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Abstract
Advances in in situmarine life imaging have significantly increased the size and quality of available
datasets, but automatic image analysis has not kept pace. Machine learning has shown promise for
image processing, but its effectiveness is limited by several open challenges: the requirement for
large expert-labeled training datasets, disagreement among experts, under-representation of
various species and unreliable or overconfident predictions. To overcome these obstacles for
automated underwater imaging, we combine and test recent developments in deep classifier
networks and self-supervised feature learning. We use unlabeled images for pretraining deep
neural networks to extract task-relevant image features, allowing learning algorithms to cope with
scarcity in expert labels, and carefully evaluate performance in subsequent label-based tasks.
Performance on rare classes is improved by applying data rebalancing together with a Bayesian
correction to avoid biasing inferred in situ class frequencies. A divergence-based loss allows
training on multiple, conflicting labels for the same image, leading to better estimates of
uncertainty which we quantify with a novel accuracy measure. Together, these techniques can
reduce the required label counts∼100-fold while maintaining the accuracy of standard supervised
training, shorten training time, cope with expert disagreement and reduce overconfidence.

1. Introduction

Improvements in imaging technology have strongly impacted marine science, with large image datasets
becoming an important asset across species, locations and imaging modalities (Möller et al 2015, Vilgrain
et al 2021). The ability to observe individual organisms in situ, measure spatio-temporal density variations,
and identify co-occurrence of species, particles, and environmental factors has unlocked previously
inaccessible research directions.

However, before underwater images can provide useful information for marine science, they must
generally be ‘labeled’ with image classes corresponding to species or particle types. With large data volumes,
manual annotation by qualified human experts presents an analysis bottleneck, so that ongoing
improvements in the imaging rate, sensor quality, depth of field or number of cameras no longer increase the
rate at which relevant information is obtained. For example, a single underwater camera can easily acquire
10 000 plankton images every hour without interruption, while a human expert spending 5 s per image could
label only 720 images in an hour of focused work.

As an alternative to manual annotation, deep neural networks have shown considerable success in
image-based classification, segmentation and regression tasks, approaching or exceeding human capabilities
(Gu et al 2018, Alzubaidi et al 2021, Caron et al 2021). The most common approach is supervised learning, in
which a neural network is trained on a fixed set of image-label pairs, with the aim of quickly and accurately
labeling unseen images without human intervention. Several recent studies have successfully applied
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supervised deep learning to underwater image classification (Dai et al 2016, Lumini and Nanni 2019), while
others have used additional techniques including principal component analysis, support vector machines
and random forests (Di Mauro et al 2011, Li et al 2014, Zheng et al 2017).

However, real-world performance of image classifiers lags behind the impressive results on standard
benchmark datasets, due to several key differences. Foremost among these is label scarcity: some images in
the training data must be ‘labeled’ by human experts. Benchmarks can have millions (Lin et al 2014,
Russakovsky et al 2015) of images or more (Sun et al 2017), but even 100 000 labeled images is high for a
marine biology study (Sosik and Olson 2007, Gorsky et al 2010) since the required expertise is itself a scarce
resource. Another difficulty arises from class imbalance: performance is degraded for species or particle types
that occur rarely. While high accuracy can be obtained on ‘rebalanced’ data with equal representation of all
classes (Branco et al 2015), this is not representative of real-world performance. Furthermore, imperfect
visibility and image focus can lead to expert disagreement, so that training data exhibit noise in their labels
(Zhu and Wu 2004).

To address these challenges, we present an approach to image classification with neural networks that
incorporates recent advances to go beyond simple supervised deep learning. Our study makes three main
contributions:

First, to address class imbalance, we carefully investigate its effects on how classifiers are trained and
evaluated. We rebalance our data to improve recognition of rare classes while incorporating a Bayesian
correction to avoid bias. We quantify the effects of these techniques on overall accuracy and for individual
image classes.

Second, we pretrain our networks using the SimCLR algorithm (Chen et al 2020a) to cope with label
scarcity. SimCLR is an unsupervised method—it trains the network to image features relevant for
classification without requiring labels for its input images, and we show that it effectively reduces the number
of labeled training examples required to achieve accurate classification. We compare and evaluate multiple
techniques for combining label-free feature learning with subsequent label-driven classification.

Third, to account for the possibility of inaccurate or conflicting labels, we apply a divergence-based loss
function to train on images with multiple expert labels. We show that this increases robustness and reduces
overconfidence in the presence of label noise. We also introduce a novel accuracy measure for multi-labeled
data that assesses both the classifier’s accuracy and its quantification of uncertainty.

We demonstrate and evaluate these techniques using two in situ datasets from Cape Verde and Helgoland,
observing significant benefits to accuracy, data efficiency and computation time.

2. Related work

Several previous studies have addressed label scarcity in aquatic imaging using transfer learning, in which
supervised training for one task or dataset is used to initialize network weights for another. (Lumini and
Nanni 2019) trained convolutional networks on many labeled datasets, then tuned the networks further on
the task of interest. Other studies instead initialized via supervised training on ImageNet data (Kyathanahally
et al 2021, Le et al 2022). Here we will take a different approach using semi-supervised learning. The relative
merits of semi-supervised vs. transfer learning depend on the number of unlabeled images available for
pretraining, the number of labeled images available for transfer learning, and the relatedness of the different
datasets and tasks.

Below, we describe our semi-supervised learning framework based on the SimCLR method (Chen et al
2020a). Among alternative semi-supervised approaches, the most successful is Momentum Contrast (MoCo)
(He et al 2020), which uses the same NT-Xent loss (Sohn 2016) but avoids large batch sizes by building a
dictionary queue. Both SimCLR and MOCO have been significantly improved since their introduction, and
unsupervised pretraining remains an active area of research (Chen et al 2020b, 2020c, Bardes et al 2022,
Garrido et al 2022, Yeh et al 2022).

