 and ERA-Interim from 1990 to 2014.

2.2 Statistical approach150
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Figure 1. Workflow of the statistical analysis: a) Lead years five to ten of the hindcast simulations are used to train a regression model

that calculates the components of GPP caused by the environmental drivers. b) The regression model is applied to (i) lead years five to ten

to calculate the IAV of the GPP components (σGPP(IAV )) and (ii) to lead year one to calculate the mean ensemble spread of the GPP

components (σGPP(LY 1)).

Overview

An overview of the statistical analysis is shown in Figure 1. Every hindcast simulation is initialized from quasi-identical

conditions. With the increasing lead-time, the variability within the hindcast ensemble (standard deviation across the ensemble

members for a given time) increases too, until it reaches the IAV. Based on this assumption, the hindcast simulations are split

into two groups by lead-time (lead year one, and lead years five to ten). For the lead years five to ten, the effects of initialization155

are assumed to be negligible. These years are used to calculate the monthly mean climatology, which is removed from both

groups to obtain the anomalies. The anomalies of the lead years five to ten are used in a regression analysis to derive the

sensitivity of GPP to the environmental drivers i.e. soil moisture, temperature and radiation (Fig. 1 a)). The regression model is

applied to (i) the anomalies of lead years five to ten to calculate the IAV of all GPP components (σGPP(IAV )), and (ii) to the

anomalies of lead year one to calculate the ensemble variability of all GPP components (σGPP(LY 1), Fig 1 b)). We derive the160

predictability of GPP by comparing σGPP(LY 1) to σGPP(IAV ). Because the hindcast simulations are not evaluated against

observations, the calculated predictability reflects the potential predictability.

6

https://doi.org/10.5194/egusphere-2023-65
Preprint. Discussion started: 30 January 2023
c© Author(s) 2023. CC BY 4.0 License.



Climatology and sensitivity

The monthly mean climatologies are calculated from the lead years five to ten, with a three-year moving window approach

for every calendar year. Because the moving window method is not applicable for the first decade of hindcast initializations,165

the monthly climatology for the 1960s (1970s for CESM2) is calculated based on all lead years five to ten within the 1960s

(or 1970s). Anomalies of all input fields are calculated by subtracting the monthly climatologies from the hindcast data. The

obtained anomalies of lead years five to ten make up a data set of n simulation years:

n = 6 hindcast years × No. ensemble members × No. initializations. (1)

With 10 to 40 ensemble members and 56 to 58 initializations resulting in sample sizes of 3330 to 13680. Because the hindcast170

length is only two years for the CESM2 simulations, a different approach is used here. Instead of lead years five to ten, only

lead year two is selected and only five random ensemble members are used from every hindcast to reduce the number of

simulations with the same initial conditions. To offset the reduced number of data points, five random simulations are added

from the hindcast simulations initialized in February, May, and August as well.

The resulting data set of lead year 5 to ten anomalies is used to derive the sensitivity of GPP to the environmental drivers175

(ENV : soil moisture, temperature and radiation) by fitting a regression model for every grid cell and month of the year. The

relationship between GPP and the environmental drivers is frequently non-linear, sometimes due to specific break points in

the functional representation of GPP. For this reason, segmented linear regression (SLR) is used to model GPP from the envi-

ronmental drivers (Muggeo, 2008). SLR finds breakpoints in the data, splitting it into multiple ranges and fitting an individual

regression model to each of the data ranges. Here, a single breakpoint is determined for each of the three predictor variables.180

Because environmental drivers have some degree of collinearity, the regression analysis will not be able to fully attribute

the GPP anomalies to their specific causes. Therefore, the resulting sensitivities should be taken as a “contributive”, and not a

“true” effect of the environmental drivers (Wang et al., 2016).

