
Ocean Modelling 189 (2024) 102335

A
1

Contents lists available at ScienceDirect

Ocean Modelling

journal homepage: www.elsevier.com/locate/ocemod

Accuracy and stability analysis of horizontal discretizations used in
unstructured grid ocean models
Fabricio Rodrigues Lapolli a,b,∗, Pedro da Silva Peixoto a, Peter Korn b

a Universidade de Sao Paulo, Rua do Matao, 1010, Cidade Universitaria, Sao Paulo, 05508-090, Brazil
b Max–Planck Institute for Meteorology, Bundestrasse, 53, Hamburg, 20146, Germany

A R T I C L E I N F O

Keywords:
Shallow water model
Unstructured ocean models
NICAM
FeSOM 2.0
MPAS-O
ICON-O
Numerical instability

A B S T R A C T

One important tool at our disposal to evaluate the robustness of Global Circulation Models (GCMs) is to
understand the horizontal discretization of the dynamical core under a shallow water approximation. Here, we
evaluate the accuracy and stability of different methods used in, or adequate for, unstructured ocean models
considering shallow water models. Our results show that the schemes have different accuracy capabilities, with
the A- (NICAM) and B-grid (FeSOM 2.0) schemes providing at least 1st order accuracy in most operators and
time integrated variables, while the two C-grid (ICON and MPAS) schemes display more difficulty in adequately
approximating the horizontal dynamics. Moreover, the theory of the inertia-gravity wave representation on
regular grids can be extended for our unstructured based schemes, where from least to most accurate we
have: A-, B, and C-grid, respectively. Considering only C-grid schemes, the MPAS scheme has shown a more
accurate representation of inertia-gravity waves than ICON. In terms of stability, we see that both A- and
C-grid MPAS scheme display the best stability properties, but the A-grid scheme relies on artificial diffusion,
while the C-grid scheme does not. Alongside, the B-grid and C-grid ICON schemes are within the least stable.
Finally, in an effort to understand the effects of potential instabilities in ICON, we note that the full 3D model
without a filtering term does not destabilize as it is integrated in time. However, spurious oscillations are
responsible for decreasing the kinetic energy of the oceanic currents. Furthermore, an additional decrease of
the currents’ turbulent kinetic energy is also observed, creating a spurious mixing, which also plays a role in
the strength decrease of these oceanic currents.
1. Introduction

Much of the scientific knowledge of the climate is largely due to
the development of Earth System Models (ESMs), i.e. coupled models
consisting of the atmosphere, ocean, sea ice, and land surface. The
ocean, in particular, is a key component of these ESMs and a driver
of the climate. Consequently, it is crucial to develop and improve such
ocean models, with particular attention to global models (Randall et al.,
2018; Fox-Kemper et al., 2019a).

These efforts, along with the atmospheric modelling community,
allowed us to acquire important insights related to these numerical
models, such as being able to compartmentalize models into what
is termed dynamical cores along with several physical parametriza-
tions (Thuburn, 2008; Staniforth and Thuburn, 2012). Combined, these
form the main building blocks of the current operational ESMs. The
dynamical core is defined as being responsible for solving the governing
equations on the resolved scales of our domain (Randall et al., 2018;
Thuburn, 2008). For climate modelling, it is important that these cores
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are able to mimic important physical properties, such as mass and
energy conservation, minimal grid imprinting, increased accuracy, and
reliable representation of balanced and adjustment flow, which can be
achieved by using a proper grid geometry and horizontal discretiza-
tion (Staniforth and Thuburn, 2012). However, the use of unstructured
grids may pose challenges in fulfilling these properties.

Traditional ocean models commonly used Finite Difference or Finite
Volume discretization on regular structured grids (Fox-Kemper et al.,
2019b), e.g. NEMO (Gurvan et al., 2022), MOM6 (Adcroft et al., 2019).
The advantage of such grids is the orthogonality property, which allows
for a simpler discretization. However, for global models, it posed a
problem due to the accumulation of cells at the poles (singularity).
This singularity could make the simulation expensive to run, since it
constrained the timestep (Sadourny, 1972; Staniforth and Thuburn,
2012; Randall et al., 2018). Therefore, treatment was necessary to
avoid singularities, such as the use of multipolar grids (Murray, 1996;
Adcroft et al., 2019) or shifting the poles over land (Marsland et al.,
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2003). However, some applications may be unattainable or severely
harmed within the frameworks of these treatments (Mathis et al., 2022;
Korn et al., 2022; Logemann et al., 2021). Therefore, in recent years
a lot of effort has been put into the development of unstructured
global oceanic models which not only could potentially avoid these
singularities, but also allow more flexibility in local grid refinement,
improving the resolution of regions of interest, while also helping to
avoid parallel communication bottlenecks.

Given the success of triangular grids on coastal ocean models, one
popular approach is the use of triangular icosahedral-based global mod-
els, i.e. using geodesic triangular grids. However, there are still present
issues with triangular grids, in particular with the variable positioning
considering a C-grid staggering. The C-grid staggering (Arakawa and
Lamb, 1977) considers the velocity decomposed into normal compo-
nents at the edges of a computational cell. On traditional quadrilateral
meshes, this staggering was found to more accurately represent the
inertia-gravity waves (Randall, 1994). On unstructured triangular grids,
a spurious oscillation is present on the divergence field manifested as
a chequerboard pattern, and it is present due to the excessive degrees
of freedom (DOF) on the mass field (Gassmann, 2011; Le Roux et al.,
2005; Danilov, 2019; Weller et al., 2012). In theory, these can lead
to incorrect results if not correctly filtered, or can potentially trigger
instabilities.

This chequerboard pattern issue led modellers to avoid triangular
grids. One potential solution, which is used by MPAS-O model, is to
use the dual grid, based on hexagonal–pentagonal cells, formed by
connecting the circumcentres of the triangles (defining a Voronoi grid
dual to the triangulation). By relying on the orthogonality properties
between the triangular and the dual quasi-hexagonal grid, the problem
of the spurious divergence modes is avoided. However, the noise will
appear on the vorticity field, where it is easier to filter (Weller et al.,
2012).

Another potential solution to the chequerboard pattern on trian-
gular grids is the use of filters on the divergence field in order to
dampen these oscillations. However, these can potentially break the
conservative properties of the model. A solution devised by the ICON-O
ocean model community is the implementation of mimetic opera-
tors that required the preservation of some physical dynamical core
properties, while, simultaneously, filtering the noise of the divergence
field (Korn and Danilov, 2017; Korn, 2017; Korn and Linardakis, 2018).
However, the added triangle distortion of the grid might not completely
remove the noise, and, thus, the filtering property might be at most
approximate.

In order to avoid the noise on the divergence field of triangular grids
at all, a possibility is to avoid C-grid staggering. FeSOM 2.0 model, for
example, uses the (quasi-) B-grid discretization in which the velocity
vector field and the height field are allocated at the cell centres and
vertices, respectively (Danilov et al., 2017). Alternatively, the NICAM
atmospheric model, uses the A-grid discretization, which has all its
fields positioned at the vertices of the grid (Tomita et al., 2001; Tomita
and Satoh, 2004). Nonetheless, there are drawbacks to this solution. For
example, both staggerings display spurious modes that are potentially
unstable without treatment (Randall, 1994). The nature of these modes
differs for each of the grid designs. The A-grid source of numerical
noise is related to the manifestation of spurious pressure modes, whilst
the B-grid allows the manifestation of spurious inertial modes due to
excessive DOFs of the horizontal velocity (Tomita et al., 2001; Danilov
et al., 2017).

Nonetheless, regardless of grid design, other artefacts may also be
present. One particular spurious oscillation was detected on an energy-
enstrophy conserving scheme (EEN) on an atmospheric model, leading
to an instability (Hollingsworth et al., 1983). This kind of instability is
dependent on the fastest internal modes of the model, the horizontal
velocity and the resolution of the model (Bell et al., 2017). Due to
the presence of distortion on these newer models, instability might
2

be more easily triggered (Peixoto et al., 2018). This kind of noise is
noticeable in atmospheric models, due to the large flow speeds of the
atmosphere and the near-to-kilometre grid resolutions used in their
simulations (Skamarock et al., 2012). Although the ocean dynamics
are less energetic than the atmosphere, the higher distortion of the
grids and the rapid increase of resolution towards submesoscale models
make the effects of this noise more relevant. In fact, some models, such
as the NEMO’s EEN discretization, identified this noise and its effects,
which have shown significant effects on the model’s mesoscale jets and
submesoscale phenomena (Ducousso et al., 2017).

Considering the challenges discussed, this work aims to investigate
and compare the accuracy and stability of different horizontal dis-
cretizations used in global unstructured ocean models. First, in contrast
to regular grids, the unstructured nature of the mesh may play a
role in the computation of the underlying operators of each scheme’s
staggering design. Similarly, regular grids have a well-known inertia-
gravity wave dispersion, therefore, can we expect a similar behaviour
for the schemes in unstructured grids? Finally, these unstructured grid
schemes are prone to instabilities due to their discretization, therefore,
their different designs might play a role in their overall stability.

To address these questions, we chose to evaluate both MPAS-O
and ICON-O C-grid discretization schemes, due to their robustness
and different approaches on computing the necessary operators; the
FESOM2.0 for the B-grid scheme; and the NICAM A-grid scheme, which,
to our knowledge, currently is not present in ocean models, but could
be easily incorporated in existing ones. The investigation will mostly
focus on the rotating shallow water system of equations, but we will
also evaluate some properties of the 3D ICON-O model. In Section 2,
we describe each of the aforementioned schemes. In Section 3, we
evaluate the accuracy and rate of convergence of each of these schemes.
In Section 4, we perform a time integration, in order to evaluate the
accuracy of the integrated quantities and to observe some important
properties of the models, such as the representation of inertia-gravity
waves and the manifestation of near-grid scale oscillations under near
realistic conditions. Finally, we evaluate the stability of the models
under the effects of spurious grid scale oscillations and the effects of
these oscillations in a 3D realistic oceanic ICON-O model.

2. Shallow water models

In order to investigate these models, we test the schemes under
the shallow water system of equations (Gill, 1982). This system is as
follows:
𝜕ℎ
𝜕𝑡

= −∇ ⋅ (𝐮ℎ) (1a)
𝜕𝐮
𝜕𝑡 = −𝐮 ⋅ ∇𝐮 − ∇𝛷 − 𝑓𝐮⟂ + 𝐹

= −∇(𝛷 + 𝐸𝑘) − 𝜔𝑢⟂ + 𝐹
(1b)

here ℎ and 𝐮 are the height (scalar) and velocity (vector) fields of the
ystem; 𝑓 is the Coriolis parameter; 𝜔 = 𝜁 + 𝑓 is the absolute vorticity;
is the relative vorticity or curl; 𝛷 = 𝑔(𝑏 + ℎ) is the geopotential, 𝑔

s the acceleration of gravity, and 𝑏 is the bathymetry; 𝐮⟂ = 𝐤̂ × 𝐮 is
he perpendicular vector field 𝐮 and 𝐤̂ is the vertical unit vector; and
𝐸𝑘 = |𝐮|2∕2 is the kinetic energy. The right-handmost side of (1b) is
known as the vector invariant form of the system of equations.

In this section, we present an introduction to each model and how
they interpolate their quantities of the shallow water operators. In the
next section, Section 3, we describe how each model computes each of
the shallow water operators.