While high accuracy can be obtained on ‘rebalanced’ test data with equal representation of all
classes (Branco et al 2015, Kraft et al 2022), this is not representative of real-world performance. (Bochinski
et al 2019) handle an imbalanced dataset by first training on a balanced subdivision of the complete dataset,
only sampling as many images for each class as are available for the least present class. They then make
predictions for unlabeled data, identify images for which the network is most uncertainty for further expert
labeling. A fundamentally different way of dealing with class imbalance is by synthesizing new images, either
by data augmentations (Luo et al 2018) or with generative modeling (Wang et al 2017). In some cases, strong
performance has been demonstrated on unbalanced data (Kyathanahally et al 2021). To our knowledge, ours is
the first study to carefully examine the effects of Bayesian correction ondeep learning of plankton classification.

A number of plankton classification studies have used probability filtering, in which automatic
classification results are discarded when the maximum inferred probability is below some (possibly
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class-specific) threshold (Luo et al 2018, Guo et al 2021, Kraft et al 2022). This technique reduces the number
of incorrect images, but leaves some images unclassified, possibly biasing the estimated class frequencies or
relationships with environmental drivers. In (Luo et al 2018) 35.7% of images were discarded, which for our
CPICS imaging data would mean up to 3500 unclassified images per hour. While we chose not to employ
probability filtering, its desirability ultimately depends on the scientific questions pursued.

The problem of disagreement among expert labels has so far received limited attention, especially in
plankton imaging. (Koller et al 2022) examined using the KL-divergence loss for such a problem in a
land-use classification task. Unlike their study, we cannot use majority votes to find one true label for
accuracy calculations, since we only have three equally valid ‘votes’ per labeled image. We will therefore
introduce a novel way for assessing accuracy in the presence of multiple target labels.

3. Data

We use two image datasets (figure 2(a)), collected at Cape Verde and at the coast of Helgoland.
Cape Verde data were collected on a 21-day research cruise (19.5–26◦ W, 14–19◦ N, 24 November–17

December 2019), using a Continuous Particle Imaging Classification System (CPICS) deployed in 73 vertical
hauls attached to the Rosette frame (500–4231 m depth). A set of 15 class labels were used to manually and
automatically classify these data (figure 1). 204,787 images were labeled by a single human expert (example
images in figure A1), and a further 107 532 unlabeled images were available as well.

Helgoland data were also generated using a CPICS, but instead of sporadic vertical hauls, it was deployed
on a stationary lander north of the island of Helgoland (54.11◦ N, 7.55◦ E). Data were collected between 0:00
and 5:30UTC on 28 July 2021, with a lander frame capable of remote-controlled vertical profiling between
seafloor and surface. The lander frame ascended passively through the water column (0–10 m depth) using
the buoyancy of swimmers attached to three vertical struts, and descended actively using a winch system to
an anchored base. Helgoland data were assigned to 8 classes, and the same 1000 images were labeled by three
human experts independently (example images in figure A2). From this location, an additional 123 147
unlabeled images were available.

While the Cape Verde data can be characterized as open water observations, the conditions near
Helgoland are distinctly coastal.

Since the images provided by the CPICS system vary in height and width vary from 36× 42 pixel over
28× 180 and up to 2576× 2156 pixel, we resized them to a fixed height and width using bilinear
interpolation. We also experimented with alternative approaches, such as first appending zero-valued pixels
on the images’ shorter side before resizing them afterward to maintain the original aspect ratio, but found
these to yield poorer performance. This coincides with a study from (Lumini et al 2020) and thus reinforces
our decision.

4. Methods

Our overall aim is classifying each in situ image in our datasets as belonging to one of several dataset-specific
image classes. These classes correspond roughly to biological taxa, but also include marine snow and blurry
images. Thus, for every image x, we wish to assign a class label y.

In this study, we report results from both supervised learning, in which training data consists of both
images x and labels y, as well unsupervised learning, in which training data consists of images alone. We also
carry out semi-supervised learning, in which network parameters are first initialized by unsupervised learning
and then further optimized by supervised learning, allowing us to use all labels and images in our datasets.
As the main innovations we introduce here involve going beyond simple supervised learning to investigate
potential benefits of class rebalancing, semi-supervised learning and a novel multi-label loss, we present
supervised learning results primarily as a baseline for further comparison.

We first review and formalize supervised, unsupervised and semi-supervised learning and strategies.
Next, we describe class balancing and Bayesian correction. We then explain the difficulty in training on
multi-labeled data and why the standard accuracy metric is not sufficient in the multi-label scenario.

4.1. Neural architecture
For all experiments, we use the ResNet50 network, an instance of a residual convolutional neural architecture
(He et al 2015). Each layer of a residual network updates an additive update to an internal state, making it
easier to train deeper models (e.g. with> 10 layers). The ResNet50’s ‘backbone’ consists of 50 layers
containing convolutional filters and pointwise rectifying nonlinearities, with three input channels (red, green,
and blue color channels of the input images) and a 2048-dimensional feature vector as output. A complete
ResNet50 consists of this backbone along with an additional ‘head’ that takes a feature vector as input and
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Figure 1. Number of labeled images for each class in the Cape Verde training dataset.