Variability and predictability

The SLR can now be applied to individual simulations to determine the component of GPP anomalies that can be attributed to185

each of the environmental drivers:

∆GPP ≈∆GPPSoil moisture + ∆GPPTemerature + ∆GPPRadiation. (2)

The three components of GPP anomalies (∆GPPENV ) are calculated for every simulation within the hindcast lead time five

to ten. From the results, we calculate the IAV of the components for every grid cell and month of the year (σGPPENV
(IAV )).

Similarly, the SLR is applied to the anomalies of lead year one, to calculate the standard deviation for every month within the190

hindcast simulations. Averaging over the standard deviations of every hindcast returns the ensemble variability of lead year

one (σGPPENV
(LY 1)).

The predictability is assessed by comparing σGPP(LY 1) to σGPP(IAV ). A high predictability of an input field means, that

the ensemble variability is restricted for some time after the hindcast initialization, and does not reach the IAV immediately.
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To take different aspects of predictability into account, we calculate a relative and an absolute predictability metric. As the195

absolute metric, we calculate the predictable component pc. It is the difference between IAV and ensemble variability (Fig. 2):

pcENV = σGPPENV
(IAV )−σGPPENV

(LY 1). (3)

The pc can be interpreted as the amount of IAV that is predictable during lead year one. It allows quantifying the regional

contribution to atmospheric CO2 predictability. However, pc is strongly related to the overall magnitude of GPP IAV and does

not give us an insight into how well memory is stored in the system. Therefore, the predictable fraction pf is calculated as the200

fraction of pc to IAV:

pfENV =
pcENV

σGPPENV
(IAV )

. (4)

pf is a relative metric and allows assessing how well memory is retained in the system.

Figure 2. The exemplary composition of GPP variability and the calculation of the predictability metrics. The components of GPP IAV

are calculated from the lead years five to ten (green bars), and the ensemble variability is calculated from lead year one (red bars). The

predictable component (pc) results from the difference between IAV and ensemble variability. The predictable fraction (pf ) is the fraction

of pc to IAV. In the exemplified region, most of the variability is caused by soil moisture and radiation, while GPP is not restricted by

temperature. Predictability is exclusively provided through soil moisture.
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3 Results and Discussion

3.1 Patterns of GPP IAV205

In order to understand what the models are predicting, we start by analysing the patterns of GPP IAV. There are differences in

the overall magnitude of GPP IAV among ESMs with CanESM5, CMCC-CM2-SR5, and IPSL-CM6A-LR at the lower, and

CESM2 and MPI-ESM-LR at the higher end of the IAV spectrum. Factors that could explain some of the differences in the

overall magnitude of IAV is the relatively weak ENSO teleconnection in CanESM5 (Swart et al., 2019), or the low total GPP

in CMCC-CM2-SR5 (Lovato et al., 2022).210

Because we focus on the spatial patterns of IAV rather than absolute differences, the GPP IAV patterns are scaled for better

comparison (Fig. 3). We find agreement in the large-scale patterns of GPP IAV, with most of the IAV of the ESMs in the

northern Amazon Basin, and the semi-arid tropics like South America, Africa, South Asia, Australia, and southern North

America. A closer examination of GPP IAV reveals that the ESMs have less agreement in the regions contributing most to the

IAV, especially in the semi-arid tropics. Some ESMs have large hotspots of GPP IAV, which cannot be found in other ESMs.215

These unique hotspots are the western Amazon Basin (CanESM5), central South America (CESM2), Southern Africa (MPI-

ESM-LR and CanESM5), and Australia (MPI-ESM-LR). We can find the most consistency on the northern coast of South

America, which is a high IAV region in most ESMs. The spatial patterns of IAV have an average correlation of 0.47 among the

ESMs. The ESM with the lowest correlation values is CESM2 with an average of 0.29. CESM2 stands out with very low IAV

in the tropical rainforests of the Amazon and Congo Basins and Southeast Asia.220