2.1. Discrete framework

The models were evaluated with the Spherical Centroidal Voronoi
Tessellation (SCVT) optimization (Miura and Kimoto, 2005) between
the second (g2) and eighth (g8) refinements of the icosahedral grid
( Table 1). This optimization has the property of having its vertices

coincide with the barycentre of the dual cells, quasi-hexagonal (red
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Table 1
Spatial resolution of the SCVT grid, considering the average distance
between triangles circumcentre and the average edge length in km.

Circ. distance (km) Edge length (km)

g2 1115 1913
g3 556 960
g4 278 480
g5 139 250
g6 69 120
g7 35 60
g8 17 30

Fig. 1. SCVT primal (black lines) and dual (red lines) g2 grid.

lines of Fig. 1). This allows for an increase in accuracy for operators
defined on vertices. This choice was made for simplicity, but may
unfairly benefit both NICAM and MPAS-O models. However, ICON-O
typically favours Spring Dynamics Optimization (Korn et al., 2022),
which increases the convergence of some grid properties, such as
reduction of mesh distortion, convergence of edge midpoints (Miura
and Kimoto, 2005).

The structure of the grid domain will consist of triangular cells
(primal grid) 𝐾 ∈  with edges 𝑒 ∈  . The set of edges of a particular
cell 𝐾 is represented by 𝜕𝐾. The vertices in the endpoint of these
edges are represented by 𝜕𝑒. Occasionally, when necessary, the edges
may be denoted as 𝑒 = 𝐾|𝐿 where it is positioned between cells 𝐾
and 𝐿. The dual cells will be denoted by the (̂⋅) symbol. The dual
cells and edges, for example, are denoted as 𝐾 ∈ ̂ and 𝑒 ∈ ̂ ,
respectively. Furthermore, the centre/midpoint position of the elements
will be denoted by the boldface, e.g. the cell circumcentre position 𝐊,
and the length or area of the respective elements will be denoted by
| ⋅ |, e.g. |𝑒|, |𝐾| is the edge length and dual cell area, respectively.

We note that the relationship between the primal and dual mesh will
differ depending on the model discretization definitions. Some models
use the circumcentre of the triangle to construct the dual mesh. The
resulting relationship will be a Delaunay triangulation (for the primal)
and a Voronoi diagram (for the dual), making their edges orthogonal
to each other, which can be exploited by these models.

Additionally, normal (𝐧𝑒) and tangent (𝐭𝑒) vectors are positioned at
the edge 𝐞 or 𝐞̂, such that 𝐧𝐞 × 𝐭𝐞 = 𝐞. The former vector is normal to
𝑒, while the latter is parallel to it. These definitions are summarized in
Table 2.

In the next section we will describe the schemes used in this work.
A summary of the is provided in Table 3.
3

Table 2
Definitions of the grid structure.
Symbol Description

 Set of primal cells
 Set of primal edges
𝐾, 𝐿 primal grid cells
𝜕𝐾 Set of edges of cell 𝐾
𝑒 = 𝐾|𝐿 primal edge
𝑛𝑒 , 𝑡𝑒 Normal and tangent vectors on edge 𝑒
𝜕𝑒 Set of vertices of edge 𝑒

̂ Set of dual cells
̂ Set of dual edges
𝐾, 𝐿̂ dual grid cells
𝜕𝐾 Set of edges of cell 𝐾
𝑒 = 𝐾|𝐿̂ dual edge
𝑛𝑒 , 𝑡𝑒 Normal and tangent vectors on edge 𝑒
𝜕𝑒 Set of vertices of edge 𝑒

Fig. 2. A-grid cell structure. The blue circles on the vertices are the height scalar
points, and the arrows are the components of the velocity vector points.

2.2. NICAM (A-grid)

The NICAM model is a non-hydrostatic atmospheric-only model
developed at AICS, RIKEN. Its development aimed to develop a high-
performance global model (Tomita and Satoh, 2004). The model has
been shown to produce accurate results for simulations with a 3.5 km
mesh size, and recent developments aim to pursue sub-kilometre grid
scales (Miyamoto et al., 2013).

NICAM’s dynamical core’s horizontal component is based on the
A-grid discretization, in which all variables are located at the grid
vertices (Fig. 2). The discretization of this scheme allows only for
mass conservation. Other quantities, especially related to the velocity
equation, cannot be conserved. This is because this scheme allows
for spurious pressure modes, which may destabilize the model, thus,
requiring filtering.

Additionally, small-scale oscillations may also be present due to the
grid imprinting, which may also decrease the model’s stability (Tomita
et al., 2001). These oscillations, however, can be remedied with a
proper grid optimization. One important requirement is that the dual
cell centre of mass coincides with the vertex of the grid, guaranteeing
consistency of the discretization of the operators.

Moreover, compared to the MPAS-O shallow water scheme, NICAM’s
A-grid discretization has been shown to display a higher resilience
when non-linearities are present, implying that it can better treat some
types of instabilities than other models (Yu et al., 2020). Therefore,
despite this scheme was not originally been developed for oceanic
purposes, it can be suitably implemented in such applications.
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2.2.1. Interpolating operators
To compute the operators in the shallow water system, we need that

the position of these operators coincide with the variables, i.e. at the
vertices. Therefore, the computation must be performed on the dual
cell. To do this, it is necessary to interpolate the variables to the dual
edge midpoint. We do this by first interpolating to the circumcentre of
the primal cell:

ℎ𝐾 = 1
|𝐾|

∑

𝑣∈𝜕𝑒𝐾

𝑤𝑣ℎ𝑣, (2a)

𝐮𝐾 = 1
|𝐾|

∑

𝑣∈𝑒𝐾

𝑤𝑣𝐮𝑣, (2b)

where 𝑤𝑣 is the sectional triangular area formed by the circumcentre
and the opposite vertices of the cell (See Figure 2 of Tomita et al.
(2001)). This interpolation, known as the barycentric interpolation,
will provide us with a second order accurate interpolation. A second
order interpolation to the edge midpoint can then be met by averaging
neighbouring primal cells:

ℎ𝑒 = 1
2
(ℎ𝐾 + ℎ𝐿), (3a)

𝐮𝑒 = 1
2
(𝐮𝐾 + 𝐮𝐿). (3b)

2.3. FESOM (B-grid)

FESOM 2.0, developed in the Alfred Wegener Institute, contains
ocean (Danilov et al., 2017) and ice (Danilov et al., 2015, 2023) compo-
nents only. The model is an update from its previous 1.4 model (Wang
et al., 2008). The new model was developed to provide faster simu-
lations compared to its 1.4 predecessor (Scholz et al., 2019), which
is partly owed to the change from Finite Element Methods to Finite
Volume discretization (Danilov et al., 2017).

In addition to its updated components and faster simulations, FE-
SOM 2.0’s horizontal discretization of the dynamical core is based
on the Arakawa B-grid staggering (Arakawa and Lamb, 1977). It is
important to note that there is no true analogue of the B-grid on tri-
angles (Danilov, 2013), in particular because of the unbalanced nature
of the cell-vertex staggering (balanced in square cells). Therefore, this
discretization has been coined as quasi-B-grid. However, due to the
similarities in the positioning of the fields in the cell, in this work, we
will describe this discretization only as B-grid.

This discretization is similar to the finite element P0–P1 and known
to not be contaminated with spurious pressure modes, contrary to the
aforementioned A-grid and a traditional B-grid discretization (Le Roux
et al., 2007). However, this discretization is contaminated with spu-
rious inertial modes that are caused by the unbalanced degrees of
freedom (Le Roux et al., 2007; Danilov, 2012, 2013; Danilov et al.,
2017).

In addition to the B-grid discretization, FESOM’s grid design plays
a crucial role in computing the operators necessary for FESOM’s hori-
zontal discretization. It creates a dual cell by connecting the triangles’
barycentre with its edge midpoint, creating a cell with 10 to 12 edges
(Fig. 3).

2.3.1. Interpolation operators
This grid allows computing the operators by only interpolating the

height field to the edges when needed to compute the gradient at the
cells’ barycentre. Given an edge 𝑒, with vertices 𝐾, 𝐿̂ ∈ 𝜕𝑒, then the
interpolation is defined as:

ℎ𝑒 = 1
2
(ℎ𝐾 + ℎ𝐿̂), (4)

thus achieving a second order interpolation on the edge.
FESOM’s horizontal momentum discretization is provided with three

alternative computations of the momentum equations: two in its flux
advective equation form, one computed at the centre of mass of the
4

Fig. 3. B-grid cell structure. The blue circles on the vertices are the height scalar
points, and the arrows on the triangle centre are the components of the velocity vector
points.

triangular cell and the other computed at the vertex, and one in a
vector-invariant form, which is computed at the vertices of the grid.
The two forms computed at the vertices would thus require to be
interpolated at the centre of mass of the triangle with (4). It is also
argued that the use of the flux advective form of the equation provides a
small internal diffusion on the system (Danilov et al., 2015). However,
there is a surprising lack of published work comparing these forms,
indicating a need for a more in-depth research in the future. In this
work, in order to ensure a fair comparison with the other schemes, we
chose to compute this discretization using the vector invariant form of
the equation.

2.4. MPAS-O (C-grid)

MPAS, an ESM from the Climate, Ocean and Sea Ice Modelling
(COSIM) and National Center for Atmospheric Research (NCAR), com-
prises atmospheric, ocean, and ice components (Ringler et al., 2010;
Skamarock et al., 2012; Hoffman et al., 2018; Turner et al., 2022).
The oceanic component has been shown capable of accurately repre-
senting geophysical flows on meshes with a large variation of resolu-
tion (Ringler et al., 2013).

The horizontal discretization of the dynamical core of MPAS was
developed for arbitrarily sided C-grid polygons (Thuburn et al., 2009;
Ringler et al., 2010). It is inspired by the Arakawa and Lamb’s scheme
(Arakawa and Lamb, 1981), which is capable of providing some con-
servative properties, such as total energy and potential vorticity, while
also providing reliable simulations for these arbitrary grid structures
without a breakdown of the time-integrated solutions, which has pre-
viously affected schemes using a quasi-hexagonal mesh (Staniforth and
Thuburn, 2012).

Although this scheme could potentially be used for any arbitrarily
sided polygonal mesh, the icosahedral based hexagonal grid was shown
to provide the most accurate and well-behaved solutions (Weller et al.,
2012). For example, analysis of this discretization has shown that
the scheme can achieve at most first order accuracy for most of the
operators, but a stagnation or divergent accuracy for others (Peixoto,
2016). Despite this, the model’s noise is well controlled, while also
maintaining its geostrophic modes with zero-frequency (Weller et al.,
2012; Peixoto, 2016).

On this C-grid discretization (Fig. 4.a), the velocity vector field is
decomposed on the midpoint edges of the triangular cells, normal to
the pentagonal/hexagonal cells. The height field is collocated at the
triangle vertices of the grid, which correspond to hexagon/pentagon
‘‘centres’’. This minimizes the use of interpolating variables in this
scheme.
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Fig. 4. C-grid cell structure, considering hexagons (a) and triangles (b) as the primal
grid. Red circles are the height scalar points, and the arrows are the decomposed
velocity vector field.

2.5. ICON-O (C-grid)

The ICON numerical model is a joint project between the German
Weather Service and the Max Planck Institute for Meteorology and
consists of atmosphere, ocean (including biogeochemistry), land, and
ice components (Giorgetta et al., 2018; Korn, 2017; Jungclaus et al.,
2022). The ICON modelling team was not only able to successfully
provide an accurate simulation of geophysical flow, but also provided
evidence that their model is within reach to accurately simulate ocean
submesoscale flow (Hohenegger et al., 2023).

