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Abstract: The effects of climate change and of land use/cover change (LUCC) on streamflow as

demonstrated by hydrological models are pressing issues on the frontiers of global environmental

change research. The Nandu River Basin (NRB) as the largest of three river basins on the tropical

Hainan Island, China, is subjected to an analysis of streamflow response to climate and to land-use

change. It is based on the Soil and Water Assessment Tool (SWAT) coupled with climate change signals

extracted from the global climate model data in the Coupled Model Intercomparison Project Phase 6

(CMIP6) and with land-use change scenarios modeled by Cellular Automata (CA)—Markov. The

results are summarized as follows: (1) Climate change contributed more to streamflow change than

land-use change in the NRB, with contributions of 97.57% and 2.43%, respectively. Precipitation and

temperature were the most important climate variables, contributing 92.66% and 4.91% to streamflow

change. (2) In the tropical island basin from 1990 to 2015, LUCC regulated the hydrological processes

in the NRB and affected hydrological processes by increasing evapotranspiration and decreasing

surface runoff and subsurface flow, which resulted in decreasing streamflow. (3) Under the climate

change and land-use change scenarios of the near-term period (2021–2040), the annual streamflow

decreased as during the reference period (1995–2014); particularly, it decreased most (−6.16%) on

the SSP126 path. These results present a case study for understanding the hydrological cycle of

tropical island basins and to provide a theoretical basis for water resources management and regional

sustainable development of tropical islands.

Keywords: SWAT model; streamflow simulation; land-use changes; climate change; scenario; tropical

island basin

1. Introduction

The hydrological cycle of a basin is affected by both climate change and land use/cover
change (LUCC), and streamflow is one of the important links in the hydrological cycle [1].
Thus, changes in streamflow can reflect the impact of climate change and LUCC. The range
of streamflow change is most obvious under the influence of combined climate change and
LUCC, as compared to climate change or LUCC scenarios individually [2]. Climate change
affects and reshapes the spatial and temporal distribution of water resources by changing
the patterns of rainfall and evapotranspiration [3]. LUCC is the main driving force of
short-term hydrological changes, which can directly reflect the extent of human activities
influencing the underlying surface, primarily through vegetation cover interception, surface
water evaporation, and soil water infiltration, and how these factors are related to changes
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in runoff generation and the water cycle [4]. LUCC can alter the impact of rainfall on runoff
or change the distribution of excessive rainfall. Therefore, the impact of both climate change
and LUCC as the two main drivers affecting hydrological processes cannot be neglected
when developing plans for continuing basin management [5,6].

Various methods are currently used to evaluate the effects of climate change and LUCC
on streamflow, which is at the forefront of the research on global environmental change. This
includes the elastic coefficient method [7], the precipitation–runoff regression relationship
method [8], the method of reconstructing runoff by using or combining hydrological
models [9], etc. The SWAT (Soil and Water Assessment Tool) model was developed for
basin management by the USDA (United States Department of Agriculture) and ARS
(Agricultural Research Service) [10] because it is relatively simple to operate and, due to
its favorable performance in simulating hydrological and water-quality processes, it is
widely used to capture the hydrological response to climate change and LUCC [11–13].
SWAT presented a greater potential in the management of the risks of extreme hydrological
events [14,15]. The SWAT model comprehensively considers the hydrological process
differences of the underlying surface of the basin and found that climate change and LUCC
have impacts on hydrological processes such as evapotranspiration (ET), runoff, infiltration,
and hydrological response [16]. Hence, the comparison of hydrological processes changes
under different climate changes and LUCC scenarios using SWAT models is important for
understanding the response of hydrological processes to changing environments.

Numerous scholars have conducted studies on the impact of LUCC on streamflow and
hydrological factors using the SWAT model. For example, studies showed that vegetation
degradation such as agricultural land, grassland, and forest, as well as the increase of urban
land, would all lead to a significant increase in streamflow or surface runoff [17–20]. The
conversion of grassland to cultivated land resulted in an increase of flow, and the transfor-
mation from forest land to cultivated land, grassland to cultivated land, and grassland to
forest land all weakened the regulation and storage capacity and easily changed the water
yield of the sub-basin [21]. Afforestation (forest–evergreen) may reduce surface runoff and
soil moisture and increase evapotranspiration [22]. The mutual transformation of cultivated
land, forest land, and grassland caused significant changes in soil permeability, surface
runoff, underground runoff, and water yield [23,24]. The study on the influence of LUCC
on hydrological processes in tropical basins showed that the decrease of cultivated land
and natural forest area, as well as the increase of rubber plantation and other economic
forests, led to the decrease of runoff in Hainan and Southeast Asia [25–27]. It indicated that
LUCC mainly affected the hydrological processes of sub-basins by changing surface runoff,
groundwater, and soil moisture. Generally, forest land and grassland had the functions of
interception and storage, and cultivated land had a strong capacity for water yield, while
the impervious surfaces of urban land contributed to an increase in streamflow.

Coupling the SWAT model and the Coupled Model Intercomparison Project (CMIP)
is an important method for exploring streamflow changes in the future and assessing the
impacts of climate change on the hydrology of river basins. At present, the SWAT model
coupled with future climate scenarios in CMIP5 has been studied and found that changes in
the water–thermal combination of precipitation and temperature have a profound impact
on streamflow. Hydrological components were more sensitive to precipitation than to
temperature changes, and blue water components were more sensitive than green water
components [28,29]. As one of the important driving factors of hydrological model input,
precipitation plays a crucial role in the performance of streamflow simulation [30]. Mul-
tiple climate products, such as gauge-based gridded data, ground-based weather radar,
satellite precipitation, and climate reanalysis products, are being increasingly applied for
hydrological modeling [31]. The study showed that annual streamflow had a consistent
response to precipitation, but the response to temperature was more complex. For exam-
ple, high temperatures in the warm season led to increased transpiration and decreased
streamflow, but higher temperatures in the cold season led to more snowmelt and, thus,
increasing streamflow in the Maumee Basin [32]. However, in the Mun River, annual
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streamflow was expected to increase under three future climate scenarios, while monthly
streamflow changes correlated negatively with temperature [33]. In future climate sce-
narios, the peak discharge may likely shift from the summer to the spring months [34],
showing an upward trend in annual streamflow and increasing synchronously with the
increase of radiative forcing of the path [35,36]. However, the impacts of climate change
and LUCC on streamflow showed a nonlinear synergistic effect. Therefore, it is necessary
to further explore the hydrological effects and comprehensive impacts of climate change
and LUCC on streamflow [37,38]. A simulation of future climate and LUCC scenarios, as
well as a study of streamflow change principles, is of great significance for guiding the
water resources management of basins.