The correlation among the observational products is 0.65, and although they confirm most of the IAV patterns of the ESMs

we find stronger deviations in South America. While many ESMs have IAV hotspots along the northern coast of South America,

this is only reproduced in FLUXCOM. However, all observational products show a high GPP IAV in western South America,

which can not be found in the ESMs. The spatial patterns of GPP IAV revealed here correspond with the literature, which

suggests that the semi-arid tropics, tropical forests, grasslands and croplands are the main drivers of global GPP IAV (Ahlström225

et al., 2015; Piao et al., 2020; O’Sullivan et al., 2020). These studies also reflect the large uncertainty in the contribution of

the individual semi-arid regions to GPP IAV between the models, and in particular the uncertain role of Australia. In an

ensemble of eight LSMs, Australia contributed 39%, semi-arid tropical Africa 32%, and Southeast Asia 10% to global GPP

IAV, while temperate South America only contributed 2% (Chen et al., 2017). Although Australia has the highest mean model

IAV, the variability of IAV between the models is also the largest, with the IAV of GPP ranging between 0.26 and 1.01 Pg230

C yr−1. However, ESMs are likely to underestimate the role of tropical forests in GPP IAV, due to a misrepresentation of

photosynthesis (O’Sullivan et al., 2020). In this study, this is especially evident for CESM2, where GPP IAV increases abruptly

outside the boundaries of tropical forests.

The divergence in GPP IAV across different ESMs is largely caused by three factors: the sensitivity of carbon fluxes to

climatic drivers (Piao et al., 2020) (discussed in section 3.2), phenology (Chen et al., 2017; Peano et al., 2019, 2021), and235

meteorological input (Anav et al., 2015). The role of phenology is crucial because the amount and quality of leaves determine

the exchange of water, CO2 and energy between the land and the atmosphere (Peano et al., 2021). Most LSMs tend to have
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Figure 3. GPP IAV in three observational products (VPM, GOSIF, and FLUXCOM) and six ESMs. a) Spatial patterns of GPP IAV with

brighter colours standing for higher values. The data is scaled across ESMs to highlight differences in patterns and not absolute differences.

b) The spatial correlations between the products.

a better representation of the growing season type, and growing season boundaries in the wet than in the semi-arid tropics.

Peano et al. (2021) analysed the start- and ending months of growing seasons (GSS and GSE) in eight LSMs under the same
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climate forcing and found several regions with a wide range of simulated growing seasons. The largest uncertainties in GSS240

and GSE are in the semi-arid tropics, the same regions where we find little agreement in GPP IAV. GSS ranges from February

to October in Australia, and from March to October in Southern Africa, while GSE ranged from March to September in Africa

between 0 and 15◦N. The vegetation types with the largest uncertainty in growing season timing are broadleaf deciduous

shrubs, which are mostly located in Northern Australia, Southern Hemisphere crops, broadleaf evergreen trees and grasses.

The better-performing models have a high number of plant functional types, or more complex phenology schemes, while245

the difficulties in semi-arid regions originate from the response of photosynthesis to soil moisture. Its complex phenological

scheme puts ORCHIDEE among the better-performing LSMs, and might explain the high correlation of IPSL-CM6A-LR with

the GPP IAV of all three observational products.

It is also a misrepresentation of phenology that can explain the overall high IAV in MPI-ESM-LR. JSBACH overestimates

the seasonality of LAI in the tropics, as it becomes visible in the strong seasonal cycle of tropical LAI in MPI-ESM-LR (Song250

et al., 2021). Consequentially, the area of the evergreen tropics is underestimated in JSBACH (Peano et al., 2021). This leads

to a larger fraction of semi-arid tropics with a higher IAV. This amplification of the equatorial dry season might lead to the high

GPP IAV in the Northern Amazon and contribute to the overall high IAV in MPI-ESM-LR (Wang et al., 2011).