In the particular case of ICON’s oceanic component, i.e. ICON-O, its
horizontal discretization of the dynamical core is based on the mimetic
methods approach, which is a practical way to discretize PDEs while
taking into account fundamental properties of these equations (Brezzi
et al., 2014). This philosophy, in theory, could allow for ICON depend-
ing on the truncation time to achieve the conservation of total energy,
relative and potential vorticity, and potential enstrophy to some order
of accuracy.

To accomplish these conservation properties under the mimetic
methods, ICON-O uses the concept of admissible reconstructions
( , ̂ , ̂†) (Korn and Linardakis, 2018). These are in charge of connect-
ing variables at different points, acting as interpolation and reduction
operations. They, i.e. the admissible reconstructions, are required to
have some properties, such as providing unique and first-order accurate
fluxes, having its nullspace coinciding with the space of divergence
noise, and conserving the aforementioned properties. However, in order
to achieve these properties, it is required to compute the inverse of
the resulting mass matrix on the velocity equation for each timestep.
To avoid the additional computational cost, we, therefore, used the
matrix lumping approach, i.e. assumed that the inverse of the mass
matrix is the identity matrix. It was shown that this approach does
not significantly impact the simulations of the model, nor it does
significantly impact the energy conservation (Korn and Danilov, 2017;
Korn and Linardakis, 2018).

2.5.1. Interpolating operators
In contrast to the MPAS, ICON-O model uses the triangle cell as its

primal grid (Fig. 4.b). In order to provide the interpolation between
variables, ICON-O uses the Perot operator. This function reconstructs
the velocity field components of the edge midpoint to the triangle
centre (𝑃 = ), and subsequently project these reconstructed vectors
to their original position at the edge midpoint (𝑃 𝑇 = ) (Perot, 2000):

𝐏𝐮𝐾 = 1
|𝐾|

∑

𝑒∈𝜕𝐾
|𝑒|𝑢𝑒𝐧𝑒, (5)

𝑃 𝑇 𝑢𝑒 =
1
|𝑒|

(𝐮𝐾𝑑𝑒,𝐾 + 𝐮𝐿𝑑𝑒,𝐿) ⋅ 𝐧𝑒, 𝑒 = 𝐾|𝐿 (6)

where |𝐾| is the area of the triangular cell, |𝑒| and |𝑒| is the primal
and dual edge length, and 𝑑𝑒,𝐾 and 𝑑𝑒,𝐿 are the distances between
the edge midpoint and the respective cell centre. The combination of
5

operators is denoted as 𝑀 = 𝑃 𝑇 𝑃 and is key to compute the operators
of the shallow water equations. This mapping, 𝑀 , was found to filter
the divergence noise of triangles without losing the aforementioned
physical properties (Korn and Danilov, 2017; Korn, 2017; Korn and
Linardakis, 2018). However, the operator has the potential to smooth
high wavenumber phenomena (Korn and Danilov, 2017).

Additionally, there is also a set of operators that reconstructs the
vector velocity field into the vertices of the grid (𝑃 = ̂) and reduce it
back into the edge midpoints (𝑃 † = ̂†). This sequence is defined as:

𝐏̂𝐮𝐾̂ = 1
|𝐾̂|

∑

𝑒∈𝜕𝐾̂

|𝑒|𝑢𝑒𝐭𝑒, (7)

𝑃 †𝑢𝑒 =
1
|𝑒|

(𝑑𝑒,𝐾̂𝐮𝐾̂ + 𝑑𝑒,𝐿̂𝐮𝐿̂) ⋅ 𝐧𝑒, 𝑒 = 𝐾̂|𝐿̂ (8)

where |𝐾̂| is the area of the dual quasi-hexagonal cell, 𝐭𝑒 is the tan-
gent unit vector at the dual edge midpoint, and 𝑑𝑒,𝐾̂ and 𝑑𝑒,𝐾̂ is the
distance between the edge and the respective dual cell centre. Thus,
the sequence 𝑀 = 𝑃 †𝑃 allows us to compute the Coriolis term of
the shallow water equations. This dual operator has shown to provide
a non-zero spurious frequency geostrophic modes, which have been
shown to create numerical waves in the system (Peixoto, 2016), and
could potentially be damaging to the stability of the scheme (Peixoto
et al., 2018). However, due to the filtering property of the operator 𝑀 ,
these modes could be removed from the simulation due to their filtering
property on the grid scale.

3. Accuracy of the discrete operators

We aim to analyse the truncation errors of each operator from
Nonlinear Shallow Water Eqs. (1). To achieve this we evaluate two
different test cases: The first follows from Heikes and Randall (1995)
and Tomita et al. (2001), henceforth Test Case 0 or TC0, where for 𝛼, 𝛽
defined as:

𝛼 = sin𝜙

𝛽 = cos(𝑚𝜙) cos4(𝑛𝜃),

where 𝜙 and 𝜃 are the longitude and latitude, respectively, then 𝐮 and
ℎ are defined:

𝐮 = 𝛼∇𝛽 (9)

ℎ = 𝛽. (10)

We consider in our analysis 𝑚 = 𝑛 = 1, since it is a particular
smooth case with both non-zero vector components, which allows us
to evaluate the accuracy of the operators and compare them with the
literature.

A second case is the Nonlinear Geostrophic Balanced testcase,
henceforth Test case 1 or TC1, from the toolkit set of Williamson et al.
(1992). 𝐮 and ℎ are defined as:

𝑔ℎ = 𝑔𝑏0 − ℎ0 sin
2 𝜃 (11a)

𝑢 = 𝑢0 cos 𝜃, (11b)

where 𝑔𝑏0 = 2.94 × 104 m2 s−2, ℎ0 = 𝑎𝛺𝑢0 + 𝑢20∕2 m2 s−2, 𝑢0 =
2𝜋𝑎∕(12 days) m s−1, 𝑔 = 9.81 m s−2 is the acceleration of gravity,
𝑎 = 6.371 × 106 m is the radius, and 𝛺 = 2𝜋∕86400 s−1 is the angular
frequency of earth.

Additionally, in order to compare our results, we define the errors in
our domain as 𝛥𝑓 = 𝑓𝑟 − 𝑓 ref

𝑟 , where 𝑓𝑟 and 𝑓 𝑟𝑒𝑓𝑟 is the computed and
reference function, respectively, for a mesh element 𝑟 of the domain.
Thus, the maximum and second error norm may be defined as:

𝐿∞ =
max𝑟 |𝛥𝑓𝑟|
max𝑓 |𝑓 ref

𝑟 |

(12)

𝐿2 =

√

𝑆(𝛥𝑓 2)
ref 2

(13)

𝑆((𝑓 ) )
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Table 3
Summary of the main models to be compared with their respective components: Ocean (Oc), Atmosphere
(Atm), Ice Dynamics (Ice) or Land; and their conservation properties: Total energy (TE), Kinetic Energy
(KE), Potential vorticity (PV), and Enstrophy (Enst).

Institution Staggering Components Conservation

NICAM AORI, JAMSTEC, AICS A-grid Atm TE
FESOM AWI B-grid Oc TE
MPAS COSIM, NCAR C-grid Atm/Oc/Ice PV, TE
ICON DWD, Max–Planck C-grid Atm/Oc/Land/Ice KE, TE, PV, Enst
where 𝑆(𝑓 ) = ∑

𝑟∈𝛺 𝛥𝑓𝐴𝑟∕
∑

𝑓∈𝛺 𝐴𝑟, and 𝐴𝑟 is the area of the element,
.g. 𝐴𝑒 for the edge, |𝐾| for triangles, or |𝐾̂| for the dual cell.

In this analysis, we used pointwise values for both the discretized
ector and mass fields and compared them with pointwise reference
alues. Pointwise values are second-order approximations of the cell-
verage at the centroid of a cell or edge-average at the midpoint of
n edge. Given the distortion of our cells, due to the geometry of the
phere, the pointwise values may differ from the centroids/midpoint,
nd, thus, the accuracy can be reduced to first-order accuracy (Peixoto,
016). Additionally, given that real datasets are provided with inter-
olated pointwise data values, a pointwise analysis better reflects the
ealistic accuracy of the model.

.1. Divergence

The divergence operator, part of the mass equation, can be defined
rom the Divergence Theorem. Following this, we can provide a general
ormula for its discretized version as:

∇ ⋅ 𝐮)𝑖 ≈ (𝐝𝐢𝐯𝑢)𝑖 =
1
|𝐹 |

∑

𝑒∈𝜕𝐹
|𝑒|𝐮 ⋅ 𝐧𝑒𝑛𝑒,𝐹 , (14)

where 𝐹 is a cell with barycentre 𝑖 and edges 𝑒 ∈ 𝜕𝐹 , 𝑛𝑒,𝐹 = {1,−1} is
a signed valued aimed to orient the normal velocity 𝐮 ⋅ 𝐧𝑒 away from
the element 𝐹 .

In order to compute the divergence field, we note that both the A-
grid and B-grid schemes compute the divergence field at the dual cells
(vertices). For the former scheme, we require an interpolation of both
the scalar height, (2) and (3), and vector velocity fields at the dual edge
midpoint, in order to compute the divergence at the dual cell, i.e. quasi-
hexagonal cell. In the case of the latter scheme, we only require the
interpolation of the scalar height field at the primal edge midpoint (4),
in order to compute the same divergence field at the primal cell.

In the case of the C-grid, there is a substantial difference between
the computation of both schemes. MPAS interpolates the scalar height
field to the primal edges, similar to B-grid, while ICON uses admissible
reconstruction operators of the form 𝑃 𝑇 ℎ𝑃𝑢 to compute the operator.

These differences on the schemes are reflected in our results
(Fig. 5.div). The A-grid for the TC0 testcase displayed an error con-
vergence with an initial rate of second order up to the sixth refinement
(g6). On finer grids, for the 𝐿∞, this scheme has slowed down to first
order, while on second order, the scheme remained converging up to
second order rate. On the TC1, a more consistent convergence rate was
observed, on the L∞ and L2, the scheme displayed a first and second
order convergence rate. On other grids, in particular the standard and
Spring Dynamics, the A-grid has shown to achieve at least a first order
convergence rate (Tomita et al., 2001). Although a direct comparison
cannot be provided, since our testcases differ, the scheme on an SCVT
has apparently shown to provide a comparable convergence rate to the
intended optimized grid on either the L∞ or the L2 norm.

Regarding both C-grid schemes, we observe a similar behaviour
in the computed operator. In particular, neither scheme displays an
increase in accuracy of the divergence field on the 𝐿∞. For the case
of ICON, this result has been previously observed in a similar work
by Korn and Linardakis (2018). It was also shown that the naive
approach to calculate the divergence field still retained a first order
increase in accuracy, implying that the main culprit of this inability
6

to increase the accuracy likely lies on Perot’s operator itself (Table
4 of Korn and Linardakis (2018)). The authors have not provided a
geometrical analysis of their non-uniform grid, but we note that the
SCVT grid share some similarities with the standard grid, such as the
non-convergence of the distance between the primal and dual edge
midpoints, which likely has a deleterious effect on the accuracy of the
operator. However, on the L2, the scheme was able to reach at least a
first order convergence rate on both testcases.

On the case of MPAS, the inability to provide a decrease in error
with grid has been discussed in Peixoto (2016). It is reasoned that since
the computation of the divergence is not based on velocities from the
Voronoi edge midpoints, the discretization is inconsistent, and a first
order convergence is not guaranteed. In contrast, on the 𝐿2, MPAS was
able to reach a second order rate up to g4, but the speed of convergence
slows down to first order on TC0, while on TC1 the second order rate
is maintained throughout grid refinements.

