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Abstract In order to understand the oceans role as a global carbon sink, we must accurately quantify the
amount of carbon exchanged at the air‐sea interface. A widely used machine learning neural network product,
the SOM‐FFN, uses observations to reconstruct a monthly, 1° × 1° global CO2 flux estimate. However,
uncertainties in neural network and interpolation techniques can be large, especially in seldom‐sampled regions.
Here, we present a three‐dimensional (latitude, longitude, time) gridded product for our SOM‐FFN
observational data set consisting of uncertainties (pCO2 mapping, transfer velocity, wind) and biases (pCO2
mapping). We find that polar regions are dominated by uncertainty from gas exchange transfer velocity, with an
average 48.7% contribution. In contrast, for subtropical regions, wind product choice contributes an average
50.0%. Regions with fewer observations correlate with higher uncertainty and biases, illustrating the importance
of maintaining and expanding existing measurements.

Plain Language Summary The ocean plays an important role in regulating climate and the carbon
cycle by absorbing and releasing carbon through the air‐sea interface. In order to better understand these
dynamics, we need to accurately quantify the amount of carbon exchanged between the ocean and atmosphere
reservoirs, known as our air‐sea carbon flux. Since the data can't be retrieved by satellites, it is challenging to get
a global scale monthly product, so interpolation techniques such as neural networks are used. While these
techniques have proven to provide robust observation‐based estimates, uncertainties can be high, especially in
regions where few observations are available. We calculate the uncertainty and bias created while using a two‐
step neural network machine learning method, the SOM‐FFN. We find the sources of flux uncertainty vary
regionally, with subtropical uncertainty dominated by choice of wind product but polar uncertainty influenced
most by the coefficient chosen for the air‐sea gas exchange transfer. Areas with fewer observations correlate
with higher uncertainty and bias. This analysis provides important motivation for maintaining and increasing
global ocean carbon observations, and is an important step toward closing the carbon budget through accurate
quantification of the fluxes at the air‐sea interface.

1. Introduction
As fossil fuel emissions continue to increase, carbon dioxide (CO2) levels rise in our atmosphere, leading to
changes in the air‐sea carbon flux and alteration of the ocean carbon system (Landschützer et al., 2023; Sarmiento
& Gruber, 2006). The ocean is a crucial component of global climate and climate change mitigation through its
role in uptake of atmospheric CO2. It has absorbed roughly 30% of anthropogenic carbon emissions, totaling
about 2.9 ± 0.4 GtC yr− 1 in the last decade (Friedlingstein et al., 2023). The long‐term ocean response to at-
mospheric pCO2 varies depending on emission scenarios, with high emissions leading to growth of carbon sink
and low emissions causing a decline as the ocean equilibrates with the atmosphere (Fay & McKinley, 2013;
Gruber et al., 2023; Randerson et al., 2015; Ridge & McKinley, 2021). In order to make accurate predictions on
the future of our global climate system and improve understanding of the oceans role as a climate regulator, we
must quantify the amount of carbon exchanged at the air‐sea interface, which is done using a combination of
models and data‐based estimates. In recent years though, we've seen a divergence between the two methods in the
global carbon budget analyses (Friedlingstein et al., 2023; Hauck et al., 2020), which is a worrisome development.

In 2015, 196 countries signed the UNFCCC Paris Agreement, an international endeavor to mitigate climate
change. With increased worldwide efforts to quantify the global stocktake, closing the carbon budget and con-
straining the uncertainty of our estimates is increasingly essential, as coastal regions could be a valuable carbon
sink for many nations. However, ocean carbon is not currently a value that can be measured by satellites, so in
order to span both spatial and temporal resolutions, other methods of calculation must be employed (Rödenbeck
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et al., 2015). Observation‐based products are useful tools to statistically interpolate the partial pressure of carbon
dioxide (pCO2) observations in order to resolve global‐scale products (Fay et al., 2021; Rödenbeck et al., 2015).
One product that closes the surface pCO2 data gaps and is used in the Global Carbon Budget (Friedlingstein
et al., 2023) is based on a two‐step neural network approach, the self‐organizing map feed‐forward neural network
(SOM‐FFN) (Landschützer et al., 2013). The SOM‐FFN reconstructs pCO2 at a 1° × 1° resolution and a monthly
timescale. From the resulting interpolated surface pCO2 maps, the air‐sea exchange is derived.