Figure 2. (a) We use two datasets collected during different campaigns, both of which contain more unlabeled than labeled
images. (b) In supervised learning only labeled images are used, and a different ResNet50 network is trained for each task using a
cross-entropy loss and randomly initialized parameters. (c) In semi-supervised learning, an unsupervised SimCLR-based step is
first used to train the ‘backbone’ of the ResNet50 using both labeled and unlabeled data from both datasets. This pretraining step
(upper) does not require or make use of any labels. In a subsequent tuning step (lower), the parameters obtained from the
pretraining step are used to initialize supervised training for each dataset and task as previously, using cross-entropy loss and
random initialization of classifier ‘head’ parameters.

produces task-specific outputs such as probabilities for each image class. Full details on the ResNet50 can be
found in (He et al 2015). We chose ResNet50 since it is a ‘modern’ architectural standard (Jiao et al 2019)
that provides close to state-of-the-art classification performance, while remaining conceptually simple and
computationally efficient (Shafiq and Gu 2022). Furthermore, ResNet50 is implemented in all major
machine learning software frameworks (Chollet et al 2015, TorchVision-maintainers and contributors 2016).

4.2. Supervised learning
For supervised learning (figure 2(b)), we used a ResNet50 backbone with a classification head consisting of a
fully connected layer and soft-max function. We trained all network parameters by minimizing a standard
cross-entropy loss. For a batch of N labeled images from the training data, this loss is defined by

LCE(ϕ) =−
N∑

n=1

yn · log(ŷϕ(xn)). (1)

For the nth image-label pair, the label yn is a ‘one-hot-encoding’ vector that is 1 at the position corresponding
to the expert-assigned class, and 0 elsewhere. ŷϕ(xn) is the vector of class probabilities by the neural network
with the labeled image xn as input. The logarithm is applied to each output probability individually and ϕ
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Table 1. Data augmentations used at different stages of the training. The values for the color jittering mean that for each jitter operation
a factor was uniformly chosen from [max(0,1− factor),1+ factor]. Only the jittering for the hue factor was uniformly chosen from
[−factor, factor].

pretraining Fine-tuning and supervised baseline

1. Random sized cropping
2. Bilinear resizing to 128× 128 pixel
3. Random horizontal flips (50% chance)
4. Random color jittering (80% chance of being applied. If
applied the following factors were used: brightness= 0.8,
contrast= 0.8, saturation= 0.8, hue= 0.2)
5. Random gray scaling (20% chance)
6. Rescaling values of all three color channels to [0, 1]

1. Random sized cropping,
2. Bilinear resizing to 128× 128 pixel
3. Random horizontal flips (50% chance)
4. Random vertical flips (50% chance)
5. Gaussian blurring (kernel size of 5)
6. Random auto-contrast adjustment (50% chance)
7. Rescaling values of all three color channels to [0, 1]

denotes all trainable network parameters. Minimizing this loss means maximizing expected log probability
for the expert-assigned image class. We minimized LCE using the stochastic optimization algorithm ADAM
(Kingma and Ba 2014) with an initial learning rate of 0.01 and 64 samples per batch.

Both datasets were divided into 70% training, 10% validation and 20% test data. Cape Verde data were
split class-wise so that these ratios applied to each image class as well (details in 4.5), while for the
multi-labeled Helgoland data we verified that at least one instance of each class label was present in the test
data. Only training data were used to minimize the loss over ϕ, but the loss was also measured on validation
data during training to assess whether the learned predictions generalize to new data or were overfitting on
the training data by ‘memorizing’ labels for each image. We also used validation data to tune
hyperparameters like the learning rate, momentum, batch-size, and augmentations. Test data were used only
for calculating the final results reported for each experiment. Supervised learning in this work is used as a
baseline for comparison to all further experiments.

4.3. Unsupervised learning
Unsupervised learning uses unlabeled images to train some or all parameters of a neural network. Here, we
follow the common two-step pattern in which unsupervised pretraining initializes network parameters before
further supervised tuning (figure 2(c)). Unsupervised learning optimizes a loss function LUS that depends on
network parameters ϕ and images x, but not on labels y, and measures the network’s ability to extract ‘useful’
image features without involving labels. Pretraining replaces the simpler initialization used in purely
supervised learning, which is setting the network parameters to values drawn from a random distribution.

We pretrained networks using the SimCLR algorithm (Chen et al 2020a), which we adapted for plankton
classification. SimCLR’s premise is that network outputs should change for each input image, but remain
fixed under image transformations such as cropping, rescaling, flipping or color manipulations. Thus, the
network should learn to extract features expressing what is ‘essential’ to each image, in the sense that they
distinguish it from other images but are not sensitive to the chosen transformations. Critical details include
the choice of image transformations, referred to as ‘data augmentations,’ and the loss function used to
express the concept of same vs. different outputs.

SimCLR duplicates each image x in a training batch, and both copies undergo random augmentations as
described in table 1. Next, both transformed copies of each image are passed through the modified ResNet50
to produce feature vectors, so that xk is used to produce z2k−1 and z2k.

Once a batch of N images has been processed to produce 2N feature vectors, a cosine similarity score is
computed between all feature vector pairs:

sim(zi,zj) =
zi · zj

∥zi∥∥zj∥
. (2)

These scores are then used to calculate the SimCLR loss function:

LUS =
1

2N

N∑
k=1

(ℓ2k−1,2k + ℓ2k,2k−1) (3)

ℓi,j =− log
exp(sim(zi,zj)/τ)∑2N

k=11[k ̸=i] exp(sim(zi,zk)/τ)
(4)

where the ‘temperature’ τ is a fixed hyperparameter, which was set to 0.5 throughout all experiments,
following (Chen et al 2020a). LUS is minimized when the feature vectors extracted from two transformed
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Table 2. Naming and configurations for 3 semi-supervised experiments as well as fully supervised baseline. Hidden classifier layers had
1000 neurons each and ReLU activations.

Method Name
Pretrained Using
SimCLR Optimizer for Tuning

Optimized Backbone
Weights Hidden Layers

Linear Evaluation Yes SGD No 0
Fine-tune SGD Yes SGD Yes 0
Fine-tune Frozen Yes Adam No 1
Supervised No Adam Yes 0

copies of the same image are more similar to each other (numerator in equation (4)) than to other images in
the batch (denominator in equation (4)).