As unique natural ecosystems, islands are an indispensable and important part of
coastal areas [39]. The Nandu River is the longest river on Hainan Island, China, character-
ized by a great disparity ranging from surface water abundance to drought and, in addition,
to an inhomogeneous distribution of water resources within the basin (Nandu River Basin,
NRB) [40]. Any change to its hydrological situation greatly affects the social and economic
development of Hainan Province, China. Further, Hainan Island is characterized by the
second-largest area coverage of rubber plantations in China. Since the 1990s, the area of
rubber plantations has realized a trend from slow to rapid growth, and the land use of the
island has also undergone drastic changes [41]. Hence, this study aimed at evaluating the
responses of streamflow to climate and land-use change in the NRB based on the SWAT
model coupled with CMIP6 and Cellular Automata (CA)—Markov model. Firstly, Section 2
describes the eco-hydrological setting, introducing the SWAT model localized in the NRB,
revealing the climate change signals extracted from CMIP6 data being used to simulate
streamflow changes under future climate scenario. The CA–Markov model is to be em-
ployed to simulate the future LUCC scenarios and explore the streamflow response under
land-use change. Section 3 presents the results: different scenarios of land-use conditions
and climate factors are set up and cross-combined to determine the sensitive factors of
streamflow change to quantitatively analyze the contribution rate of climate change and
LUCC on streamflow, as well as to analyze the streamflow response of the NRB under
changes in different factors individually and their synergistic effect. Finally, the discussion
and conclusion (Sections 4 and 5) embed the results into a broader perspective; that is, as
a case study relevant for the understanding the hydrological cycle of tropical basins and
to provide a theoretical basis for water resources management and regional sustainable
development of tropical islands.

2. Materials and Methods

2.1. Study Area

The main stream of the Nandu River originates in Baisha County, runs through the
central and northern part of Hainan Island, and finally flows into the Qiongzhou Strait,
passing a population of 2.256 million. Located at the northern edge of the tropical region,
the NRB is exposed to dry and rainy seasons, a frequent occurrence of typhoons, and
abundant rainfall, with streamflow concentrated in the flood season (from May to October),
which accounts for more than 70% of the total annual streamflow [42].

The Nandu River Basin (109◦36′–110◦34′ E, 19◦9′–19◦55′ N) uses Longtang Hydro-
graphic Station as its outlet (Figure 1). The terrain is high in the southwest and low in the
northeast, with an average altitude of 116 m and a total area of 5336 km2. The average
annual precipitation in the basin was 1975 mm from 1990 to 2015. The precipitation in
the rainy and dry seasons (the rainy season is from May to October and the dry season is
from November to April) accounted for 81% and 19%, respectively, with greater rainfall in
the south than in the north. In 2015 LUCC, other forest lands, that is tropical rain forests,
secondary forests, and other tropical economic forests (except rubber plantations) were
the main land-use type, accounting for 46.64% of the basin area, while rubber plantation
and tillage land accounted for 21.38% and 26.13% of the basin area, respectively. Urban
and unused land (unused land refers to the bare land with vegetation coverage below 5%)
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and water bodies comprised less area, accounting for 3.93% and 1.92% of the total basin
area, respectively. There were 13 soil types in the NRB. Ephedra sand soil was the main
soil, accounting for 51.96% of the basin area. Light hemp brick soil, meat mud field, and
huguang rock pyroclastic soil accounted for 26.96%, 9.92%, and 4.37% of the basin area,
respectively. The other nine soil types, including flat bone soil, chaozhou light sand soil,
river sand mud field, red clay, ephedra brick soil, mud base soil, sand brick soil field, mixed
sand yellow laterite, and purple brown soil, accounted for less than 2.04% of the basin area
(Figure 1).

 

Figure 1. Geographical location, river system distribution, sub-basin division, and soil types of the

Nandu River Basin, Hainan Island, China.

2.2. SWAT Model

SWAT is a catchment-scale model originally used to determine the impact of land-
management practices on surface water quality in large and complex catchments [10].
The version used in this study is SWAT 2012. The SWAT model had been successfully
applied to streamflow simulation in the NRB [43]. This model is a component of soil- and
water-assessment tools based on a constant time model, which can objectively predict
the impact of land-management practices on water. It has high computational efficiency
and can be used to evaluate the impact of various land-use and management practices
on water quantity and water quality for a long period of time. The main components of
the model include weather, hydrology, soil temperature and soil properties, plant growth,
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and land management, all of which can be simulated based on the water balance equation
(Formula (1)) [44].

SWt = SWo +
t

∑
i=1

(Rday − Qsur f − ETa − Wseep − Qgw) (1)

where SWt (mm) is the final soil water content at time t (day); SWo (mm H2O) is the initial
soil water content at day i; Rday (mm) is the precipitation at day i; Qsurf (mm) is the surface
runoff at day i; ETa (mm) is evapotranspiration at day i; Wseep (mm) is the seepage water
amount at the bottom of the soil at day i; and Qgw (mm) is the return flow at day i.