Despite the importance of understanding the air‐sea carbon flux, observations are limited, and uncertainty in air‐
sea transfer can be high (McKinley et al., 2023; Roobaert et al., 2019; Woolf et al., 2019). While the SOM‐FFN
estimates have proven to provide robust estimations on mean and seasonal timescales, uncertainties and biases in
interpolation techniques can be large, especially in remote or seldom sampled ocean regions and on longer
timescales (Gloege et al., 2021; Hauck, Nissen, et al., 2023). These uncertainties, consisting of mapping or
extrapolation uncertainties as well as those associated with the kinetic transfer of gas across the air‐sea surface,
have the potential to impact our ability to balance regional and global carbon budgets. Despite this, they are
seldom taken into account in synthesis efforts as they vary in time and space.

Here, we develop a three‐dimensional (time, longitude, and latitude) gridded uncertainty product and analyze the
regional and seasonal implications of the output. This allows for evaluation of high‐uncertainty regions and
identification of areas in the methods that may be further constrained. The open‐source product provides tools to
improve computations of air‐sea CO2 fluxes and uncertainties in support of regional carbon budgets. The
identification and analysis of sources of uncertainty is important for improving ocean carbon flux products, and
will contribute to a more accurately calculated global stocktake of ocean carbon.

2. Methods
2.1. The SOM‐FFN Method

The SOM‐FFN uses two stages to establish a relationship between independent predictor data and observed pCO2
to output a monthly 1° × 1° resolution for global sea surface pCO2 and the air‐sea flux. While the method and its
extension have been extensively described in (Landschützer et al., 2013, 2014), we provide a brief summary here
highlighting key features. First, a neural network clustering algorithm (i.e., a self‐organizing map) defines a set of
biogeochemical provinces that share common relationships. These relationships are defined by clustering known
driver data of pCO2 (sea surface temperature (SST) (Huang et al., 2020), sea surface salinity (SSS) (Good
et al., 2013), mixed layer depth (MLD) (Montégut et al., 2004)) and pCO2 climatology (Takahashi et al., 2009) to
create dynamical provinces designed to follow the seasonal CO2 cycle in the ocean (Landschützer et al., 2013).
Second, a feed‐forward network (FFN) derives a non‐linear, continuous relationship between pCO2 measure-
ments and driver data (SST, SSS, MLD) as well as chlorophyll‐a (GlobColour, http://globcolour.info) and at-
mospheric CO2 (Dlugokencky et al., 2021) for each biogeochemical province defined by step 1. This relationship
is used to fill surface ocean pCO2 gaps where no direct measurements exist. We calculate pCO2 from Surface
Ocean CO2 Atlas (SOCAT) fugacity of CO2 observations (Bakker et al., 2016).

We conduct our runs from 1982 to 2022, and calculate mean values for years 1990–2022 to constrain our analysis
to temporal periods during which we see more consistency between different pCO2 products (Fay et al., 2021;
Rödenbeck et al., 2015).

2.2. Air‐Sea Flux Calculation

Using the methods developed in (Landschützer et al., 2013, 2014, 2016), incorporating a standard quadratic bulk
parameterization developed in (Garbe et al., 2014; Ho et al., 2006; Wanninkhof, 1992), we calculate the flux
density (in molC m− 2 yr− 1) from our reconstructed surface ocean pCO2 using:

FCO2
= kw ⋅ SCO2

⋅ (1 − fice) ⋅ (pCO2 − pCOatm
2 ) (1)

where SCO2
is the gas solubility of CO2 in seawater, fice is fraction of sea ice cover (a dimensionless value between

0 and 1, (Rayner et al., 2003)), and pCOatm
2 is the pCO2 at the air‐sea interface. Atmospheric pCO2 at 100%

humidity was calculated following (Landschützer et al., 2013) using the atmospheric molar fraction of
CO2(xCO2) data from the NOAA Marine Boundary Layer product (Dlugokencky et al., 2021), the NCEP sea
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level pressure, and the water vapor correction following (Dickson et al., 2007). A positive flux is CO2 outgassing
from ocean into atmosphere, and a negative flux is ocean sink. Our baseline run adopts the mean gas transfer
velocity following (Naegler, 2009), where we adjust the scaling factor to reach a global mean transfer velocity of
16.5 cmh− 1. The gas transfer velocity of CO2, kw, can be defined using

kw = a ⋅<U2 > ⋅ (Sc/660)0.5 (2)

Where Sc is the dimensionless Schmidt number, (a) represents the gas‐transfer coefficient, and < U2 > represents
wind speed at 10m height (m/s).