In contrast to the batch size of 64 used for supervised learning, SimCLR requires much large batch sizes
to achieve sufficient diversity of the pair-wise comparisons of feature vectors. We therefore used a batch size
of N = 8000 images, and the LARS optimizer (You et al 2017) intended for large N. As in (Chen et al 2020a),
the learning rate was increased during the first 10 epochs from 0.0 to 1 and then decreased with a cosine
decay back to 0.0 to a maximum of 800 training epochs. Unsupervised pretraining used all unlabeled images
from both datasets, and all labeled images from their training fractions (figure 2(c)). Pretraining used 10
compute nodes with 4 A100 GPUs each over 16.7 h.

4.4. Supervised tuning after unsupervised pretraining
After pretraining, we used labeled images to further train network weights on the classification task
(figure 2(c), bottom). The SimCLR head was replaced by a fully connected classifier network that took the
2048-dimensional output vector of the ResNet50 backbone as input. For this second training phase, we
evaluated three different modes (table 2). In ‘linear evaluation’ mode, the classifier consists of a single affine
transform followed by a softmax layer, and the ResNet50 backbone parameters remain fixed. ‘Fine-tuning
frozen’ mode uses the same configuration, except that the classifier consists of two fully connected layers with
1000 units in the hidden layer and a ReLU activation after the first. ‘Fine-tune SGD’ mode uses the same
single-layer classifier as linear evaluation mode, but trains all parameters, including those of the ResNet50
backbone. ‘Supervised’ mode is the baseline from which we measured improvements derived from
pretraining: a ResNet50 without the SimCLR step. Further details of SimCLR can be found in (Chen et al
2020a, 2020b).

Together, the unsupervised and supervised learning steps comprise a semi-supervised learning approach.
The three supervision modes present a trade-off between complexity and speed, with ‘fine-tune SGD’ the
most powerful but slowest to train, ‘linear evaluation’ the fastest but least powerful, and ‘fine-tune frozen’ a
compromise between the two.

4.5. Sub-sampling of training data
We explored how training on a fraction v of labeled training images affects performance of supervised and
semi-supervised learning. For Cape Verde data, we sub-sampled each image class: if the kth class has Nk

labeled images, we randomly select ⌈vNk⌉ of these (where ⌈·⌉ denotes rounding up to the next integer). Since
Helgoland images may have conflicting class labels, for this data we subsample ⌈v ∗N⌉ from the full set of
labeled images.

4.6. Class rebalancing and Bayesian correction
The imbalanced distribution of marine organisms results in very different label counts for various classes
(figure 1). For our datasets, most images belong to the blurry or bubbles classes and are not useful for further
analyses. These ‘nuisance’ classes can make up>90% of images, depending on the instrument used to collect
the images and environmental factors such as turbidity. In many studies, these images are manually removed
before the supervised learning, and the classifier is trained and evaluated only on relevant classes (Möller
et al 2012, Faillettaz et al 2016). This approach simplifies imbalance problems considerably, but cannot
measure accuracy for real-world applications. Furthermore, these systems cannot be deployed to classify
incoming streams of ‘live’ data, as they are incapable of dealing with the sorted out classes.

4.6.1. Class rebalancing
Training a classifier directly on class-imbalanced data emphasizes performance on over-represented classes,
while performance on rare classes is degraded. To overcome this problem in the single-label (Cape Verde
dataset) experiments, we rebalanced our dataset by sampling images from rare classes more frequently, such
that each class contributed labeled images to training batches at the same rate. This was our default strategy
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both for fully supervised learning and for tuning after SimCLR-based pretraining. Balancing was not
performed on validation data or testing data used to quantify accuracy. We did not rebalance when images
were multiply labeled (Helgoland dataset) since ‘true’ class counts and class memberships were ill-defined.

Since our rebalancing strategy involves training on the same images more frequently for rare classes, it
could cause overfitting for classes with few available images. To prevent this, we randomly transformed input
images (table 1, right column), similar to the augmentations used for pretraining.

4.6.2. Bayesian correction
Rebalancing data introduces statistical bias into the class probabilities inferred by the network. Suppose a
neural network trained on rebalanced data infers that an image is equally likely to have come from two
different classes, but one class is 100 times more frequent in the original data. Concluding that the two classes
are equally likely would then be incorrect, as the true class frequencies are not considered. To correct this, we
use Bayes’ theorem:

p(y|x) = p(x|y)p(y)
p(x)

= p(x|y)pr(y)
p(x)

p(y)

pr(y)
= Cpr(y|x)p(y) (5)

where p(y) are Bayes-corrected class frequencies, p(y|x) are probabilities for each class given the image and
the true class frequencies and pr(y|x) are probabilities inferred by the network given the image and the
assumption of equal class frequencies (that is, pr(y) = 1/C).

4.7. Training onmulti-labeled data
Since Helgoland data were labeled by multiple experts, cross-entropy loss (equation (1)) is not directly
applicable. Instead, we minimize Kullback-Leibler divergence (DKL) between the network’s inferred
distribution over classes and the empirical distribution of expert labels (Cover and Thomas 1991).

DKL(P||Q) =
∑
k

P(k) log

(
P(k)

Q(k)

)
(6)

where P(k) and Q(k) are the empirical and inferred probabilities for the class k.

4.8. Accuracy measures
In all experiments, we measured accuracy, defined as the fraction of correctly classified images. Specifically,
themicro accuracy (also known as overall accuracy) is calculated over all labeled images together:

Accmicro =
1

N

N∑
i

1ŷi=yi (7)

where ŷ is the prediction and y the target label.
We also measured themacro accuracy (or detection rate), which is an average class-specific accuracy over

C classes:

Accmacro =
1

C

C∑
j=1

1

Nj

N∑
i

1ŷi,j=yi,j (8)

where Nj images have been expert-labeled as class j, and ŷi,j denotes the ith estimated class for images labeled

with class j. The quantity 1
Nj

∑N
i 1ŷi,j=yi,j is the recall rate for class j.