Streamflow or runoff (R) in the SWAT model consists of surface runoff, subsurface
flow, and groundwater runoff. Underground runoff first becomes shallow percolation
water, then part of it flows back into the river as the source of river flow in the form of base
flow, with shallow water storage also being part of the process. In addition, the other part
leaks into deep aquifer recharge. Since the subsurface flow can supplement the surface
runoff, part of the groundwater runoff becomes the base flow, so the streamflow here can
be simplified by the sum of the surface runoff and the base flow. Thus, the base flow index
(BFI, calculated as base flow/streamflow) plus (surface runoff/streamflow) = 1 [45]. The
water balance equation P = R + ET + ∆S [7], where R is the streamflow, P is the precipitation,
and ET is the evapotranspiration, treats deep recharge as water storage (∆S). This leads to
runoff coefficient (R/P) plus drying index (ET/P) plus (deep recharge/P) = 1.

2.3. Data Source and Processing

Input data content and sources of the SWAT model are shown in Table 1. ArcSWAT,
based on the ArcGIS platform, automatically extracts the river network according to the
input Digital Elevation Model (DEM) and then sets the threshold of the catchment area to
generate sub-basins. Then, the sub-basin is subdivided into Hydrological Response Units
(HRUs) based on unique land use, soil classification, and slope. The spatial distribution data
of soil types were generated based on the traditional Genetic Classification of Soil (GSCC)
system in China and then classified into four classifications: soil, subclass, soil genus, and
soil species, with the subclass as the basic mapping unit. After that, soil attribution data
were obtained according to soil type codes corresponding to the book [46], including major
indices such as soil thickness, soil profile, soil mechanical composition, organic matter,
and pH.

Table 1. Basic data content and sources for the SWAT model.

Data Type Data Description Data Sources

DEM spatial resolution 30 m × 30 m
The Jet ropulsion Laboratory

(http://asterweb.jpl.nasa.gov/
(29 March 2023))

Land use/cover data spatial resolution 30 m × 30 m
Landsat multispectral image

extraction [47,48]

Soil classification data spatial resolution 1 km × 1 km

Resource and Environment Science and
Data Center, Chinese Academy of
Sciences (http://www.resdc.cn/

(19 June 2023))

Soil attribute data
CLAY, SILT, SAND, ROCK, etc.

SOL_BD, SOL_AWC, SOL_K, and
other parameters

According to the book [46] and
Soil–plant–atmosphere–water (SPAW)

Meteorological Data (1961–2020)

Data of daily precipitation,
temperature, wind speed, relative
humidity, and solar radiation at

Haikou, Danzhou, Qiongzhong, and
Qionghai meteorological stations

China Meteorological Data Service
Centre (http://data.cma.cn/

(19 June 2023))

Hydrological Data (1961–1987,
2006–2013)

Daily streamflow data at Longtang
Hydrological Station

Hainan Hydrologic Statistical Yearbook
from Hainan Provincial Water

Department (http://swt.hainan.gov.cn/
(19 June 2023))

In the process of constructing the SWAT model for the NRB employing the values of
land use type, soil type, and slope (with the lowest proportion among the main proportion

http://asterweb.jpl.nasa.gov/
http://www.resdc.cn/
http://data.cma.cn/
http://swt.hainan.gov.cn/
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types), the thresholds are set as 20%, 20%, and 20%, respectively, and the study area
was divided into 83 sub-basins and 242 HRUs (Figure 1). On this basis, meteorological
input data provide a model database of precipitation, temperature, solar radiation, relative
humidity, wind speed, and other measurements to calculate the runoff generation and
confluence of each HRU.

2.4. Model Calibration and Validation

In this study, the SUFI-2 algorithm of SWAT–CUP (Calibration and Uncertainty Pro-
grams) was used to analyze, calibrate, and verify the sensitivity of SWAT models. SUFI-2
requires a relatively small number of runs, resulting in minimal uncertainty for most mea-
surements [49]. The model fitting results were evaluated according to the determination
coefficient (R2), Nash–Sutcliffe efficiency coefficient (NSE), and the percentage bias (PBIAS)
between the observed data and the simulated output [50]. The simulation accuracy of a
model is considered satisfactory to be applied to other scenarios if the runoff calibration
and validation meet |PBIAS| < 25%, R2 > 0.6, and NSE > 0.5 [51].

2.5. Future Climate Scenarios

CMIP6 is the sixth Phase of CMIP. It has the largest number of experimental modes,
the perfect experimental design, and the largest data simulation (in terms of the amount of
data) ever since the implementation of CMIP [52]. SSP-RCP refers to the change scenario,
combining different Shared Socioeconomic Pathways (SSPs) and Representative Concentra-
tion Pathways (RCPs). Therefore, this climate scenario is the most reasonable and reliable
prediction available.

In this study, seven types of the latest climate change scenarios and data from five
global climate models, including CanESM5, IPSL-CM6A-LR, MIROC6, MRI-ESM2-0, and
CNRM-ESM2-1 in CMIP6, were selected [53]. SSP119, SSP126, SSP245, SSP370, SSP434,
SSP460, and SSP585, respectively, represent the upgrade of RCP1.9 and RCP2.6 scenarios
on sustainable development path SSP1; the upgrade of RCP4.5 scenarios on moderate
development path SSP2; the upgrade to RCP7.0 scenario on partial development path SSP3;
the upgrade to RCP3.4 and RCP6.0 scenario on unbalanced development path SSP4; and
the upgrade to RCP8.5 scenario on conventional development path SSP5.

Based on the combined changes of precipitation and temperature in 21 tropical regions
under seven paths of the CMIP6 climate model [53] (reference period 1995–2014), the future
climate change signals were extracted for the near-term period (2021–2040), the mid-term
period (2041–2060), and the long-term period (2081–2100) in the 21st century. This was
used to simulate the streamflow response of the NRB under climate change scenarios in
different periods in the future (Figure 2).