2.3. Uncertainty Quantification and Data Incorporation

From these equations, we identify three major sources of bias and uncertainty highlighted in recent literature
(Gloege et al., 2021; Hauck, Nissen, et al., 2023; Roobaert et al., 2018): (a) biases and uncertainty stemming from
the mapping of unobserved ocean regions associated with the gradient in pCO2 (mainly driven by surface ocean
pCO2), (b) uncertainty associated with k (the gas exchange transfer velocity), and (c) the uncertainty associated
with choice of wind product used in Equation 2. Considering each source independent, we calculate overall
uncertainty through:

μ + σ = μ +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2pCO2
+ σ2k + σ2wind

√

(3)

Where μ represents bias or deviation from the true model pCO2, and σ represents the random, unresolved un-
certainty terms associated with the flux equation components. This statistical‐based equation was developed
following the linear model (e.g., Peterson et al., 2001), with further detail in the supplement.

To estimate σpCO2
we employ the approach by (Gloege et al., 2021), using the residuals from the MPIM‐

HAMOCC model (Ilyina et al., 2013), run in hindcast mode to represent realistic climate of the most recent
decades. We subsample the MPIM‐HAMOCC model along SOCAT measurement locations (Figure S1 in
Supporting Information S1) and reconstruct the known model field with driver data from the model. Using the
subsampled model data set, we run the SOM‐FFN to interpolate a 1° × 1° surface ocean pCO2, and repeat this 5
times, each realisation with a different, randomly chosen training and validation data set (see (Landschützer
et al., 2013)). We then calculate the standard deviation of the difference between reconstructions and SOM‐FFN
output to quantify σpCO2

. We estimate μ by adopting the approach by (Hauck, Nissen, et al., 2023), using the mean
pCO2 deviation of the 5 reconstructions from the true model pCO2. While this represents a small ensemble, we
chose it to be comparable to the ensembles of the other σ terms. σk is quantified using the standard deviation across
4 commonly used quadratic parameterizations of the gas transfer coefficient ((Ho et al., 2006; Sweeney

Figure 1. Reconstruction Bias and zonal averages averaged 1990–2022 (a) Total bias between reconstruction and model truth, shown in molC/m2/yr. (b) Average zonal
bias, over same time period and units. Values indicate magnitude of flux bias.
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et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014)), and σwind is the standard deviation of the CO2 flux across
three wind products: ERA 5 Global Reanalysis (Hersbach et al., 2020), NCEP/DOE Reanalysis II (Kanamitsu
et al., 2002), and NCEP‐NCARReanalysis 1 (Kanlay et al., 1996). The supplement contains further specifications
on data preparation and selection.

For analysis, regions are determined using the open‐ocean biomes defined by Fay and McKinley (2014), which
are classified using SST, spring/summer chlorophyll‐a concentrations, ice fraction, and maximum MLD (Fay &
McKinley, 2014). We combine their 17 biomes into 6 larger regions. While we focus on major uncertainty terms
related to the extrapolation of sparse data and gas transfer formulation, there are terms we neglect here due to
negligible influences on larger‐scale fluxes. This includes the effect of scaling of the gas exchange in ice covered
regions to the ice‐free ocean area and the choice of SST product on gas solubility.

3. Results
Globally averaged, the μ term is negligibly small (− 0.007 molC/m2/yr). This is somewhat contradicting toward
results in (Hauck, Nissen, et al., 2023) that show despite compensating pCO2 errors globally, errors in higher wind
speed regions cause biases in the flux as well. We explain this difference through both the use of a different model
and potentially the use of a single realisation compared to the mean of several runs used here. This difference is

Figure 2. SOM‐FFNv2022 air‐sea CO2 flux output averaged from 1990 to 2022. (a) Total air‐sea flux density, shown in molC/m2/yr, generated using the standard
observation‐based SOM‐FFN run. (b) Average uncertainty calculated from Equation 2, shown in molC/m2/yr. (c) Percentage uncertainty calculated for each point as
flux uncertainty divided by the absolute value of the total flux.
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also reflected in the σpCO2 uncertainty below, which shows that single realizations can differ substantially from
each other. At regional scales, however, we observe larger variation ±0.5 molC/m2/yr (Figure 1a), which are
comparable to errors observed in Gloege et al., 2021, although estimated from different model types and scenarios
(i.e., large ensembles vs. hindcast simulations). This gives us confidence we can faithfully pinpoint biases in our
reconstruction. Figure 1b further shows zonal averages, demonstrating higher bias in regions with a lower density
of observations (observation density Figure S1 in Supporting Information S1). While our reconstruction bias
doesn't directly impact the uncertainty quantification globally due to compensating errors, considering the in-
fluence of data sparsity on the flux calculations is critical for understanding the variability in our calculations,
particularly on regional scales.