To examine the role of meteorological input on the differences in GPP IAV among ESMs, we compare soil moisture IAV

(Figure 4) with GPP IAV. Notable is the relationship between soil moisture and GPP IAV in Australia and Southern Africa.255

MPI-ESL-LR and IPSL-CM6A-LR which have the highest GPP IAV in Australia, have low soil moisture IAV in this region

compared to the CLM family. We see similar results for Southern Africa, where all models but CMCC-CM2-SR5 and IPSL-

CM6A-LR have relatively high soil moisture IAV, however, GPP IAV is low in the CLM family and high in IPSL-CM6A-LR.

This disagreement between the variability of GPP and its forcing is in accordance with the findings of Peano et al. (2021),

supporting the assumption that the response of GPP to soil moisture is not well constrained in semi-arid ecosystems. The high260

soil moisture variability in CESM2 in Australia and Southern Africa despite low GPP IAV could result from its low climate

sensitivity (Wieder et al., 2021).

3.2 Drivers of GPP IAV

To determine the drivers of GPP IAV, we analysed the sensitivity of GPP to environmental drivers using regression analysis.

The globally averaged contribution of the drivers to GPP IAV is shown as the bars in Figure 5. The CLM family and CanESM5265

have similar patterns, with temperature dominating the IAV, or being on par with soil moisture. IPSL-CM6A-LR and MPI-

EMS-LR have a distinctly different pattern, with soil moisture dominating the IAV and radiation contributing equally or more

than temperature. A reason for the large contribution of soil moisture to GPP IAV in IPSL-CM6A-LR and MPI-ESM-LR could

be that both ESMs are at the high end of soil moisture IAV for deep soil layers in the Southern Hemisphere (Qiao et al., 2022),

where many of the semi-arid ecosystems are located that contribute most to GPP IAV. Another explanation could be that out270

of eleven ESMs, IPSL-CM6A-LR and MPI-ESM-LR have the lowest warm-season soil moisture (Padrón et al., 2022). This

increase in dryness can lead to a larger extent of semi-arid ecosystems with a generally higher GPP IAV. Another effect of

the reduced warm-season soil moisture can be an increase in land-atmosphere coupling strength (Santanello et al., 2018). This
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Figure 4. IAV of soil moisture in 6 ESMs. Note that CESM2 calculates soil moisture over a deeper soil column, hence the variability of

CESM2 is scaled to a similar range as the other models.

would explain the higher correlation between soil moisture and temperature in IPSL-CM6A-LR and MPI-ESM-LR (Padrón

et al., 2022), and make the regression coefficients shift towards the stronger predictor, which is soil moisture.275

The spatial drivers of GPP IAV show agreement in the wet and arid tropics, while there is little consistency in the semi-

arid transition zones (Fig. 5). In many ESMs, the GPP IAV in the wet tropics, and eastern China is induced by radiation,

while soil moisture becomes more prevalent along the aridity gradient, and is driving IAV in Southern Africa, Southern South

America, and Australia. The IAV of the remaining land surface is driven predominantly by soil moisture in IPSL-CM6A-LR

and MPI-ESM-LR, and by a combination of temperature and soil moisture in the remaining ESMs.280

Multi-model averages and observations of GPP sensitivity agree with the larger role of temperature in tropical forests,

radiation in western Amazonia, and the importance of precipitation in the semi-arid tropics (O’Sullivan et al., 2020; Anav

et al., 2015). However, the role of water on carbon fluxes increases when soil moisture is used instead of precipitation in

sensitivity studies (Piao et al., 2020). This can be observed in the sensitivity of net biome productivity (NBP), showing a

more balanced contribution of soil moisture and temperature in the wet tropical forests (Piao et al., 2020; Padrón et al., 2022).285

Although the comparison of GPP and NBP imposes limitations, GPP explains the majority of tropical NBP (Ahlström et al.,

2015). This suggests, that the low water sensitivity of tropical GPP might explain the lower than expected GPP IAV of tropical

forests in ESMs.
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Figure 5. The contribution of environmental drivers to GPP variability (σGPP ENV
(IAV )). Colour intensity stands for higher GPP IAV. The data

is scaled across ESMs to highlight differences in patterns and not absolute differences. Bars represent the mean contribution of environmental

drivers to global GPP IAV (kg C m−2 s−1 10−13).