Finally, B-grid has provided consistent accuracy throughout each
testcase. We observed a first and second convergence rate for 𝐿∞ and
𝐿2, respectively, for both testcases. A decrease is observed on TC0,
however, this decrease is likely associated with the error approaching
the machine truncation error.

When comparing the errors of the schemes, we note that both A- and
B-grid schemes display a decrease in speed of accuracy convergence as
the grid is refined, with the latter scheme displaying the smallest errors
on most of the tested cases and error norms. Additionally, despite ICON
providing convergence on some tests, the scheme displays the largest
errors of all tested schemes. It is likely that the smaller stencil used
in ICON’s divergence computation play a role in these larger errors.
Another contribution is potentially related to Perot’s operator, whose
interpolation could act as smoothing the velocity field.

Overall, we note that the structure of the mesh, regarding cell
geometry (primal or dual cell) and distortion, plays a contributing
factor in approximating the divergence field on all schemes. Both C-
grid schemes, in particular, seemed to be the most vulnerable to the
grid. In contrast, B-grid’s consistency in its accuracy apparently seems
to be the least vulnerable to the increase in the distortion of the grid.

3.2. Gradient

The gradient operator, from the momentum equation, is a vector
field, whose vector points itself to the steepest regions of the original
field. The schemes provide different discretizations for this operator:

∇ℎ ≈ 𝐠𝐫𝐚𝐝 ℎ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
|𝐾̂|

∑

𝑒∈𝜕𝐾̂ ℎ𝑒|𝑒|𝐧𝑒 A-grid,
1
|𝐾|

∑

𝑒∈𝜕𝐾 ℎ𝑒|𝑒|𝐧𝑒 B-grid,
1
|𝑒| (ℎ𝐾̂ 𝑡𝑒,𝐾̂ − ℎ𝐿̂𝑡𝑒,𝐿̂) MPAS,
1
|𝑒| (ℎ𝐾𝑛𝑒,𝐾 − ℎ𝐿𝑛𝑒,𝐿) ICON,

(15)

where |𝑒| and |𝑒| are the primal and dual edge length, respectively, 𝐧𝑒
and 𝐧𝑒 is the unit vector normal to the primal and dual edge, 𝑛𝑒,𝐾 and
𝑡𝑒,𝐾̂ are the sign (−1 or 1) in order to correct the orientation of the
unit vector in respect to the primal 𝐾 and dual 𝐾̂ cell, respectively. A-
and B-grid’s schemes provide a complete vector field on our domain by
computing the average gradient within the centre of the dual (A-grid)
or primal (B-grid) cell. Note that for the A-grid, we cycle through the
quasi hexagonal cell edges (𝜕𝐾̂), utilizing the scalar points on the dual
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Fig. 5. TC0 (first and second row panels) and TC1 (third and fourth row panels) operators 𝐿∞ (first and third panels) and 𝐿2 (second and fourth panels) error norms for the
A-grid (black lines), B-grid (red lines), MPAS (blue lines), and ICON (green lines).
edge midpoint (ℎ𝑒), which are computed by (2) and (3). The C-grid,
on the other hand, computes the gradient with respect to the normal
vector 𝑛𝑒/𝑛𝑒 by computing the difference between the values of the cell
neighbouring the edge 𝑒/𝑒. In that regard, the C-grid computation can
be perceived as a gradient in the direction of 𝐧𝑒/𝐧𝑒.

In relation to the mesh, the A-grid scheme is computed at the
vertices of the mesh, while the B-grid is computed at the barycentre
of the triangular cells. On the other hand, both C-grid schemes are
computed on the primal edge midpoint of our mesh. However, the
MPAS scheme considers the neighbouring dual cell (quasi-hexagonal)
centre to compute the gradient, while ICON considers the neighbouring
primal cell (triangles) centre (Fig. 4).

As in the divergence approximation, these differences in computa-
tions are also reflected in our results (Fig. 5.grad). The A-grid displays
for coarser grids a fast convergence rate (second order rate), up to 𝑔5,
for both testcases. For finer grids, however, the 𝐿∞ error slows down
to a first order convergence, while the 𝐿2 convergence rate remains
consistent. The analysis made by Tomita et al. (2001) has shown that
their grid is capable of displaying a second order error convergence.
We again note that although we cannot directly compare our results,
due to the differences in testcases used, our results show a comparable
error convergence with the authors with the SCVT-optimized grid.

Similarly, the B-grid scheme shows a consistent decrease in error
on all norms and testcases, similar to the divergence operator results.
However, it displays only a first order convergence rate, in contrast
to the second order on the divergence operator. The computation of
the gradient on the B-grid is analogue to the divergence computation
in ICON, therefore a similar argument follows, explaining that the
expected convergence rate of such a scheme being a first order.

Comparably, MPAS also displays a consistent convergence rate, but
in this case this scheme achieves a second order rate on all norms and
testcases. Since the edge midpoint is situated, by definition, at the mid-
point between the neighbouring vertices, the discretization is analogue
7

to a centred difference scheme used in traditional quadrilateral grids.
Therefore, we can properly achieve a second order convergence rate.
The same argument is provided in Peixoto (2016), however the author
also argues that when we consider the computation of the gradient of
the kinetic energy we do not only reach a convergence rate, but our
error diverges with grid refinement. The author reasons that the error
of kinetic energy is of zeroth order (to be discussed further), and, thus,
its gradient diverges.

On the other hand, the ICON’s scheme gradient error displays a
near second order convergence rate for coarser grids on the 𝐿∞ norm
of the TC0, but this error slows down for further refinements. On the
TC1 testcase, the rate of convergence on 𝐿∞ is consistent in first order.
However, at the 𝐿2 norm, the scheme has an accuracy of near second
order with a magnitude similar to that of MPAS.

Finally, we can then draw a comparison from all schemes. The B-
grid has displayed the largest errors in magnitude and was the only
scheme to achieve a low first order convergence on the 𝐿2. The A-grid
𝐿∞ displays a similar error magnitude and behaviour in convergence
with ICON. MPAS has shown the lowest errors among all schemes,
and, in the 𝐿2, displayed a comparable magnitude and convergence
behaviour with ICON.

Overall, we again observe an impact of the grid structure on our
schemes, however, this impact is not as damaging as found in the
divergence computation. The directional derivative of MPAS makes it
easier to achieve a consistent increase in accuracy, and the mismatch
between the edge midpoints, has thwarted ICON’s convergence rate.
Despite this, the scheme still retained a first order convergence rate.

3.3. Curl

The curl operator, part of the vector invariant form of the shallow
water velocity equation, is connected to the Coriolis Term. This term
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requires a careful discretization to allow for Coriolis energy conser-
vation. This operator, in its continuous form, is defined from Stokes’
Theorem. Its Finite Volume discretization follows from this theorem,
and a general formulation for all our schemes can be defined as:

∇ × 𝐮𝑖 ≈ vort 𝑢𝑖 =
1
|𝐹 |

∑

𝑒′∈𝜕𝐹
|𝑒′|𝐮𝑒′ ⋅ 𝐭𝑒′ 𝑡𝑒′ ,𝐹 , (16)

defined at a point 𝑖 for an arbitrary cell 𝐹 with edges 𝑒′. 𝐭𝑒′ is the
tangent vector to the edges 𝑒′ and 𝑡𝑒,𝐹 = {1,−1} is a signed value
guaranteeing that the unit tangent vector is counterclockwise on the
cell.

For each scheme, the both A-grid, and B-grid compute the vorticity
field on the vertices of the mesh. Since, for the B-grid, the shallow water
velocity equation requires the points at the barycentre of the triangle
cell, we interpolate the vorticity from the vertices to the barycentre.
For both C-grid schemes, MPAS and ICON computes this operator at
the barycentre of the primal and dual cell, respectively.

In this context, similarities are observed with the divergence op-
erator. For example, the A-grid convergence rate for both norms and
testcases, reaches the same order as the divergence operator. On the
TC0 testcase, however, throughout all grid refinements the error retains
a first order, unlike the divergence operator, which begins with a
second order and slows down to a first order. Additionally, on the
TC1 testcase, we observe that the vorticity error displays a second
order convergence up to g4 and slows down to first order, unlike the
divergence operator (Fig. 5.Vort).

Similarly, the B-grid scheme displays the same behaviour as in the
divergence operator. It displays a first order convergence rate on 𝐿∞
and a rate of second order for 𝐿2 on both testcases.

In contrast, both C-grid schemes display a different behaviour from
the divergence operator. MPAS shows a consistent first order conver-
gence rate for both norms on both testcases. Given that this compu-
tation is computed on the dual cell centre (red polygon in Fig. 4),
i.e. pentagon or hexagon, we can then achieve a higher accuracy rate
of around second order.

ICON, on the other hand, displays a zeroth order convergence on
𝐿∞ for the TC0 testcase. This is likely due to the mismatch of edge
midpoints, similar to MPAS’s divergence operator. However, on this
norm for TC1, the error converges on a first order rate. This difference
implies that different testcases will potentially impact the error. On this
particular case, we note that the meridional velocity is not present on
TC1, which may facilitate the computation of the vorticity. This result
is also seen on 𝐿2, while for TC0, the norm converges in first order, for
TC1, it converges in second order.

In comparison, we observe that ICON is the only scheme that
has trouble increasing its accuracy when approximating the vorticity
operator. In addition, both A- and B-grid schemes were the only ones to
display a second order error rate on the L2 for both schemes. Although
MPAS also has shown an overall convergence, in contrast to ICON, it
still has shown a larger error for TC0’s 𝐿2 norm and both norms of TC1.

Overall, there are similarities in the error behaviour between the
vorticity and divergence schemes due to the similar concepts underly-
ing their discretizations. In that regard, we also observe an impact of
the grid structure and the testcase used on the accuracy of the vorticity
approximation.

3.4. Kinetic energy

Similar to the vorticity operator, the kinetic energy is part of the
vector invariant form of the velocity equation of the shallow water,
whose gradient will then be computed. The kinetic energy is defined
as:

𝐸kin = 1
2
|𝐮|2.

The computation of this operator on both A- and B-grid schemes is
straightforward, since the vector velocity field is complete on each
8

vertex and barycentre, respectively, of the mesh. However, for the
C-grid schemes the vector field is decomposed on the edges of the
mesh and, therefore, requires a reconstruction in order to approximate
the value of the kinetic energy field. In the particular case of MPAS
and ICON, it is difficult to provide a general formula, therefore we
individually define:

𝐸(MPAS)
kin = 1

2|𝐾̂|

∑

𝑒∈𝜕𝐾̂

|𝑒||𝑒|
2

𝑢2𝑒 , (17)

𝐸(ICON)
kin =

|𝐏𝐮|2

2
, (18)

where |𝐾̂| is the area of the quasi-hexagonal cell. Both schemes provide
some form of interpolation of the velocity on the cell centre, quasi-
hexagonal cell centre for MPAS, and triangular cell centre for ICON.
It is observed on this computation that MPAS’s and ICON’s weights
are shown to be: |𝑒||𝑒|∕2, and |𝑒|𝑑𝑒,𝐾 , where again 𝑑𝑒,𝐾 is the distance
etween the edge midpoint 𝑒 and circumcentre 𝐾. We note that for
quilateral triangles 𝑑𝑒,𝐾 = |𝑒|∕2. An important note is that MPAS uses a
ombination of Kinetic Energy at the triangles (𝐾) and quasi-hexagonal
ells (𝐾̂) (Skamarock et al., 2012), but in this work we restrict ourselves
ith the original formulation from Ringler et al. (2010).