Figure 2 shows maps of the 2022 SOM‐FFN data product, which is available through the NOAANational Centers
for Environmental Information (Jersild et al., 2023). We see (a) air‐sea flux as well as (b) flux uncertainty and (c)
percentage of mean flux, all averaged from 1990 to 2022. We observe higher flux uncertainty in polar regions and
the Pacific equatorial, but find the Southern Ocean and equatorial coastal regions dominate in proportional flux
uncertainty. Part of this is due to lower regional fluxes, making small amounts of uncertainty more significant. In
the Southern Ocean, where we have almost 45% uncertainty throughout the region, we also have a lower number
of observations contributing to increased variance in the SOM‐FFN method, which may contribute to higher
uncertainty. We also see higher uncertainty in polar regions and areas (seasonally) covered in sea‐ice, which
provides important motivation to continue to increase our observations of the harder‐to‐observe but climatically
pivotal regions.

Many of the regional errors balance each other, leading to overall smaller uncertainty when looking at the globally
integrated air‐sea CO2 flux. The global average uncertainty from 2012 to 2022 is ±0.31 GtC/yr, which is lower
but comparable to Global Carbon Budget 2023 (Friedlingstein et al., 2023) estimation of ±0.4 GtC/yr. That being

Figure 3. Seasonal Uncertainty, broken down by region. Note that Pacific equatorial region includes both east and west Pacific. (a–f) Shows climatology of CO2 flux
(molC/m2/yr) broken down by regions, defined based on (Fay &McKinley, 2014). Time series shows seasonal average with shaded uncertainty of the mean. (g) Shows
mean July uncertainty averaged across 1990–2022. (h) Shows mean January uncertainty averaged across 1990–2022.
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said, while we do investigate uncertainty in the contemporary fluxes, we employ different methods and do not
account for uncertainties in river fluxes or coastal regions as they do in the Global Carbon Budget. Temporally,
the range of average uncertainty spans from aminimum of±0.21 GtC/yr in 1997 and a maximum of±0.42 GtC/yr
in 2021, with seasonal variation.

Seasonally, we find average increases in uncertainty in January in both hemispheres (Figure 3), with a global
average increasing from ±0.25 GtC/yr in July to ±0.37 GtC/yr in January. Although opposite seasons, we have
different sources of uncertainty dominating these average values (Figure 4). We further break down into six ocean
regions to compare average seasonal uncertainty at regional scales (Figure 3, Table 1).Uncertainty is greater in high
latitudes for both hemispheres, with year‐round averages of±0.35 GtC/yr for the Southern Ocean and±0.51 GtC/
yr for the northern hemisphere high latitudes (see Table 1), both averaging an uncertainty around 40% of total flux.

Using our calculation from Equation 3, we identify the contributions of each source of uncertainty as k‐dominated
(driven by the kw gas transfer velocity coefficient), pCO2‐dominated, or wind‐dominated. Figure 4 shows the
regional and seasonal breakdown of each of these drivers on overall uncertainty. We find that regardless of
season, uncertainty in polar regions (averaged poleward of 60° north and south) is driven by the uncertainty
associated with kw, contributing 48.7% to total uncertainty (Table 2). In contrast, the Subtropical region centered
around the 30° latitude has wind‐driven uncertainty contributing about 50% to overall uncertainty (Figure 4,
Table 2) However, smaller regions do experience seasonal variation. The North Atlantic, which sees a strong
increase in uncertainty during wintertime, experiences a transition seasonally from mixed sources to wind‐
dominated (Figure 4). Increased wintertime wind speed drives this seasonal uncertainty and is a strong contri-
bution to increased standard deviation in flux in this region.