3.3 Predictability of GPP

To analyse the role of GPP in the predictability of atmospheric CO2, we assessed GPP predictability using two metrics. The290

predictable component (pc) is calculated as the difference between ensemble variability and IAV and provides a measure of

absolute predictable variability. pc can be used to assess the predictability of GPP fluxes that contribute to CO2 variability. The

predictable fraction (pf ) is the ratio of pc to IAV and illustrates how well memory is retained in the system. This metric can be

used to compare the predictive performance of different biomes, for example.

There is relatively high consistency among the pf of the environmental drivers across the models (pfSoilmoisture >295

pfTemperature > pfRadiation, numbers above the bars in Fig. 6). This pattern reflects the anticipated differences in predictabil-

ity among the drivers. Atmospheric fields, as radiation, have a low persistence, leading to a low predictability of two weeks for

most regions (Zeng et al., 2008). Soil hydrology, on the other hand, acts as a low-pass filter which removes the unpredictable

high-frequency variability of precipitation and allows a predictability of soil moisture of around two years (Chikamoto et al.,

2017). Temperature gains most of its predictability through sea surface temperature (SST) forcing in the equatorial regions300

(Feng et al., 2011), and land-atmosphere coupling in the semi-arid tropics (Seo et al., 2019).
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Figure 6. The contribution of environmental drivers to the predictable component of GPP (pc). The contribution is calculated as the difference

between the IAV and the ensemble variability within lead year one of the hindcast experiments. Values are scaled for each ESM. Bars

represent the mean contribution of environmental drivers to the pc (∆σ GPP in kg C m−2 s−1 10−13). Numbers on top of the bars show the

predictable fraction (pf ), which is the share of the pc to overall IAV. The correlation between GPP IAV and the pc is shown at the bottom of

the plots.

The overall pf of CESM2, CMCC-CM2-SR5 and IPSL-CM6A-LR falls into a narrow window of 0.19 to 0.21. CESM1-

CAM5 has the highest pf with a value of 0.24. It is likely that this increased share of predictable IAV is not due to differences

in model structure, but due to the large number of 40 ensemble members. Most other ESMs in this study have only ten

ensemble members, which is not enough to capture the difference between ensemble variance and IAV, so that an increase in305

ensemble members leads to an increase in prediction skill (Meehl et al., 2021). However, despite having 20 ensemble members,

CanESM5 has the lowest pf among the models. A possible explanation could be its poor representation of soil moisture (Qiao

et al., 2022). In particular, the low variability of deep soil moisture in CanESM5 could hinder the persistence of the initial

climatic conditions. On the other hand, a high variability of soil moisture does not guarantee a high pf , as seen by the example

of MPI-ESM-LR. The low pf of MPI-ESM-LR can be explained by the sensitivity of GPP to radiation. Since only 7% to 12%310

of the radiation-induced IAV is predictable, a high share of σGPPRadiation reduces the predictability of GPP. This becomes

evident in MPI-ESM-LR, in which the share of σGPPRadiation is 20% higher than in the other ESMs.
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We find that the regions contributing to the predictability of atmospheric CO2 (pc) are highly related to the IAV patterns. The

spatial correlation between pc and IAV exceeds 0.79 in all models but CanESM5. Indeed, these high correlations between pre-

dictability and IAV align with our understanding. Under a constant pf , pc would grow linearly with increasing IAV, leading to315

a perfect correlation. These high correlations show that the differences in the predictability of atmospheric CO2 are determined

more by the differences in GPP IAV than the differences in the pf of GPP. While the pf values show that the ESMs have a

similar degree of memory retention, there are few overlaps in the spatial distribution of the pc, with an average correlation of

0.38 between the ESMs. For an alternative quantification of this disagreement, we separate the high-predictability grid cells,

which are the grid cells contributing to the top 20th quantile of pc. 74% of these high-predictability grid cells are unique to320

only one ESM, and only 8% of high-predictability grid cells can be found in three or more ESMs.