Macro and micro accuracy are the same for class-balanced data, but different otherwise. Macro accuracy
assigns the same importance to each class, and is sensitive to misclassification of rare classes. Micro accuracy
instead assigns the same importance to each image.

For evaluation on multi-labaled data, we defined a custom accuracy measure. We first defined the
network’s ‘prediction’ as the class jpred with the highest inferred probability. We then defined accuracy as
P( jpred)/maxj(P( j)) where P(j) is the empirical distribution of expert-assigned labels. Thus, accuracy is
defined as the number of experts who agreed with the network, normalized by the maximum number of
experts who agreed on any class. The intuition behind this accuracy measure is that the network is
considered 100% accurate when its prediction matches the maximum possible number of experts.
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4.9. Implementation details
We implemented all algorithms and training procedures in PyTorch (Paszke et al 2019) with the Lightning
library for distributed training (Falcon and team 2019), and the Hydra package for reproducible scripting
(Yadan 2019). All learning algorithms and network architectures employed 32 bit precision. Catalyst
(Kolesnikov 2018) data samplers were used for balancing data during training. Code is available at https://
github.com/m-dml/plankton-classifier, and trained network weights are available upon request.

5. Experiments and analyses

5.1. Bayes-corrected rebalancing recovers rare aquatic objects
We first trained classifiers to label 15 species and particle types on in situ images from Cape Verde, using fully
supervised learning without pretraining (figure 2(a), left). The aim of these experiments was to identify
classification challenges arising from class imbalance, to assess potential means of overcoming these
challenges, and to establish a clear baseline for assessing further techniques.

The Cape Verde data exhibited class imbalance (figure 1): for example, nuisance classes were∼90% of
training data while Trichodesmium, a nitrogen-fixing cyanobacteria important to ecosystem function
(Hewson et al 2009), was 0.02%. Since rare classes contribute negligibly to the training loss, classifiers trained
on unbalanced data frequently identified common classes, but failed to detect rare classes. This resulted in
high overall accuracy (91.7%, figure 3(a) top, red), but low per-class recall (16.2%, figure 3(a) bottom, red).
Furthermore, class densities estimated by the trained network were highly biased, and only the nuisance and
marine snow classes were assigned the highest probability for any image in the testing data (figure 3(b), red).
These class-specific errors hinder effective automatic classification for scientific studies, as neglecting rarely
observed species and objects could significantly distort the emerging picture of an ecosystem or its coupling
to environmental factors.

To address this issue, we applied class rebalancing during training (He and Garcia 2009), randomly
sampling images from underrepresented classes with increased frequency but different random
augmentations so that all classes were encountered equally often as the network learned. This resulted in
improved detection rates and more accurate densities for most classes (figures 3(a) and (b), blue), although
detection rates for overrepresented classes are reduced. Class rebalancing thus allows the network to learn
image features relevant to rare classes during training, but inevitably introduces biases due to different class
frequencies in the training and testing data. To reduce these biases while maintaining the ability to identify
rare classes, we used Bayes’ rule to correct the class probabilities output by the network (section 4.6.2). This
Bayesian correction improved overall accuracy to 95.0%, while reducing the average accuracy over image
classes by only 5.3%, and further improved estimated class frequencies (figures 3(a) and (b), yellow). We
therefore used class-balancing during training and Bayesian correction during inference on test data in all
further experiments and analyses. We emphasize that all our reported accuracy values are calculated on
held-out test data without rebalancing, as rebalanced test data tends to yield high accuracy values (Li et al
2021) that are not representative of real-world performance.

We also examined all of our models performances using uncorrected output probabilities (figure D1),
which confirms for every case that the correction increases accuracy (in some cases>10%) and only slight
reductions in most recall rates.

5.2. Label-free feature learning improves accuracy
We next carried out a series of experiments to quantify the benefits of unsupervised pretraining for plankton
classification. Despite the simplicity and modest parameter count of our ResNet50 architecture, accuracy
exhibited a clear dependence on the training set size over the entire range we examined, with no sign of
saturating at the upper end of this range. Fully supervised networks trained on all available labels (∼150k)
correctly classified 95.0% of images (figure 4(a), dark blue plus-signs). While high in absolute terms, this
accuracy is not particularly impressive given the dataset’s imbalanced class frequencies: 90.4% of all images
occurred in the ‘blurry’ and ‘air bubbles’ classes, so the utility of any classifier performing below that level is
questionable.

In repeated fully supervised training runs with varying numbers of labels, we observed a steady decline in
performance as the training dataset became smaller (figure 4(a), dark blue plus-signs). When 10% of
training data were used, overall accuracy dropped to 93.0%, with a further drop to 89.2% with 1% of
training data used. Similarly, the class-averaged recall rate, which averages the probability of correct
detection across classes, decreased from 63.3% for all labels to 35.2% for 10% and 17.1% for 1% of labels.

To address the challenge of data scarcity, we tested whether performance on labeled test data could be
improved by pretraining network parameters through unsupervised learning on unlabeled data. For
pretraining, we used labeled and unlabeled images from our Cape Verde dataset as well as a further 123 947
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Figure 3. Class rebalancing and Bayesian correction improve performance of fully supervised classifiers. (a) Overall accuracy
(top) and per-class detection rate (bottom) on raw data (red), rebalanced data (blue), and rebalanced data with subsequent
Bayesian correction (yellow). (b) Estimated counts for each of the classes were calculated by summing predicted probabilities over
all input images, resulting in an unbiased estimate when the network successfully retrieves the correct posterior distribution.