These differences in computation are reflected in the error of the
ield (Fig. 5.Ek). On MPAS scheme, we see that for both testcases
t does not converge on 𝐿∞. This result was discussed by Peixoto
2016), as being an inconsistent formulation of the kinetic energy
n the SCVT. Part of this inconsistency could partly be due to the
omputation of the kinetic energy on a single velocity component, as
reviously mentioned. Despite this, on 𝐿2, MPAS display a second order
onvergence on TC0, on coarser grids, but it slows down to first order
n finer grids. Similarly, on TC1, MPAS displays a first order rate, but
hroughout all grids.

ICON, in contrast, shows a consistent convergence rate on both
orms of first order on TC0 and second order on TC1. It can also
e observed that, except for TC0’s 𝐿2, ICON’s error is substantially
ower than MPAS. ICON’s Perot operator interpolation allows for a
igher convergence, in comparison with MPAS, in part due to the
ector velocity field interpolated on the cell circumcentre prior to the
omputation of the kinetic energy.

Overall, both C-grid computations display very distinct error be-
aviour. On this grid, although on both schemes the kinetic energy
ormulation allows for energy conservation, MPAS is unable to provide
consistent formulation of the operator. In contrast, ICON provides a

onsistent formulation through the use of its Perot operator.

.5. Perpendicular velocity

The perpendicular velocity is an important part of the Coriolis Term,
hich is a forcing that takes into account the non-inertial reference

rame of the shallow water equations. In that case, it is important that
he Coriolis term of our schemes does not input energy into the system.
imilar to the kinetic energy, both the A- and B-grid schemes have
heir vector velocity defined on the same points, providing an exact
alue for the perpendicular velocity. However, since C-grid schemes
o have their vector velocity decomposed on the edges of the grid, an
nterpolation is necessary.

This interpolation should be carefully chosen in order to retain
he conservation of energy in the system. Following the argument
f Thuburn et al. (2009) and Peixoto (2016), a reconstruction can be
hought as a weighted composition of the neighbouring edges of the
ell:
⟂
𝑒 =

∑

𝑒′
𝑤𝑒,𝑒′𝑢𝑒′ . (19)

These weights should be chosen such that this reconstruction is unique,
and provides local geostrophic balance.
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Choosing the edges 𝑒′ from cells that share the same edge 𝑒 we can
define the perpendicular velocity as:

𝑢⟂𝑒 = 𝑎𝑒,𝐹1𝑢
⟂
𝑒,𝐹1

+ 𝑎𝑒,𝐹2𝑢
⟂
𝑒,𝐹2

, (20)

where 𝑎𝑒,𝐹𝑛 are the weights with respect to the cell 𝐹𝑛. In the case
of MPAS’s vector interpolation, the weights defined in Thuburn et al.
(2009) allows us to provide a unique reconstruction on edge 𝑒. We note
that, for the full Coriolis term, MPAS is defined as 𝑞𝑢ℎ, where 𝑞 =
𝜔∕ℎ. To provide this calculation, we used the original reconstruction
used by Ringler et al. (2010), i.e. the potential vorticity 𝑞 is linearly
interpolated from the centre of the triangle to the edge midpoint and
the full term (𝑞ℎ𝑢)⟂𝑒 is computed with (19).

In the case of ICON’s scheme, we use the interpolation 𝑃 𝑇𝜔𝑃𝑢. In
this case 𝑃𝑢𝐾̂ = 𝑢⟂

𝐾̂
, so the weights are defined as:

𝑤𝑒,𝑒′ = 𝑤𝑒,𝐾̂ =
|𝑒|𝑑𝑒,𝐾̂
|𝐾̂|

,

giving a unique reconstruction on the centre of the dual cell 𝐾̂. In
rder to reduce it back to the edge, we do 𝑎𝑒,𝐾̂ = 𝑑𝑒,𝐾̂∕|𝑒|. We note
hat this set of operators allows not only energy conservation, but also
otential enstrophy (Korn and Danilov, 2017; Korn and Linardakis,
018). We recall, however, that this operator has the potential of
roducing non-zero frequency geostrophic modes (Peixoto, 2016).

Our results show that MPAS displays a second order convergence
ate on 𝐿∞ up to g6 on TC0, but decrease to a first order for finer grids
Fig. 5.u⟂). On 𝐿2, it shows a second order throughout all refinement.
imilarly, on TC1, it also shows a second order rate up to g7, but

decreases to near first order to g8. A similar result is obtained for 𝐿2.
This result is similar to Peixoto (2016) showing that MPAS achieves at
most a first order convergence rate on the 𝐿∞.

4. Shallow water time integration

The time integration of the shallow water equations provides us
knowledge about the behaviour and limitations of the model through-
out time. In order to gather this understanding, in this section we will
put the schemes under a battery of tests. For the purpose of these
tests, we chose to use a simple Runge–Kutta (RK44) operator, with 50 s
timestep for all schemes and grids. Such choices are enough to ensure
that the temporal errors are minimal and that the dominating error
comes from the spatial discretization. We note that although both C-
grid schemes may not require a stabilization term, since their error are
expected to be well controlled, both A- and B-grid schemes could excite
errors that would potentially destabilize the model. It is possible to use
a harmonic (∇2𝐮) or biharmonic (∇4𝐮) term to provide stability of the
scheme. In order to be more scale selective and avoid damping physical
waves of our simulations we chose to use only the biharmonic, and as
it was shown by the original authors of A- and B-grid schemes (Tomita
et al., 2001; Danilov et al., 2017) the biharmonic term is enough to
provide the necessary stability.

Therefore, the stabilizing operator can be regarded as a composition
of Laplace diffusion operators, i.e. ∇4𝐮 = 𝛥𝛥𝐮. To compute the Laplace
diffusion operator, both A- and B-grid schemes are equipped with
different approaches in its computation. For the former scheme, the
Laplace operator is defined as:

𝛥𝐮 = ∇ ⋅ ∇𝐮. (21)

Thus, we can approximate the Laplacian operator by 𝛥𝐮 ≈ 𝐝𝐢𝐯 𝐠𝐫𝐚𝐝 𝐮,
using the operators defined in the previous section.

On the other hand, the B-grid scheme, computes the harmonic
diffusion for a cell 𝐾 as:

𝛥𝐮 ≈ 1
|𝐾|

∑

𝐿

|𝑒|
|𝑒|

(𝐮𝐿 − 𝐮𝐾 ), (22)

where 𝐿 are all the triangles neighbouring the cell 𝐾. For the tested
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schemes, we used the biharmonic coefficient defined in Table 4. Our
Table 4
Biharmonic coefficient used for stabilizing the shallow
water schemes.

A-grid/B-grid (m2 s−1)

g2 1022

g3 1020

g4 1019

g5 1018

g6 1017

g7 1016

g8 1015

coefficients are much higher than found in literature (Tomita et al.,
2001; Danilov et al., 2017; Majewski et al., 2002; Jablonowski and
Williamson, 2011), however both A- and B-grid schemes differ in
their discretization and the A-grid scheme is found susceptible to
numerical oscillations depending on the choice of grid (Tomita et al.,
2001). Therefore, by choosing an intense coefficient, we guarantee that
numerical waves will not participate in the comparison of our results.

All schemes will then be evaluated. Firstly, we provide an accuracy
analysis of the integrated height and vector velocity fields (Section 4.1).
Then, we evaluate the linear mode analysis of our schemes (Sec-
tion 4.2). Thirdly, we evaluate the scheme’s capacity to maintain its
geostrophic balance (Section 4.3). Finally, we evaluate the behaviour of
each scheme under a barotropic instability, which is an initial condition
that accentuates the nonlinear terms of our schemes (Section 4.4).

4.1. Time integrated accuracy of variables

The initial condition studied here is the Nonlinear Geostrophic
Balanced testcase calculated from (11), where the solution of the
discretized should not change over time. Due to numerical errors, some
geostrophic adjustment occurs. However, the impact of the adjustment
should not break geostrophic balance condition over time.

Our results demonstrate that both A- and B-grid schemes exhibit
improvements in accuracy close to second order for both norms of the
height field variable (Fig. 6). However, for the vector velocity field,
the values differ. For 𝐿∞, A-grid is shown to converge near second
order, while B-grid, which displays a near second order convergence for
coarser grids (up until g5), only shows a first order for the finer grids.
Nevertheless, on 𝐿2, both schemes are shown to display an accuracy
increase near second order.

Regarding both C-grid schemes, they face problems on increasing
their accuracy on 𝐿∞. MPAS does not converge on the height scalar
field, but does display a first order convergence rate on 𝐿2. Concerning
the vector velocity field on 𝐿∞, MPAS shows a seconder order rate
for coarser grids (up until g6), but decreases to first order in finer
grids. However, on 𝐿2, MPAS displays a second order rate consistently
for all refinements. This result was also observed in Peixoto (2016),
and it is suggested that either the kinetic energy approximation or the
divergence, might be responsible for reducing the solution’s accuracy.

In contrast, ICON displays a first order convergence rate on both
norms for the height scalar field. Nevertheless, the scheme does not
seem to converge on the vector velocity field for the 𝐿∞ norm. In
the case of 𝐿2, it displays, for coarser grids, a second order accuracy
rate, but from g7 to g8 it slows down to a first order rate. Similar to
MPAS, some operators, face challenges in converging the solution. In
this scheme, the divergence, vorticity, and the perpendicular velocity
do not display a convergence of the solution. It is noted that both
vorticity and perpendicular velocity are critical components of the
Coriolis Term of (1b), potentially impacting the convergence of the
vector velocity field. Korn and Linardakis (2018) did not observe the
same results. Therefore, it is likely that the grid choice is crucial for
obtaining convergence on the fields.

Overall, A- and B-grid display similar errors, especially, in the height
field. ICON’s scheme has shown the largest errors of the tested schemes,
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Fig. 6. ℎ and 𝑢 error after 15 days.
except in the height field 𝐿∞, where MPAS did not converge. B-grid
shows the second-largest magnitude error, only on the vector velocity
field. This is likely due to the use of the biharmonic and notably due
to the gradient operator that is defined on triangles, unlike both A-grid
and MPAS, which shows similar magnitudes on 𝐿2. On 𝐿∞, however,
MPAS shows a larger error and lower convergence rate, in comparison
to the A-grid, likely due to the aforementioned challenges.

4.2. Linear normal modes

The earth’s ocean behaviour is modulated by oscillations that are
mostly affected by the earth’s rotation. The complete nonlinear equa-
tions are difficult to analyse due to the high degree of interactions
between these oscillations. However, linear analysis can be done by
considering (1) the following approximations:

𝜕𝑡ℎ = 𝐻∇ ⋅ 𝐮
𝜕𝑡𝐮 = −𝑔∇ℎ − 𝑓𝐮⟂,

(23)

where 𝐻 is a fixed constant. This system still provides a large set
of inertia-gravity waves present in either the ocean or atmosphere.
In order to calculate the normal modes, we follow the methodol-
ogy of Weller et al. (2012) by considering a vector (𝐡,𝐮′)𝑇 , where
both elements, i.e. 𝐡 and 𝐮, are scalars, so that we have (𝐡,𝐮′)𝑇 =
[ℎ1, ℎ2,… , ℎ𝑀 , 𝑢1, 𝑢2,… , 𝑢𝑁 ] for 𝑀 and 𝑁 elements of height and veloc-
ity fields, respectively. In the case of A- and B-grid, the scalar velocity
is obtained by decomposing them into zonal and meridional velocity
scalars, whereas for both C-grid schemes these scalar fields are obtained
directly from the velocity on the edges of the grid.

