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S1 Introduction

This supplementary materials document includes further information about the Moist Energy Balance Model, details associated
with model stability, a more detailed explanation for the overturning direction of the weathering feedback (see text) and tables
with default values and citations for model parameters.

5 S2 Moist Energy Balance Model

S2.1 Details on the Hadley cell parameterization and calculating latent heat flux divergence

Following Siler et al. (2018), we assign a weighting function to partition between Hadley cell (equatorward) and eddy (pole-

ward) latent heat fluxes where the weight (w) is defined as:

w=1—e("032), (S1)

10 Next, the moist static energy flux of the Hadley cell (in W) is calculated as a fraction of the total poleward flux (F') using

the weighting function where:

FHC = (1 - w)F (SZ)

We then calculate the total mass transport of the Hadley cell’s lower branch (1, in kg s %, positive southward) from Fyic by:

E
P = ZHC (S3)
g(x)
15 where g(z) is gross moist stability (J kg~!) and is taken as the difference between upper troposphere moist static energy in

the tropics (set at 6% above maximum moist static energy) and near-surface moist static energy h(x). This gross moist stability
parameterization effectively weakens Hadley circulation in a warmer world. Finally, 1) is used to calculate Fyc 4 following the

main text.
S2.2 Details on the partitioning of P and E

20 To re-iterate from the main text, the equation we use to calculate evaporation (F) is Siler et al. (2019)
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Here, we walk through the parameter values and equations that contribute to this formulation. First, R, with units Wm~=2,
is shorthand for the difference between the surface net downward radiative flux (R in Siler et al. (2019)) and the spatial pattern
of ocean heat uptake plus heat uptake by frozen hydrometeors at the surface (G in Siler et al. (2019)). We employ an idealized

latitudinal profile for this difference where:

Rg = Ry~ G =180 (1~ 22) - 0.de™(#/019)%] (S5)

The next term, 6, scales the saturation specific humidity (¢*) to its change with temperature (71") such that

dq* .
aT = tq (56)
where
L,

with R, being the specific gas constant for water vapor. Relative humidity (rh) is set to the global constant value of 80%
(Hwang and Frierson, 2010; Siler et al., 2018), although other values or latiduinal spatial profiles of 7h could be easily defined.
C}, is a non-dimensional drag coefficient set to 1.5 x 10~3. Finally, u is an idealized spatial profile of the surface wind speed

(ms~1) defined as:

u=4—|—4‘sin(%)‘. (S8)

The idealized formulations for R and v are held constant for all climate states in this paper, although it would also be

reasonable to allow these functions to vary with climate and geography.
S2.3 Model stability

The equations underlying the MEBM are sensitive to the initial conditions in such a way that certain sets of initial conditions
can lead to unexpected results that differ substantially from results that represent very small changes to those initial conditions.
For example, figure SS1A shows how the MEBM climate state varies with the temperature boundary conditions. When the
temperature guesses for both poles are warm (up and to the right), the model produces an ice-free solution (yellow region)

and when both guesses are sufficiently cold the model generates a fully-glaciated “Snowball” solution (gray polygon). Similar
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stability maps emerge for other levels of atmospheric COs. As CO2 decreases sufficiently the multiple stable states collapse
and the both poles (green) solution space expands. We note that this map corresponds to the meridionally-symmetric “Cat-eye”
geography, and other geographic configurations will have different maps influenced by a number of factors, including how
symmetric the underlying land and ocean distributions that influence albedo are.

Some pixels in figure SS1A are empty, indicating that the model was unable to find a stable solution within ten seconds.
This is an arbitrary upper-limit imposed to increase computational efficiency and this limit can be modified by the user. We
have found that if a solution is not reached within ten seconds on a laptop PC it is likely that no solution will be reached and
the model will time-out after minutes of searching for a solution. The ten-second upper-bound avoids the MEBM stalling in
these minutes-long null results.

If the model is not solved in ten seconds or it returns a “snowball” solution, a simple set of rules are followed to identify a
nearby, acceptable solution (the user may also update these rules). Specifically, we search for a new, viable boundary condition
that can be solved in under ten seconds and does not produce a fully-glaciated result. Figure SS1B shows an example of such
a search. First, the model searches two steps toward a higher N pole temperature guess (marked by arrow 1), then two steps
toward a higher S pole temperature guess (arrow 2), then indefinite steps with higher N pole temperature guesses until a solution
is found. Step distance is user-defined (in degrees Celsius). The search stops when the first solution is found. The decision to
search indefinitely along the N pole temperature axis rather than along the S pole temperature axis is arbitrary but selected to
maintain a simple, reproducible result. We do not move diagonally across the solution space map to minimize the likelihood of

moving to an ice-free temperature state when the original temperature guesses are proximal to glaciated solutions.
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Figure S1. (A) Map of climate state (colors) at different temperature guesses (axes) for atmospheric pC'O2 of 350 ppmv. Warm south and
north pole boundary condition temperature guesses give an ice-free solution (yellow), blue and purple represent one glaciated pole, and green
is both poles. The gray area to the bottom-left is a “snowball” solution which we deem unreasonable for this work. Blank pixels are where
the model took more than 10 seconds to solve. (B) If the model takes longer than 10s to solve or returns a snowball, it looks for an acceptable

solution following path [1], then [2], then [3] indefinitely until a solution is reached.



Northland geography causes southward shift of ITCZ
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Figure S2. Precipitation in aquaplanet and Northland configurations. (A) Aquaplanet mean annual precipitation. Inter-Tropical Con-

vergence Zone (ITCZ) location, defined by peak tropical precipitation, is denoted with magenta line. (B) As (A), but for Northland mean

precipitation. (C) Difference between Northland and aquaplanet precipitation.



Similar runoff response, but different silicate weathering responses to temperature
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Figure S3. (A) Sensitivity of global runoff to temperature. Runoff sensitivity to climate is similar between Tropicslice and Polarslice world.

(B) Normalized silicate weathering flux response to pC'O,. Despite a weaker runoff sensitivity, Polarslice weathering response is similar to

Tropicslice world due to polar amplification of warming which compensates for the weaker runoff response.
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Figure S4. Zonal mean climate and weathering in Patchland and Northland. Global temperature (A, E), zonal mean precipitation (B,

F), the percent of global discharge (C, G), and the percent of global silicate weathering (D, H) for Patchland world (A-D) and Northland (E-

H). Thick, faded line segments in temperature and precipitation panels denote the latitudinal extent of land (whereas discharge and silicate

weathering are terrestrial only). Note the trade-off in tropical vs subtropical discharge in Patchland world, leading to temperature-driven

changes in weathering driving the climate response.
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