Figure 4. Overall top-1 accuracy on the test dataset at different fractions of labeled training data used. Averaging was once
performed over the complete dataset (a) and once per class (b). Finetune SGD outperforms any other method for data sparse
regimes.

images collected at Helgoland (374 722 images total, see methods). We applied the unsupervised SimCLR
algorithm (Chen et al 2020a), which trains a neural network to extract image features that uniquely identify
each image while remaining invariant to a selected set of image transformations (see methods). By ‘learned
image features’ we refer to the activations of the final layer of the feature extractor (the ResNet50 backbone
without a task-specific head), which can be used in subsequent supervised learning tasks.

For a ResNet50 pretrained on unlabeled data and fine-tuned on all available labeled Cape Verde images,
overall accuracy did not increase significantly when compared to supervised learning. However, as the
number of labeled images available for training decreased, fine-tuned semi-supervised learning exhibited
2%–5% increases in total accuracy compared to fully supervised learning (figure 4(a), light blue crosses). For
example, fine-tuning on only 0.25% of labeled data (358 images) yielded a total accuracy of 92.4%, nearly
reaching the 95% achieved by supervised learning on all 150k labeled images (figure 4). In contrast, the
supervised learning based on 0.25% data reached an accuracy of only 78.8%. Hence, images were
misclassified 2.2 times more often without pretraining. In this particular case, semi-supervised learning
could potentially reduce human labor by a factor of 400, without significantly degrading performance. More
modest benefits were observed for frozen mode, with performance comparable to supervised learning (albeit
at a fraction of the cost, see below), while linear mode yielded poorer performance. Pretraining on unlabeled
data also increased the rate at which each image class was correctly identified: the class-averaged recall rate
increased by 5%–10% compared to supervised learning when fine-tuning on 0.25%–10% of images.
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Figure 5.Wall-clock times for training the models. Every model was trained until convergence, making results strongly dependent
on the amount of training data and the number of trainable parameters (a). For training on 1% and 100% of the data, the
validation accuracy after each epoch is displayed over the training duration (b).

Somewhat paradoxically, we found that while pretraining improved the accuracy with which individual
images were classified overall and within each class, statistical mean class densities were more accurate with
supervised learning (figure B1). Thus, if the purpose of classification is simply to quantify class densities
across the dataset, supervised learning may be preferable, whereas if inferred labels are to be compared to
other environmental, temporal or geographic covariates then semi-supervised learning can provide a
significant benefit.

5.3. Pretraining accelerates subsequent learning
In addition to improving the final accuracy attained in supervised classification tasks, initialization of neural
network weights via SimCLR-based pretraining has been shown to reduce the training time required to reach
a given level of accuracy. Together with reductions in the human labor required to generate training data,
faster training could provide a significant advantage for many time-critical operations. For example,
researchers working in the field would benefit from rapid determination of target species abundances in
different locations, to be able to adapt their sampling plans and efforts on the fly.

We therefore examined how pretraining affected the total ‘wall-clock time’, which is the elapsed time
since the start of the tuning, including data loading, augmentations and other overhead on a single A100
GPU required for supervised training of neural networks. Across a wide range of label counts, we observed a
two to three-fold reduction of the time until convergence for fine-tuning compared to supervised learning
(figure 5(a)). Linear and frozen modes were further accelerated, with training∼7.4 times faster on the
complete dataset, compared to fully supervised training.

We also examined how accuracy progressed during training, to examine what performance can be
expected as a function of training duration. Strikingly, after a single ‘epoch’ with each image used to update
parameters only once, fine-tuning with 1% of labels had already outperformed the final, converged
performance of all other approaches, including supervised learning (figure 5(b) top, light and dark blue). As
a single epoch required only 43 s compared to 113min for convergence of supervised learning, fine-tuning
on a small amount of new data effectively reduces training time by more than two orders of magnitude.

While fine-tuning did not improve converged accuracy on the test set beyond supervised learning when
100% of labels were used, it did perform better on the validation dataset (figure 5(b) bottom, light and dark
blue). We found that fine-tuning all network parameters provided higher accuracy than linear or frozen
modes for any training run (figure 5(b)). This result was somewhat surprising, as frozen and linear modes
have been proposed as efficient alternatives for limited computational budgets, and may provide a useful
guideline when applying networks pretrained on plankton imaging to supervised classification problems.

5.4. Learning with conflicting labels
We next turned our attention to a second, more challenging classification task on imaging data collected
from a stationary CPICS lander at Helgoland. For the task of assigning each image to one of 8 classes, only
700 labeled images were available for training. However, in contrast to the Cape Verde classification task
above, here each image was labeled by the same three experts independently. This allowed us to examine the
level of agreement between experts on the same data, and to explore training strategies that could make use
of multiple, possibly conflicting labels.
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Figure 6. Agreement of the labels in the Helgoland dataset. An image belongs to a class, when at least one label is assigned to that
class (top). Therefore, an image can belong to multiple classes and the sum of image counts across classes exceeds 1000.

Figure 7. Accuracies averaged over the test dataset when training on multi labeled images. The x-axis is referring to the amount of
labeled data from the training dataset that was used. Models were trained on each scientist separately using NLL (‘0’, ‘1’, ‘2’) and
are compared to the models trained on the distribution of votes using KL divergence (‘All’). Compared are the metrics micro
(a) and macro (b) averaging on majority votes, and our custom defined accuracy (c).

We found that all three experts provided the same class label for 76.7% of images, and at least two experts
agreed for 97.3% (figure 6). Thus, one fourth of the images exhibited some degree of label conflict, and the
overall chance that two randomly selected labels for the same image agree is 80.2%. These results underscore
the difficulty of the task and suggest that automatically assigning the ‘correct’ label with perfect accuracy may
not be possible, or even well-defined in every case.