We run (23) 𝑀 + 𝑁 times for one timestep of 𝛥𝑡 = 10 seconds on
a g2 grid, with the RK4. The initial conditions used are defined by a
unit value on the 𝑗th position of (𝐡,𝐮′)𝑇 , i.e. for the 𝑘th run the initial
condition is defined as (𝐡0,𝐮′0)

𝑇
𝑘 = [𝛿𝑘𝑗 ], where 𝛿𝑘𝑗 is the Kronecker delta.

We use as parameters: 𝑔𝐻 = 105 m2 s−2, 𝑓 = 1.4584 × 10−4 s−1 and the
radius of the earth 𝑎 = 6.371 × 106.

From these runs, we create a matrix 𝐴, where each column is the
approximated solution of the initial condition provided. We, then, can
calculate the eigenvalues 𝜆 of the matrix and, consequently, obtain the
frequency of the modes from 𝜆 = 𝛼𝑒𝑖𝜔𝛥𝑡, where 𝜔 is the frequency of
the normal modes. We, then, order our results from lowest to maximum
frequency. We will have 486 eigenvalues for the A-grid, 642 for both
B-grid and MPAS, and 800 for ICON. These values correspond to the
total degrees of freedom of our system. There are, in the g2 grid, 162
vertices, 480 edges, and 320 triangles. For the A-grid, since both mass
and vector fields are defined at the vertices, the total DOFs are three
times the vertices. In the case of the B-grid, the vector field is defined
at the triangles, therefore the total DOFs are the vertices plus twice the
triangles. For both C-grid schemes, the vector velocity field is defined
at the edges, however, MPAS has the mass at the vertices, while ICON
has the mass defined at the triangles. In that case, MPAS’s DOFs are
the vertex plus edge points and ICON is the triangle points plus edge
points.
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Fig. 7. Linear normal modes of the considering the linear shallow water Eqs. (23) on
the 𝑓 -sphere.

The normal mode frequencies can be seen in Fig. 7. A clear differ-
ence is observed between frequency representation on all grids. The
A-grid shows the slowest representation of inertia-gravity waves, with
the maximum frequency of 0.16 × 10−3 s−1 on the 119 index. On
the other hand, the B-grid scheme shows higher frequencies, with a
maximum on the 167 index of around 0.26 × 10−3 s−1.

In contrast, a more accurate representation is obtained by both C-
grid schemes. ICON shows similar, but slightly higher, frequencies,
compared to the B-grid scheme. However, the highest frequency is
obtained on its tail on the 635 index of around 0.42 × 10−3 s−1.
Conversely, MPAS displays a more accurate representation of the modal
frequency with a maximum on index 320 of around 0.42 × 10−3 s−1.

Overall, our results show similar results with the traditional quadri-
lateral grids (Arakawa and Lamb, 1977; Randall, 1994). It is known
that on these grids, the C-grid schemes represent inertial modes more
accurately than either A- or B-grid schemes, but also B-grid displays
a higher frequency, and a more accurate representation of inertia-
gravity waves, than the A-grid schemes. We highlight that the expected
decrease in inertia-gravity representation from the traditional grids is
not observed in our results, since we reordered our modes from least
to highest frequency. Consequently, higher modes (higher wavenum-
bers) of both A- and B-grid schemes are not accurately displayed in
our results. Despite this, our results demonstrate that the maximum
represented frequency of both schemes is indeed lower than that of the
C-grid schemes, following the theory.

Regarding both C-grid schemes, our results for MPAS agree with
the other authors (Weller et al., 2012; Thuburn et al., 2009; Peixoto,
2016). In addition, we note that ICON’s has a less accurate repre-
sentation of the normal modes in comparison with MPAS either on
the quasi-hexagonal grid or its implementation on triangles (Thuburn
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et al., 2009). This result in ICON has already been observed (Korn
and Danilov, 2017), and it is argued that the filtering property of the
divergence on the mass equation might not only remove the intended
noise of the triangular mesh, but also some of the higher frequency
physical oscillations.

4.3. Localized balanced flow

An important testcase is to evaluate the model’s capability of
maintaining its geostrophically balanced state. Our TC1 testcase (Sec-
tion 4.1), allowed us to test whether the models are capable of main-
taining their state under small wavenumbers. However, a harder eval-
uation is to test whether the model have the ability to maintain its
state under high wavenumber oscillations. For this reason, we used the
testcase developed in Peixoto (2016). This test is particularly important
for two main reasons: one of them is that the Perot’s operator might
not have steady geostrophic modes which may have consequences for
the ICON model, and the second reason is that both A- and B-grid
are unable to maintain their geostrophic balanced state. We evaluate,
without the stabilizing biharmonic term, how all models behave under
this testcase.

On that account, we define the testcase as follows:

ℎ = ℎ0(2 − sin𝑛 𝜃)

𝑢𝜙 = −𝐹 +
√

𝐹 2 + 4𝐶
2

,
(24)

where ℎ0 is a constant, such that 𝑔ℎ0 = 105 m2 s−2, and 𝑛 = 2𝑘 + 2 for
any positive 𝑘. In our particular case, 𝑘 = 160. We also define 𝐹 and 𝐶
as:

𝐹 = 𝑎𝑓0
cos 𝜃
sin 𝜃

𝐶 = 𝑔0𝑛 sin
𝑛−2(𝜃) cos2(𝜃).

We will also consider the f-sphere with 𝑓0 = 1.4584 × 10−4 s−1. Finally,
the grid is rotated so that the nucleus of the depression is centred at
1◦E, 3◦N. This initial condition is in geostrophic balance and is not
expected to change over time, but some geostrophic adjustment will
occur.

The parameters used in this testcase will have a timestepping
scheme and value as defined in Section 4. We will also use a g6
refinement, where there are abrupt changes on the height field in a
very restricted number of cells.

Our results displayed in Fig. 8 show that both A- and B-grid, without
the biharmonic term, are not capable of maintaining the geostrophic
balance. For the A-grid, the numerical artefacts, emanated primarily
from the pentagons of the grid, destabilize the scheme leading to an
exponential growth blowing up the model around the 40 h integration.
In contrast, in the case of the B-grid scheme, there was not detected
the presence of fast spurious numerical oscillations. However, the
detected numerical dispersion waves were capable of breaking down
the depression up until the 24 h after the start of the simulation.

Conversely, both C-grid schemes maintain the depression through-
out the 5-day period of integration. However, in ICON’s case there is
a small presence of noise on the system, but it does not seem to be
enough to impact the overall solution.

Overall, the solution of A- and B-grid are impacted by their nu-
merical oscillations. Although in the work of Yu et al. (2020) the
A-grid is capable of integrating for a long time, the small wavelength
oscillations in this testcase, generated mostly on the pentagons of the
mesh, destabilize the integration, blowing up the solution. In contrast,
both C-grid schemes solutions do not display damaging oscillations on
the solution. MPAS’s scheme and Perot’s operator on the dual grid for
this testcase has been observed by Peixoto (2016) and observed the
scheme accurately maintains their geostrophic state. We are able to
show that on the primal grid, ICON, with the use of Perot’s formulation,
is also able to represent the geostrophic balance state on small scale
flows, despite the issues on the accuracy of its operators on the SCVT
(Sections 3 and 4.1).
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Fig. 8. Height field of the different schemes for the localized balanced flow testcase
without using biharmonic for both A- and B-grid schemes. Using a grid refinement g6
and a timestep of 50 s.

4.4. Barotropic instability

Previous testcases aimed at studying the fluid flow under highly
controlled experiments, in order to evaluate their accuracies, linear
normal modes, and balanced state flow. However, the highly energetic
and chaotic nature of the ocean requires a more realistic testcase, such
as fluid flow instability, developed by Galewsky et al. (2004), and
defined below:

𝑢 =

⎧

⎪

⎨

⎪

⎩

𝑢max
𝑒𝑛

exp
[

1
(𝜙−𝜙0)(𝜙−𝜙1)

]

𝜙0 < 𝜙 < 𝜙1

0 (𝜙 − 𝜙0)(𝜙 − 𝜙1) > 0

𝑔ℎ(𝜙) = 𝑔ℎ0 − ∫

𝜙

−𝜋∕2
𝑎𝑢(𝜙′)

[

𝑓 +
tan(𝜙′)
𝑎

𝑢(𝜙′)
]

𝑑𝜙′.

(25)

where 𝑢max = 80 m s−1, 𝜙0 = 𝜋∕7, 𝜙1 = 𝜋∕2 − 𝜙0, 𝑒𝑛 = exp[−4∕(𝜙1 −
𝜙0)2]. These initial conditions are under geostrophic balance, but with
high potential for fluid instability. In order to trigger it, we add a
perturbation to the height field:

ℎ′(𝜃, 𝜙) = ℎmax𝑒
−(𝜃∕𝛼)2𝑒−[(𝜙2−𝜙)∕𝛽]

2
cos𝜙, (26)

where 𝜙2 = 𝜋∕4, 𝛼 = 1∕3, 𝛽 = 1∕15, and ℎmax = 120 m. All schemes
are tested on a g7 refinement with a timestep of 50 seconds under a
RK4 timestepping scheme. In order to avoid the instability, we use
a hyperviscosity coefficient of 5 × 1015 and 2 × 1015, for both A- and
B-grid, respectively. These choices of coefficients are in agreement
with (Tomita and Satoh, 2004). We also found that smaller values of
these coefficients of each scheme would lead to instability for the A-grid
and the appearance of near grid scale oscillations in the B-grid.

The potential vorticity, on the sixth day of integration (Fig. 9),
display the behaviour of the growth of the instability on all the eval-
uated schemes. Between these schemes, there is a clear difference in
the representation of the smaller scale features of the instability. Both
A-grid and B-grid schemes display no small scale oscillations present
within the vorticity field. Additionally, it is evident that both schemes
display slightly coarser features in representing the state of the fields
due to the use of hyperviscosity.

Similarly, in both C-grid schemes, we observe more small scale
features in this system, helping could potentially aid in the growth of
the instability even if no perturbation was added. However, it is evident
that in these schemes, near-grid scale oscillations play a role in the
physical solutions of the integration. Comparing both C-grid schemes,
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Fig. 9. Potential Vorticity of all schemes on the 6th day of integration for the barotropic instability testcase with perturbation using a g7 refinement grid and a respective
biharmonic for A- and B-grid schemes, following Table 4.
both schemes seem equally contaminated by numerical noise, however,
the small scale oscillations in MPAS display a higher wavenumber
than the ICON scheme. MPAS’s noise in the vorticity was discussed
and argued that the chequerboard noise of the vorticity is the main
culprit in the manifestation of this contamination in our physical simu-
lations (Peixoto, 2016). Likewise, we also know that Perot’s operator
on the dual grid is capable of manifesting numerical noises on the
solutions. Since ICON’s divergence operator has the potential to remove
small scale oscillations, but the scheme does manifest spurious waves,
which was also observed in Korn and Linardakis (2018), therefore,
the Perot’s dual operator is potentially the main responsible for this
manifestation.