–
–

–

–

(a) (b) 

Figure 2. Changes of (a) Precipitation and (b) Temperature in tropical regions under seven paths

in the 21st century based on CMIP6, compared to the reference period of 1995–2014. (The climate

scenarios for the seven paths are SSP119, SSP126, SSP434, SSP245, SSP460, SSP370, and SSP585.).
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2.6. Land-Use Scenario Based on CA–Markov Model

IDRISI’s CA–Markov model, which combines the spatial dynamic simulation ability
of the Celluar Automata (CA) model and the advantage of the Markov model in long-term
predictions, has been widely discussed and applied by researchers at present [54]. In this
paper, the following specific steps of the CA–Markov model application are employed:

(1) First, the actual land-use scenarios in the NRB from 1990 (LUCC 1990) to 2015
(LUCC 2015) were analyzed by superposition to obtain a transition probability matrix and
transfer area matrix.

(2) Then, considering the actual terrain and geomorphic conditions of the basin and
the development of the urban areas, the transformation of different LUCC types was
constrained and restricted by adding data on elevation, slope, distance from cities, villages,
and traffic lines. Thus, the suitability atlas of different LUCC types was obtained.

(3) Finally, based on the actual LUCC 2015, the transition probability and area matrix,
the suitability map of each LUCC type transfer, and a 5 × 5 CA filter were adopted (the
rectangular space within 5 km × 5 km around a cell has a significant impact on the state
of the cell), with the cycle being repeated 25 times. The future land-use scenarios of the
basin were simulated (LUCC 2040). The land-use change in the period from 2015–2040 was
described by the CA–Markov model to maintain the change trend from 1990–2015. Thus,
by comparing the simulation results the influence of climate or LUCC on streamflow could
be quantitatively analyzed.

2.7. Calculation of Streamflow Contribution Rate

When one driver changes while the others remain constant, the simulation results
isolate the influence of this single factor on hydrological components [55]. The contribution
rates can be used to directly separate the effects of climate change and LUCC on stream-
flow [56]. We use climate conditions and land-use data for 1990 and 2015 as examples.

The difference between LUCC 1990’s streamflow under climate conditions in 2015
(Q2) and LUCC 1990’s streamflow under climate conditions in 1990 (reference period Q0)
can be regarded as the impact of different climate conditions on streamflow changes in
1990 and 2015. Similarly, the change of streamflow between LUCC 2015 in the climate of
2015 (Q3) and LUCC 2015 in the climate of 1990 (Q1) can also be regarded as the influence
of different climate conditions in 1990 and 2015 on the change of streamflow. Therefore,
the influence of different climatic conditions in 1990 and 2015 (∆Q9015C) on the streamflow
should be expressed using the following formula:

∆Q9015C =
(Q2 − Q0) + (Q3 − Q1)

2
(2)

In addition, the impact of land-use changes in 1990 and 2015 (∆Q9015L) on streamflow
can be determined by calculating the difference between Q1 and reference period Q0 or
between Q3 and Q2:

∆Q9015L =
(Q1 − Q0) + (Q3 − Q2)

2
(3)

The difference between Q3 and reference streamflow Q0 represents the combined
impact of climate change and LUCC on streamflow change. We find that the combined effect
(∆Q9015C + ∆Q9015L) is equal to the sum of individual effects. Therefore, the percentage
contribution of different climatic conditions (η9015C) and LUCC (η9015L) to streamflow
change can be calculated using the following formula:

η9015C =
∆Q9015C

∆Q9015C + ∆Q9015L
× 100% (4)

η9015L =
∆Q9015L

∆Q9015C + ∆Q9015L
× 100% (5)
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The contribution rate of precipitation and temperature to streamflow in the same
LUCC scenario among climate factors can also be determined by the above principles [57].

2.8. Research Framework

The research framework proposed in this study included four main components
(Figure 3). Firstly, listing all data required for constructing the SWAT model and CA–Markov
model. The second part involves the construction process of SWAT model, which, sup-
ported by the SWAT–CUP for calibration and validation, achieves the reconstruction of
streamflow. Then, the third part selects the future climate scenario of CMIP6, using the
CA–Markov model to generate potential land-use scenarios (LUCC 2040) as well as the
methods to separate and quantify the streamflow contribution. The final part is about the
input of the past and the future climate, as well as LUCC into the SWAT model to assess
the responses of streamflow and other hydrological processes to climate change and LUCC
under the different scenarios.

− −

Figure 3. Research framework.

3. Results

3.1. Streamflow Simulation Based on SWAT Model

3.1.1. SWAT Model Calibration and Validation

According to the streamflow observation data of Longtang Hydrological Station, the
time interval from 1961–1976 was selected as the warm-up period of streamflow simulation;
1977–1987 and 2006–2013 were set as the calibration period and validation period, respec-
tively (Figure 4). Calibration and validation of the SWAT model were based on LUCC 2015.
Through sensitivity analysis of the ranking of parameters (Table S1), the fitted value of
parameter calibration was substituted into the SWAT model to obtain optimal results of
the runoff simulation. According to the parameter calibration results of the SWAT model,
EPCO, SLSUBBSN, CH_K2, SOL_BD, and GW_DELAY occurred as the top five sensitive
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parameters among the 18 that are the most closely related to runoff generation in the NRB.
The results indicated that streamflow in the NRB was sensitive to evapotranspiration, slope
condition, soil condition, and groundwater processes.
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Figure 4. Comparison between simulated and observed monthly streamflow during calibration and

validation periods in Nandu River Basin. Comparison of monthly observed and simulated streamflow

during (a) Calibration period (1977–1987) and (b) Validation period (2006–2013); scatter diagrams of

observed and simulated monthly streamflow during (c) Calibration period and (d) Validation period.

The R2, PBIAS, and NSE of streamflow simulation in the study area were obtained
as 0.88, −5.81%, and 0.85 in the calibration period, and 0.96, −21.63%, and 0.89 in the
verification period, indicating a good consistency between monthly streamflow simulation
and observed values during both periods. That is, the SWAT model revealed a good
adaptability in the NRB, indicating that it could be used to simulate streamflow and study
its response to land-use change observed in the basin.