We first examined how fully supervised learning with a standard cross-entropy loss function performed
on this task, when trained on a single expert’s label. Since the correct label was not known with certainty for
all images, we did not apply class rebalancing or Bayesian probability adjustment on this dataset. Using a
novel accuracy measure designed for datasets with conflicting labels (see methods), we observed a modest
overall accuracy of 51.8%–74.0% on this challenging task, which showed a further decrease when fewer than
all 700 labels were used (figure 7(c), dark blue dashes). The class-averaged recall rate (evaluated on images
with at least two agreeing experts) was only 22.2%–44.4% for supervised learning (figure 7(b)), only slightly
higher than random guessing at 14.3%.

We next applied SimCLR-based semi-supervised learning to the Helgoland dataset. Since pretraining had
already proceeded using unlabeled images from both datasets, no further training or computational costs
were required for this, beyond the modest cost of supervised fine-tuning on 700 Helgoland labels.
Semi-supervised learning improved performance by a much larger margin on this dataset, with fine-tuning
on all of a single expert’s labels improving overall accuracy to 80.5%–90.8% (figure 7(c), light blue dashes).
Any expert’s labels used for semi-supervised learning outperformed the same or any other expert’s labels
used for supervised learning. The class-averaged recall rate also increased to 58.6%–71.4% for all labels
(figure 7(b)).

In order to make effective use of all, possibly conflicting expert labels for each image, we next carried out
supervised learning and semi-supervised fine-tuning using a KL-divergence (DKL)-based loss function. In
this approach, we treated the multiple expert labels for each image as a discrete probability distribution, and
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Figure 8. KL divergence (a) and expected calibration error (ECE) (b) averaged over the test dataset. Shaded lines refer to training
using a single experts labels, full lines indicate training on the distribution of all expert labels using KL divergence as objective.

minimized the KL-divergence between this distribution and the network’s inferred probabilities (details
in 4.7). For semi-supervised fine-tuning, training on all labels with a DKL-based loss yielded total accuracy
and class-averaged recall as good as or better than networks trained on any individual expert’s labels, when at
least 10% of labels were used (figures 7(a)–(c), solid light blue). A clear benefit was not as apparent for
supervised learning, for which some networks trained on a single expert’s labels were better (figures 7(a)–(c),
solid dark blue). Notably, for both total accuracy and class-averaged recall rate, semi-supervised learning
with 10% of labels outperformed supervised learning with all labels. We also trained additional models and
examined different fractions of training data (figure C3), and found ‘linear evaluation’ to perform
surprisingly well compared to its results on the single-label dataset, where it was outperformed by every
other approach. This could indicate that depending on the data, this cheaper training mode can provide a
strong initial baseline.

The availability of multiple conflicting labels allows us to identify images for which the correct
classification is ambiguous, so that a well-trained network should ideally infer nonzero probabilities across
multiple classes. We therefore examined whether trained networks correctly exhibited uncertainty that
matched the distribution of expert labels. This question cannot be answered by examining overall accuracy
of class-specific recall, since these measures depend on only the most likely class inferred by the network, and
not on the network’s posterior distribution or the uncertainty it expresses. When measuring the DKL between
the inferred posterior and the expert, we found that semi-supervised training with a divergence-based loss
and at least 10% of labels matched or outperformed all experts in minimizing divergence, while this was not
the case for supervised training (figure 8(a)). We also measured the expected calibration error (ECE), which
quantifies a network’s tendency to be overconfident in its own predictions. Divergence loss-based training
yielded ECE values similar to or better than the best expert at all data fractions for semi-supervised, but not
supervised learning (figure 8). Together, these results show that DKL-based training improves accuracy, better
captures uncertainty and reduces overconfidence, but that semi-supervised learning is required to reap these
benefits effectively in a label-poor scenario.

6. Discussion

We could not exhaustively and quantitatively compare our results to previously introduced approaches due
to computational constraints and differences in datasets, which were acquired with a wide variety of imaging
methods and systems (reviewed in (Pierella Karlusich et al 2022)). Nonetheless, overall our approach
provided quantitative and useful improvements to the performance of deep image classifiers on in situ
imaging of aquatic life and particles, in both label-abundant and label-poor scenarios. We demonstrated how
to improve performance by applying class rebalancing, Bayesian probability correction, semi-supervised
learning and a multi-label loss function. The utility of these techniques was shown using datasets that are
image-rich but label-poor, as in most aquatic imaging studies. A key finding is that pretraining can reduce
the amount of labeled data needed to train the final model by about 100-fold, while achieving similar
accuracy to a fully supervised trained model on the complete data. Broadly speaking, our results are
consistent with previous SimCLR and MOCO studies (Eldele et al 2022, Patel et al 2022, Yang et al 2023),
which also reported improvements in accuracy and convergence speed of classifiers with unsupervised
pretraining that become more apparent as the ratio of labeled to unlabeled data decreases.
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Based on our results, one could conceivably argue that semi-supervised learning would no longer be
required for plankton classification tasks concerning data with 150k or more available labels, as fine-tuning
and supervised results mostly converge when the fraction of labels used approaches 100%. This is consistent
with the original SimCLR paper (Chen et al 2020a) where when using 1% of the labels they achieved a∼40%
better performance and when using 10% of the labels the accuracy only improved∼10% compared to
supervised training. Our improvements were slightly less, but we account this to the differences in the total
sizes of training data. However, the truly relevant factor for the utility of pretraining might actually be the
ratio R of labeled to unlabeled data. In our case, when using 0.25% of labels R= 643.7, but for 100% of labels
R= 1.6. We suspect that pretraining with a higher number of unlabeled images would therefore improve
performance, even when using all available labels. Pretraining may also be especially useful for new, more
powerful classifier architectures with higher parameter counts, which generally require more training data
(Zagoruyko and Komodakis 2016, Dosovitskiy et al 2020, Dai et al 2021). We also note that, even for R= 1.6,
pretraining gives a significant reduction in training time for the label-based task (figure 5). Surprisingly, we
found that fine-tuning of all network weights is preferable to the frozen or linear training modes, for a
computational budget as small as 1min on a single GPU. For these reasons, we believe that unsupervised
pretraining is likely to offer significant improvements to effective deep learning for marine science in the
foreseeable future.