Overall, all schemes suffer from the grid scale computational modes.
There is, however, the stabilization term for both A- and B-grid schemes,
such that the schemes remain stable throughout the integration. Despite
both C-grid schemes remaining stable throughout the integration, the
solutions are contaminated with noise, which will inevitably require a
smoothing term, such as the biharmonic, in order to remove these high
wavenumber waves. Additionally, It is observed that the small-scale
features are apparently more well-resolved in both C-grid schemes com-
paring with both A- and B-grid discretizations, displaying an apparent
increase in the effective resolution, agreeing with the previous results
in Section 4.2. Following this result, we analyse the kinetic spectrum
of these schemes.
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4.4.1. Kinetic energy spectrum
The global kinetic energy spectrum is a useful tool in evaluating

the energy cascade of the fluid. On different scales of the ocean’s
motion, we observe a power law of 𝑘−3 for larger scales or 𝑘−5∕3 for
smaller scales (Wang et al., 2019). For the 2D case, the former is
related to the turbulence of the flow, whereas the latter is related to
the reverse energy cascade turbulence. These spectral fluxes provide
useful insight into the performance of the models in transferring energy
motion between different scales.

Therefore, we define the Kinetic Energy Spectrum as follows:

(𝐸𝐾 )𝑛 =
𝑎2

4𝑛(𝑛 + 1)

[

|𝜁0𝑛 |
2 + |𝛿0𝑛 |

2 + 2
𝑀
∑

𝑚=1

(

|𝜁𝑚𝑛 |
2 + |𝛿𝑚𝑛 |

2
)

]

, (27)

where 𝜁𝑚𝑛 , 𝛿𝑚𝑛 are the spectral coefficients of the vorticity and diver-
gence. These coefficients are defined as:

𝜓𝑚𝑛 = ∫

1

−1

1
2𝜋

 (𝜓(𝜙, 𝜃), 𝜙)𝑃𝑚𝑛 (𝜃)𝑑𝜃, (28)

where 𝜓 is the variable to be transformed,  (𝜓(𝜙, 𝜃), 𝜙) is the Fourier
Transform on this variable, and 𝑃𝑚𝑛 (𝜃) is the normalized associate
Legendre polynomial. To evaluate these equations, we interpolate the
original unstructured grid into a quadrilateral grid of 10 km resolution
on the equator with the nearest neighbour method.
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Fig. 10. Kinetic energy spectra for the Barotropic instability testcase for all schemes
as in Fig. 9.

The energy spectrum of the schemes is shown on Fig. 10. From the
testcase, a small decrease of the spectrum from the wavenumber 1 to 4,
and subsequently an increase, reaching a maximum at the wavenumber
6. Afterwards, there is a constant decrease of the spectrum with a slope
near 𝑘−3 for all grids. At approximately wavenumber 80, the A-grid
scheme has a considerable loss of its power, decreasing more rapidly.
Similarly, at wavenumber 90 the B-grid scheme also displays this rapid
loss of energy. With slightly higher wavenumber, both A- and B-grid
slow their slope until the last evaluated wavenumber.

Comparably, both C-grid schemes extend the physical slope of 𝑘−3
up to the wavenumber 300. At this wavenumber, ICON displays a
similar loss of kinetic energy, whereas MPAS maintain a similar slope
up to the end of the evaluated wavenumbers. We again remark that
our approach for ICON-O was to perform the mass lumping approach,
which may have some impact on the effective resolution.

In summary, we have shown that for smaller wavenumbers there
is a good agreement between the models. Additionally, we also have
shown that even for the nonlinear time integration of the shallow water
system of equations, the schemes behave similarly to the linear normal
mode analysis, with A-grid having the coarsest effective resolution, and
MPAS, on the other extreme, having the highest effective resolution.
Additionally, the presence of a slow-down of the loss of the power
or even an increase of the spectrum on the highest wavenumbers is
likely related to the impact of the interpolation to cause this increase,
as it was previously reported in other works (Wang et al., 2019;
Rípodas et al., 2009; Juricke et al., 2023). It should be noted that these
oscillations may be remedied by alternative operators, such as the use
of high order upwind operators (Zhang, 2018).

4.5. Models stability

Our previous results were able to show some elementary character-
istics of each of the shallow water schemes. Some of our results required
the inclusion of a stabilizing term for both A- and B- grid schemes,
in order to remove damaging numerical oscillations that participated
in the dynamics. Although the same term was not used in the C-
grid scheme in our simulations, it is desired to include some sort of
13
filtering, as the simulations may contain numerical waves that could
either damage the solution or cause a potential blow up of the model.

One particular cause of numerical dispersion is associated with
3D energy-enstrophy conserving models, regardless of the staggering
used. The imbalance between the Coriolis and kinetic energy term
generates numerical noise, causing near grid-scale oscillations and
decreasing the kinetic energy of jets (Hollingsworth et al., 1983). This
instability, known as Hollingsworth Instability, also manifests as a
destabilized inertia-gravity wave, leading to a blow-up of the solution
depending on the models’ resolution and distortion of the mesh (Bell
et al., 2017; Peixoto et al., 2018). Recent ocean models, such as
NEMO’s model, have shown susceptibility to these oscillations, produc-
ing spurious energy transfer to the internal gravity-waves and dissipa-
tion, resulting in corruption of mesoscale currents and submesoscale
structures (Ducousso et al., 2017).

Moreover, a comparison of baroclinic and symmetric instabilities for
both B- and C-grid discretization under a structured grid was provided
by Barham et al. (2018). The authors have shown that the C-grid
discretization is more prone to small-scale spurious instabilities, where
they argued that the cause of these oscillations is due to errors in the
Coriolis term.

Although this instability is 3D in nature, it is possible to mimic
it, by considering the ocean model as a layered model, where the
vertical flow is associated with one of the thin layers of the ocean (Bell
et al., 2017) and assuming a hydrostatic and Bousinesq approximation
(assumptions made by all ocean models evaluated in this work). Each
layer will have a thickness, and we will denote them as 𝐻 and if
unstable, will display a strong noise on the horizontal velocity, and,
thus, can be analysed with the shallow water equations.

4.5.1. 2D stability analysis
In order to examine the instability, we analyse the models under a

nonlinear geostrophic testcase, similar to TC1. In this testcase, however,
we consider the bathymetry as driving the geostrophic balance. The
mass height field will be constant and small to mimic the equivalent
depth of the internal modes of the 3D model, as done by Bell et al.
(2017), and Peixoto et al. (2018). Furthermore, we apply a linear
analysis using the power method (Peixoto et al., 2018):

𝐱(𝑘+1) = 𝛼(𝑘+1)𝐫(𝑘+1) + 𝐱, (29)

where 𝛼(𝑘+1) = 𝜖∕|𝐫(𝑘+1)|, 𝜖 = 10−5 is a small constant, 𝐱 is the model
state under geostrophic balance, 𝐫(𝑘+1) = 𝐱∗ − 𝐱 is the perturbation,
𝐱∗ = 𝐆(𝑥𝑘) +𝐅, 𝐆(𝑥𝑘) is the model evolution operator, and 𝐅 = 𝐱−𝐆(𝐱)
is a constant forcing. The eigenvalue is then obtained as 𝜆 = 1∕𝛼. From
there we can compute the E-folding timescale from the growth rate
𝜈 = log 𝜆∕𝛥𝑡, where 𝛥𝑡 is the timestep. We will use, a timestep of 200
seconds.

Ranging from an equivalent depth from 10−3 to 100 m we observe
a substantial difference between the stability of the evaluated schemes
(Fig. 11). B-grid and ICON show similar e-folding time at around 0.1
and 0.2 days from the shallowest depth up to 1 m. Larger thickness
display a stabilization of both schemes. B-grid, in this case, displays a
faster stabilization than ICON, whose e-folding time remains below 1
day for the 200 m, whilst B-grid shows over 2 days e-folding time for
the same thickness.

The similarities of both schemes for lower equivalent depths is
potentially due to the use of triangular cells on some of their operators.
However, the difference between the schemes for larger depths is
likely associated with the error created by the reconstruction of the
velocity vector field for both Coriolis and Kinetic energy terms in
ICON, amplifying the imbalance of the discretization. Additionally, in
different grids, ICON is found to be more stable (Korn and Linardakis,
2018), implying that our choice of grid might be a source of higher
instability. It is worth noting that the susceptibility of FeSOM’s B-grid
contrasts what was obtained by Barham et al. (2018). This difference
might be due to the FeSOM’s discretization, the unstructured nature of
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Fig. 11. E-folding time for the different evaluated schemes, considering a time-step of
200 s in a geostrophic test case where the balanced state is given by the bathymetry,
while the height is given by the equivalent depth and constant.

the grid or the use of the vector invariant form of the B-grid. The use
of the FeSOM’s flux form might produce different results.

On the other hand, both MPAS and A-grid display overall a more sta-
ble scheme. MPAS displayed a 0.6 day e-folding time for the shallowest
depths, but showed an increase, reaching around 40 days. Similarly,
A-grid displays an even larger stability of around 0.2 day for the
shallowest depth. However, contrary to the other schemes, the stability
of the A-grid decrease with the increase of the equivalent depth. A-
grid’s stability loss with depth might be potentially due to different
causes of instability being dominant for the equivalent depths, i.e. for
shallower depths, the cause of the instability is likely the Hollingsworth
Instability, while for deeper depths, is caused by the excitation of
spurious pressure modes.

4.5.2. Biharmonic
In order to evaluate the biharmonic effect on the stability of the

models, we perform the same analysis for different viscosity coeffi-
cients, using an equivalent depth of 1 metre, and a timestep of 200
seconds. For A- and B-grid schemes, we use (21) and (22), respectively.
On C-grid, we use the formulation:

𝛥𝐮 = ∇∇ ⋅ 𝐮 − ∇ × ∇ × 𝐮 ≈ 𝐠𝐫𝐚𝐝 𝐝𝐢𝐯 𝑢 − 𝐠𝐫𝐚𝐝𝑇 𝐯𝐨𝐫𝐭 𝑢,

where 𝐠𝐫𝐚𝐝𝑇 is the transpose gradient operator defined on the dual
grid.

Our analysis, shown in Fig. 12, indicates that all schemes were
found to be stable for a viscosity coefficient no more than 1015 m4 s−1.
Individually, B-grid and ICON do not display differences in stability for
a coefficient up to 1013 m4 s−1. However, increasing the coefficient,
shows that the B-grid has, not only a faster stabilization than ICON,
but has the fastest of all evaluated schemes, reaching an e-folding time
of over 10 days for a coefficient of 1 × 1014 m4 s−1. ICON, in contrast,
shows the slowest stabilization, reaching an e-folding time of 1.1 days
for a coefficient of 4 × 1014 m4 s−1.

Similarly, both A-grid and MPAS schemes display an unchanged
e-folding time of up to 1013 m4 s−1 and 1014 m4 s−1, respectively.
Additionally, A-grid is shown to stabilize faster than MPAS, reaching
an e-folding time of over 20 days for a coefficient of 3 × 1014 m4 s−1,
while MPAS reaches 10 days for the same coefficient.

Overall, we see that despite B-grid showing lower stability than all
schemes, it has the potential to achieve stability faster. Conversely,
although ICON obtains a similar stability as the B-grid, it requires a
more intense coefficient, in order to stabilize the scheme. A similar
behaviour happens with A-grid and MPAS, with MPAS requiring a more
14
Fig. 12. E-folding time by viscosity coefficient for each scheme, using a g6 grid
refinement with a timestep of 200 s and a 1 m equivalent depth.

intense coefficient for stabilization. This implies that this difficulty is
on the C-grid discretization itself, and it is likely associated with either
the vector reconstruction of the Coriolis term or the Kinetic Energy
discretization.