3.1.2. Streamflow Change from 1961 to 2020

Combining observed and simulated annual streamflow from 1961 to 2020 based on
LUCC 2015, the variation trend of streamflow in the NRB from 1961 to 2020 was determined
based on the LUCC 2015 (Figure 5). From 1961 to 2020, the annual streamflow in the NRB
fluctuated greatly, about an average of 190 m3 s−1; it was accompanied with an overall
slightly upward trend (Figure 5a). Furthermore, the annual streamflow in the NRB also
revealed an overall slightly upward trend from 1990 to 2015, and according to the estimated
results, the annual streamflows in 1990 and 2015 attained 180.71 m3 s−1 and 130.16 m3 s−1,
respectively, both of which are years with low annual streamflow. The monthly mean
streamflow of the basin was concentrated in the rainy season, especially from August to
October, and a large variability is noted most obviously in September (Figure 5b). The
average streamflows in the rainy and dry seasons of 301.48 m3 s−1 and 77.36 m3 s−1 account
for 79.58% and 20.42% of the annual streamflow, respectively. The streamflow in the rainy
season showed an insignificant rising trend over the years, while the streamflow in the dry
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season revealed a decreasing trend (Figure 5c). As the increase of streamflow during the
rainy season was greater than the decrease of streamflow during the dry season, annual
streamflow showed a slight increase. That is, the monthly streamflow was concentrated
in the rainy season, and the rainy season streamflow provided the main contribution of
annual streamflow.

–
–

− −

(b) 

(c) 

(a) 

Figure 5. (a) Annual, (b) Monthly, and (c) Seasonal streamflow and trends from 1961 to 2020 in

Nandu River Basin.

3.2. Land-Use Change Analysis and Prediction

A comparison between land uses in 1990 (LUCC 1990) and land uses in 2015 (LUCC
2015) showed that the area of tillage land and other forest land decreased, accompanied
by area increases of rubber plantation, water body, urban, and unused land. The potential
land uses (LUCC 2020) in the NRB were predicted by the CA–Markov model based on the
LUCC 1990 and LUCC 2005 data. Since the CA–Markov model can only simulate for equal
annual intervals, the prediction accuracy of the model was determined by comparing the
fitting degree between the simulated LUCC 2020 and the actual LUCC 2015 (used to replace
actual LUCC 2020). The Kappa coefficient of 0.52 demonstrated the acceptable consistency
between the predicted LUCC 2020 and the actual LUCC 2015.

As shown in Table 2 and Figure 6, the distribution of different land use types in 2040
was similar to the distribution in 2015, where other forest land dominated the largest part
of the area, followed by tillage land and rubber plantation, while urban and unused land
and water bodies were the least. Other forest land accounted for 43.39% of the basin area in
LUCC 2040, followed by 27.59% of tillage land and 22.67% of rubber plantation. The urban
and unused land and water bodies accounted for no more than 5% of the area. Other forest
land decreased by a total of 6.96%, while the area coverage of the other four land-use types
increased from 2015 to 2040 by varying magnitudes. Urban and unused land increased
mainly near the river, the largest proportion (11.69%) of which was evident by comparing
the LUCC images from the two periods (Figure 5). Then, in terms of area change, rubber
plantation and tillage land increased by 6.06% and 5.56%, respectively, in the southeastern
part of the basin at lower altitudes. The water body increased by the lowest proportion,
1.98%, mainly in the river buffer zone. It can be seen that the distribution of land use types
in the NRB was dominated by other forest land, tillage land, and rubber plantation, and
the sum of the three accounts for more than 90% of the basin, and the other forest land is
most widely distributed.

In summarizing, the results indicated that the NRB faces the situation of reduced
other forest land in exchange for the development of other land-use types in the future. In
other words, frequent future human activities in the study area will challenge the balance
between ecological and environmental protection and economic and social development.
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Table 2. Potential LUCC trend and area proportion in Nandu River Basin.

Land Use Type LUCC 2015/km2 LUCC 2040/km2 Area Change/km2 Proportion of
LUCC 2015/%

Proportion of
LUCC 2040/%

Proportion of
Change Area

(Based on 2015)/%

Rubber plantation 1140.64 1209.71 69.07 21.38 22.67 6.06
Other forest land 2488.51 2315.29 −173.22 46.64 43.39 −6.96

Tillage land 1394.42 1472.01 77.59 26.13 27.59 5.56
Urban and

unused land
209.73 234.26 24.53 3.93 4.39 11.69

Water body 102.66 104.69 2.03 1.92 1.96 1.98

− −
−

− −
− − − − − −
− − − − − −

Figure 6. Spatial distribution of land use types in 1990, 2015, and 2040 in Nandu River Basin.

3.3. Impacts of Climate Change and LUCC on Streamflow from 1990 to 2015

3.3.1. Contributions of Climate Change and LUCC to Streamflow Change

To obtain the relative contributions of human activities and climate change to stream-
flow change in the NRB, Q0 was used as the reference period, and the dry and rainy
season streamflow and annual streamflow change corresponding to Q1, Q2, and Q3 were
calculated, respectively (Table 3).

Table 3. Streamflow response to climate change and LUCC in Nandu River Basin in the years 1990

and 2015.