6.1. Future outlook
We anticipate that reducing the quantity of labels required for effective training will have widespread
practical utility for marine science, especially in time- and computational resource-limited applications, such
as on research voyages. While the pretraining itself remains computationally demanding, this step can be
carried out in parallel to data-labeling, and in some cases before new image data are collected. One
important open question is whether pretraining would still improve performance in the presence of domain
shift, when unlabeled images come from a different imaging device, environment or species distribution.
Nevertheless, our results suggest that the improvement of classification accuracy after pretraining will
increase at higher ratios of unlabeled to labeled images.

While we have used datasets from different times and locations, covering multiple values for external
factors such as temperature and salinity, more diversification in the data would be desirable. In future work,
we aim to examine the effects of environmental factors and imaging systems on performance, and to measure
long-term stability of performance. Another important research direction concerns optimally combining
human and automated efforts. A semi-automated pipeline could return uncertain predictions to a human
researcher for manual annotation. Those newly annotated images can afterward be used to update the
network weights again in an iterative human-in-the-loop approach (Wu et al 2022). Our approach could also
be applied to other classification tasks in marine science, such as automatic labeling of fish or cetaceans.

7. Conclusion

In this study, we presented an approach to classify under-water images of plankton using a multistep neural
network training approach. In a first unsupervised training step, the images are used without any labels to
pretrain the first part (feature extractor) of the final network, making use of the SimCLR framework. In a
second step, expert-assigned labels are used for a small proportion of the images to fine-tune the neural
network further from the first step in a supervised manner with artificially rebalanced data. After successful
training, Bayes’ rule is applied to readjust the learned label distribution back to the prior label distribution
deduced from the unbalanced training data.

We showed that the gain from pretraining is especially high when the amount of labeled images is low,
and that the approach works on single-labeled and multi-labeled data. We further demonstrated how the
pipeline can be applied to multi-labeled images in general, and introduced a new metric to evaluate accuracy
in the presence of multiple conflicting labels. Finally, the benefit of using conflicting labels assigned by
multiple domain experts is elaborated, and we show its prospect to overcome overconfidence for the trained
neural networks.

Our work enables domain scientists to analyze larger datasets using all collected image-data without the
need to manually label or preprocess each image. We anticipate that the techniques we employed to address
label scarcity, class imbalance and conflicting labels could reduce the time and cost of scientific studies, and
allow more ambitious, difficult questions to be asked.
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Appendix A. Example images

The images in figures A1 and A2 are examples from the training datasets from the Cape Verde and Helgoland
datasets, respectively. The images were selected in no particular order. They are only included to give the
reader a better impression of the collected data. Noticeably, the shown images from the Helgoland dataset
have a higher proportion of red in them compared to the Cape Verde data. This is not only true for the
shown images, but also existent for the whole dataset (labeled and unlabeled images)
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Figure A1. Randomly selected images from the Cape Verde training dataset. The images were resized by using bilinear
interpolation, preserving the aspect ratio.

Figure A2. Randomly selected images from the Helgoland training dataset. The images were resized by using bilinear
interpolation, preserving the aspect ratio. The label votes from the three human experts are printed above each image.
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Appendix B. Predicted species frequencies

Figure B1. True species counts vs. summed predicted probabilities in the test dataset.

Appendix C. Further models and their results

We used one other configuration for the second training stage. This configuration adds a single linear
classification layer, retrains all model weights and uses the ADAM optimizer. For naming conventions, we
called this approach ‘finetune’. It did not perform any better than the supervised model, but needs
pretraining and adjusts all network weights during the second training stage. This makes it computationally
as expensive as ‘finetune SGD’, but without its benefits. For completion, we report the accuracies of this
model together with all other models (figure C1) and the training wall-clock times (figure C2).

Also for the multi-label training data, we examined the performance of multiple models, with every
approach outperforming the supervised training (C3). This is a strong foundation for our claim that not
only the amount of labeled training data is significant for the performance differences of pretrained vs. fully
supervised trained models, but more the ratio R of labeled to unlabeled data might play an important role.
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Figure C1.Micro (a) and macro (b) averaged accuracies for all tested models, including fine-tuning with the ADAM optimizer.

Figure C2.Wall-clock times for training the models. Since every model was trained until convergence with patience of 20 epochs,
training times (a) strongly depended on the amount of training data and the trainable parameters. Change in validation accuracy
over time (b) during training with 1% vs. 100% of labels used.

Figure C3. Custom accuracy on the held out test dataset at different fractions of data used during training on the multi-label
(Helgoland) dataset.

Appendix D. Accuracies of corrected vs. uncorrected predicted probabilities

As described in the methods section 4.6.2 and shown in the results section 5.1, we corrected the networks’
predicted probabilities using Bayes’ formula. We also investigated the performance of every model without
correction (figure D1, left column) but found an overall performance increase when using the corrected
probabilities. Although the macro averaged accuracies are slightly lower than in the uncorrected case, the
large increase in the micro averaged accuracies affirm and justify applying the correction. For the ‘linear
evaluation’ and ‘finetune frozen’ models, the accuracies are even below the chance threshold of the two
combined nuance classes, which together already make out∼90% of the data. Therefore, any micro averaged
accuracy below that threshold is considered worse than chance.
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Figure D1. Accuracies of the predictions with raw model outputs (left) and posterior corrected probabilities (right).
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