5. ICON-O model

Given the importance of the biharmonic term in order to stabilize
the scheme or, at least, remove spurious computational waves in the
system, we, then, aim to bridge the gap between the shallow water
model and ICON’s operational model. We will first acknowledge that
our analysis in this section will be limited to ICON-O, and will not
give light to other models mentioned in this work. However, providing
results with ICON-O will be an important step towards understanding
the effects of numerical oscillations on research/operational models.
Additionally, our simulations presented in this section were not fine-
tuned, i.e. the physical parameters and coefficients were not thoroughly
calibrated, and, therefore, these simulations may not necessarily repre-
sent reality accurately. However, our discussions in this section will be
focused on the analysis of the differences between simulations with and
without the biharmonic filter, so the lack of calibration will not impact
the overall analyses of the results.

The Ocean General Circulation Model ICON-O, developed at the
Max–Planck Institute for Meteorology, is the oceanic component of the
ICON Earth System Model. It uses horizontal discretization described
in the earlier sections. Vertically, it extends the triangular cells into
prisms, for the use of its z-coordinate levels. Additionally, In its 3D for-
mulation, ICON-O uses the hydrostatic and Bousinesq approximations
to solve its state vector {𝑢, ℎ, 𝑇 , 𝑆}, where 𝑇 and 𝑆 are temperature
and salinity, respectively. These tracers are also imbued with dissipa-
tive and subgrid-scale operators, such as isoneutral diffusion and the
mesoscale eddy advection Gent–Mcwilliams (Korn, 2018). The full 3D
spatial discretization will be omitted in this section, but the reader can
refer to equation (32) of Korn (2017).

For its time integration, ICON-O is discretized using an Adams–
Bashforth 2-step predictor–corrector scheme (equations 33, 34, and 35
of Korn (2017)). This timestepping scheme does not conserve energy or
enstrophy, and it provides an inherent diffusion (Korn and Linardakis,
2018).

Our 3D simulations were performed using a Spring Dynamics op-
timized grid with a radial local refinement with the finest resolution,
around 14 km edge length, located near South Africa, and the coarsest
resolution, around 80 km edge length, on the antipode of the earth,
i.e. North Pacific (Fig. 13 upper panel). These locally refined mesh
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Fig. 13. The upper panel is the cell area of the spherical grid used in the simulations.
The lower panel is the respective cell distortion of the mesh.

created enumerated distortion spots around the refined region (Fig. 13
lower panel).

The model was initialized under rest with 128 layers with cli-
matological temperature and salinity from the Polar Science Center
Hydrographic Climatology (Steele et al., 2001) and was forced with
the German-OMIP climatological forcing, which is derived from the
ECMWF reanalysis 15 years dataset. This climatological forcing is daily
with a resolution of 1 degree. An initial thirty years spin up was
performed under these conditions utilizing a biharmonic coefficient of
2 × 10−1𝐴3∕2

𝑒 , where 𝐴𝑒 = |𝑒||𝑒|∕2. In addition, we added a Turbulent
Kinetic Energy (TKE) closure scheme, for the vertical diffusivity of
traces and velocities.

Following the spin-up, we, subsequently, ran 2 simulations by 10
years each. One simulated with the same parameters as the spin-
up, which we will coin as our reference simulation. The other was
simulated without the aforementioned biharmonic filter, which we will
coin as NB run.

The simulation without the filter shows a clear decrease in the
strength of the currents on the ocean system (Fig. 14, e.g. Gulf Stream
(A), North Equatorial (B), Kuroshio (C), Malvinas currents (D), and
Agulhas (E)). Other regions were found to slightly increase in kinetic
energy, in particular, the neighbourhood around the Agulhas Current,
near the Antarctic Circumpolar Current, the Equatorial Currents of the
Atlantic Ocean and both Northern and Southern of the Pacific Ocean,
and the Brazil-Malvinas Confluence. The integrated kinetic energy av-
eraged over these years shows that surface kinetic energy loss of around
4.7 ×1013 km2 m2 s−2 of its 20 ×1013 km2 m2 s−2. Additionally,
it is observed, in particular in regions of coarser resolution, such as
the Kuroshio Current and Gulf Stream, the presence of a numerical
oscillation emanating from the main currents.

At the equatorial pacific currents, in our experiments, we observe
that the NB simulation shows a wider jet with a weaker and deeper
core intensity (Fig. 15). Moreover, the NB simulation shows that the
northern and southern branches of the Equatorial Current decrease in
their intensity, and a flow intensity up from the EUC, which likely oc-
curs due to the deepening of the EUC. Concerning the turbulent energy,
the NB simulation shows an increase of EKE at the interface between
the slow westward surface flow and the EUC, while decreasing its EKE
at the northernmost edge of the North Equatorial Current. Ducousso
et al. (2017) in their work on NEMO also observed a deformation
of the equatorial undercurrent, however, in their experiments, the
15
current was shown to narrow vertically, and they overall detected a
decrease in the EKE field. According to the authors, these effects occur
because the region is highly dependent on the baroclinic instability.
According to the authors, this system of currents is highly subject to
baroclinic instabilities, generating waves and eddies which are the main
contributors of the current. The decrease in intensity of the currents
could be explained by the decrease in baroclinic instabilities. Similarly,
the increase in EKE detected in NB is potentially explained by either a
shear between both EUC and the newly generated surface flow and/or
by a spurious mixing caused by the emission of numerical oscillation
which draws energy from the currents to provide mixing between the
both layers.

A similar EKE effect is detected in other oceanic regions. Most
notably at the Agulhas Current Retroflection, where it meets with the
colder water of the South Atlantic Current and Antarctic Circumpolar
Current (Fig. 16). The Retroflection region EKE is known to be mod-
ulated by the baroclinic instability of the Agulhas current (Zhu et al.,
2018).

Additionally, at the Agulhas Current itself, where there is less
intensity in the EKE, the NB simulation shows a slight increase of this
field. Observing the cross-section P1, we note a clear decrease in the
intensity of the jet’s core (Fig. 17.C) at the surface, while a weak normal
flow is generated at the higher depths. Additionally, it is observed that
the NB simulation generates small-scale flow spanning near the whole
water column, manifesting from the Agulhas Current and propagating
tangent of the cross-section (Fig. 17.B). It is likely that these oscillations
are responsible for the increase in EKE of the field at the core of the
current and, consequently, the decrease of the intensity of the jet, which
may overall impact on the Agulhas Current Retroflection intensity.

6. Conclusions

In this work, we provided a thorough comparison analysis between
different shallow water staggering schemes used in unstructured ocean
models and their capability to maintain a stable integration. Along-
side this, we also investigated ICON’s susceptibility to such numerical
instabilities in realistic 3D settings.

The shallow water analyses have shown that all models have ad-
vantages and disadvantages. The NICAM horizontal discretization,
from Tomita et al. (2001), is simple to discretize, due to its collocated
approach, provides an accurate representation of the operators, and
presents reasonably stable integrations for complex experiments, for
chosen grid optimizations, such as the SCVT. However, similar to the
traditional discretization of A-grids on regular grids (Arakawa and
Lamb, 1977; Randall, 1994), it displays a low effective resolution,
difficulty in maintaining the geostrophic balance, and it is susceptible
to the manifestation of numerical oscillations caused by the grid
discretization.

Similarly, the FeSOM 2.0 horizontal discretization, from Danilov
et al. (2017), also provides a quite simple discretization, accurate
approximations of the operators, and a higher effective resolution
compared to the A-grid. However, it also has a low effective resolution,
and it displays some difficulty in maintaining the geostrophic balance.
Additionally, despite not suffering from pressure modes, the quasi-B-
grid scheme is found to be the least stable scheme, potentially due to
its spurious inertial modes, but as shown here and discussed by Danilov
(2013), It can be easily fixed by a low coefficient of biharmonic.

Finally, both C-grid schemes, MPAS-O, from Skamarock et al. (2012),
and ICON-O, from Korn (2017), have the most complex discretizations
between the evaluated schemes. Some operators do not accurately
approximate the operators of the Shallow Water system. The difficulty
for MPAS-O to show convergence in the error was also discussed
by Peixoto (2016). Similarly, ICON-O also displays some difficulty in
converging some of the operators of the shallow water equations. The
lack of convergence of the divergence operator, for example, was also
shown in Korn and Linardakis (2018) for their defined Rossby Grid.
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Fig. 14. Kinetic Energy difference between a reference simulation and simulation without the use of biharmonic, i.e. 𝐸(ref)
𝑘 − 𝐸(no bih)

𝑘 .
Fig. 15. Cross-section of the 130◦W longitude of the reference (A) and the without
biharmonic (B) simulation, and a vertical profile of the zonal velocity of both
simulations over the 0◦ Latitude (C).

Therefore, for both schemes, it is argued that the issue lies in the use of
the grid. Therefore, a proper choice of grid optimization should also be
taken into consideration when using these schemes. Additionally, the
difference in apparent effective resolution is observed for both grids,
with MPAS-O having a higher resolution. This may be explained by
the use of grid optimization, the mass lumping approach or the Perot
operator in ICON-O. Finally, a dissimilarity between both schemes is
seen in their stability. MPAS is shown to have a high stability, as it
was discussed in Peixoto et al. (2018), but ICON, similar to the B-
grid, is shown to have a low stability and requires a larger viscosity
than B-grid to stabilize the scheme. The grid use and the mass lumping
may again be responsible for this difference. Despite this, a comparison
between the use of different computations of each operation is welcome
to analyse how ICON-O’s stability is impacted, e.g. a comparison
between the naive and Perot’s computation of the divergence, kinetic
16
Fig. 16. Eddy Kinetic Energy (A) and the difference between simulations of EKE (B)
of the Agulhas Current System.

energy, and perpendicular velocity. Despite the high resolution and
stability, MPAS-O discretization seems to be affected by small-scale
spurious oscillations. A potential remedy was discussed by Zhang
(2018), which argued that higher-order upwind operators may alleviate
these oscillations. Moreover, Ringler et al. (2010) discussed the use of
the Anticipated Vorticity Method (APVM) that also helped to alleviate
these oscillations. Therefore, future research may help improve our
understanding of the impact of these operators on the resolution and
stability of the scheme.

Remarkably, in the 3D ICON-O simulation using a grid with Spring
Dynamics optimization, the model was found to be stable throughout
the simulated years, despite the lack of a biharmonic filter. However,
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Fig. 17. P1 Cross-section between the Reference simulation (A), and No Biharmonic
Simulation (B), and the vertical profile of the normal velocity in the 42 km distance
(C).

near-grid oscillations were apparent in the grid and a contribution of
these oscillations to the dynamics of the model was apparent. As it
was also diagnosed by Ducousso et al. (2017) for the NEMO model,
these oscillations seemed to give rise to spurious mixing of the system
and also decreased the energy of the ocean’s currents. Regions, where
its strength is derived from baroclinic instability, seem more affected
by these small-scale oscillations. Yet, it is clear the need for further
research on this topic. Though the model is stable, it can be affected by
these oscillations if the coefficient is not properly adjusted. Moreover,
an excess of viscosity may also decrease the effective resolution of the
model, which also is not ideal.

In conclusion, we stress that further research is necessary in order to
shed more light on these schemes. We note that all schemes under the
shallow water tests have shown to be robust and provide reliable results
for their respective purpose. However, testing these schemes under
different grids or with more realistic settings might provide greater
insights into the performance of the models. Additionally, it seems
evident that despite a model being stable without filters, the numerical
oscillations in the model may interact with the physical waves, leading
to errors or misinterpretation of the results. It is, therefore, crucial for
further investigation on this topic in order to properly make use of
filters to avoid these oscillations, but also minimize the damping of
physical waves.

Code availability

The code used for grid creation and to carry out the simulations can
be accessed from:
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Updated versions will be available from the same repositories in the
future.
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