Scenario

LUCC and
Climate Change

Streamflow in Dry Season
(m3 s−1)

Streamflow in Rainy Season (m3 s−1) Annual Streamflow (m3 s−1)

Climate
Change

LUCC
Mean
Value

Difference
Value

Change
Rate (%)

Mean
Value

Difference
Value

Change
Rate (%)

Mean
Value

Difference
Value

Change
Rate (%)

Q0
1990

1990 73.36 - - 286.35 - - 179.86 - -
Q1 2015 67.05 −6.31 −8.60 293.27 6.92 2.42 180.16 0.31 0.17
Q2

2015
1990 53.48 −19.88 −27.10 205.26 −81.09 −28.32 129.37 −50.49 −28.07

Q3 2015 64.57 −8.79 −11.99 199.68 −86.67 −30.27 132.13 −47.73 −26.54

It can be concluded that the relative contributions of climate variables and LUCC
to NRB streamflow change from 1990 to 2015 were 97.57% and 2.43%, respectively. This
indicated that climate variables dictated most of the streamflow change with precipitation
and temperature as the most important climate variables, which contribute 92.66% and
4.91%, respectively. Compared with Q0, streamflow in Q3 decreased by 26.54%, of which
streamflow in the dry season decreased by 11.99%, and in the rainy season, it decreased by
30.27%. That is, the significant streamflow decrease in the rainy season was the main cause
for the overall decreasing annual streamflow. Compared with Q0, Q1 induced an increase
in annual streamflow by 0.17%, which shows that the impact of human activities on the
underlying surface had a weak regulatory effect. Comparing several scenarios, climate
change dominated streamflow change.
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3.3.2. Impact of LUCC on Hydrological Processes

The changes in hydrological components caused by LUCC from 1990 to 2015 in the
basin were as follows (Table S2): Potential evapotranspiration (PET) revealed the greatest
increase from 1990 to 2015, followed by evapotranspiration (ET) and shallow percolation,
while return flow, shallow water storage, and deep aquifer recharge increased only slightly.
However, subsurface flow and surface runoff decreased (Table S2). That is, land-use
change led to the intensification of evapotranspiration in the basin, with increases of ET
and PET by 28.90 mm and 36.40 mm. At the same time, surface runoff and subsurface
flow decreased, while shallow percolation water increased by enhanced return flow and
deep aquifer recharge; shallow water storage also increased. Overall, LUCC in the NRB
aggravated evapotranspiration, thus reducing surface runoff and subsurface flow, which
led to a decrease in streamflow from 1990 to 2015.

The main source of streamflow in the NRB was base flow, and the average runoff
coefficient (the ratio of streamflow to precipitation) was 0.60 (Table S3). Compared with
1990, the base flow index was greater in 2015, but the runoff coefficient decreased, that is,
the amount of precipitation converted into surface runoff has decreased significantly. Due
to the increase of ET, the drying index also increased, but a change of the deep recharge
was not obvious. In conclusion, the decreased surface runoff and subsurface flow caused
by LUCC from 1990 to 2015 led to a decrease in streamflow, while the increase in ET was
the main contributor to the decreasing surface runoff.

3.4. Streamflow Response to Future Climate Change and LUCC

3.4.1. Streamflow Response to Future Climate Change

(i) Monthly streamflow response
The average monthly streamflow in the reference period (1995–2014) of the NRB

was 219 m3 s−1, so the variations of average monthly streamflow were −5.76–3.60%,
−8.74–4.13%, and −18.30–9.84% in the near-term (2021–2040), mid-term (2041–2060), and
long-term (2081–2100) period, respectively. According to the annual distribution of stream-
flow in the basin under future climate scenarios (Figure 7), the streamflow changes in the
21st century were mainly concentrated in the months from May to October, with the highest
streamflow changes occurring from September to October. The streamflow changes in the
long-term period (2081–2100) climate scenarios were greater than those in the near-term
period (2021–2040) and the mid-term period (2041–2060). This indicates that the streamflow
changes of Nandu River in the 21st century had typical characteristics of the dry and rainy
seasons. With the intensification of precipitation under different climate paths, the variation
range of monthly streamflow appeared to be significantly enhanced from May to October.

(ii) Seasonal streamflow response
In different periods of the 21st century, the variation value of streamflow was much

higher in the rainy season than in the dry season (Figure 8). The mean streamflows of dry
and rainy seasons in the reference period were 76.32 m3 s−1 and 361.78 m3 s−1, respectively.
Therefore, the variation range of dry and rainy seasons streamflow in the 21st century was
−18.43–10.13%, while the variation of dry and rainy seasons under future climate scenarios
was not much different. The increase in streamflow in dry and rainy seasons showed that
within the same period and under the same path, the variation of streamflow was generally
higher in the rainy season than in the dry season, and the decrease in streamflow was
higher in the dry season than in the rainy season, which was basically consistent with the
variation trend of precipitation in dry and rainy seasons.
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Figure 7. Monthly streamflow changes in the 21st century under multiple paths of the coupled CMIP6

climate model in Nandu River Basin. The climate scenarios for the seven paths are SSP119, SSP126,

SSP434, SSP245, SSP460, SSP370, and SSP585, respectively. The variation of streamflow indicates the

rate of average monthly streamflow compared to the reference period (1995–2014).

− − − −

− −

−

– –
– –

2021-2040 2041-2060 2081-2100 

Figure 8. Streamflow variation during the dry and rainy seasons in the 21st century under multiple

paths of the coupled CMIP6 climate model in Nandu River Basin. The climate scenarios for the seven

paths are SSP119, SSP126, SSP434, SSP245, SSP460, SSP370, and SSP585, respectively.

Under the SSP245 path from 2081–2100, the variation of streamflow was highest
in the dry season, decreasing by 18.43% compared to the reference period and decreas-
ing by 18.28% in the rainy season compared to the reference period. Under the SSP585
from 2081–2100, the increase rate of streamflow was highest in the rainy season (10.13%),
followed by the dry season (8.5%). That is, the scenario with the highest variation of
streamflow occurred in the late 21st century.
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(iii) Annual streamflow response
Under the comprehensive influence of precipitation and temperature, the average

annual streamflow variation ranged from −12.67 to 7.92 m3 s−1, −19.24 to 9.10 m3 s−1,
and −40.28 to 21.66 m3 s−1 under the seven paths in the near-, mid- and long-term periods
of the 21st century (Figure 9). The annual average streamflow in the reference period
was 220.13 m3 s−1, so the variation of streamflow in the NRB in the near-term period
(2021–2040) and the mid-term period (2041–2060) was −8.74–4.13%, and the range of
streamflow change rate was increased to −16.09–9.84% in the long-term period (2081–2100)
due to climate change. From 2081–2100, the annual streamflow of SSP245 decreased the
most (18.30%), but from 2021–2040, the annual streamflow of SSP245 decreased the least
(1.81%). From 2081–2100, SSP585 revealed the largest annual streamflow increase (9.84%),
and from 2021–2040, SSP119 was the lowest (3.60%). In conclusion, the streamflow change
in the NRB under future climate scenarios was relatively small in the near-term period
(2021–2040) and relatively high in the long-term period (2081–2100).