Although the spatial patterns of the pc broadly resemble the patterns of GPP IAV, there are some slight differences between

these fields. The pc is relatively high along the northeastern coast of South America in most ESMs. This could be due to

the high climate predictability caused by slowly evolving Atlantic SST patterns (Dirmeyer et al., 2018). Other systematic

differences can be explained by the differing pc of the environmental drivers. The most evident is the difference between IAV325

and predictability in regions where GPP IAV is driven by radiation. This leads to relatively low predictability in the tropical

rainforests of the western Amazon basin and the Congo basin. An exception is the predictability provided through radiation on

the Southeast Asian islands in IPSL-CM6A-LR and CESM1-CAM5. High predictability in these regions could be explained by

the proximity to the ENSO SST region. Strong and predictable SST anomalies in the tropical Pacific that surround the islands

can directly influence the cloud cover over land. The predictable component is also higher over areas where IAV is driven by330

soil moisture rather than temperature. In many ESMs, this leads to a high predictable component in the semiarid regions of

South America, Africa and India.

4 Conclusions

We tested the ability of six ESMs to predict terrestrial GPP and determined the similarities and sources of uncertainties. The

ESMs are fairly similar in their ability to retain memory in hindcast simulations, with the pf values of four of the ESMs falling335

between 19% and 24%. Most of the GPP pf is provided by soil moisture. Up to 32% of the GPP IAV caused by soil moisture

is predictable, while it is only 7% to 12% for the IAV caused by radiation. The differences in the pf among ESMs are due to

ensemble size and the sensitivity of GPP to radiation. Further sources of predictability which is not studied here are long-term

vegetation dynamics. Specifically, the large and structural changes like tree mortality (Wigneron et al., 2020) and recruitment

(Holmgren et al., 2001). These processes only occur in extreme years and cause shifts in ecosystem states with long-lasting340

effects. The correct representation of these processes in ESMs allows them to reproduce the low-frequency IAV of vegetation,

thereby extending the pf of GPP.

Although ESMs are similar in the fraction of GPP IAV they can predict, there are substantial differences in the patterns and

drivers of GPP IAV. The ESMs have distinct, non-overlapping hotspots of GPP IAV that drive the variability of atmospheric

CO2. We find large disparities in the role of Australia, Southern Africa, and central South America on GPP IAV. The leading345
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cause of the uncertainties in IAV patterns are differences in the response of GPP to soil moisture and the capability of the ESMs

to simulate soil hydrology accurately. These differences materialize through the direct effect of soil moisture on photosynthesis,

and through the role of soil moisture on phenology. The inability of ESMs to reproduce GPP IAV also means, that there are

regions where the potential predictability of GPP does not resemble the actual predictive skill.

These mismatches in GPP IAV imply, that the IAV of atmospheric CO2 are caused by different regions and by different350

drivers across the ESMs. Consequentially, when ESMs predict the atmospheric CO2, their predictions are originating from

different regions. Therefore, the prediction of atmospheric CO2 relies less on the prediction of regional climate anomalies, and

more on the predictable global climate patterns like ENSO. These global climate anomalies are able to balance out the regional

differences in GPP patterns, by affecting large parts of the land surface simultaneously. In order to utilize the benefits of regional

climate predictability for the predictability of CO2, further work ought to focus on constraining carbon flux variability, and not355

on the processes providing predictability. While the distribution of mean GPP has long been used to parameterize ESMs, effort

should also be directed towards tuning the IAV of GPP to increase the predictive performance of ESMs. A missing piece

towards this goal, however, is a robust and independent product of global GPP IAV.
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