Figure 4. Breakdown of uncertainty sources, compared seasonally. (a) July uncertainty sources (averaged 1990–2022) color indicating dominating source of uncertainty
(k, pCO2, and wind). (b) Percentage each source contributes to total uncertainty, averaged latitudinally. (c, d) Same as (a, b) but for January.
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4. Conclusions
Here, we provide an explicit spatial quantification of the uncertainty in the air‐sea CO2 exchange from a
commonly used observation‐based method and thus provide a step forward in our ability to (a) understand model‐
data differences, (b) provide a realistic outlook regarding global and regional stocktake efforts and (c) provide
explicit spatial and temporal information where efforts need to be undertaken to reduce present day uncertainties.
While previous studies have investigated uncertainties in the air‐sea CO2 exchange (Gloege et al., 2021; Hauck,
Nissen, et al., 2023; Roobaert et al., 2018) we, for the first time, combine these well established terms to provide a
view of current biases and uncertainties in the air‐sea CO2 exchange for an observational product on both a
temporal and spatial scale. This new addition provides great opportunities for future research focusing on both
temporal or regional‐scale analysis.

We find that effective biases (μ) that result from our single model reconstruction by interpolation of sparse
observations are small at global scale when the mean of multiple realizations are investigated, but can be sub-
stantial on regional scales. Global flux uncertainty is strongly seasonally dependent, with higher average values in
January than in July. However, these regionally averaged patterns are driven by different sources of uncertainty,
as we see increased austral summertime uncertainty in the gas‐exchange‐dominated Southern Ocean and
increased boreal wintertime uncertainty in the northern hemisphere. The Northern Atlantic shift seasonally to
wind‐driven uncertainty drives the elevated boreal wintertime uncertainty averages, leading to the interesting
global uncertainty correlations regardless of the opposite seasons. Year‐round, polar regions are dominated by the
gas exchange transfer velocity uncertainty, whereas the subtropics are driven by wind‐driven uncertainty. pCO2‐
driven uncertainty dominates in the non‐polar regions with lower observational availability, such as the southern
Indian Ocean and the southern hemisphere open Pacific ocean.

While we include the main uncertainty and bias terms in our calculation that have been identified in recent
literature (Gloege et al., 2021; Hauck, Nissen, et al., 2023; Roobaert et al., 2018), there are additional sources of

Table 2
Uncertainty Sources by Percentage of Influence on Total Uncertainty

January July

Total k 36% 32%

pCO2 25% 28%

wind 39% 40%

Polar Region k 50% 46%

pCO2 25% 24%

wind 25% 30%

30° latitudinal region k 24% 23%

pCO2 27% 30%

wind 49% 47%

Table 1
Seasonal Comparison of Flux (molC/m2/yr) and Uncertainty (%), Broken Down by Regions Northern Hemisphere High
Latitudes (NHHL), Northern Hemisphere Subtropics (NHST), Atlantic Equatorial (Atl. Eq.), Pacific Equatorial (Pac. Eq.),
Southern Hemisphere Subtropics (SHST), and Southern Ocean (S.O.)

January flux % uncertainty Jan July flux % uncertainty July

NHHL − 2.11 ± 0.79 37% − 0.93 ± 0.24 26%

NHST − 1.15 ± 0.21 18% 0.31 ± 0.12 38%

Atl. Eq. 0.49 ± 0.22 45% 0.56 ± 0.19 34%

Pac. Eq. 1.14 ± 0.27 24% 1.34 ± 0.29 22%

SHST 0.1 ± 0.15 150% − 0.82 ± 0.24 29%

S.O. − 1.23 ± 0.36 29% − 0.64 ± 0.34 53%

Note. January and July chosen to show 6 months out of phase across our decadal calculations.
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uncertainty that are not considered here, for example, related to coastal systems, varying river input, the cool skin
effect (Takahashi et al., 2009; Watson et al., 2020) or the optimal ensemble size for model subsampling. Most of
these are either still under debate or cannot be resolved spatially and temporally at present. Furthermore, mea-
surement uncertainty is not included, as Landschützer et al., 2014 shows that this term is small compared to the
much larger uncertainty from extrapolating sparse measurements.

Our study highlights future areas where process research is needed to reduce uncertainty and biases, for example,
the quantification of the influence of sea ice. We demonstrate the need to continue improving parameterizations
and understanding the impact of variability in carbon flux estimations in order to improve our ability to quantify
marine carbon budgets.

Data Availability Statement
Results from the neural‐network based SOM‐FFM method and uncertainty quantification are publicly available
online (Jersild et al., 2023). The source code for the method can be found at (Jersild, 2023). The MPIM‐
HAMOCC model output can be found (Hauck, Landschützer, et al., 2023).
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