Figure 9. Annual streamflow changes in the 21st century under multiple paths of the coupled CMIP6

climate model in Nandu River Basin. The climate scenarios for the seven paths are SSP119, SSP126,

SSP434, SSP245, SSP460, SSP370, and SSP585, respectively.

3.4.2. Hydrological Processes Responding to Future LUCC

Compared with LUCC 2015, the hydrological components were, in the order of the
greatest decrease in the LUCC 2040 scenario (Table S4), as follows: PET showed the largest
decrease, followed by subsurface flow, then ET and shallow water storage. Components of
greatest increase were shallow percolation water, followed by the return flow and surface
runoff, as well as deep aquifer recharge, while the changes of shallow water storage and
deep aquifer recharge were very small. This indicated that evapotranspiration and subsur-
face flow in the basin would be expected to be reduced in the future due to LUCC, while
shallow percolation water and surface runoff could be expected to increase in relative terms.
The decrease in ET slightly increased the surface runoff, but the decrease in subsurface
flow was greater than the increase in surface runoff, leading to decreasing streamflow.
The subsurface flow decreasing by 64.89% indicates that the reduction of subsurface flow
caused by LUCC, especially the conversion of other forest land to other land-use types,
could be expected as the main reason for decreasing streamflow in the future.

As shown in Table S5, the main source of future streamflow was base flow. Precip-
itation conditions remained unchanged; with reduced ET, the drying index decreased,
and changes in deep recharge were not obvious. Thus, the runoff coefficient increased
simultaneously, and the base flow index decreased from 2015 to 2040. That is, the amount
of precipitation being converted into surface runoff increased. In conclusion, the decrease
of subsurface flow caused by the degradation of potential LUCC, especially regarding other
forest land, was identified as the main reason for the decreasing NRB streamflow from 2015
to 2040.
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3.4.3. Streamflow Response to Combined Future Climate Change and LUCC

The future streamflow was predicted under climate scenarios from 2021 to 2040 and
LUCC 2040 scenarios in the NRB, with 1995–2014 as the reference period. Under the
combined influence of future climate change and LUCC, the average annual streamflow
variation ranged from −13.56 m3 s−1 to 7.06 m3 s−1 under the seven paths in the near-term
period (2021–2040) (Figure 10). The average annual streamflow in the reference period
was 220.13 m3 s−1, and the variation of streamflow in the NRB in the near-term period
(2021–2040) was −6.16–3.21%. In the future scenario, the average annual streamflow in
the study area was reduced in all seven paths, except for SSP119; SSP126 revealed the
largest reduction of the average annual streamflow (−6.16%). Streamflow change in the
basin was dominated by precipitation change, and when precipitation change was positive,
streamflow increased, and vice versa; for precipitation change being negative, streamflow
decreased. In conclusion, the average annual streamflow in the NRB would generally
decrease under future LUCC and climate scenarios.

–

–

Figure 10. Streamflow variation in the LUCC 2040 scenarios under multiple paths of the coupled

CMIP6 climate model in Nandu River Basin. The climate scenarios for the seven paths are SSP119,

SSP126, SSP434, SSP245, SSP460, SSP370, and SSP585. LUCC 2015 is the reference period, which

represents the actual land-use scenario in 2015 in the NRB. LUCC 2040 represents the simulated

land-use scenario in 2040 in the NRB.

The average streamflows of the dry and rainy seasons in the reference period were
76.32 m3 s−1 and 361.78 m3 s−1, respectively. The variation range of dry and rainy season
streamflow in the NRB caused by climate change and LUCC in the near-term 21st century
was −9.76–4.04%. In the near-term period (2021–2040), only the SSP119 path increased by
4.04% in the rainy season and decreased by 0.79% in the dry season. The other six paths
decreased both in the dry and rainy seasons. The variation value of streamflow under the
same path showed a significant decrease in the rainy season, but the variation of streamflow
was higher in the dry season than in the rainy season. The results indicated that the stream-
flow in the NRB showed a decreasing trend in the dry and rainy seasons in the near-term
period (2021–2040), which was consistent with the trend of precipitation in future climate
scenarios. Therefore, no matter the annual scale or monthly scale, the water resources in the
NRB are expected to be more scarce in the future. Therefore, timely measures are required
to be available in order to guide the planning to ration and sustainably utilize the land



Sustainability 2023, 15, 13941 16 of 21

resources, which actively respond to the challenges that climate change will bring to the
regional water environment.

4. Discussion

Climate change and land-use cover change (LUCC) are the main driving factors
of streamflow. Hydrological processes and their responses in a basin can be described
realistically by coupling multiple models. Thus, hydrological responses to future climate
change and potential land-use change in this study were predicted by combining the SWAT
model with the global climate model data in the CMIP6 and with land-use change scenarios
modeled by CA–Markov. There might be uncertainty in the simulation results of the SWAT
model due to its complex structure and the large number of input parameters, which
requires model uncertainty analysis to be the subject of future studies. Although the results
differ from those of a similar Indian humid tropical basin, both studies found the effects of
LUCC and climate change on hydrological elements, with climate change dominating the
runoff change response [58].

The LUCC 1990 and LUCC 2015 data were used to predict LUCC 2040, showing that
the future land-use changes were relatively small. The potential land-use-type changes
reflected by LUCC 2040 were consistent with the actual situation because the changes
in land-use development were relatively stable for a long time, so the layout of the var-
ious types of land use did not change dramatically. Furthermore, the spatial scale was
also relatively stable, as was the change in land-use type area, which is according to the
development mode and the characteristics of each type. Overall, the change in land-use
distribution during the time scale considered was reasonable. The inputs of DEM, slope,
distance to railway, expressway, and highway measurements, which were used to restrict
land-use development in the CA–Markov model, were based on actual landform condi-
tions and human activity factors in the basin. However, these inputs were still uncertain,
and they affected the resulting quantitative spatial distribution of future LUCC. Due to
the background of ecological and environmental protection in Hainan Island, the actual
land-use types in the basin, such as rubber plantation, exist in specific protected areas due
to the influence of policy planning. How to restrict specific areas in the model to achieve
a more accurate LUCC prediction is a problem that requires a solution. In recent years,
LUCC prediction models have been newly developed, such as the coupled FLUS and the
Markov–ANN models, which also support the potential LUCC data of the basin and also
reduce the uncertainty of the input land-use data [59–61].

The prediction of precipitation and temperature is necessary when evaluating the
future impact of climate change on hydrology and water resources of a basin. Different
climate scenarios will reveal obvious variability of the hydrological simulation results.
The current climate scenarios selected in this study were the predicted future scenarios in
tropical regions. For a specific watershed, the corresponding small-scale climate scenarios
can reduce the input uncertainty of the model, which remains a challenge for subsequent
work in future studies. It can depend on downscale climate scenario data or make future
climate predictions combined with ground station assimilation data and compare the period
of dry and rainy seasons to more accurately simulate the streamflow change characteristics
of future climate scenarios at a watershed scale, in order to develop coping strategies for the
NRB in Hainan Island. Although there are still uncertainties, specific scenarios can support
decision-makers in identifying possible outcomes of climate change to runoff in the future,
including their uncertainties. The HyCoX methodology uses the statistic as the objective
function in the calibration process rather than the time series (i.e., flow statistics instead of
time series), while the hydrological models are calibrated by maximizing the probability of
the observed high-flow extremes [62]. Based on this target-oriented calibration, it can be
applied to various hydrological scenarios and modeling methods in the future, which can
achieve more accurate simulations of extreme runoff, and better consider the simulation of
LUCC scenarios, such as to reduce the uncertainty of the simulation.
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According to the response of streamflow to land-use changes in the NRB of Hainan
Island, other forest land had a moderating effect on streamflow. Thus, a decrease of the
other forest land area was not conducive to improve water and soil conservation in the
study area, which is consistent with previous studies [63,64]. Under future LUCC scenarios
in the NRB, conversion of the other forest land to rubber plantation also would have a
certain interception effect, while conversion to cultivated land would have a streamflow
increase effect. Although the change of the water yield caused by land-use change was
relatively small, the results showed that the major trend where other forest land was
exchanged for different land-use types, which would reduce the streamflow. With the
current situation of rapid population growth, climate change and economic growth in the
basin, as well as the water environment, will become more complex, and extreme events
such as drought and flooding have become more frequent [65–67]. Therefore, the proper
management of other forest land and rubber plantation areas is an effective way to improve
the ecosystem service function and provide a rational allocation of water resources in the
NRB. Optimizing the structure of land and improving regional microclimate will help
to reduce the negative effects of climate change on water resources by improving basin
streamflow and the ecological environment, and also to ensure sustainable management of
water resources and of the natural ecological system.

5. Conclusions

In this study, the SWAT model was used to evaluate the potential impact of both future
climate change and land-use cover change (LUCC) on streamflow in the NRB of Hainan
Island, China, and the following conclusions were drawn:

(1) The contribution of changing climate variables on streamflow change was much
higher than that of LUCC, with contributions of 97.57% and 2.43%, respectively. Precipita-
tion and temperature were the most important climate variables, contributing 92.66% and
4.91% to streamflow change.

(2) LUCC led to an increase of evapotranspiration and, subsequently, a decrease of
surface runoff and subsurface flow in the basin. The decrease of surface runoff directly
caused the reduction of streamflow, while the decrease of subsurface flow predominated
the reduction of streamflow in future LUCC scenarios.

(3) Annual streamflow change under the climate scenarios was relatively small in the
near-term period (2021–2040) and relatively high in the long-term period (2081–2100). The
monthly streamflow showed obvious differences between dry and rainy seasons, and the
streamflow was highest from September to October. The variation range of streamflow was
obviously enhanced with the increasing precipitation intensity in rainy season.

(4) Under the combined influence of LUCC 2040 and climate change in the near-
term period (2021–2040), the annual streamflow in the NRB showed a decreasing trend
in all paths except for SSP119; it decreased most (−6.16%) in SSP126, and the streamflow
increased in the SSP119 path only in the rainy season.

Therefore, whether at an annual or monthly scale, the streamflow of the NRB is
expected to decrease in the near-term period (2021–2040) under the joint influence of both
land use and climate change. Water resources in the basin are expected to become scarcer in
the future, and the demand for water will become more severe. Therefore, measures should
be developed leading to a plan of optimally utilizing the land resources on a suitable
time scale in order to cope with the challenges lying ahead, which the regional water
environment is confronted with, induced by climate change.
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www.mdpi.com/article/10.3390/su151813941/s1, Table S1. Parameter information and fitted values.

Table S2. Changes in hydrological components due to LUCC in the Nandu River Basin from 1990

to 2015. Table S3. Proportion of hydrological components in Nandu River Basin in the years 1990

and 2015. Table S4. Changes in hydrological components due to Future LUCC in Nandu River Basin.

Table S5. Proportion of hydrological components in Nandu River Basin in the years 2015 and 2040.
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